1
|
Ozcan M, Ayar A. Endocrine Aspects of Pain Pathophysiology: Focus on Adipose Tissue. Neuroendocrinology 2024; 114:894-906. [PMID: 38801814 DOI: 10.1159/000539531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Multiple factors, including neurobiological, hormonal, psychological, and social/cultural norms, influence the manner in which individuals experience pain. Adipose tissue, once considered solely an energy storage site, has been recognized as a significant endocrine organ that produces and releases a range of hormones and cytokines. In recent years, research has highlighted the role of adipose tissue and its endocrine factors in the pathophysiology of pain. SUMMARY This narrative review aimed to provide a comprehensive overview of the current knowledge on the endocrine aspects of pain pathophysiology, with a specific focus on adipose tissue. We examine the role of adipokines released by adipose tissue, such as leptin, adiponectin, resistin, visfatin, asprosin in pain perception and response. We also explore the clinical implications of these findings, including the potential for personalized pain management based on endocrine factors and adipose tissue. KEY MESSAGES Overall, given this background, this review intended to highlight the importance of understanding the endocrine aspects of pain pathophysiology, particularly focusing on the role of adipose tissue, in the development of chronic pain and adipokines. Better understanding the role of adipokines in pain modulation might have therapeutic implications by providing novel targets for addressing underlying mechanism rather than directly focusing on symptoms for chronic pain, particularly in obese individuals.
Collapse
Affiliation(s)
- Mete Ozcan
- Department of Biophysics, Firat University Medical Faculty, Elazig, Turkey
| | - Ahmet Ayar
- Department of Physiology, Karadeniz Technical University Medical Faculty, Trabzon, Turkey
| |
Collapse
|
2
|
Zhang Y, Wei Y, Zheng T, Tao Y, Sun Y, Jiang D, Tao J. Adiponectin receptor 1-mediated stimulation of Cav3.2 channels in trigeminal ganglion neurons induces nociceptive behaviors in mice. J Headache Pain 2023; 24:117. [PMID: 37620777 PMCID: PMC10463856 DOI: 10.1186/s10194-023-01658-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Adipokines, including adiponectin, are implicated in nociceptive pain; however, the underlying cellular and molecular mechanisms remain unknown. METHODS Using electrophysiological recording, immunostaining, molecular biological approaches and animal behaviour tests, we elucidated a pivotal role of adiponectin in regulating membrane excitability and pain sensitivity by manipulating Cav3.2 channels in trigeminal ganglion (TG) neurons. RESULTS Adiponectin enhanced T-type Ca2+ channel currents (IT) in TG neurons through the activation of adiponectin receptor 1 (adipoR1) but independently of heterotrimeric G protein-mediated signaling. Coimmunoprecipitation revealed a physical association between AdipoR1 and casein kinase II alpha-subunits (CK2α) in the TG, and inhibiting CK2 activity by chemical inhibitor or siRNA targeting CK2α prevented the adiponectin-induced IT response. Adiponectin significantly activated protein kinase C (PKC), and this effect was abrogated by CK2α knockdown. Adiponectin increased the membrane abundance of PKC beta1 (PKCβ1). Blocking PKCβ1 pharmacologically or genetically abrogated the adiponectin-induced IT increase. In heterologous expression systems, activation of adipoR1 induced a selective enhancement of Cav3.2 channel currents, dependent on PKCβ1 signaling. Functionally, adiponectin increased TG neuronal excitability and induced mechanical pain hypersensitivity, both attenuated by T-type channel blockade. In a trigeminal neuralgia model induced by chronic constriction injury of infraorbital nerve, blockade of adipoR1 signaling suppressed mechanical allodynia, which was prevented by silencing Cav3.2. CONCLUSION Our study elucidates a novel signaling cascade wherein adiponectin stimulates TG Cav3.2 channels via adipoR1 coupled to a novel CK2α-dependent PKCβ1. This process induces neuronal hyperexcitability and pain hypersensitivity. Insight into adipoR-Cav3.2 signaling in sensory neurons provides attractive targets for pain treatment.
Collapse
Affiliation(s)
- Yuan Zhang
- Clinical Research Center of Neurological Disease & Department of Geriatrics, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004 People’s Republic of China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123 People’s Republic of China
| | - Yuan Wei
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123 People’s Republic of China
| | - Tingting Zheng
- Clinical Research Center of Neurological Disease & Department of Geriatrics, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004 People’s Republic of China
| | - Yu Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123 People’s Republic of China
| | - Yufang Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123 People’s Republic of China
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123 People’s Republic of China
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Jin Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123 People’s Republic of China
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123 People’s Republic of China
| |
Collapse
|
3
|
Mukama T, Johnson T, Kaaks R, Katzke V. A case-cohort study of the association between adiponectin and mortality in EPIC-Heidelberg: NT-proBNP may explain the adiponectin paradox. Nutr Metab Cardiovasc Dis 2023; 33:853-863. [PMID: 36740561 DOI: 10.1016/j.numecd.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIMS NT-proBNP has been hypothesized as a possible explanation for the paradoxical association between adiponectin and cardiovascular and all-cause mortality. We examined the heterogeneities by NT-proBNP, sex, BMI, smoking status, hypertension and diabetes status in the association between adiponectin and cardiovascular disease risk and mortality. METHODS AND RESULTS We used a case-cohort design nested within the EPIC-Heidelberg cohort, including 1387 incident cases of myocardial infarction or stroke, 582 deaths from cardiovascular causes and 2352 total deaths. We estimated hazard ratios for the association between 1SD increase in log-transformed total adiponectin levels and cardiovascular disease risk, cardiovascular mortality and mortality using Prentice-weighted Cox-proportional hazard models and assessed heterogeneity of the associations across strata of covariates. Overall, adiponectin was significantly associated with all-cause mortality [HR = 1.09, 95% CI: 1.03-1.16, p = 0.004]. The association with cardiovascular mortality did not reach statistical significance [1.10 (0.99-1.37), p = 0.073]. There was significant heterogeneity by NT-proBNP in the association between total adiponectin and all-cause mortality (phet = 0.019) such that significant increase in hazards of mortality were restricted to participants in the highest tertile of NT-proBNP. Among these participants, adiponectin showed a dose-response relationship with total mortality such that; compared to participants in the lowest quintile, those in the third, fourth and fifth were at 1.22 (0.87-1.70), 1.50 (1.07-2.11), and 1.59 (1.15-2.21) higher hazards of mortality respectively. CONCLUSIONS Significant association between adiponectin and mortality was only observed in the context of high NT-proBNP. Our findings provide further support for hypothesis that NT-proBNP may explain the adiponectin paradox.
Collapse
Affiliation(s)
- Trasias Mukama
- Division of Cancer Epidemiology, German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany.
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Fang Q, Li J, Wang Y, Liu X, Shi Y, Chen J, Zhan H, Zeng Y, Wu W. AdipoRon Engages Microglia to Antinociception through the AdipoR1/AMPK Pathway in SNI Mice. Mediators Inflamm 2023; 2023:7661791. [PMID: 37077671 PMCID: PMC10110386 DOI: 10.1155/2023/7661791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Accepted: 03/20/2023] [Indexed: 04/21/2023] Open
Abstract
Background Microglia-associated neuroinflammation plays a crucial role in the initiation and development of neuropathic pain (NeuP). AdipoRon is an analog of adiponectin that exerts an anti-inflammatory effect in various diseases through the adiponectin receptor 1 (AdipoR1) signaling mechanism. Adenosine monophosphate-activated protein kinase (AMPK) is a downstream target of AdipoR1, and the AdipoR1/AMPK pathway is involved in the regulation of inflammation. This study is aimed at investigating whether AdipoRon could alleviate NeuP by inhibiting the expression of microglia-derived tumor necrosis factor-alpha (TNF-α) through the AdipoR1/AMPK pathway. Methods In vivo, the NeuP model was established in mice through the spared nerve injury. The von Frey test was used to detect the effect of AdipoRon on the mechanical paw withdrawal threshold. Western Blot was performed to detect the effects of AdipoRon on the expression of TNF-α, AdipoR1, AMPK, and p-AMPK. Immunofluorescence was performed to observe the effects of AdipoRon on spinal microglia. In vitro, lipopolysaccharide (LPS) was used to induce inflammatory responses in BV2 cells. The effect of AdipoRon on cell proliferation was detected by CCK-8. qPCR was used to examine the effects of AdipoRon on the expression of TNF-α and polarization markers. And the effect of AdipoRon on the AdipoR1/AMPK pathway was confirmed by Western Blot. Results Intraperitoneal injection of AdipoRon alleviated mechanical nociception in SNI mice, and the application of AdipoRon reduced the expression of TNF-α and the number of microglia in the ipsilateral spinal cord. Additionally, AdipoRon decreased the protein level of AdipoR1 and increased the protein level of p-AMPK in the ipsilateral spinal cord. In vitro, AdipoRon inhibited BV2 cell proliferation and reversed LPS-induced TNF-α expression and polarization imbalance. Furthermore, AdipoRon reversed the LPS-induced increase in AdipoR1 expression and decrease in p-AMPK expression in BV2 cells. Conclusions AdipoRon may alleviate NeuP by reducing microglia-derived TNF-α through the AdipoR1/AMPK pathway.
Collapse
Affiliation(s)
- Qian Fang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 Guangdong, China
| | - Jie Li
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 Guangdong, China
| | - Yaping Wang
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence; Key Laboratory of Mental Health of the Ministry of Education; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515 Guangdong, China
| | - Xinli Liu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 Guangdong, China
| | - Yu Shi
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 Guangdong, China
| | - Jiali Chen
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 Guangdong, China
| | - Hongrui Zhan
- Department of Rehabilitation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000 Guangdong, China
| | - Yanyan Zeng
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 Guangdong, China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 Guangdong, China
| |
Collapse
|
5
|
Lu KT, Ho YC, Chang CL, Lan KC, Wu CC, Su YT. Evaluation of Bodily Pain Associated with Polycystic Ovary Syndrome: A Review of Health-Related Quality of Life and Potential Risk Factors. Biomedicines 2022; 10:biomedicines10123197. [PMID: 36551953 PMCID: PMC9776021 DOI: 10.3390/biomedicines10123197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common reproductive disease affecting the hormone and metabolic status of women. Its associated symptoms are diverse among the patients, including hyperandrogenism, insulin resistance, anovulation, infertility, obesity, hirsutism, acne, and more. In addition, PCOS can potentially increase the risk of dysmenorrhea, endometriosis, endometrioma, and irritable bowel syndrome, which are highly related to pelvic pain and sexual difficulty. However, little known is whether PCOS exacerbates other chronic bodily pain or contributes to hyperalgesia. Health-related quality of Life (HRQoL) reflects the life satisfaction and quality derived by an individual from mental, physical, emotional, and social activities under specific conditions. In this study, we reviewed pain perception from HRQoL of PCOS patients (SF-36). The review data evidently indicated that pain perception is significantly more prevalent in patients with PCOS than in healthy controls, and obesity and infertile status could be the rationales associated with pain development. Nevertheless, underlying causes remain undetermined due to the limited information from SF-36. Furthermore, we reviewed pathophysiologic factors to pain development or exacerbation, such as the deregulation of inflammation levels, adipokines, and insulin resistance. Although current evidence of pain perception and pathophysiologic risk factors are solid in PCOS, patients' pain perception is often ignored in clinical settings. Clinicians should note the perception and treatment of pain in PCOS patients. The correlation or causality between pain and PCOS warrants further clinical examination and basic studies, thereby providing new insights into this topic in the context of clinical diagnosis and health care.
Collapse
Affiliation(s)
- Kuan-Ta Lu
- Department of Anesthesiology, Changhua Christian Hospital, Changhua City 50094, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Chen-Lin Chang
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung City 80284, Taiwan
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung City 80284, Taiwan
| | - Kuo-Chung Lan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
- Correspondence: (C.-C.W.); (Y.-T.S.)
| | - Yu-Ting Su
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan
- Correspondence: (C.-C.W.); (Y.-T.S.)
| |
Collapse
|
6
|
Gao SJ, Liu DQ, Li DY, Sun J, Zhang LQ, Wu JY, Song FH, Zhou YQ, Mei W. Adipocytokines: Emerging therapeutic targets for pain management. Biomed Pharmacother 2022; 149:112813. [PMID: 35279597 DOI: 10.1016/j.biopha.2022.112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
Although pain has lower mortality rates than cancer, diabetes and stroke, pain is a predominate source of distress and disability. However, the management of pain remains an enormous problem. Many drugs used to pain treatment have more or less side effects. Therefore, the development of novel therapeutic target is critical for the treatment of pain. Notably, studies have shown that adipocytokines have a dual role in pain. Growing shreds of evidence shows that the levels of adipocytokines are upregulated or downregulated in the development of pain. In addition, substantial evidence indicates that regulation of adipocytokines levels in models of pain attenuates or promotes pain behaviors. In this review, we summarized and discussed the effect of adipocytokines in pain. These evidence indicates that adipocytokines attenuate or promote pain behaviors through interacting with their receptors, activating serotonin pathway, interacting with μ-opioid receptor, activating microglia, infiltrating macrophage and so on. Overall, adipocytokines have some potential in treating pain, but the underlying mechanisms remain unclear and need to be further studied.
Collapse
Affiliation(s)
- Shao-Jie Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dan-Yang Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jia Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Fan-He Song
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ya-Qun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
7
|
Park MJ, Jang EH, Kim AY, Kim H, Kim HS, Byun S, Yu HY, Jeon HJ. Comparison of Peripheral Biomarkers and Reduction of Stress Response in Patients With Major Depressive Disorders vs. Panic Disorder. Front Psychiatry 2022; 13:842963. [PMID: 35432030 PMCID: PMC9008245 DOI: 10.3389/fpsyt.2022.842963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Alteration in stress response seems to affect the development of psychiatric disorders. In this study, we aimed to investigate whether baseline peripheral biomarkers could predict the reduction of stress response among patients with major depressive disorder (MDD) and panic disorder (PD). Patients with MDD (n = 41) and PD (n = 52) and healthy controls (HC, n = 59) were selected and regularly followed up with five visits for 12 weeks. The severity of stress at every visit was assessed using the Stress Response Inventory (SRI), and peripheral biomarkers were measured by blood tests at baseline and 2, 4, 8, and 12 weeks. Interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, C-reactive protein (CRP), adiponectin, and leptin levels were analyzed using enzyme-linked immunosorbent assays. Reduction of stress response was defined as the difference in SRI score between baseline and 12 weeks divided by the baseline score. SRI scores were significantly (p < 0.0001) higher in patients with MDD and PD than in HC at every visit after adjusting for variables. In multivariable linear regression, adiponectin levels at baseline were significantly associated with reduction of stress response in patients with PD. When adiponectin increased 1 mg/l, stress response decreased 0.781 points (β = -0.781, S.E. = 0.220, p = 0.001). Among the subscales of SRI, somatization had a moderate negative correlation with adiponectin levels (r = -0.469). There was no significant association between baseline peripheral biomarkers and reduction of stress response in patients with MDD. Our study showed an inverse association between baseline adiponectin levels and stress response changes in patients with PD, but not in patients with MDD. Thus, differentiated approaches for assessing and treating stress responses of patients with PD and MDD might be helpful. Larger and longitudinal studies are necessary to establish the role and mechanism of action of adiponectin in regulating stress responses in PD.
Collapse
Affiliation(s)
- Mi Jin Park
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eun Hye Jang
- Bio-Medical Information Technology Convergence Research Division, Electronics and Telecommunications Research Institute, Daejeon, South Korea
| | - Ah Young Kim
- Bio-Medical Information Technology Convergence Research Division, Electronics and Telecommunications Research Institute, Daejeon, South Korea
| | - Hyewon Kim
- Department of Psychiatry, Hanyang University Hospital, Seoul, South Korea
| | - Hyun Soo Kim
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sangwon Byun
- Department of Electronics Engineering, Incheon National University, Incheon, South Korea
| | - Han Young Yu
- Bio-Medical Information Technology Convergence Research Division, Electronics and Telecommunications Research Institute, Daejeon, South Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Korean Psychological Autopsy Center, Seoul, South Korea.,Department of Health Sciences and Technology, Department of Medical Device Management and Research, and Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
8
|
Adiponectin regulates electroacupuncture-produced analgesic effects in association with a crosstalk between the peripheral circulation and the spinal cord. Brain Behav Immun 2022; 99:43-52. [PMID: 34562596 DOI: 10.1016/j.bbi.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/06/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
Neurotransmitter-mediated acupuncture analgesia has been widely studied in nervous systems. It remains largely unclear if peripheral substances are involved the acupuncture analgesia. Adiponectin (APN), a circulating adipokine, shows analgesic effects. The study aimed to examine whether APN regulates analgesic effects of electroacupuncture (EA) in the complete Freund's adjuvant (CFA)-induced mouse model. APN wild type (WT) and knockout (KO) mouse were employed in the study. We found that EA attenuates the CFA-induced pain as demonstrated by the Hargreaves thermal test and the von Frey filament test. The deletion of APN significantly reduced the acupuncture analgesia in the CFA-treated APN KO mice while the intrathecal administration of APN mimicked the analgesic effects of EA. We further revealed that EA produced analgesic effects mainly via APN/AdipoR2-mediated AMPK pathway by the siRNA inhibitions of APN receptors (adipoR1/2) in the spinal cord. The immunofluorescence staining analysis showed that EA increased the APN accumulation in spinal cord through the blood circulation. In conclusion, the study indicates a novel mechanism that acupuncture produces analgesic effects at least partially via APN/AdipoR2-AMPK pathway in the spinal cord.
Collapse
|
9
|
Verdú E, Homs J, Boadas-Vaello P. Physiological Changes and Pathological Pain Associated with Sedentary Lifestyle-Induced Body Systems Fat Accumulation and Their Modulation by Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13333. [PMID: 34948944 PMCID: PMC8705491 DOI: 10.3390/ijerph182413333] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle is associated with overweight/obesity, which involves excessive fat body accumulation, triggering structural and functional changes in tissues, organs, and body systems. Research shows that this fat accumulation is responsible for several comorbidities, including cardiovascular, gastrointestinal, and metabolic dysfunctions, as well as pathological pain behaviors. These health concerns are related to the crosstalk between adipose tissue and body systems, leading to pathophysiological changes to the latter. To deal with these health issues, it has been suggested that physical exercise may reverse part of these obesity-related pathologies by modulating the cross talk between the adipose tissue and body systems. In this context, this review was carried out to provide knowledge about (i) the structural and functional changes in tissues, organs, and body systems from accumulation of fat in obesity, emphasizing the crosstalk between fat and body tissues; (ii) the crosstalk between fat and body tissues triggering pain; and (iii) the effects of physical exercise on body tissues and organs in obese and non-obese subjects, and their impact on pathological pain. This information may help one to better understand this crosstalk and the factors involved, and it could be useful in designing more specific training interventions (according to the nature of the comorbidity).
Collapse
Affiliation(s)
- Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
- Department of Physical Therapy, EUSES-University of Girona, 17190 Salt, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| |
Collapse
|
10
|
Jiang X, Zhang Y, Hu W, Liang Y, Zheng L, Zheng J, Wang B, Guo X. Different Effects of Leucine Supplementation and/or Exercise on Systemic Insulin Sensitivity in Mice. Front Endocrinol (Lausanne) 2021; 12:651303. [PMID: 34054726 PMCID: PMC8150005 DOI: 10.3389/fendo.2021.651303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Obesity-related diseases such as diabetes, hypertension, dyslipidemia, and cardiovascular diseases have increased due to the obesity epidemic. Early intervention for obesity through lifestyle and nutrition plays an important role in preventing obesity-related diseases. Therefore, the purpose of this study is to explore the role of leucine and exercise in adiposity, systemic insulin resistance, and inflammation to provide theoretical and guiding basis for the early prevention and treatment of obesity. Methods C57BL/6J male mice were randomly divided into HFD or LFD-fed mice group. After 9 weeks, glucose tolerance test (GTT) was performed to detect their systemic insulin sensitivity. Starting from week 10, mice were divided into eight groups and treated with moderate exercise or/and 1.5% leucine. At week 13, systemic insulin sensitivity was detected by GTT. At week 14, mice were dissected to analyze adiposity and inflammation. Results In LFD mice, exercise significantly increased systemic insulin sensitivity by increasing GLUT4 expression in the muscle and decreasing adiposity through increasing AMPK phosphorylation in adipose tissue. In HFD mice, the simultaneous intervention of exercise and leucine increases systemic insulin sensitivity by reducing liver and adipose tissue inflammation via decreasing NF-κB p65 phosphorylation, and increasing the expression of adiponectin in adipose tissue. Conclusion There are different mechanisms underlying the effects of exercise and leucine on insulin resistance and inflammation in LFD-fed mice or HFD-fed mice.
Collapse
Affiliation(s)
- Xiaofan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuwei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Weichao Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuxiu Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liang Zheng
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Baozhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
11
|
Micheli L, Vasarri M, Barletta E, Lucarini E, Ghelardini C, Degl’Innocenti D, Di Cesare Mannelli L. Efficacy of Posidonia oceanica Extract against Inflammatory Pain: In Vivo Studies in Mice. Mar Drugs 2021; 19:md19020048. [PMID: 33494253 PMCID: PMC7909763 DOI: 10.3390/md19020048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022] Open
Abstract
Posidonia oceanica (L.) Delile is traditionally used for its beneficial properties. Recently, promising antioxidant and anti-inflammatory biological properties emerged through studying the in vitro activity of the ethanolic leaves extract (POE). The present study aims to investigate the anti-inflammatory and analgesic role of POE in mice. Inflammatory pain was modeled in CD-1 mice by the intraplantar injection of carrageenan, interleukin IL-1β and formalin. Pain threshold was measured by von Frey and paw pressure tests. Nociceptive pain was studied by the hot-plate test. POE (10–100 mg kg−1) was administered per os. The paw soft tissue of carrageenan-treated animals was analyzed to measure anti-inflammatory and antioxidant effects. POE exerted a dose-dependent, acute anti-inflammatory effect able to counteract carrageenan-induced pain and paw oedema. Similar anti-hyperalgesic and anti-allodynic results were obtained when inflammation was induced by IL-1β. In the formalin test, the pre-treatment with POE significantly reduced the nocifensive behavior. Moreover, POE was able to evoke an analgesic effect in naïve animals. Ex vivo, POE reduced the myeloperoxidase activity as well as TNF-α and IL-1β levels; further antioxidant properties were highlighted as a reduction in NO concentration. POE is the candidate for a new valid strategy against inflammation and pain.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)‐Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.G.)
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (E.B.); (D.D.)
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (E.B.); (D.D.)
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)‐Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)‐Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.G.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (E.B.); (D.D.)
- Interuniversity Center of Marine Biology and Applied Ecology “G. Bacci” (CIBM), Viale N. Sauro 4, 57128 Livorno, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)‐Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.G.)
- Correspondence:
| |
Collapse
|
12
|
Francischetti EA, Dezonne RS, Pereira CM, de Moraes Martins CJ, Celoria BMJ, de Oliveira PAC, de Abreu VG. Insights Into the Controversial Aspects of Adiponectin in Cardiometabolic Disorders. Horm Metab Res 2020; 52:695-707. [PMID: 32927496 DOI: 10.1055/a-1239-4349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In 2016, the World Health Organization estimated that more than 1.9 billion adults were overweight or obese. This impressive number shows that weight excess is pandemic. Overweight and obesity are closely associated with a high risk of comorbidities, such as insulin resistance and its most important outcomes, including metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. Adiponectin has emerged as a salutary adipocytokine, with insulin-sensitizing, anti-inflammatory, and cardiovascular protective properties. However, under metabolically unfavorable conditions, visceral adipose tissue-derived inflammatory cytokines might reduce the transcription of the adiponectin gene and consequently its circulating levels. Low circulating levels of adiponectin are negatively associated with various conditions, such as insulin resistance, type 2 diabetes mellitus, metabolic syndrome, and cardiovascular disease. In contrast, several recent clinical trials and meta-analyses have reported high circulating adiponectin levels positively associated with cardiovascular mortality and all-cause mortality. These results are biologically intriguing and counterintuitive, and came to be termed "the adiponectin paradox". Adiponectin paradox is frequently associated with adiponectin resistance, a concept related with the downregulation of adiponectin receptors in insulin-resistant states. We review this contradiction between the apparent role of adiponectin as a health promoter and the recent evidence from Mendelian randomization studies indicating that circulating adiponectin levels are an unexpected predictor of increased morbidity and mortality rates in several clinical conditions. We also critically review the therapeutic perspective of synthetic peptide adiponectin receptors agonist that has been postulated as a promising alternative for the treatment of metabolic syndrome and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Emilio Antonio Francischetti
- Laboratory of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Rômulo Sperduto Dezonne
- Postgraduate Program in Translational Biomedicine, Grande Rio University, Duque de Caxias, Brazil
| | - Cláudia Maria Pereira
- Postgraduate Program in Translational Biomedicine, Grande Rio University, Duque de Caxias, Brazil
| | - Cyro José de Moraes Martins
- Laboratory of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | | | - Virgínia Genelhu de Abreu
- Laboratory of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Iannitti T, Di Cerbo A, Loschi AR, Rea S, Suzawa M, Morales‐Medina JC. Repeated administration of a flavonoid-based formulated extract from citrus peels significantly reduces peripheral inflammation-induced pain in the rat. Food Sci Nutr 2020; 8:3173-3180. [PMID: 32724582 PMCID: PMC7382119 DOI: 10.1002/fsn3.1566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/13/2020] [Accepted: 03/22/2020] [Indexed: 12/11/2022] Open
Abstract
Depression-related disorders are the first cause of disability worldwide according to the World Health Organization, and there is limited availability of effective antidepressant medications without side effects. Similarly, pain management is a public health concern particularly due to the increase in use of opioid medications, which have a significant side effect profile. Flavonoids can modulate numerous physiological functions including emotional and anti-nociceptive processes. Gold lotion (GL) is a natural product based on the extract of six citrus peels rich in flavonoids (0.45 mg/ml) with numerous reported biological activities. In the present study, we investigated the effect of repeated administration of GL in a battery of behavioral tests, including the open field test (OFT), forced swim test (FST), and von Frey test (vFT), in rats. While the OFT measured anxiolytic-related effects, the FST evaluated depression-related behavior. The vFT evaluated mechanical allodynia in two rat models of peripheral inflammation induced by carrageenan or complete Freund's adjuvant (CFA) administration. Treatment with GL reduced mechanical allodynia after either carrageenan or CFA administration. On the other hand, repeated GL administration did not modulate any behavior evaluated by OFT or FST. Consumption of GL inhibits behavioral signs of inflammatory pain. Therefore, GL may be a valuable analgesic product to be used for inflammatory pain.
Collapse
Affiliation(s)
- Tommaso Iannitti
- Charles River Discovery Research Services UK LimitedPortisheadUK
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary MedicineUniversity of CamerinoMatelicaItaly
| | - Anna Rita Loschi
- School of Biosciences and Veterinary MedicineUniversity of CamerinoMatelicaItaly
| | - Stefano Rea
- School of Biosciences and Veterinary MedicineUniversity of CamerinoMatelicaItaly
| | - Michiko Suzawa
- Miyauchi Citrus Research CenterShigoka‐MachiTakasakiGunmaJapan
| | | |
Collapse
|
14
|
Polito R, Monda V, Nigro E, Messina A, Di Maio G, Giuliano MT, Orrù S, Imperlini E, Calcagno G, Mosca L, Mollica MP, Trinchese G, Scarinci A, Sessa F, Salerno M, Marsala G, Buono P, Mancini A, Monda M, Daniele A, Messina G. The Important Role of Adiponectin and Orexin-A, Two Key Proteins Improving Healthy Status: Focus on Physical Activity. Front Physiol 2020; 11:356. [PMID: 32390865 PMCID: PMC7188914 DOI: 10.3389/fphys.2020.00356] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Exercise represents the most important integrative therapy in metabolic, immunologic and chronic diseases; it represents a valid strategy in the non-pharmacological intervention of lifestyle linked diseases. A large body of evidence indicates physical exercise as an effective measure against chronic non-communicable diseases. The worldwide general evidence for health benefits are both for all ages and skill levels. In a dysregulated lifestyle such as in the obesity, there is an imbalance in the production of different cytokines. In particular, we focused on Adiponectin, an adipokine producted by adipose tissue, and on Orexin-A, a neuropeptide synthesized in the lateral hypothalamus. The production of both Adiponectin and Orexin-A increases following regular and structured physical activity and both these hormones have similar actions. Indeed, they improve energy and glucose metabolism, and also modulate energy expenditure and thermogenesis. In addition, a relevant biological role of Adiponectin and Orexin A has been recently highlighted in the immune system, where they function as immune-suppressor factors. The strong connection between these two cytokines and healthy status is mediated by physical activity and candidates these hormones as potential biomarkers of the beneficial effects induced by physical activity. For these reasons, this review aims to underly the interconnections among Adiponectin, Orexin-A, physical activity and healthy status. Furthermore, it is analyzed the involvement of Adiponectin and Orexin-A in physical activity as physiological factors improving healthy status through physical exercise.
Collapse
Affiliation(s)
- Rita Polito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vincenzo Monda
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy
| | - Antonietta Messina
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Girolamo Di Maio
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Giuliano
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Stefania Orrù
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy.,IRCCS SDN, Naples, Italy
| | | | - Giuseppe Calcagno
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Università degli Studi del Molise, Campobasso, Italy
| | - Laura Mosca
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Maria Pina Mollica
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Giovanna Trinchese
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Alessia Scarinci
- Dipartimento di Scienze della Formazione, Psicologia, Comunicazione, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Monica Salerno
- Department of Medical, Surgery Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Gabriella Marsala
- Struttura Complessa di Farmacia, Azienda Ospedaliero Universitaria - Ospedali Riuniti, Foggia, Italy
| | - Pasqualina Buono
- Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy.,IRCCS SDN, Naples, Italy
| | - Annamaria Mancini
- Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy
| | - Marcellino Monda
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
15
|
The Protective Effect of Adiponectin-Transfected Endothelial Progenitor Cells on Cognitive Function in D-Galactose-Induced Aging Rats. Neural Plast 2020; 2020:1273198. [PMID: 32273888 PMCID: PMC7125484 DOI: 10.1155/2020/1273198] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/05/2023] Open
Abstract
Aging is a multifactorial process involving the cumulative effects of inflammation, oxidative stress, and mitochondrial dynamics, which can produce complex structural and biochemical alterations to the nervous system and lead to dysfunction of microcirculation, blood-brain barrier (BBB), and other problems in the brain. Long-term injection of D-galactose (D-gal) can induce chronic inflammation and oxidative stress, accelerating aging. The model of accelerated aging with long-term administration of D-gal have been widely used in anti-aging studies, due to the increase of chronic inflammation and decline of cognition that similarity with natural aging in animals. However, despite extensive researches in the D-gal-induced aging rats, studies on their microvasculature remain limited. Endothelial progenitor cells (EPCs), which are precursors to endothelial cells (ECs), play a significant role in the repair and regeneration process of endogenous blood vessel, and adiponectin (APN), a protein derived from adipocyte, has many effects on protective vascular endothelium and anti-inflammatory. Recently, many studies have shown that APN can promote improvements in cognitive function. Under these circumstances, we investigated the neuroprotective effect of the APN-transfected EPC (APN-EPC) treatment on rats after administration with D-gal and explored the likely underlying mechanisms. Compared to model group for D-gal administration, better cognitive function and denser microvessels were significantly found in the APN-EPC treatment group, and indicated APN-EPC treatment in aging rats could improve the cognitive dysfunction and microvessel density. The level of proinflammatory cytokines IL-1β, IL-6, and TNF-α, activated astrocytes and apoptosis rate were significantly reduced in the APN-EPC group compared with the model group, showed that APN-EPCs alleviated the neuroinflammation in aging rats. In addition, the APN-EPC group inhibited the decrease of BBB-related proteins claudin-5, occludin, and Zo-1 in aging rats and attenuated BBB dysfunction significantly. These results of our study indicated that APN-EPC treatment in D-gal-induced aging rats have a positive effect on improving cognitive and BBB dysfunction, increasing angiogenesis, and reducing neuroinflammation and apoptosis rate. This research suggests that cell therapy via gene modification may provide a safe and effective approach for the treatment of age-related neurogenerative diseases.
Collapse
|
16
|
Chen YT, Tsai MJ, Hsieh N, Lo MJ, Lee MJ, Cheng H, Huang WC. The superiority of conditioned medium derived from rapidly expanded mesenchymal stem cells for neural repair. Stem Cell Res Ther 2019; 10:390. [PMID: 31842998 PMCID: PMC6916259 DOI: 10.1186/s13287-019-1491-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/06/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023] Open
Abstract
Background Spinal cord injury (SCI) is a complex and severe neurological condition. Mesenchymal stem cells (MSCs) and their secreted factors show promising potential for regenerative medicine. Many studies have investigated MSC expansion efficacy of all kinds of culture medium formulations, such as growth factor-supplemented or xeno-free medium. However, very few studies have focused on the potential of human MSC (hMSC) culture medium formulations for injured spinal cord repair. In this study, we investigated the effect of hMSC-conditioned medium supplemented with bFGF, EGF, and patient plasma, namely, neural regeneration laboratory medium (NRLM), on SCI in vitro and in vivo. Methods Commercial and patient bone marrow hMSCs were obtained for cultivation in standard medium and NRLM separately. Several characteristics, including CD marker expression, differentiation, and growth curves, were compared between MSCs cultured in standard medium and NRLM. Additionally, we investigated the effect of the conditioned medium (referred to as NRLM-CM) on neural repair, including inflammation inhibition, neurite regeneration, and spinal cord injury (SCI), and used a coculture system to detect the neural repair function of NRLM-MSCs. Results Compared to standard culture medium, NRLM-CM had superior in inflammation reduction and neurite regeneration effects in vitro and improved functional restoration in SCI rats in vivo. In comparison with standard culture medium MSCs, NRLM-MSCs proliferated faster regardless of the age of the donor. NRLM-MSCs also showed increased adipose differentiative potential and reduced CD90 expression. Both types of hMSC CM effectively enhanced injured neurite outgrowth and protected against H2O2 toxicity in spinal cord neuron cultures. Cytokine arrays performed in hMSC-CM further revealed the presence of at least 120 proteins. Among these proteins, 6 demonstrated significantly increased expression in NRLM-CM: adiponectin (Acrp30), angiogenin (ANG), HGF, NAP-2, uPAR, and IGFBP2. Conclusions The NRLM culture system provides rapid expansion effects and functional hMSCs. The superiority of the derived conditioned medium on neural repair shows potential for future clinical applications.
Collapse
Affiliation(s)
- Ya-Tzu Chen
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan.,Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - May-Jywan Tsai
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Nini Hsieh
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Ming-Jei Lo
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Meng-Jen Lee
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan
| | - Henrich Cheng
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan.,Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Neural Regeneration and Repair, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Cheng Huang
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,Department of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan. .,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan. .,Division of Neural Regeneration and Repair, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
17
|
Sun L, Lv Y, Tian J, Yu T, Niu F, Zhang X, Du D. Regular Swimming Exercise Attenuated Neuroma Pain in Rats: Involvement of Leptin and Adiponectin. THE JOURNAL OF PAIN 2019; 20:1112-1124. [DOI: 10.1016/j.jpain.2019.02.097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
|
18
|
Morales-Medina JC, Flores G, Vallelunga A, Griffiths NH, Iannitti T. Cerebrolysin improves peripheral inflammatory pain: Sex differences in two models of acute and chronic mechanical hypersensitivity. Drug Dev Res 2019; 80:513-518. [PMID: 30908710 DOI: 10.1002/ddr.21528] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/24/2019] [Accepted: 02/28/2019] [Indexed: 12/19/2022]
Abstract
Chronic inflammatory pain is a major health problem worldwide with high prevalence in women. Cerebrolysin is a multimodal neuropeptide preparation that crosses the blood brain barrier and displays neuroprotective properties in aging and disease. Previously, we showed that cerebrolysin reduced mechanical allodynia in a model of persistent inflammation and pain. We aim to build upon the findings of our previous study by investigating the response to acute administration of cerebrolysin in two models of peripheral inflammation and assessing sex differences. We utilized the complete Freund's adjuvant (CFA) that produces maximal oedema and mechanical allodynia within days and carrageenan that produces similar effects within hours. Cerebrolysin reversed the mechanical allodynia in both sexes in CFA-treated rats. On the other hand, in rats treated with carrageenan, cerebrolysin was only effective in reducing mechanical allodynia in female rats. In conclusion, the present study shows that cerebrolysin effects may be sex-specific depending on different mechanisms that are at play in these two models of peripheral inflammatory pain. Further investigations are required to determine the factors contributing to sex differences.
Collapse
Affiliation(s)
- Julio C Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV- Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Gonzalo Flores
- Laboratorio Neuropsiquiatría. Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Annamaria Vallelunga
- Department of Medicine and Surgery, Centre for Neurodegenerative Diseases (CEMAND), University of Salerno, Salerno, Italy
| | - Natalie H Griffiths
- Laboratorio Neuropsiquiatría. Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Tommaso Iannitti
- KWS BioTest, Department of Pharmacology, Portishead, Somerset, UK
| |
Collapse
|
19
|
Zhao Q, Liu Y, Tan L, Yan L, Zuo X. Adiponectin administration alleviates DSS-induced colonic inflammation in Caco-2 cells and mice. Inflamm Res 2018; 67:663-670. [PMID: 29766204 PMCID: PMC6028846 DOI: 10.1007/s00011-018-1155-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Adiponectin, a protein hormone produced by adipose tissues, exhibits anti-inflammatory functions in various models. This study was investigated the effects of adiponectin on dextran sodium sulfate (DSS)-colonic injury, inflammation, apoptosis, and intestinal barrier dysfunction in Caco-2 cell and mice. MATERIALS AND METHODS The results showed that DSS caused inflammatory response and intestinal barrier dysfunction in vitro and in vivo. Adiponectin injection alleviated colonic injury and rectal bleeding in mice. Meanwhile, adiponectin downregulated colonic IL-1β and TNF-α expressions and regulated apoptosis relative genes to attenuate DSS-induced colonic inflammation and apoptosis. Adiponectin markedly reduced serum lipopolysaccharide concentration, a biomarker for intestinal integrity, and enhanced colonic expression of tight junctions (ZO-1 and occludin). The in vitro data further demonstrated that adiponectin alleviated DSS-induced proinflammatory cytokines production and the increased permeability in Caco-2 cells. CONCLUSION Adiponectin plays a beneficial role in DSS-induced inflammation via alleviating apoptosis and improving intestinal barrier integrity.
Collapse
Affiliation(s)
- Qin Zhao
- Department of Gastroenterology, Taian City Central Hospital, Taian, Shandong, People's Republic of China
| | - Yang Liu
- Department of Medicine, Beijing 316 Hospital, Beijing, People's Republic of China
| | - Lei Tan
- Department of Cerebral Surgery, Taian City Central Hospital, Taian, Shandong, People's Republic of China
| | - Liyong Yan
- Department of Stomatology, Taian City Central Hospital, Taian, Shandong, People's Republic of China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
20
|
Genome-wide methylation analysis of a large population sample shows neurological pathways involvement in chronic widespread musculoskeletal pain. Pain 2018; 158:1053-1062. [PMID: 28221285 PMCID: PMC5427989 DOI: 10.1097/j.pain.0000000000000880] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chronic widespread musculoskeletal pain (CWP), has a considerable heritable component, which remains to be explained. Epigenetic factors may contribute to and account for some of the heritability estimate. We analysed epigenome-wide methylation using MeDIPseq in whole blood DNA from 1708 monozygotic and dizygotic Caucasian twins having CWP prevalence of 19.9%. Longitudinally stable methylation bins (lsBINs), were established by testing repeated measurements conducted ≥3 years apart, n = 292. DNA methylation variation at lsBINs was tested for association with CWP in a discovery set of 50 monozygotic twin pairs discordant for CWP, and in an independent dataset (n = 1608 twins), and the results from the 2 samples were combined using Fisher method. Functional interpretation of the most associated signals was based on functional genomic annotations, gene ontology, and pathway analyses. Of 723,029 signals identified as lsBINs, 26,399 lsBINs demonstrated the same direction of association in both discovery and replication datasets at nominal significance (P ≤ 0.05). In the combined analysis across 1708 individuals, whereas no lsBINs showed genome-wide significance (P < 10-8), 24 signals reached p≤9E-5, and these included association signals mapping in or near to IL17A, ADIPOR2, and TNFRSF13B. Bioinformatics analyses of the associated methylation bins showed enrichment for neurological pathways in CWP. We estimate that the variance explained by epigenetic factors in CWP is 6%. This, the largest study to date of DNA methylation in CWP, points towards epigenetic modification of neurological pathways in CWP and provides proof of principle of this method in teasing apart the complex risk factors for CWP.
Collapse
|
21
|
Sun L, Li H, Tai LW, Gu P, Cheung CW. Adiponectin regulates thermal nociception in a mouse model of neuropathic pain. Br J Anaesth 2018; 120:1356-1367. [PMID: 29793601 DOI: 10.1016/j.bja.2018.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/11/2017] [Accepted: 01/20/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Adiponectin, a cytokine secreted by adipocytes, plays an important role in regulating glucose and lipid metabolism. However, the role of adiponectin in pain conditions is largely unknown. This study aimed to identify the role and mechanism of adiponectin in nociceptive sensitivity under physiological and pathological states utilising adiponectin knockout (KO) mice. METHODS Wild type (WT) and adiponectin KO mice were subjected to partial sciatic nerve ligation (pSNL) or sham operation. Pain-like behavioural tests, including thermal allodynia, hyperalgesia, and mechanical allodynia, were performed before and after pSNL from Day 3-21. Dorsal root ganglions (DRGs), lumbar spinal segments at L3-5, and somatosensory cortex were collected for protein measurement via western blotting and immunofluorescence staining. RESULTS Compared with WT mice, KO mice had significantly lower (40-50%) paw withdrawal latency to innocuous and noxious stimuli before and after pSNL. In DRG neurones from KO mice, where adiponectin receptor (AdipoR) 2 is located, phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) and heat-sensitive transient receptor potential cation channel subfamily V member 1 (TRPV1) were significantly higher (by two- to three-fold) than from WT mice. In spinal microglia and somatosensory cortical neurones, where AdipoR1 is mainly located, p-p38 MAPK and TRPV1 were also higher (by two- to three-fold) in KO compared with WT mice, and altered signalling of these molecules was exacerbated (1.2- to 1.3-fold) by pSNL. CONCLUSIONS Our results show that adiponectin regulates thermal nociceptive sensitivity by inhibiting activation of DRG neurones, spinal microglia, and somatosensory cortical neurones in physiological and neuropathic pain states. This study has relevance for patients with adiponectin disorders, such as obesity and diabetes.
Collapse
Affiliation(s)
- L Sun
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, China; Department of Anaesthesiology, The University of Hong Kong, China
| | - H Li
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - L W Tai
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, China; Department of Anaesthesiology, The University of Hong Kong, China
| | - P Gu
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, China; Department of Anaesthesiology, The University of Hong Kong, China
| | - C W Cheung
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, China; Department of Anaesthesiology, The University of Hong Kong, China.
| |
Collapse
|
22
|
Constitutive Expression of Adiponectin in Endothelial Progenitor Cells Protects a Rat Model of Cerebral Ischemia. Neural Plast 2017; 2017:6809745. [PMID: 29201467 PMCID: PMC5671740 DOI: 10.1155/2017/6809745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/15/2017] [Indexed: 02/05/2023] Open
Abstract
Endothelial progenitor cells (EPCs), as precursors to endothelial cells, play a significant part in the process of endogenous blood vessel repair and maintenance of endothelial integrity. Adiponectin (APN) is an adipocyte-specific adipocytokine. In this study, we aim to test whether we transplant a combined graft of EPCs transfected with the adiponectin gene into a rat model of cerebral ischemia could improve functional recovery after middle cerebral artery occlusion (MCAO). Sprague-Dawley (SD) rats were randomly divided into a MCAO control group, a MCAO EPC treatment group, and a MCAO LV-APN-EPC treatment group. A focal cerebral ischemia and reperfusion model was induced by the intraluminal suture method. After 2 h of reperfusion, EPCs were transplanted by injection through the tail vein. A rotarod test was conducted to assess behavioral function before MCAO and on days 1, 7, and 14 after MCAO. After 14 d, TTC staining, CD31 immunofluorescence, and TUNEL staining were used to evaluate infarct volume, microvessel density, and cell apoptosis. Results revealed that behavioral function, infarct area percentage, microvessel density, and cell apoptosis rates were more favorable in the LV-APN-EPC treatment group than in the EPC treatment group. These data suggested that gene-modified cell therapy may be a useful approach for the treatment of ischemic stroke.
Collapse
|
23
|
Ruscica M, Baragetti A, Catapano AL, Norata GD. Translating the biology of adipokines in atherosclerosis and cardiovascular diseases: Gaps and open questions. Nutr Metab Cardiovasc Dis 2017; 27:379-395. [PMID: 28237179 DOI: 10.1016/j.numecd.2016.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/10/2023]
Abstract
AIM Critically discuss the available data, to identify the current gaps and to provide key concepts that will help clinicians in translating the biology of adipokines in the context of atherosclerosis and cardio-metabolic diseases. DATA SYNTHESIS Adipose tissue is nowadays recognized as an active endocrine organ, a function related to the ability to secrete adipokines (such as leptin and adiponectin) and pro-inflammatory cytokines (tumor necrosis factor alpha and resistin). Studies in vitro and in animal models have observed that obesity status presents a chronic low-grade inflammation as the consequence of the immune cells infiltrating the adipose tissue as well as adipocytes. This inflammatory signature is often related to the presence of cardiovascular diseases, including atherosclerosis and thrombosis. These links are less clear in humans, where the role of adipokines as prognostic marker and/or player in cardiovascular diseases is not as clear as that observed in experimental models. Moreover, plasma adipokine levels might reflect a condition of adipokine-resistance in which adipokine redundancy occurs. The investigation of the cardio-metabolic phenotype of carriers of single nucleotide polymorphisms affecting the levels or function of a specific adipokine might help determine their relevance in humans. Thus, the aim of the present review is to critically discuss the available data, identify the current gaps and provide key concepts that will help clinicians translate the biology of adipokines in the context of atherosclerosis and cardio-metabolic diseases.
Collapse
Affiliation(s)
- M Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - A Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; SISA Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy
| | - A L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCCS Multimedica Hospital, Sesto San Giovanni, Milan, Italy
| | - G D Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; SISA Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
24
|
Weisz F, Piccinin S, Mango D, Ngomba RT, Mercuri NB, Nicoletti F, Nisticò R. The role of adiponectin receptors in the regulation of synaptic transmission in the hippocampus. Synapse 2017; 71. [PMID: 28187508 DOI: 10.1002/syn.21964] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022]
Abstract
In the last two decades adiponectin, member of the adipokines family, gained attention because of its unique antidiabetic effects. However, the presence in the brain of adiponectin receptors and adiponectin itself raised interest because of the possible association with neuropsychiatric diseases. Indeed, clinical studies found altered concentration of adiponectin both in plasma and cerebrospinal fluid in several pathologies including depression, multiple sclerosis, Alzheimer's disease and stroke. Moreover, recent preclinical studies also suggest its involvement in different physiological functions. Despite this evidence very few studies attempted to elucidate the functional role of adiponectin at the synapse. To address this question, here we investigated the effect of Adiporon, an agonist of both adiponectin receptors on synaptic transmission and LTP at Schaffer-collateral CA1 pathway. Surprisingly, increasing concentration of Adiporon correlated with lower CA1-LTP levels and paired-pulse ratio, whereas basal transmission was always preserved. Collectively, our data show that the adiponectin system, beyond its involvement in metabolic diseases, plays also a critical role in synaptic activity thereby representing a putative target for the treatment of synaptic pathologies.
Collapse
Affiliation(s)
- Filippo Weisz
- Department of Pharmacology of Synaptic Plasticity Lab, Fondazione EBRI-Rita Levi Montalcini, Rome, Italy.,Department of Physiology and Pharmacology Erspamer, University of Rome "La Sapienza", Rome, Italy
| | - Sonia Piccinin
- Department of Pharmacology of Synaptic Plasticity Lab, Fondazione EBRI-Rita Levi Montalcini, Rome, Italy.,Department of Physiology and Pharmacology Erspamer, University of Rome "La Sapienza", Rome, Italy
| | - Dalila Mango
- Department of Pharmacology of Synaptic Plasticity Lab, Fondazione EBRI-Rita Levi Montalcini, Rome, Italy.,Department of Physiology and Pharmacology Erspamer, University of Rome "La Sapienza", Rome, Italy
| | | | | | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology Erspamer, University of Rome "La Sapienza", Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Robert Nisticò
- Department of Pharmacology of Synaptic Plasticity Lab, Fondazione EBRI-Rita Levi Montalcini, Rome, Italy.,University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
25
|
Lemche E, Chaban OS, Lemche AV. Neuroendocrinological and Epigenetic Mechanisms Subserving Autonomic Imbalance and HPA Dysfunction in the Metabolic Syndrome. Front Neurosci 2016; 10:142. [PMID: 27147943 PMCID: PMC4830841 DOI: 10.3389/fnins.2016.00142] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/21/2016] [Indexed: 12/18/2022] Open
Abstract
Impact of environmental stress upon pathophysiology of the metabolic syndrome (MetS) has been substantiated by epidemiological, psychophysiological, and endocrinological studies. This review discusses recent advances in the understanding of causative roles of nutritional factors, sympathomedullo-adrenal (SMA) and hypothalamic-pituitary adrenocortical (HPA) axes, and adipose tissue chronic low-grade inflammation processes in MetS. Disturbances in the neuroendocrine systems for leptin, melanocortin, and neuropeptide Y (NPY)/agouti-related protein systems have been found resulting directly in MetS-like conditions. The review identifies candidate risk genes from factors shown critical for the functioning of each of these neuroendocrine signaling cascades. In its meta-analytic part, recent studies in epigenetic modification (histone methylation, acetylation, phosphorylation, ubiquitination) and posttranscriptional gene regulation by microRNAs are evaluated. Several studies suggest modification mechanisms of early life stress (ELS) and diet-induced obesity (DIO) programming in the hypothalamic regions with populations of POMC-expressing neurons. Epigenetic modifications were found in cortisol (here HSD11B1 expression), melanocortin, leptin, NPY, and adiponectin genes. With respect to adiposity genes, epigenetic modifications were documented for fat mass gene cluster APOA1/C3/A4/A5, and the lipolysis gene LIPE. With regard to inflammatory, immune and subcellular metabolism, PPARG, NKBF1, TNFA, TCF7C2, and those genes expressing cytochrome P450 family enzymes involved in steroidogenesis and in hepatic lipoproteins were documented for epigenetic modifications.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Oleg S Chaban
- Section of Psychosomatic Medicine, Bogomolets National Medical University Kiev, Ukraine
| | - Alexandra V Lemche
- Department of Medical Science, Institute of Clinical Research Berlin, Germany
| |
Collapse
|
26
|
Ruan H, Dong LQ. Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol 2016; 8:101-9. [PMID: 26993044 PMCID: PMC4816150 DOI: 10.1093/jmcb/mjw014] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 12/13/2022] Open
Abstract
Obesity-linked type 2 diabetes is one of the paramount causes of morbidity and mortality worldwide, posing a major threat on human health, productivity, and quality of life. Despite great progress made towards a better understanding of the molecular basis of diabetes, the available clinical counter-measures against insulin resistance, a defect that is central to obesity-linked type 2 diabetes, remain inadequate. Adiponectin, an abundant adipocyte-secreted factor with a wide-range of biological activities, improves insulin sensitivity in major insulin target tissues, modulates inflammatory responses, and plays a crucial role in the regulation of energy metabolism. However, adiponectin as a promising therapeutic approach has not been thoroughly explored in the context of pharmacological intervention, and extensive efforts are being devoted to gain mechanistic understanding of adiponectin signaling and its regulation, and reveal therapeutic targets. Here, we discuss tissue- and cell-specific functions of adiponectin, with an emphasis on the regulation of adiponectin signaling pathways, and the potential crosstalk between the adiponectin and other signaling pathways involved in metabolic regulation. Understanding better just why and how adiponectin and its downstream effector molecules work will be essential, together with empirical trials, to guide us to therapies that target the root cause(s) of type 2 diabetes and insulin resistance.
Collapse
Affiliation(s)
- Hong Ruan
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Lily Q Dong
- Department of Cell and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|