1
|
Mishra A, Singh L, Singh D. Unboxing the black box-one step forward to understand the soil microbiome: A systematic review. MICROBIAL ECOLOGY 2023; 85:669-683. [PMID: 35112151 PMCID: PMC9957845 DOI: 10.1007/s00248-022-01962-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Soil is one of the most important assets of the planet Earth, responsible for maintaining the biodiversity and managing the ecosystem services for both managed and natural ecosystems. It encompasses large proportion of microscopic biodiversity, including prokaryotes and the microscopic eukaryotes. Soil microbiome is critical in managing the soil functions, but their activities have diminutive recognition in few systems like desert land and forest ecosystems. Soil microbiome is highly dependent on abiotic and biotic factors like pH, carbon content, soil structure, texture, and vegetation, but it can notably vary with ecosystems and the respective inhabitants. Thus, unboxing this black box is essential to comprehend the basic components adding to the soil systems and supported ecosystem services. Recent advancements in the field of molecular microbial ecology have delivered commanding tools to examine this genetic trove of soil biodiversity. Objective of this review is to provide a critical evaluation of the work on the soil microbiome, especially since the advent of the NGS techniques. The review also focuses on advances in our understanding of soil communities, their interactions, and functional capabilities along with understanding their role in maneuvering the biogeochemical cycle while underlining and tapping the unprecedented metagenomics data to infer the ecological attributes of yet undiscovered soil microbiome. This review focuses key research directions that could shape the future of basic and applied research into the soil microbiome. This review has led us to understand that it is difficult to generalize that soil microbiome plays a substantiated role in shaping the soil networks and it is indeed a vital resource for sustaining the ecosystem functioning. Exploring soil microbiome will help in unlocking their roles in various soil network. It could be resourceful in exploring and forecasting its impacts on soil systems and for dealing with alleviating problems like rapid climate change.
Collapse
Affiliation(s)
- Apurva Mishra
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, 201002, India
- Environmental Biotechnology and Genomics Division, , CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, , CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Dharmesh Singh
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Trogerstrasse 30, 81675, Munich, Bavaria, Germany.
| |
Collapse
|
2
|
Fang FZ, Chen SL, Gui HY, Li ZJ, Zhang XF. Long-Read Sequencing Analysis Revealed the Impact of Forest Conversion on Soil Fungal Diversity in Limu Mountain, Hainan. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02129-y. [PMID: 36329282 DOI: 10.1007/s00248-022-02129-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Soil fungi are essential to soil microorganisms that play an important role in the ecosystem's soil carbon cycle and mineral nutrient transformation. Understanding the structural characteristics and diversity of soil fungal communities helps understand the health of forest ecosystems. The transition from tropical rainforest to artificial forest greatly impacts the composition and diversity of fungal communities. Hainan Limushan tropical rainforest National Park has a large area of artificial forests. Ecologists have conducted in-depth studies on the succession of animals and plants to regenerate tropical rainforests. There are few reports on the diversity of soil fungi and its influencing factors in the succession of tropical rainforests in Limu Mountain. In this study, 44 soil samples from five different stands were collected in the tropical rainforest of Limushan, Hainan. High-throughput sequencing of rDNA in its region was used to analyze fungal communities and study their α and β diversity. Analysis of variance and multiple regression models was used to analyze soil variables and fungal functional groups to determine the effects of interaction between fungi and environmental factors. A total of 273,996 reads and 1290 operational taxonomic units (OTUs) were obtained, belonging to 418 species, 325 genera, 159 families, eight phyla, 30 classes, and 73 orders. The results showed that the composition of soil fungal communities in the five stands was similar, with ascomycetes accounting for 70.5% and basidiomycetes accounting for 14.7%. α and β diversity analysis showed that soil fungi in Limushan tropical rainforest had high abundance and diversity. Multiple regression analysis between soil variables and functional groups showed that organic matter, TN, TP, TK, and AK were excellent predictors for soil fungi. TP was the strongest predictor in all functional groups except soil saprotroph. Organic matter and total nitrogen were the strongest predictors of soil rot. The transformation from tropical rainforest to artificial forest in Limushan did not change the soil fungal community structure, but the richness and diversity of soil fungi changed. The forest transformation did not lead to decreased soil fungal abundance and diversity. Different vegetation types and soil properties affect the diversity of soil fungal communities. We found that Caribbean pine plantations can improve soil fungal diversity, while long-term Eucalyptus spp. plantations may reduce soil fungal diversity.
Collapse
Affiliation(s)
- Fa-Zhi Fang
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Su-Ling Chen
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Hui-Ying Gui
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Zhao-Jia Li
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Xiao-Feng Zhang
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China.
| |
Collapse
|
3
|
Edy N, Barus HN, Finkeldey R, Polle A. Host plant richness and environment in tropical forest transformation systems shape arbuscular mycorrhizal fungal richness. FRONTIERS IN PLANT SCIENCE 2022; 13:1004097. [PMID: 36311137 PMCID: PMC9606760 DOI: 10.3389/fpls.2022.1004097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Transformation of tropical lowland rain forests into rubber tree and oil palm plantations is the cause of massive loss of vegetation diversity. The consequences for associated mycorrhizal fungi are not fully understood. We hypothesized that generalist arbuscular mycorrhizal fungi are resistant to removal of host species richness and that forest conversion to oil palm and rubber leads to loss of arbuscular mycorrhizal fungal (AMF) species with host preferences. Plant identities and AMF species were determined by molecular barcoding of 112 roots collected in three land-use systems (rain forest, rubber tree and oil palm plantation) in two landscapes on Sumatra (Indonesia), a world hotspot of forest transformation. The collected roots were from 43 forest plant species, in addition to rubber trees and oil palms. We detected 28 AMF species of which about 75% were present in forest trees and 25% shared among the land use systems. Only one AMF species present in plantation roots was not detected in the analyzed forest roots. Host specificity of arbuscular mycorrhizal fungi was not detected. Oil palm and rubber tree roots exhibited a strong reduction in AMF richness compared with roots from rainforests and were differentiated by soil resources. On basis of an individual root, oil palm had a lower AMF species richness than forest or rubber tree roots. Our results demonstrate that tropical AMF communities are shaped by two mechanisms: (i) root habitat diversity as the result of plant diversity and (ii) habitat properties as the result of plant traits or environmental conditions and management. Collectively, deterioration of habitat diversity and properties exacerbates impoverishment of AMF assemblages.
Collapse
Affiliation(s)
- Nur Edy
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Department of Agrotechnology, Tadulako University, Palu, Indonesia
| | | | | | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Center of Biodiversity and Sustainable Land Use, University of Goettingen, Göttingen, Germany
| |
Collapse
|
4
|
Kotowska MM, Samhita S, Hertel D, Triadiati T, Beyer F, Allen K, Link RM, Leuschner C. Consequences of tropical rainforest conversion to tree plantations on fine root dynamics and functional traits. OIKOS 2022. [DOI: 10.1111/oik.08898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Martyna M. Kotowska
- Dept of Plant Ecology and Ecosystems Research, Albrecht‐von‐Haller Inst. for Plant Sciences, Univ. of Goettingen Göttingen Germany
| | - Sasya Samhita
- Dept of Plant Ecology and Ecosystems Research, Albrecht‐von‐Haller Inst. for Plant Sciences, Univ. of Goettingen Göttingen Germany
| | - Dietrich Hertel
- Dept of Plant Ecology and Ecosystems Research, Albrecht‐von‐Haller Inst. for Plant Sciences, Univ. of Goettingen Göttingen Germany
| | - Triadiati Triadiati
- Dept of Biology, Faculty of Mathematics and Natural Sciences, IPB Univ. Bogor Indonesia
| | - Friderike Beyer
- Chair of Silviculture, Faculty of Environment and Natural Resources, Univ. of Freiburg Freiburg Germany
| | - Kara Allen
- Manaaki Whenua‐Landcare Research Lincoln New Zealand
| | - Roman M. Link
- Chair of Ecophysiology and Vegetation Ecology, Julius von Sachs Inst. of Biological Sciences, Univ. of Würzburg Würzburg Germany
| | - Christoph Leuschner
- Dept of Plant Ecology and Ecosystems Research, Albrecht‐von‐Haller Inst. for Plant Sciences, Univ. of Goettingen Göttingen Germany
| |
Collapse
|
5
|
Kirkman ER, Hilton S, Sethuraman G, Elias DMO, Taylor A, Clarkson J, Soh AC, Bass D, Ooi GT, McNamara NP, Bending GD. Diversity and Ecological Guild Analysis of the Oil Palm Fungal Microbiome Across Root, Rhizosphere, and Soil Compartments. Front Microbiol 2022; 13:792928. [PMID: 35222328 PMCID: PMC8874247 DOI: 10.3389/fmicb.2022.792928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/18/2022] [Indexed: 11/14/2022] Open
Abstract
The rhizosphere microbiome is a major determinant of plant health, which can interact with the host directly and indirectly to promote or suppress productivity. Oil palm is one of the world’s most important crops, constituting over a third of global vegetable oil production. Currently there is little understanding of the oil palm microbiome and its contribution to plant health and productivity, with existing knowledge based almost entirely on culture dependent studies. We investigated the diversity and composition of the oil palm fungal microbiome in the bulk soil, rhizosphere soil, and roots of 2-, 18-, and 35-year old plantations in Selangor, Malaysia. The fungal community showed substantial variation between the plantations, accounting for 19.7% of community composition, with compartment (root, rhizosphere soil, and bulk soil), and soil properties (pH, C, N, and P) contributing 6.5 and 7.2% of community variation, respectively. Rhizosphere soil and roots supported distinct communities compared to the bulk soil, with significant enrichment of Agaricomycetes, Glomeromycetes, and Lecanoromycetes in roots. Several putative plant pathogens were abundant in roots in all the plantations, including taxa related to Prospodicola mexicana and Pleurostoma sp. The mycorrhizal status and dependency of oil palm has yet to be established, and using 18S rRNA primers we found considerable between-site variation in Glomeromycotinian community composition, accounting for 31.2% of variation. There was evidence for the selection of Glomeromycotinian communities in oil palm roots in the older plantations but compartment had a weak effect on community composition, accounting for 3.9% of variation, while soil variables accounted for 9% of community variation. While diverse Mucoromycotinian fungi were detected, they showed very low abundance and diversity within roots compared to bulk soil, and were not closely related to taxa which have been linked to fine root endophyte mycorrhizal morphology. Many of the fungal sequences showed low similarity to established genera, indicating the presence of substantial novel diversity with significance for plant health within the oil palm microbiome.
Collapse
Affiliation(s)
- Eleanor R. Kirkman
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Sally Hilton
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Gomathy Sethuraman
- Crops for the Future Research Centre, Semenyih, Malaysia
- Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Dafydd M. O. Elias
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, United Kingdom
| | - Andrew Taylor
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - John Clarkson
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Aik Chin Soh
- Crops for the Future Research Centre, Semenyih, Malaysia
| | - David Bass
- Department of Life Sciences, Natural History Museum, London, United Kingdom
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom
| | - Gin Teng Ooi
- Crops for the Future Research Centre, Semenyih, Malaysia
| | - Niall P. McNamara
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, United Kingdom
| | - Gary D. Bending
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- *Correspondence: Gary D. Bending,
| |
Collapse
|
6
|
Legacy Effects Overshadow Tree Diversity Effects on Soil Fungal Communities in Oil Palm-Enrichment Plantations. Microorganisms 2020; 8:microorganisms8101577. [PMID: 33066264 PMCID: PMC7656304 DOI: 10.3390/microorganisms8101577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022] Open
Abstract
Financially profitable large-scale cultivation of oil palm monocultures in previously diverse tropical rain forest areas constitutes a major ecological crisis today. Not only is a large proportion of the aboveground diversity lost, but the belowground soil microbiome, which is important for the sustainability of soil function, is massively altered. Intermixing oil palms with native tree species promotes vegetation biodiversity and stand structural complexity in plantations, but the impact on soil fungi remains unknown. Here, we analyzed the diversity and community composition of soil fungi three years after tree diversity enrichment in an oil palm plantation in Sumatra (Indonesia). We tested the effects of tree diversity, stand structural complexity indices, and soil abiotic conditions on the diversity and community composition of soil fungi. We hypothesized that the enrichment experiment alters the taxonomic and functional community composition, promoting soil fungal diversity. Fungal community composition was affected by soil abiotic conditions (pH, N, and P), but not by tree diversity and stand structural complexity indices. These results suggest that intensive land use and abiotic filters are a legacy to fungal communities, overshadowing the structuring effects of the vegetation, at least in the initial years after enrichment plantings.
Collapse
|
7
|
Grass I, Kubitza C, Krishna VV, Corre MD, Mußhoff O, Pütz P, Drescher J, Rembold K, Ariyanti ES, Barnes AD, Brinkmann N, Brose U, Brümmer B, Buchori D, Daniel R, Darras KFA, Faust H, Fehrmann L, Hein J, Hennings N, Hidayat P, Hölscher D, Jochum M, Knohl A, Kotowska MM, Krashevska V, Kreft H, Leuschner C, Lobite NJS, Panjaitan R, Polle A, Potapov AM, Purnama E, Qaim M, Röll A, Scheu S, Schneider D, Tjoa A, Tscharntke T, Veldkamp E, Wollni M. Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nat Commun 2020; 11:1186. [PMID: 32132531 PMCID: PMC7055322 DOI: 10.1038/s41467-020-15013-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 02/11/2020] [Indexed: 11/23/2022] Open
Abstract
Land-use transitions can enhance the livelihoods of smallholder farmers but potential economic-ecological trade-offs remain poorly understood. Here, we present an interdisciplinary study of the environmental, social and economic consequences of land-use transitions in a tropical smallholder landscape on Sumatra, Indonesia. We find widespread biodiversity-profit trade-offs resulting from land-use transitions from forest and agroforestry systems to rubber and oil palm monocultures, for 26,894 aboveground and belowground species and whole-ecosystem multidiversity. Despite variation between ecosystem functions, profit gains come at the expense of ecosystem multifunctionality, indicating far-reaching ecosystem deterioration. We identify landscape compositions that can mitigate trade-offs under optimal land-use allocation but also show that intensive monocultures always lead to higher profits. These findings suggest that, to reduce losses in biodiversity and ecosystem functioning, changes in economic incentive structures through well-designed policies are urgently needed. Identifying economic and ecological trade-offs of land-use transitions is important to ensure sustainability. Here, Grass et al. find biodiversity-profit trade-offs in tropical land-use transitions in Sumatra, and show that targeted landscape planning is needed to increase land-use efficiency while ensuring socio-ecological sustainability.
Collapse
Affiliation(s)
- Ingo Grass
- Ecology of Tropical Agricultural Systems, University of Hohenheim, Garbenstrasse 13, 70599, Stuttgart, Germany. .,Agroecology, University of Göttingen, Grisebachstrasse 6, 37077, Göttingen, Germany.
| | - Christoph Kubitza
- Department of Agricultural Economics and Rural Development, University of Göttingen, Platz der Göttinger Sieben 5, 37073, Göttingen, Germany.,German Institute of Global and Area Studies (GIGA), Neuer Jungfernstieg 21, 20354, Hamburg, Germany
| | - Vijesh V Krishna
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45, El Batán, Mexico
| | - Marife D Corre
- Soil Science of Tropical and Subtropical Ecosystems, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.,Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Oliver Mußhoff
- Department of Agricultural Economics and Rural Development, University of Göttingen, Platz der Göttinger Sieben 5, 37073, Göttingen, Germany.,Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Peter Pütz
- Chair of Statistics, Faculty of Economic Sciences, University of Göttingen, Humboldtallee 3, 37073, Göttingen, Germany
| | - Jochen Drescher
- Department of Animal Ecology, J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Katja Rembold
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany.,Botanical Garden of the University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Eka Sulpin Ariyanti
- Magister of Environmental of Science, University of Lampung, Lampung, 35145, Indonesia
| | - Andrew D Barnes
- School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
| | - Nicole Brinkmann
- Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Ulrich Brose
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.,EcoNetLab, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743, Jena, Germany
| | - Bernhard Brümmer
- Department of Agricultural Economics and Rural Development, University of Göttingen, Platz der Göttinger Sieben 5, 37073, Göttingen, Germany.,Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Damayanti Buchori
- Center for Transdisciplinary and Sustainability Sciences, IPB University, Bogor Agricultural University, Jalan Pajajaran, Bogor, 16128, Indonesia
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Kevin F A Darras
- Agroecology, University of Göttingen, Grisebachstrasse 6, 37077, Göttingen, Germany
| | - Heiko Faust
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany.,Human Geography, University of Göttingen, Goldschmidtstr. 5, Göttingen, Germany
| | - Lutz Fehrmann
- Forest Inventory and Remote Sensing, University of Göttingen, Büsgenweg 5, 37077, Göttingen, Germany
| | - Jonas Hein
- Institute of Geography, Kiel University, Ludewig-Meyn-Str. 14, 24118, Kiel, Germany
| | - Nina Hennings
- Soil Science of Temperate Ecosystems, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Purnama Hidayat
- Department of Plant Protection, Faculty of Agriculture, Bogor Agriculture University, Jln. Kamper, Kampus IPB Dramaga, Bogor, 16880, Indonesia
| | - Dirk Hölscher
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany.,Tropical Silviculture and Forest Ecology, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Malte Jochum
- Department of Animal Ecology, J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany.,Experimental Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.,Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Alexander Knohl
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany.,Bioclimatology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Martyna M Kotowska
- Plant Ecology and Ecosystems Research, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Valentyna Krashevska
- Department of Animal Ecology, J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Holger Kreft
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany.,Biodiversity, Macroecology & Biogeography, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Christoph Leuschner
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany.,Plant Ecology and Ecosystems Research, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Neil Jun S Lobite
- Animal Biology Division, Institute of Biological Science, University of the Philippines, Los Baños, 4031, Philippines
| | - Rawati Panjaitan
- Department of Plant Protection, Faculty of Agriculture, Bogor Agriculture University, Jln. Kamper, Kampus IPB Dramaga, Bogor, 16880, Indonesia
| | - Andrea Polle
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany.,Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Anton M Potapov
- Department of Animal Ecology, J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany.,A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Edwine Purnama
- Forest Inventory and Remote Sensing, University of Göttingen, Büsgenweg 5, 37077, Göttingen, Germany
| | - Matin Qaim
- Department of Agricultural Economics and Rural Development, University of Göttingen, Platz der Göttinger Sieben 5, 37073, Göttingen, Germany.,Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Alexander Röll
- Tropical Silviculture and Forest Ecology, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Stefan Scheu
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany.,Department of Animal Ecology, J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Aiyen Tjoa
- Agriculture Faculty, Tadulako University, Jl. Soekarno Hatta km.09, Tondo, Palu, Indonesia
| | - Teja Tscharntke
- Agroecology, University of Göttingen, Grisebachstrasse 6, 37077, Göttingen, Germany.,Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Edzo Veldkamp
- Soil Science of Tropical and Subtropical Ecosystems, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.,Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Meike Wollni
- Department of Agricultural Economics and Rural Development, University of Göttingen, Platz der Göttinger Sieben 5, 37073, Göttingen, Germany.,Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| |
Collapse
|
8
|
Edy N, Yelianti U, Irawan B, Polle A, Pena R. Differences in Root Nitrogen Uptake Between Tropical Lowland Rainforests and Oil Palm Plantations. FRONTIERS IN PLANT SCIENCE 2020; 11:92. [PMID: 32161607 PMCID: PMC7053111 DOI: 10.3389/fpls.2020.00092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 01/21/2020] [Indexed: 06/01/2023]
Abstract
Conversion of lowland tropical rainforests to intensely fertilized agricultural land-use systems such as oil palm (Elaeis guineensis) plantations leads to changes in nitrogen (N) cycling. Although soil microbial-driven N dynamics has been largely studied, the role of the plant as a major component in N uptake has rarely been considered. We address this gap by comparing the root N contents and uptake in lowland rainforests with that in oil palm plantations on Sumatra, Indonesia. To this aim, we applied 15N-labeled ammonium to intact soil, measured the 15N recovery in soil and roots, and calculated the root relative N uptake efficiency for 10 days after label application. We found that root N contents were by one third higher in the rainforest than oil palm plantations. However, 15N uptake efficiency was similar in the two systems. This finding suggests that lower N contents in oil palm roots were likely caused by plant internal utilization of the absorbed N (e.g., N export to fruit bunches) than by lower ability to take up N from the soil. 15N recovery in roots was primarily driven by the amount of root biomass, which was higher in oil palm plantation than rainforest. The oil palms unveiled a high capacity to acquire N, offering the possibility of enhancing sustainable plantation management by reducing N fertilizer application.
Collapse
Affiliation(s)
- Nur Edy
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Department of Agrotechnology, Tadulako University, Palu, Indonesia
| | - Upik Yelianti
- Department of Biology, University of Jambi, Jambi, Indonesia
| | - Bambang Irawan
- Department of Forestry, University of Jambi, Jambi, Indonesia
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Rodica Pena
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
9
|
Berkelmann D, Schneider D, Meryandini A, Daniel R. Unravelling the effects of tropical land use conversion on the soil microbiome. ENVIRONMENTAL MICROBIOME 2020; 15:5. [PMID: 33902736 PMCID: PMC8067294 DOI: 10.1186/s40793-020-0353-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/18/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND The consequences of deforestation and agricultural treatments are complex and affect all trophic levels. Changes of microbial community structure and composition associated with rainforest conversion to managed systems such as rubber and oil palm plantations have been shown by 16S rRNA gene analysis previously, but functional profile shifts have been rarely addressed. In this study, we analysed the effects of rainforest conversion to different converted land use systems, including agroforestry ("jungle rubber") and monoculture plantations comprising rubber and oil palm, on soilborne microbial communities by metagenomic shotgun sequencing in Sumatra, Indonesia. RESULTS The diversity of bacteria and archaea decreased whereas diversity of fungi increased in the converted land use systems. The soil microbiome was dominated by bacteria followed by fungi. We detected negative effects of land use conversion on the abundance of Proteobacteria (especially on Rhizobiales and Burkholderiales) and positive effects on the abundance of Acidobacteria and Actinobacteria. These abundance changes were mainly driven by pH, C:N ratio, and Fe, C and N content. With increasing land use intensity, the functional diversity decreased for bacteria, archaea and fungi. Gene abundances of specific metabolisms such as nitrogen metabolism and carbon fixation were affected by land use management practices. The abundance of genes related to denitrification and nitrogen fixation increased in plantations while abundance of genes involved in nitrification and methane oxidation showed no significant difference. Linking taxonomic and functional assignment per read indicated that nitrogen metabolism-related genes were mostly assigned to members of the Rhizobiales and Burkholderiales. Abundances of carbon fixation genes increased also with increasing land use intensity. Motility- and interaction-related genes, especially genes involved in flagellar assembly and chemotaxis genes, decreased towards managed land use systems. This indicated a shift in mobility and interspecific interactions in bacterial communities within these soils. CONCLUSIONS Rainforest conversion to managed land use systems drastically affects structure and functional potential of soil microbial communities. The decrease in motility- and interaction-related functions from rainforest to converted land use systems indicated not only a shift in nutrient cycling but also in community dynamics. Fertilizer application and correspondingly higher availability of nutrients in intensively managed plantations lead to an environment in which interspecific interactions are not favoured compared to rainforest soils. We could directly link effects of land management, microbial community structure and functional potential for several metabolic processes. As our study is the first study of this size and detail on soil microbial communities in tropical systems, we provide a basis for further analyses.
Collapse
Affiliation(s)
- Dirk Berkelmann
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Anja Meryandini
- Department of Biology, Faculty of Mathematics and Natural Sciences IPB, Bogor Agricultural University, Bogor, Indonesia
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstr. 8, 37077, Göttingen, Germany.
| |
Collapse
|
10
|
Susanti WI, Pollierer MM, Widyastuti R, Scheu S, Potapov A. Conversion of rainforest to oil palm and rubber plantations alters energy channels in soil food webs. Ecol Evol 2019; 9:9027-9039. [PMID: 31463001 PMCID: PMC6706186 DOI: 10.1002/ece3.5449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 01/31/2023] Open
Abstract
In the last decades, lowland tropical rainforest has been converted in large into plantation systems. Despite the evident changes above ground, the effect of rainforest conversion on the channeling of energy in soil food webs was not studied. Here, we investigated community-level neutral lipid fatty acid profiles in dominant soil fauna to track energy channels in rainforest, rubber, and oil palm plantations in Sumatra, Indonesia. Abundant macrofauna including Araneae, Chilopoda, and Diplopoda contained high amounts of plant and fungal biomarker fatty acids (FAs). Lumbricina had the lowest amount of plant, but the highest amount of animal-synthesized C20 polyunsaturated FAs as compared to other soil taxa. Mesofauna detritivores (Collembola and Oribatida) contained high amounts of algal biomarker FAs. The differences in FA profiles between taxa were evident if data were analyzed across land-use systems, suggesting that soil fauna of different size (macro- and mesofauna) are associated with different energy channels. Despite that, rainforest conversion changed the biomarker FA composition of soil fauna at the community level. Conversion of rainforest into oil palm plantations enhanced the plant energy channel in soil food webs and reduced the bacterial energy channel; conversion into rubber plantations reduced the AMF-based energy channel. The changes in energy distribution within soil food webs may have significant implications for the functioning of tropical ecosystems and their response to environmental changes. At present, these responses are hard to predict considering the poor knowledge on structure and functioning of tropical soil food webs.
Collapse
Affiliation(s)
- Winda Ika Susanti
- J.F. Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGoettingenGermany
- Department of Soil Sciences and Land ResourcesInstitut Pertanian Bogor (IPB)BogorIndonesia
| | - Melanie M. Pollierer
- J.F. Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGoettingenGermany
| | - Rahayu Widyastuti
- Department of Soil Sciences and Land ResourcesInstitut Pertanian Bogor (IPB)BogorIndonesia
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGoettingenGermany
- Centre of Biodiversity and Sustainable Land UseGöttingenGermany
| | - Anton Potapov
- J.F. Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGoettingenGermany
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
| |
Collapse
|
11
|
Brinkmann N, Schneider D, Sahner J, Ballauff J, Edy N, Barus H, Irawan B, Budi SW, Qaim M, Daniel R, Polle A. Intensive tropical land use massively shifts soil fungal communities. Sci Rep 2019; 9:3403. [PMID: 30833601 PMCID: PMC6399230 DOI: 10.1038/s41598-019-39829-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/30/2019] [Indexed: 12/02/2022] Open
Abstract
Soil fungi are key players in nutrient cycles as decomposers, mutualists and pathogens, but the impact of tropical rain forest transformation into rubber or oil palm plantations on fungal community structures and their ecological functions are unknown. We hypothesized that increasing land use intensity and habitat loss due to the replacement of the hyperdiverse forest flora by nonendemic cash crops drives a drastic loss of diversity of soil fungal taxa and impairs the ecological soil functions. Unexpectedly, rain forest conversion was not associated with strong diversity loss but with massive shifts in soil fungal community composition. Fungal communities clustered according to land use system and loss of plant species. Network analysis revealed characteristic fungal genera significantly associated with different land use systems. Shifts in soil fungal community structure were particularly distinct among different trophic groups, with substantial decreases in symbiotrophic fungi and increases in saprotrophic and pathotrophic fungi in oil palm and rubber plantations in comparison with rain forests. In conclusion, conversion of rain forests and current land use systems restructure soil fungal communities towards enhanced pathogen pressure and, thus, threaten ecosystem health functions.
Collapse
Affiliation(s)
- Nicole Brinkmann
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany.
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, University of Goettingen, Göttingen, Germany
| | - Josephine Sahner
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Johannes Ballauff
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Nur Edy
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Department of Agrotechnology, Faculty of Agriculture, Tadulako University, Palu, Indonesia
| | - Henry Barus
- Department of Agrotechnology, Faculty of Agriculture, Tadulako University, Palu, Indonesia
| | - Bambang Irawan
- Department of Forestry, University of Jambi, Jambi, Indonesia
| | - Sri Wilarso Budi
- Department of Silviculture, Faculty of Forestry, Bogor Agriculture University, Bogor, Indonesia
| | - Matin Qaim
- Department of Agricultural Economics and Rural Development, University of Goettingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, University of Goettingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
12
|
Schulz G, Schneider D, Brinkmann N, Edy N, Daniel R, Polle A, Scheu S, Krashevska V. Changes in Trophic Groups of Protists With Conversion of Rainforest Into Rubber and Oil Palm Plantations. Front Microbiol 2019; 10:240. [PMID: 30809219 PMCID: PMC6380168 DOI: 10.3389/fmicb.2019.00240] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/29/2019] [Indexed: 11/13/2022] Open
Abstract
Protists, abundant but enigmatic single-celled eukaryotes, are important soil microbiota providing numerous ecosystem functions. We employed high-throughput sequencing of environmental DNA, targeting the V4 region of the 18S rRNA gene, to characterize changes in their abundance, species richness, and community structure with conversion of lowland rainforest into rubber agroforest (jungle rubber), and rubber and oil palm plantations; typical agricultural systems in Sumatra, Indonesia. We identified 5,204 operational taxonomic units (OTUs) at 97% identity threshold of protists from 32 sites. Protists species richness was similar in rainforest, jungle rubber and oil palm plantations but significantly lower in rubber plantations. After standardization, 4,219 OTUs were assigned to five trophic groups, and inspected for effects of land-use change, and potential biotic and abiotic driving factors. The most abundant trophic group was phagotrophs (52%), followed by animal parasites (29%), photoautotrophs (12%), plant parasites (1%), and symbionts (<1%). However, the relative abundance and OTU richness of phagotrophs and photoautotrophs increased significantly with increasing land-use intensity. This was similar, but less pronounced, for the relative abundance of symbionts. Animal and plant parasites decreased significantly in abundance and species richness with increasing land-use intensity. Community compositions and factors affecting the structure of individual trophic groups differed between land-use systems. Parasites were presumably mainly driven by the abundance and species richness of their hosts, while phagotrophs by changes in soil pH and increase in Gram-positive bacteria, and photoautotrophs by light availability. Overall, the results show that relative species richness, relative abundance, and community composition of individual trophic groups of protists in tropical lowland rainforest significantly differ from that in converted ecosystems. This is likely associated with changes in ecosystem functioning. The study provides novel insight into protist communities and their changes with land-use intensity in tropical lowland ecosystems. We show, that trophic groups of protists are powerful indicators reflecting changes in the functioning of ecosystems with conversion of rainforest into monoculture plantations.
Collapse
Affiliation(s)
- Garvin Schulz
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, University of Göttingen, Göttingen, Germany
| | - Nicole Brinkmann
- Department of Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Nur Edy
- Department of Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
- Department of Agrotechnology, Faculty of Agriculture, Tadulako University, Palu, Indonesia
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, University of Göttingen, Göttingen, Germany
| | - Andrea Polle
- Department of Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Stefan Scheu
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Valentyna Krashevska
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Transition of Ethiopian highland forests to agriculture-dominated landscapes shifts the soil microbial community composition. BMC Ecol 2018; 18:58. [PMID: 30558598 PMCID: PMC6298011 DOI: 10.1186/s12898-018-0214-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/30/2018] [Indexed: 11/30/2022] Open
Abstract
Background Land use changes and related land management practices significantly alter soil physicochemical properties; however, their effects on the soil microbial community structure are still unclear. In this study, we used automated ribosomal intergenic spacer analysis to determine the fungal and bacterial community composition in soils from different land use areas in the Ethiopian highlands. Soil samples were collected from five areas with different land uses, natural forest, eucalyptus plantation, exclosure, grassland and cropland, which had all historically been natural forest. Results Our results showed a significant shift in the soil bacterial and fungal community composition in response to land use change. We also identified soil physicochemical factors corresponding to the changes in bacterial and fungal communities. Although most soil attributes, including soil organic carbon, total soil nitrogen, labile P, soil pH and soil aggregate stability, were related to the change in bacterial community composition, the total soil nitrogen and soil organic carbon had the strongest relationships. The change in fungal community composition was correlated with soil nutrients, organic carbon, soil nitrogen and particularly the labile P concentration. Conclusions The fungal community composition was likely affected by the alteration of vegetation cover in response to land use change, whereas the bacterial communities were mainly sensitive to changes in soil attributes. The study highlights the higher sensitivity of fungal communities than bacterial communities to land use changes. Electronic supplementary material The online version of this article (10.1186/s12898-018-0214-8) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Trophic niches, diversity and community composition of invertebrate top predators (Chilopoda) as affected by conversion of tropical lowland rainforest in Sumatra (Indonesia). PLoS One 2017; 12:e0180915. [PMID: 28763453 PMCID: PMC5538669 DOI: 10.1371/journal.pone.0180915] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/22/2017] [Indexed: 11/19/2022] Open
Abstract
Conversion of tropical rainforests into plantations fundamentally alters ecological niches of animal species. Generalist predators such as centipedes (Chilopoda) may be able to persist in converted ecosystems due to their ability to adapt and switch to alternative prey populations. We investigated variations in community composition and trophic niches of soil and litter living centipedes in a range of ecosystems including rainforests, jungle rubber agroforests, and rubber and oil palm monocultures in two landscapes in Sumatra, Indonesia. Including information on environmental factors in the soil and litter habitat, we explored drivers shaping ecological niches of soil living invertebrate predators in one of the world's hotspots of rainforest conversion. Conversion of rainforests into agroforests and plantations was associated with a marked change in the composition of centipede communities. However, irrespective of major differences in habitat characteristics, changes in total abundances were small and the overall diversity and biomass of centipedes was similar in each of the systems investigated, suggesting that the number of ecological niches for this group of predators remains unchanged. By using stable isotope analysis (15N and 13C), we investigated trophic niche shifts of the centipede community; lower δ13C values of centipedes in oil palm plantations as compared to other ecosystems suggests that centipedes switch from decomposer prey to other prey, presumably understory associated herbivores, due to reduced availability of litter associated prey species. The results suggest that the ability to utilize alternative prey is a key feature enabling invertebrate predators to persist in ecosystems undergoing major structural changes due to anthropogenic land use change.
Collapse
|