1
|
Zhao F, Shen G, Ren D, Wang M, Liu Z, Zhao Y, Xie Q, Liu Z, Li Z, Gao L, Zhao J. Screening Single Nucleotide Polymorphisms Predicting the Efficacy of Electroacupuncture for Fatigue Treatment in Patients with Breast Cancer Following Adjuvant Chemotherapy. Biochem Genet 2024; 62:1291-1303. [PMID: 37596508 DOI: 10.1007/s10528-023-10477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
Chemotherapy-induced fatigue reduces not only the quality of life of patients but also effect their recurrence-free survival rate. Although electroacupuncture can relieve fatigue, it has limited affect on some patients. Therefore, appropriate biomarkers are needed to help screen patients who can benefit from electroacupuncture treatment of fatigue. We conducted this study to explore the predictive ability of SNPs on the efficacy of electroacupuncture in the treatment of fatigue in patients with breast cancer after adjuvant chemotherapy. Our study included breast cancer patients with fatigue after receiving paclitaxel and/or anthracycline based adjuvant chemotherapy. The patients were divided into the electroacupuncture group and the control group. The electroacupuncture treatment group received adjuvant chemotherapy and electroacupuncture treatment, while the control group only received adjuvant chemotherapy, and then compared the fatigue relief degree of two groups. In addition, we used NCBI dbSNP and PharmGKB databases to select fatigue related genes and their SNPs. We collected peripheral blood from the included patients for SNPs typing, and recorded the efficacy of electroacupuncture to analyzed the correlation between different SNPs and therapeutic efficacy. The side effects of electroacupuncture treatment were also recorded. 76 patients in the electroacupuncture group and 48 patients in the control group were enrolled. In the electroacupuncture group, 63 patients (82.9%) experienced moderate to severe fatigue (BFI score > 3). After electroacupuncture treatment, the number of patients with a BFI score of > 3 was 46 (60.5%). Therefore, the fatigue symptoms of 26.9% patients were significantly improved (P < 0.05). In the control group, which did not receive electroacupuncture treatment, 40 of 48 patients had a BFI score of > 3. Following the same observation time used in the electroacupuncture group, 36 patients had a BFI score of > 3 points. Thus, fatigue was not significantly relieved in the control group (83.3% vs. 75.0%, P > 0.05). We included 56 patients in our analysis of the correlation between SNPs and electroacupuncture treatment effects. We divided the patients into an effective group and ineffective group according to therapeutic effects. Our results indicated that the effective rate of electroacupuncture treatment with IL1A rs3783550 AC and CC genotypes was higher than that with other genotypes (AC: 84.6%, CC: 81.8%, AA: 33.0%, P < 0.05). Similarly, the effective rate of electroacupuncture treatment with HTR1A rs6295 GG and CC genotypes was higher than that with other genotypes (GG: 63.0%, CC: 55.6%, GC: 18.2%, P < 0.05). However, no other genotypes were related to the effect of electroacupuncture treatment on fatigue. Our result showed that electroacupuncture has therapeutic effect on fatigue after adjuvant chemotherapy for breast cancer and the side effects are tolerable. In addition, IL1A rs3763550 and HTR1A rss6295 can predict the therapeutic effect of electroacupuncture on fatigue after adjuvant chemotherapy in breast cancer, which helps to better screen patients who can benefit from electroacupuncture treatment.
Collapse
Affiliation(s)
- Fuxing Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, People's Republic of China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, People's Republic of China
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, People's Republic of China
| | - Miaozhou Wang
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, People's Republic of China
| | - Zhen Liu
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, People's Republic of China
| | - Yi Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, People's Republic of China
| | - Qiqi Xie
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, People's Republic of China
| | - Zhilin Liu
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, People's Republic of China
| | - Zitao Li
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, People's Republic of China
| | - Lihong Gao
- The Fifth People's Hospital of Qinghai Province, The First Ward of Oncology, Xining, 810000, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, People's Republic of China.
| |
Collapse
|
2
|
Zhao W, Spiers JG, Vassileff N, Khadka A, Jaehne EJ, van den Buuse M, Hill AF. microRNA-146a modulates behavioural activity, neuroinflammation, and oxidative stress in adult mice. Mol Cell Neurosci 2023; 124:103820. [PMID: 36736750 DOI: 10.1016/j.mcn.2023.103820] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Small non-coding miRNA act as key regulators of several physiological processes due to their ability to interact with numerous target mRNA within a network. Whilst several miRNA can act in concert to regulate target mRNA expression, miR-146a has emerged as a critical modulator of inflammation by targeting key upstream signalling proteins of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway and reductions in this miRNA have been observed in several neurological and neurodegenerative disorders. However, a targeted assessment of behaviour and neural tissues following the loss of miR-146a has not been documented. In this study, we examined the behavioural and neuroinflammatory phenotype of mice lacking miR-146a to determine the role of this miRNA in neurological function. Adult miR-146a-/- mice displayed no overt developmental phenotype with the exception of enlarged spleens. Behavioural testing revealed a mild but significant reduction in exploratory locomotor activity and increase in anxiety-like behaviour, with no changes in short-term spatial memory, fear conditioning, or sensorimotor gating. In the brain, the lack of miR-146a resulted in a significant compensatory miR-155 expression with no significant changes in expression of the target Interleukin 1 Receptor Associated Kinase (Irak) gene family. Despite these effects on upstream NF-κB mediators, downstream expression of cytokine and chemokine messengers was significantly elevated in miR-146a-/- mice compared to wild-type controls. Moreover, this increase in inflammatory cytokines was observed alongside an induction of oxidative stress, driven in part by nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, and included reduced thiol antioxidant concentrations and increased oxidised protein carbonyl concentrations. In female miR-146a mice, this increase in oxidative stress resulted in an increased expression of superoxide dismutase 1 (SOD1). Together, this suggests miR-146a plays a key role in regulating inflammation even in the absence of inflammatory stimuli and reduced levels of this miRNA have the capacity to induce limited behavioural effects whilst exacerbating both inflammation and oxidative stress in the brain.
Collapse
Affiliation(s)
- Wenting Zhao
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Jereme G Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Natasha Vassileff
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Arun Khadka
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Emily J Jaehne
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Maarten van den Buuse
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia; Department of Pharmacology, University of Melbourne, Melbourne, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3083, Australia; Institute for Health and Sport, Victoria University, Footscray, Melbourne, Australia.
| |
Collapse
|
3
|
Goldman DH, Dykstra T, Smirnov I, Blackburn SM, Da Mesquita S, Kipnis J, Herz J. Age-associated suppression of exploratory activity during sickness is linked to meningeal lymphatic dysfunction and microglia activation. NATURE AGING 2022; 2:704-713. [PMID: 37065770 PMCID: PMC10103743 DOI: 10.1038/s43587-022-00268-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peripheral inflammation triggers a transient, well-defined set of behavioral changes known as sickness behavior1-3, but the mechanisms by which inflammatory signals originating in the periphery alter activity in the brain remain obscure. Emerging evidence has established meningeal lymphatic vasculature as an important interface between the central nervous system (CNS) and the immune system, responsible for facilitating brain solute clearance and perfusion by cerebrospinal fluid (CSF)4,5. Here, we demonstrate that meningeal lymphatics both assist microglial activation and support the behavioral response to peripheral inflammation. Ablation of meningeal lymphatics results in a heightened behavioral response to IL-1β-induced inflammation and a dampened transcriptional and morphological microglial phenotype. Moreover, our findings support a role for microglia in tempering the severity of sickness behavior with specific relevance to aging-related meningeal lymphatic dysfunction. Transcriptional profiling of brain myeloid cells shed light on the impact of meningeal lymphatic dysfunction on microglial activation. Furthermore, we demonstrate that experimental enhancement of meningeal lymphatic function in aged mice is sufficient to reduce the severity of exploratory abnormalities but not pleasurable consummatory behavior. Finally, we identify dysregulated genes and biological pathways, common to both experimental meningeal lymphatic ablation and aging, in microglia responding to peripheral inflammation that may result from age-related meningeal lymphatic dysfunction.
Collapse
|
4
|
Topchiy I, Fink AM, Maki KA, Calik MW. Validation of PiezoSleep Scoring Against EEG/EMG Sleep Scoring in Rats. Nat Sci Sleep 2022; 14:1877-1886. [PMID: 36300015 PMCID: PMC9590343 DOI: 10.2147/nss.s381367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Current methods of sleep research in rodents involve invasive surgical procedures of EEG and EMG electrodes implantation. Recently, a new method of measuring sleep, PiezoSleep, has been validated against implanted electrodes in mice and rats. PiezoSleep uses a piezoelectric film transducer to detect the rodent's movements and respiration and employs an algorithm to automatically score sleep. Here, we validate PiezoSleep scoring versus EEG/EMG implanted electrodes sleep scoring in rats. METHODS Adult male Brown Norway and Wistar Kyoto rats were implanted with bilateral stainless-steel screws into the skull for EEG recording and bilateral wire electrodes into the nuchal muscles for EMG assessment. In Brown Norway rats, the EEG/EMG electrode leads were soldered to a miniature connector plug and fixed to the skull. In Wistar Kyoto rats, the EEG/EMG leads were tunneled subcutaneously to a telemetry transmitter implanted in the flank. Rats were allowed to recover from surgery for one week. Brown Norway rats were placed in PiezoSleep cages, and had their headsets connected to cable for recording EEG/EMG signals, which were then manually scored by a human scorer in 10-sec epochs. Wistar Kyoto rats were placed in PiezoSleep cages, and EEG/EMG signals were recorded using a telemetry system (DSI). Sleep was scored automatically in 4-sec epochs using NeuroScore software. PiezoSleep software recorded and scored sleep in the rats. RESULTS Rats implanted with corded EEG/EMG headsets had 85.6% concurrence of sleep-wake scoring with PiezoSleep. Rats implanted with EEG/EMG telemetry had 80.8% concurrence sleep-wake scoring with PiezoSleep. Sensitivity and specificity rates were similar between the EEG/EMG recording systems. Total sleep time and hourly sleep times did not differ in all three systems. However, automatic sleep detection by NeuroScore classified more sleep during the light period compared to the PiezoSleep. CONCLUSION We showed that PiezoSleep system can be a reliable alternative to both automatic and visual EEG/EMG- based sleep-wake scoring in rat.
Collapse
Affiliation(s)
- Irina Topchiy
- Center for Sleep and Health Research, University of Illinois Chicago, Chicago, IL, USA.,Department of Biobehavioral Nursing Science; University of Illinois Chicago, Chicago, IL, USA
| | - Anne M Fink
- Center for Sleep and Health Research, University of Illinois Chicago, Chicago, IL, USA.,Department of Biobehavioral Nursing Science; University of Illinois Chicago, Chicago, IL, USA
| | - Katherine A Maki
- Department of Biobehavioral Nursing Science; University of Illinois Chicago, Chicago, IL, USA.,Translational Biobehavioral and Health Disparities Branch, Clinical Center; National Institutes of Health, Bethesda, MD, USA
| | - Michael W Calik
- Center for Sleep and Health Research, University of Illinois Chicago, Chicago, IL, USA.,Department of Biobehavioral Nursing Science; University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Businaro R, Vauzour D, Sarris J, Münch G, Gyengesi E, Brogelli L, Zuzarte P. Therapeutic Opportunities for Food Supplements in Neurodegenerative Disease and Depression. Front Nutr 2021; 8:669846. [PMID: 34055858 PMCID: PMC8160227 DOI: 10.3389/fnut.2021.669846] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence is showing nutrition as a crucial factor in the high prevalence and incidence of neurodegenerative mental disorders. Preventive interventions on neuroinflammation seem to be able to interfere with neurodegeneration. Supplementation of essential nutrients, such as long-chain-polyunsaturated fatty acids, vitamin E and mineral elements, may minimize inflammation, enhancing antioxidative defense, and lowering the risk and incidence of age-related diseases, such as cardiovascular diseases and neurodegenerative diseases. This manuscript reviews the current evidence on the role of neuroinflammation in the pathophysiology of neurodegenerative and mental disorders, and preventive strategies for food supplementation in these neuropsychiatric diseases. Dietary supplementation-based strategies have been demonstrated to be effective in subjects with mild cognitive impairment, while weaker results have been obtained in patients with advance neurodegenerative disease. Adjunctive supplementation has also been demonstrated to improve depression, this being of marked benefit considering the comorbidity between cognitive impairment/dementia and depression. Further research is needed to improve the prescriptive precision of supplementation in patients, and to better understand potential interactions with clinical and pharmacokinetic factors.
Collapse
Affiliation(s)
- Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - David Vauzour
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Jerome Sarris
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia.,Professorial Unit, The Melbourne Clinic, Department of Psychiatry, Melbourne University, Melbourne, VIC, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Erika Gyengesi
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | | | - Pedro Zuzarte
- Psychiatric Clinic, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.,Neuropsychiatry Research Department, GNR Clinical Center, Lisbon, Portugal
| |
Collapse
|
6
|
Adank DN, Lunzer MM, Ericson MD, Koeperich ZM, Wilber SL, Fleming KA, Haskell-Luevano C. Comparative Intracerebroventricular and Intrathecal Administration of a Nanomolar Macrocyclic Melanocortin Receptor Agonist MDE6-5-2c (c[Pro-His-DPhe-Arg-Trp-Dap-Ala-DPro]) Decreases Food Intake in Mice. ACS Chem Neurosci 2020; 11:3051-3063. [PMID: 32822157 PMCID: PMC7605118 DOI: 10.1021/acschemneuro.0c00409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is a critical need to find safe therapeutics to treat an increasingly obese population and diseases associated with an imbalance in energy homeostasis. The melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) ligands have long been the focus to help scientists understand energy homeostasis and the regulation of feeding behavior. Herein, we use a nanomolar macrocyclic melanocortin receptor agonist ligand MDE6-5-2c (c[Pro-His-DPhe-Arg-Trp-Dap-Ala-DPro) to examine metabolic and energy hemostasis profiles upon intrathecal (IT) administration directly into the spinal cord as compared to intracerebroventricular (ICV) administration directly into the brain. Overall, central ICV administration of MDE6-5-2c resulted in decreased food intake, in a dose-dependent manner, and decreased respiratory exchange ratio (RER). Comparison of IT versus ICV routes of MDE6-5-2c administration resulted in MDE6-5-2c possessing a longer duration of action on both feeding behavior and RER via IT. The C-peptide, ghrelin, GIP, leptin, IL-6, and resistin plasma hormones and biomarkers were compared using IT versus ICV MDE6-5-2c routes of administration. Plasma resistin levels were decreased upon ICV treatment of MDE6-5-2c, as compared to ICV vehicle control treatment. Intrathecal treatment resulted in significantly decreased inflammatory cytokine interleukin-6 (IL-6) levels compared to ICV administration. Investigation of the nonselective MC3R and MC4R macrocyclic agonist MDE6-5-2c molecule revealed differences in food intake, RER, and plasma biomarker profiles based upon ICV or IT routes of administration and characterize this novel molecular chemotype as a molecular probe to study the melanocortin system in vivo.
Collapse
Affiliation(s)
- Danielle N. Adank
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Mary M. Lunzer
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Mark D. Ericson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Zoe M. Koeperich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Stacey L. Wilber
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Katlyn A. Fleming
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
7
|
Zager A. Modulating the immune response with the wake-promoting drug modafinil: A potential therapeutic approach for inflammatory disorders. Brain Behav Immun 2020; 88:878-886. [PMID: 32311496 DOI: 10.1016/j.bbi.2020.04.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/16/2020] [Accepted: 04/15/2020] [Indexed: 01/03/2023] Open
Abstract
Modafinil is a psychostimulant drug approved by the FDA primarily for the treatment of sleep disorders such as narcolepsy, excessive daytime sleepiness and sleep apnea. Several documented but not yet approved uses for modafinil have been described over the last 30 years, including alleviating fatigue in neurological and neurodegenerative disorders. Recent evidence has suggested that modafinil may have an immunomodulatory effect. Here, we review the different effects of modafinil treatment in animal models of brain inflammation and peripheral immune function. We conclude that there is unequivocal evidence of an anti-inflammatory effect of modafinil in experimental animal models of brain inflammation and neurodegenerative disorders, including systemic inflammation and methamphetamine-induced neuroinflammation, Parkinson's disease, brain ischemia, and multiple sclerosis. Modafinil acts on resident glial cells and infiltrating immune cells, negatively affecting both innate and adaptive immune responses in the brain. We also review the outcomes of modafinil treatment on peripheral immune function. The results of studies on this subject are still controversial and far from conclusive, but point to a new avenue of research in relation to peripheral inflammation. The data reviewed here raise the possibility of modafinil being used as adjuvant treatment for neurological disorders in which inflammation plays an important role.
Collapse
Affiliation(s)
- Adriano Zager
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
8
|
Korte SM, Straub RH. Fatigue in inflammatory rheumatic disorders: pathophysiological mechanisms. Rheumatology (Oxford) 2020; 58:v35-v50. [PMID: 31682277 PMCID: PMC6827268 DOI: 10.1093/rheumatology/kez413] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Today, inflammatory rheumatic disorders are effectively treated, but many patients still suffer from residual fatigue. This work presents pathophysiological mechanisms of fatigue. First, cytokines can interfere with neurotransmitter release at the preterminal ending. Second, a long-term increase in serum concentrations of proinflammatory cytokines increase the uptake and breakdown of monoamines (serotonin, noradrenaline and dopamine). Third, chronic inflammation can also decrease monoaminergic neurotransmission via oxidative stress (oxidation of tetrahydrobiopterin [BH4]). Fourth, proinflammatory cytokines increase the level of enzyme indoleamine-2, 3-dioxygenase activity and shunt tryptophan away from the serotonin pathway. Fifth, oxidative stress stimulates astrocytes to inhibit excitatory amino acid transporters. Sixth, astrocytes produce kynurenic acid that acts as an antagonist on the α7-nicotinic acetylcholine receptor to inhibit dopamine release. Jointly, these actions result in increased glutamatergic and decreased monoaminergic neurotransmission. The above-described pathophysiological mechanisms negatively affect brain functioning in areas that are involved in fatigue.
Collapse
Affiliation(s)
- S Mechiel Korte
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, (UIPS), Utrecht University, Utrecht, The Netherlands.,Department of Biopsychology, Faculty of Psychology, Ruhr-Universität, Bochum
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, Regensburg, Germany
| |
Collapse
|
9
|
Chong PS, Fung ML, Wong KH, Lim LW. Therapeutic Potential of Hericium erinaceus for Depressive Disorder. Int J Mol Sci 2019; 21:ijms21010163. [PMID: 31881712 PMCID: PMC6982118 DOI: 10.3390/ijms21010163] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Depression is a common and severe neuropsychiatric disorder that is one of the leading causes of global disease burden. Although various anti-depressants are currently available, their efficacies are barely adequate and many have side effects. Hericium erinaceus, also known as Lion’s mane mushroom, has been shown to have various health benefits, including antioxidative, antidiabetic, anticancer, anti-inflammatory, antimicrobial, antihyperglycemic, and hypolipidemic effects. It has been used to treat cognitive impairment, Parkinson’s disease, and Alzheimer’s disease. Bioactive compounds extracted from the mycelia and fruiting bodies of H. erinaceus have been found to promote the expression of neurotrophic factors that are associated with cell proliferation such as nerve growth factors. Although antidepressant effects of H. erinaceus have not been validated and compared to the conventional antidepressants, based on the neurotrophic and neurogenic pathophysiology of depression, H. erinaceus may be a potential alternative medicine for the treatment of depression. This article critically reviews the current literature on the potential benefits of H. erinaceus as a treatment for depressive disorder as well as its mechanisms underlying the antidepressant-like activities.
Collapse
Affiliation(s)
- Pit Shan Chong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.S.C.); (M.-L.F.)
| | - Man-Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.S.C.); (M.-L.F.)
| | - Kah Hui Wong
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (K.H.W.); (L.W.L.); Tel.: +603-7967-4729 (K.H.W.); +852-9157-2575 (L.W.L.)
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.S.C.); (M.-L.F.)
- Correspondence: (K.H.W.); (L.W.L.); Tel.: +603-7967-4729 (K.H.W.); +852-9157-2575 (L.W.L.)
| |
Collapse
|
10
|
The Effects of Plasmacytoid Dendritic Cell-Stimulative Lactic Acid Bacteria, Lactococcus lactis Strain Plasma, on Exercise-Induced Fatigue and Recovery via Immunomodulatory Action. Int J Sport Nutr Exerc Metab 2019; 29:354–358. [PMID: 31034253 DOI: 10.1123/ijsnem.2018-0377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The unique lactic acid bacteria, Lactococcus lactis strain plasma (LC-Plasma), stimulates plasmacytoid dendritic cells, which play an important role in viral infection. The authors previously reported that LC-Plasma reduced the number of days athletes experienced cold-like symptoms and fatigue feelings after high-intensity exercise training; however, the mechanism was unclear. In this study, the authors investigated the effect of LC-Plasma on recovery from physical damage after single exercise on a treadmill in BALB/c mice model. Oral administration of LC-Plasma (AIN-93G + 0.029% LC-Plasma) for 4 weeks significantly improved the locomotor reduction after treadmill exercise. This effect was not detected in mice receiving Lactobacillus rhamnosus GG, representative probiotics strain. LC-Plasma also improved voluntary locomotor activity after exercise. Blood and muscle sample analysis indicated that LC-Plasma affects plasmacytoid dendritic cell activation, which, in turn, attenuates muscle degenerative genes and the concentration of fatigue-controlled cytokine transforming growth factor-β.
Collapse
|
11
|
de Groot MHM, Castorena CM, Cox KH, Kumar V, Mohawk JA, Ahmed NI, Takahashi JS. A novel mutation in Slc2a4 as a mouse model of fatigue. GENES BRAIN AND BEHAVIOR 2019; 18:e12578. [PMID: 31059591 DOI: 10.1111/gbb.12578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 11/28/2022]
Abstract
Chronic fatigue is a debilitating disorder with widespread consequences, but effective treatment strategies are lacking. Novel genetic mouse models of fatigue may prove invaluable for studying its underlying physiological mechanisms and for testing treatments and interventions. In a screen of voluntary wheel-running behavior in N-ethyl-N-nitrosourea mutagenized C57BL/6J mice, we discovered two lines with low body weights and aberrant wheel-running patterns suggestive of a fatigue phenotype. Affected progeny from these lines had lower daily activity levels and exhibited low amplitude circadian rhythm alterations. Their aberrant behavior was characterized by frequent interruptions and periods of inactivity throughout the dark phase of the light-dark cycle and increased levels of activity during the rest or light phase. Expression of the behavioral phenotypes in offspring of strategic crosses was consistent with a recessive inheritance pattern. Mapping of phenotypic abnormalities showed linkage with a single locus on chromosome 1, and whole exome sequencing identified a single point mutation in the Slc2a4 gene encoding the GLUT4 insulin-responsive glucose transporter. The single nucleotide change (A-T, which we named "twiggy") was in the distal end of exon 10 and resulted in a premature stop (Y440*). Additional metabolic phenotyping confirmed that these mice recapitulate phenotypes found in GLUT4 knockout mice. However, to the best of our knowledge, this is the first time a mutation in this gene has been shown to result in extensive changes in general behavioral patterns. These findings suggest that GLUT4 may be involved in circadian behavioral abnormalities and could provide insights into fatigue in humans.
Collapse
Affiliation(s)
- Marleen H M de Groot
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carlos M Castorena
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kimberly H Cox
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vivek Kumar
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jennifer A Mohawk
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Newaz I Ahmed
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
12
|
Malavolta M, Basso A, Giacconi R, Orlando F, Pierpaoli E, Cardelli M, Leoni F, Chierichetti S, Bray D, Benlhassan K, Provinciali M. Recovery from mild Escherichia coli O157:H7 infection in young and aged C57BL/6 mice with intact flora estimated by fecal shedding, locomotor activity and grip strength. Comp Immunol Microbiol Infect Dis 2018; 63:1-9. [PMID: 30961802 DOI: 10.1016/j.cimid.2018.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 02/04/2023]
Abstract
Escherichia coli 0157:H7 is a food-borne pathogen that can cause severe complications in vulnerable populations. Mouse infection models of E. coli 0157:H7 are usually developed under severe animal suffering classification by depleting the normal flora, in which age plays a role. OBJECTIVE To develop a refined method for longitudinal monitoring of E. coli 0157:H7 in young and old mice with intact flora. METHODS We applied discriminant analysis and computed composite standardized scores from 19 variables obtained from physiological parameters, analysis of locomotor activity, grip strength measurement and fecal shedding in 16 aged and 16 young C57BL/6 mice after two mild oral challenges of E. coli 0157:H7. The resulting scores were validated in another experiment performed in 24 aged and 24 young mice including a group (8 aged and 8 young mice) treated with oxytetracycline. RESULTS We show that our scores are significantly affected in the post-infection period and that can be used to measure and compare the recovery time after a treatment. The scores are most sensitive when separately developed in young and aged mice. CONCLUSIONS We developed a method that minimizes the level of animal suffering and that can be applied in preclinical testing of new therapies.
Collapse
Affiliation(s)
- Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Italy.
| | - Andrea Basso
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Italy
| | - Fiorenza Orlando
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Italy
| | - Elisa Pierpaoli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Italy
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Italy
| | - Francesca Leoni
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Ancona, Italy
| | - Serena Chierichetti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Ancona, Italy
| | | | | | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Italy
| |
Collapse
|
13
|
Felger JC. Imaging the Role of Inflammation in Mood and Anxiety-related Disorders. Curr Neuropharmacol 2018; 16:533-558. [PMID: 29173175 PMCID: PMC5997866 DOI: 10.2174/1570159x15666171123201142] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/23/2017] [Accepted: 11/21/2017] [Indexed: 02/08/2023] Open
Abstract
Background Studies investigating the impact of a variety of inflammatory stimuli on the brain and behavior have reported evidence that inflammation and release of inflammatory cytokines affect circuitry relevant to both reward and threat sensitivity to contribute to behavioral change. Of relevance to mood and anxiety-related disorders, biomarkers of inflammation such as inflammatory cytokines and acute-phase proteins are reliably elevated in a significant proportion of patients with major depressive disorder (MDD), bipolar disorder, anxiety disorders and post-traumatic stress disorder (PTSD). Methods This review summarized clinical and translational work demonstrating the impact of peripheral inflammation on brain regions and neurotransmitter systems relevant to both reward and threat sensitivity, with a focus on neuroimaging studies involving administration of inflammatory stimuli. Recent translation of these findings to further understand the role of inflammation in mood and anxiety-related disorders is also discussed. Results Inflammation was consistently found to affect basal ganglia and cortical reward and motor circuits to drive reduced motivation and motor activity, as well as anxiety-related brain regions including amygdala, insula and anterior cingulate cortex, which may result from cytokine effects on monoamines and glutamate. Similar relationships between inflammation and altered neurocircuitry have been observed in MDD patients with increased peripheral inflammatory markers, and such work is on the horizon for anxiety disorders and PTSD. Conclusion Neuroimaging effects of inflammation on reward and threat circuitry may be used as biomarkers of inflammation for future development of novel therapeutic strategies to better treat mood and anxiety-related disorders in patients with high inflammation.
Collapse
Affiliation(s)
- Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.,Winship Cancer Institute, Emory University, Atlanta, GA, United States
| |
Collapse
|
14
|
Lacourt TE, Vichaya EG, Chiu GS, Dantzer R, Heijnen CJ. The High Costs of Low-Grade Inflammation: Persistent Fatigue as a Consequence of Reduced Cellular-Energy Availability and Non-adaptive Energy Expenditure. Front Behav Neurosci 2018; 12:78. [PMID: 29755330 PMCID: PMC5932180 DOI: 10.3389/fnbeh.2018.00078] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/09/2018] [Indexed: 02/03/2023] Open
Abstract
Chronic or persistent fatigue is a common, debilitating symptom of several diseases. Persistent fatigue has been associated with low-grade inflammation in several models of fatigue, including cancer-related fatigue and chronic fatigue syndrome. However, it is unclear how low-grade inflammation leads to the experience of fatigue. We here propose a model of an imbalance in energy availability and energy expenditure as a consequence of low-grade inflammation. In this narrative review, we discuss how chronic low-grade inflammation can lead to reduced cellular-energy availability. Low-grade inflammation induces a metabolic switch from energy-efficient oxidative phosphorylation to fast-acting, but less efficient, aerobic glycolytic energy production; increases reactive oxygen species; and reduces insulin sensitivity. These effects result in reduced glucose availability and, thereby, reduced cellular energy. In addition, emerging evidence suggests that chronic low-grade inflammation is associated with increased willingness to exert effort under specific circumstances. Circadian-rhythm changes and sleep disturbances might mediate the effects of inflammation on cellular-energy availability and non-adaptive energy expenditure. In the second part of the review, we present evidence for these metabolic pathways in models of persistent fatigue, focusing on chronic fatigue syndrome and cancer-related fatigue. Most evidence for reduced cellular-energy availability in relation to fatigue comes from studies on chronic fatigue syndrome. While the mechanistic evidence from the cancer-related fatigue literature is still limited, the sparse results point to reduced cellular-energy availability as well. There is also mounting evidence that behavioral-energy expenditure exceeds the reduced cellular-energy availability in patients with persistent fatigue. This suggests that an inability to adjust energy expenditure to available resources might be one mechanism underlying persistent fatigue.
Collapse
|
15
|
Draper A, Koch RM, van der Meer JW, Aj Apps M, Pickkers P, Husain M, van der Schaaf ME. Effort but not Reward Sensitivity is Altered by Acute Sickness Induced by Experimental Endotoxemia in Humans. Neuropsychopharmacology 2018; 43:1107-1118. [PMID: 28948979 PMCID: PMC5854801 DOI: 10.1038/npp.2017.231] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 12/28/2022]
Abstract
Sickness behavior in humans is characterized by low mood and fatigue, which have been suggested to reflect changes in motivation involving reorganization of priorities. However, it is unclear which specific processes underlying motivation are altered. We tested whether bacterial endotoxin E. coli lipopolysaccharide (LPS) affected two dissociable constructs of motivational behavior, ie, effort and reward sensitivity. After familiarization with 5 effort levels, participants made a series of accept/reject decisions on whether the stake offered (1, 4, 8, 12, or 15 apples) was 'worth the effort' (10%, 27.5%, 45%, 62.5%, and 80% of maximal voluntary contraction in a hand-held dynamometer). Effort and reward levels were parametrically modulated to dissociate their influence on choice. Overall, 29 healthy young males were administered LPS (2 ng/kg; n=14) or placebo (0.9% saline; n=15). The effort-stake task, and self-reported depression and fatigue were assessed prior to LPS/placebo injection, 2 and 5 h post injection. Cytokines and sickness symptoms were assessed hourly till 8 h after LPS injection. LPS transiently increased interleukin-6 and tumor necrosis factor-α, sickness symptoms, body temperature and self-reported fatigue, and depression post injection relative to baseline and placebo. These changes were accompanied by LPS-induced decreases in acceptance rates of high-effort options, without significantly affecting reward sensitivity 2 h post injection, which were partially recovered 5 h post injection. We suggest that LPS-induced changes in motivation may be due to alterations to mesolimbic dopamine. Our behavioral paradigm could be used to further investigate effects of inflammation on motivational behavior in psychiatric and chronic illnesses.
Collapse
Affiliation(s)
- Amelia Draper
- Department of Experimental Psychology University of Oxford, Oxford, UK
| | - Rebecca M Koch
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jos Wm van der Meer
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Matthew Aj Apps
- Department of Experimental Psychology University of Oxford, Oxford, UK
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Masud Husain
- Department of Experimental Psychology University of Oxford, Oxford, UK
| | - Marieke E van der Schaaf
- Donders Institute for Brain, Centre for Cognitive Neuroimaging, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Adank DN, Lunzer MM, Lensing CJ, Wilber SL, Gancarz AM, Haskell-Luevano C. Comparative in Vivo Investigation of Intrathecal and Intracerebroventricular Administration with Melanocortin Ligands MTII and AGRP into Mice. ACS Chem Neurosci 2018; 9:320-327. [PMID: 28968061 PMCID: PMC5821609 DOI: 10.1021/acschemneuro.7b00330] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Central administration of melanocortin ligands has been used as a critical technique to study energy homeostasis. While intracerebroventricular (ICV) injection is the most commonly used method during these investigations, intrathecal (IT) injection can be equally efficacious for the central delivery of ligands. Importantly, intrathecal administration can optimize exploration of melanocortin receptors in the spinal cord. Herein, we investigate comparative IT and ICV administration of two melanocortin ligands, the synthetic MTII (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2) MC4R agonist and agouti-related peptide [AGRP(87-132)] MC4R inverse agonist/antagonist, on the same batch of age-matched mice in TSE metabolic cages undergoing a nocturnal satiated paradigm. To our knowledge, this is the first study to test how central administration of these ligands directly to the spinal cord affects energy homeostasis. Results showed, as expected, that MTII IT administration caused a decrease in food and water intake and an overall negative energy balance without affecting activity. As anticipated, IT administration of AGRP caused weight gain, increase of food/water intake, and increase respiratory exchange ratio (RER). Unexpectantly, the prolonged activity of AGRP was notably shorter (2 days) compared to mice given ICV injections of the same concentrations in previous studies (7 days or more).1-4 It appears that IT administration results in a more sensitive response that may be a good approach for testing synthetic compound potency values ranging in nanomolar to high micromolar in vitro EC50 values. Indeed, our investigation reveals that the spine influences a different melanocortin response compared to the brain for the AGRP ligand. This study indicates that IT administration can be a useful technique for future metabolic studies using melanocortin ligands and highlights the importance of exploring the role of melanocortin receptors in the spinal cord.
Collapse
MESH Headings
- Agouti-Related Protein/administration & dosage
- Animals
- Body Weight/drug effects
- Catheters, Indwelling
- Cross-Over Studies
- Eating/drug effects
- Homeostasis/drug effects
- Injections, Intraventricular
- Injections, Spinal
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Peptide Fragments/administration & dosage
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/metabolism
- Time Factors
- alpha-MSH/administration & dosage
- alpha-MSH/analogs & derivatives
Collapse
Affiliation(s)
- Danielle N. Adank
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Mary M. Lunzer
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Cody J. Lensing
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Stacey L. Wilber
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Amy M. Gancarz
- Department of Psychology, California State University Bakersfield, Bakersfield, CA 93311, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
17
|
Zager A, Brandão WN, Margatho RO, Peron JP, Tufik S, Andersen ML, Kornum BR, Palermo-Neto J. The wake-promoting drug Modafinil prevents motor impairment in sickness behavior induced by LPS in mice: Role for dopaminergic D1 receptor. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:468-476. [PMID: 28499899 DOI: 10.1016/j.pnpbp.2017.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/04/2017] [Accepted: 05/08/2017] [Indexed: 01/08/2023]
Abstract
The wake-promoting drug Modafinil has been used for many years for treatment of Narcolepsy and Excessive Daytime Sleepiness, due to a dopamine-related psychostimulant action. Recent studies have indicated that Modafinil prevents neuroinflammation in animal models. Thus, the aim of the present study was to evaluate the effect of Modafinil pretreatment in the Lipopolysaccharide (LPS)-induced sickness and depressive-like behaviors. Adult male C57BL/6J mice were pretreated with Vehicle or Modafinil (90mg/Kg) and, 30min later, received a single saline or LPS (2mg/Kg) administration, and were submitted to the open field and elevated plus maze test 2h later. After 24h, mice were subjected to tail suspension test, followed by either flow cytometry with whole brain for CD11b+CD45+ cells or qPCR in brain areas for cytokine gene expression. Modafinil treatment prevented the LPS-induced motor impairment, anxiety-like and depressive-like behaviors, as well as the increase in brain CD11b+CD45high cells induced by LPS. Our results indicate that Modafinil pretreatment also decreased the IL-1β gene upregulation caused by LPS in brain areas, which is possibly correlated with the preventive behavioral effects. The pharmacological blockage of the dopaminergic D1R by the drug SCH-23390 counteracted the effect of Modafinil on locomotion and anxiety-like behavior, but not on depressive-like behavior and brain immune cells. The dopaminergic D1 receptor signaling is essential to the Modafinil effects on LPS-induced alterations in locomotion and anxiety, but not on depression and brain macrophages. This evidence suggests that Modafinil treatment might be useful to prevent inflammation-related behavioral alterations, possibly due to a neuroimmune mechanism.
Collapse
Affiliation(s)
- Adriano Zager
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo (USP), São Paulo, Brazil.
| | - Wesley Nogueira Brandão
- Neuroimmune Interactions Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Rafael Oliveira Margatho
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Jean Pierre Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP-EPM), São Paulo, Brazil
| | - Monica Levy Andersen
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP-EPM), São Paulo, Brazil
| | - Birgitte Rahbek Kornum
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Glostrup Research Institute-Rigshospitalet, Glostrup, Denmark
| | - João Palermo-Neto
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
18
|
Grossberg AJ, Vichaya EG, Christian DL, Molkentine JM, Vermeer DW, Gross PS, Vermeer PD, Lee JH, Dantzer R. Tumor-Associated Fatigue in Cancer Patients Develops Independently of IL1 Signaling. Cancer Res 2017; 78:695-705. [PMID: 29217760 DOI: 10.1158/0008-5472.can-17-2168] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/20/2017] [Accepted: 11/27/2017] [Indexed: 12/19/2022]
Abstract
Fatigue is the most common symptom of cancer at diagnosis, yet causes and effective treatments remain elusive. As tumors can be highly inflammatory, it is generally accepted that inflammation mediates cancer-related fatigue. However, evidence to support this assertion is mostly correlational. In this study, we directly tested the hypothesis that fatigue results from propagation of tumor-induced inflammation to the brain and activation of the central proinflammatory cytokine, IL1. The heterotopic syngeneic murine head and neck cancer model (mEER) caused systemic inflammation and increased expression of Il1b in the brain while inducing fatigue-like behaviors characterized by decreased voluntary wheel running and exploratory activity. Expression of Il1b in the brain was not associated with any alterations in motivation, measured by responding in a progressive ratio schedule of food reinforcement, depression-like behaviors, or energy balance. Decreased wheel running occurred prior to Il1b detection in the brain, when systemic inflammation was minimal. Furthermore, mice null for two components of IL1β signaling, the type 1 IL1 receptor or the receptor adapter protein MyD88, were not protected from tumor-induced decreases in wheel running, despite attenuated cytokine action and expression. Behavioral and inflammatory analysis of four additional syngeneic tumor models revealed that tumors can induce fatigue regardless of their systemic or central nervous system inflammatory potential. Together, our results show that brain IL1 signaling is not necessary for tumor-related fatigue, dissociating this type of cancer sequela from systemic cytokine expression.Significance: These findings challenge the current understanding of fatigue in cancer patients, the most common and debilitating sequela associated with malignancy. Cancer Res; 78(3); 695-705. ©2017 AACR.
Collapse
Affiliation(s)
- Aaron J Grossberg
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas. .,Department of Symptom Research, MD Anderson Cancer Center, Houston, Texas
| | | | - Diana L Christian
- Department of Symptom Research, MD Anderson Cancer Center, Houston, Texas
| | - Jessica M Molkentine
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Daniel W Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Phillip S Gross
- Department of Symptom Research, MD Anderson Cancer Center, Houston, Texas
| | - Paola D Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota
| | - John H Lee
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Robert Dantzer
- Department of Symptom Research, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
19
|
Karim TJ, Reyes-Vazquez C, Dafny N. Comparison of the VTA and LC response to methylphenidate: a concomitant behavioral and neuronal study of adolescent male rats. J Neurophysiol 2017; 118:1501-1514. [PMID: 28615331 DOI: 10.1152/jn.00145.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 12/21/2022] Open
Abstract
Methylphenidate (MPD), also known as Ritalin, is a psychostimulant used to treat attention deficit hyperactivity disorder. However, it is increasingly being misused by normal adolescents for recreation and academic advantage. Therefore, it is important to elucidate the behavioral and neurophysiological effects of MPD in normal subjects. MPD inhibits the reuptake of catecholamines, mainly found in the ventral tegmental area (VTA) and locus coeruleus (LC). The VTA and LC normally mediate attention, motivation, and drug reward behaviors. Selective neuronal connections between the VTA and LC have been identified implicating regular interaction between the structures. The objective of this study was to compare the neuronal responses of the VTA and LC to MPD in normal adolescent rats. Animals were implanted with permanent electrodes in the VTA and LC, and neuronal units were recorded following acute and repetitive (chronic) saline or 0.6, 2.5, or 10.0 mg/kg MPD exposure. Animals displayed either behavioral sensitization or tolerance to all three doses of MPD. Acute MPD exposure elicited excitation in the majority of all VTA and LC units. Chronic MPD exposure elicited a further increase in VTA and LC neuronal activity in animals exhibiting behavioral sensitization and an attenuation in VTA and LC neuronal activity in animals exhibiting behavioral tolerance, demonstrating neurophysiological sensitization and tolerance, respectively. The similar pattern in VTA and LC unit activity suggests that the two structures are linked in their response to MPD. These results may help determine the exact mechanism of action of MPD, resulting in optimized treatment of patients.NEW & NOTEWORTHY The same dose of 0.6, 2.5, and 10 mg/kg methylphenidate (MPD) elicits either behavioral sensitization or tolerance in adolescent rats. There is a direct correlation between the ventral tegmental area (VTA) and locus coeruleus (LC) neuronal response to chronic MPD exposure. Both the VTA and LC are involved in the behavioral and neurophysiological effects of chronic MPD.
Collapse
Affiliation(s)
- Tahseen J Karim
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas
| | - Cruz Reyes-Vazquez
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas
| | - Nachum Dafny
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas
| |
Collapse
|
20
|
Ter Horst R, Jaeger M, Smeekens SP, Oosting M, Swertz MA, Li Y, Kumar V, Diavatopoulos DA, Jansen AFM, Lemmers H, Toenhake-Dijkstra H, van Herwaarden AE, Janssen M, van der Molen RG, Joosten I, Sweep FCGJ, Smit JW, Netea-Maier RT, Koenders MMJF, Xavier RJ, van der Meer JWM, Dinarello CA, Pavelka N, Wijmenga C, Notebaart RA, Joosten LAB, Netea MG. Host and Environmental Factors Influencing Individual Human Cytokine Responses. Cell 2017; 167:1111-1124.e13. [PMID: 27814508 DOI: 10.1016/j.cell.2016.10.018] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/03/2016] [Accepted: 10/11/2016] [Indexed: 02/08/2023]
Abstract
Differences in susceptibility to immune-mediated diseases are determined by variability in immune responses. In three studies within the Human Functional Genomics Project, we assessed the effect of environmental and non-genetic host factors of the genetic make-up of the host and of the intestinal microbiome on the cytokine responses in humans. We analyzed the association of these factors with circulating mediators and with six cytokines after stimulation with 19 bacterial, fungal, viral, and non-microbial metabolic stimuli in 534 healthy subjects. In this first study, we show a strong impact of non-genetic host factors (e.g., age and gender) on cytokine production and circulating mediators. Additionally, annual seasonality is found to be an important environmental factor influencing cytokine production. Alpha-1-antitrypsin concentrations partially mediate the seasonality of cytokine responses, whereas the effect of vitamin D levels is limited. The complete dataset has been made publicly available as a comprehensive resource for future studies. PAPERCLIP.
Collapse
Affiliation(s)
- Rob Ter Horst
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Martin Jaeger
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Sanne P Smeekens
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Marije Oosting
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Morris A Swertz
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Groningen 9700RB, the Netherlands
| | - Yang Li
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Groningen 9700RB, the Netherlands
| | - Vinod Kumar
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Groningen 9700RB, the Netherlands
| | - Dimitri A Diavatopoulos
- Laboratory of Pediatric Infectious Diseases and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Anne F M Jansen
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Helga Toenhake-Dijkstra
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Antonius E van Herwaarden
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Matthijs Janssen
- Department of Rheumatology, Rijnstate Hospital, Arnhem, Gelderland 6815AD, the Netherlands
| | - Renate G van der Molen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Fred C G J Sweep
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Johannes W Smit
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands; Division of Endocrinology, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands; Division of Endocrinology, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Mieke M J F Koenders
- Elkerliek Hospital, Clinical Chemistry, Helmond, Noord-Brabant 5700AB, the Netherlands
| | - Ramnik J Xavier
- Broad Institute of Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA; Harvard University, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Jos W M van der Meer
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Charles A Dinarello
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands; Division of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Norman Pavelka
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Groningen 9700RB, the Netherlands; Centre for Immune Regulation and Department of Immunology, University of Oslo, Oslo University Hospital, Oslo, Oslo 0027, Norway
| | - Richard A Notebaart
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands.
| | - Mihai G Netea
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands.
| |
Collapse
|
21
|
Roerink ME, van der Schaaf ME, Dinarello CA, Knoop H, van der Meer JWM. Interleukin-1 as a mediator of fatigue in disease: a narrative review. J Neuroinflammation 2017; 14:16. [PMID: 28109186 PMCID: PMC5251329 DOI: 10.1186/s12974-017-0796-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/12/2017] [Indexed: 01/17/2023] Open
Abstract
Fatigue is commonly reported in a variety of illnesses, and it has major impact on quality of life. Previously, it was thought that fatigue originates in the skeletal muscles, leading to cessation of activity. However, more recently, it has become clear that the brain is the central regulator of fatigue perception. It has been suggested that pro-inflammatory cytokines, especially interleukin-1 alpha (IL-1α) and interleukin-1 beta (IL-1β), play a prominent role in the development of central fatigue, and several studies have been performed to elucidate the connection between inflammation and these central processes.In this narrative review, mechanisms of action of IL-1 are described, with special attention to its effect on the central nervous system. In addition, we present a summary of studies that (i) investigated the relationship between circulating IL-1α and IL-1β and fatigue severity and/or (ii) evaluated the effect of inhibiting IL-1 on fatigue. We aim to improve the understanding of fatigue in both inflammatory and non-inflammatory illnesses, which could help develop strategies to treat fatigue more effectively.Reviewing the studies that have been performed, it appears that there is a limited value of measuring circulating IL-1. However, inhibiting IL-1 has a positive effect on severe fatigue in most studies that have been conducted.
Collapse
Affiliation(s)
- Megan E Roerink
- Department of Internal Medicine, Radboud University Medical Centre, Geert Grooteplein Zuid 8, 6500HB, Nijmegen, The Netherlands.
| | - Marieke E van der Schaaf
- Expert Centre for Chronic Fatigue, Radboud University Medical Centre, Reinier Postlaan 4, 6525GC, Nijmegen, The Netherlands
| | - Charles A Dinarello
- Department of Internal Medicine, Radboud University Medical Centre, Geert Grooteplein Zuid 8, 6500HB, Nijmegen, The Netherlands.,Department of Medicine, University of Colorado Denver, 12700 E. 19th Avenue Box B168, Aurora, CO, 80045, USA
| | - Hans Knoop
- Expert Centre for Chronic Fatigue, Radboud University Medical Centre, Reinier Postlaan 4, 6525GC, Nijmegen, The Netherlands.,Department of Medical Psychology, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Jos W M van der Meer
- Department of Internal Medicine, Radboud University Medical Centre, Geert Grooteplein Zuid 8, 6500HB, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Felger JC, Treadway MT. Inflammation Effects on Motivation and Motor Activity: Role of Dopamine. Neuropsychopharmacology 2017; 42:216-241. [PMID: 27480574 PMCID: PMC5143486 DOI: 10.1038/npp.2016.143] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 01/18/2023]
Abstract
Motivational and motor deficits are common in patients with depression and other psychiatric disorders, and are related to symptoms of anhedonia and motor retardation. These deficits in motivation and motor function are associated with alterations in corticostriatal neurocircuitry, which may reflect abnormalities in mesolimbic and mesostriatal dopamine (DA). One pathophysiologic pathway that may drive changes in DAergic corticostriatal circuitry is inflammation. Biomarkers of inflammation such as inflammatory cytokines and acute-phase proteins are reliably elevated in a significant proportion of psychiatric patients. A variety of inflammatory stimuli have been found to preferentially target basal ganglia function to lead to impaired motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal neural responses to reward anticipation, decreased DA and DA metabolites in cerebrospinal fluid, and decreased availability, and release of striatal DA, all of which correlated with symptoms of reduced motivation and/or motor retardation. Importantly, inflammation-associated symptoms are often difficult to treat, and evidence suggests that inflammation may decrease DA synthesis and availability, thus circumventing the efficacy of standard pharmacotherapies. This review will highlight the impact of administration of inflammatory stimuli on the brain in relation to motivation and motor function. Recent data demonstrating similar relationships between increased inflammation and altered DAergic corticostriatal circuitry and behavior in patients with major depressive disorder will also be presented. Finally, we will discuss the mechanisms by which inflammation affects DA neurotransmission and relevance to novel therapeutic strategies to treat reduced motivation and motor symptoms in patients with high inflammation.
Collapse
Affiliation(s)
- Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Michael T Treadway
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
23
|
Hegerl U, Ulke C. Fatigue with up- vs downregulated brain arousal should not be confused. PROGRESS IN BRAIN RESEARCH 2016; 229:239-254. [PMID: 27926440 DOI: 10.1016/bs.pbr.2016.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fatigue is considered to be an important and frequent factor in motivation problems. However, this term lacks clinical and pathophysiological validity. Semantic precision has to be improved. Lack of drive and tiredness with increased sleepiness as observed in fatigue in the context of inflammatory and immunological processes (hypoaroused fatigue) has to be separated from inhibition of drive and tiredness with prolonged sleep onset latency as observed in major depression (hyperaroused fatigue). Subjective experiences as reported by patients, as well as clinical, behavioral, and neurobiological findings support the validity and importance of this distinction. A practical clinical procedure for how to separate hypo- from hyperaroused fatigue will be proposed.
Collapse
Affiliation(s)
- U Hegerl
- Research Center of the German Depression Foundation, Leipzig, Germany; University of Leipzig, Leipzig, Germany.
| | - C Ulke
- Research Center of the German Depression Foundation, Leipzig, Germany
| |
Collapse
|
24
|
Zhang ZT, Du XM, Ma XJ, Zong Y, Chen JK, Yu CL, Liu YG, Chen YC, Zhao LJ, Lu GC. Activation of the NLRP3 inflammasome in lipopolysaccharide-induced mouse fatigue and its relevance to chronic fatigue syndrome. J Neuroinflammation 2016; 13:71. [PMID: 27048470 PMCID: PMC4822300 DOI: 10.1186/s12974-016-0539-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The NLRP3 inflammasome (NOD-like receptor family, pyrin domain containing 3) is an intracellular protein complex that plays an important role in innate immune sensing. Its activation leads to the maturation of caspase-1 and regulates the cleavage of interleukin (IL)-1β and IL-18. Various studies have shown that activation of the immune system plays a pivotal role in the development of fatigue. However, the mechanisms underlying the association between immune activation and fatigue remained elusive, and few reports have described the involvement of NLRP3 inflammasome activation in fatigue. METHODS We established a mouse fatigue model with lipopolysaccharide (LPS, 3 mg/kg) challenge combined with swim stress. Both behavioural and biochemical parameters were measured to illustrate the characteristics of this model. We also assessed NLRP3 inflammasome activation in the mouse diencephalon, which is the brain region that has been suggested to be responsible for fatigue sensation. To further identify the role of NLRP3 inflammasome activation in the pathogenesis of chronic fatigue syndrome (CFS), NLRP3 KO mice were also subjected to LPS treatment and swim stress, and the same parameters were evaluated. RESULTS Mice challenged with LPS and subjected to the swim stress test showed decreased locomotor activity, decreased fall-off time in a rota-rod test and increased serum levels of IL-1β and IL-6 compared with untreated mice. Serum levels of lactic acid and malondialdehyde (MDA) were not significantly altered in the treated mice. We demonstrated increased NLRP3 expression, IL-1β production and caspase-1 activation in the diencephalons of the treated mice. In NLRP3 KO mice, we found remarkably increased locomotor activity with longer fall-off times and decreased serum IL-1β levels compared with those of wild-type (WT) mice after LPS challenge and the swim stress test. IL-1β levels in the diencephalon were also significantly decreased in the NLRP3 KO mice. By contrast, IL-6 levels were not significantly altered. CONCLUSIONS These findings suggest that LPS-induced fatigue is an IL-1β-dependent process and that the NLRP3/caspase-1 pathway is involved in the mechanisms of LPS-induced fatigue behaviours. NLRP3/caspase-1 inhibition may be a promising therapy for fatigue treatment.
Collapse
Affiliation(s)
- Zi-Teng Zhang
- />Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433 China
| | - Xiu-Ming Du
- />Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433 China
| | - Xiu-Juan Ma
- />Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433 China
| | - Ying Zong
- />Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433 China
| | - Ji-Kuai Chen
- />Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433 China
| | - Chen-Lin Yu
- />Laboratory Animal Center, Second Military Medical University, Shanghai, 200433 China
| | - Yan-Gang Liu
- />Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433 China
| | - Yong-Chun Chen
- />Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433 China
| | - Li-Jun Zhao
- />Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, 200433 China
| | - Guo-Cai Lu
- />Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433 China
| |
Collapse
|