1
|
Zhang X, Schenk JM, Perrigue M, Drewnowski A, Wang CY, Beatty SJ, Neuhouser ML. No Effect of High Eating Frequency Compared with Low Eating Frequency on Appetite and Inflammation Biomarkers: Results from a Randomized Crossover Clinical Trial. J Nutr 2024; 154:2422-2430. [PMID: 38703890 PMCID: PMC11377242 DOI: 10.1016/j.tjnut.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Eating frequency (EF) focuses on the total number of eating occasions per day and may influence metabolic health. OBJECTIVES We sought to examine the effect of high compared with low EF on appetite regulation and inflammatory biomarkers among healthy adults. METHODS Data are from a randomized, crossover trial (the Frequency of Eating and Satiety Hormones study). Participants (n = 50) completed 2 isocaloric 21-d study periods of low EF (3 eating occasions/d) and high EF (6 eating occasions/d) in random order with a 14-d washout period in between. Participants were free-living and consumed their own food, using study-directed, structured meal plans with identical foods and total energy in both study periods. On days 1 and 21 of each EF period, fasting blood was collected during in-person clinic visits to assess plasma concentrations of ghrelin, leptin, adiponectin, and high-sensitivity C-reactive protein (hs-CRP). Linear mixed models with EF, diet sequence, and period as fixed effects and participant as random effect were used to estimate the intervention effect. Interaction effects between EF and body fat percentage were examined. RESULTS Among the 50 participants who completed the trial, 39 (78%) were women, 30 (60%) were Non-Hispanic White, and 40 (80%) had a body mass index of <25 kg/m2, and the mean age was 32.1 y. The differences between high and low EF in fasting ghrelin (geometric mean difference: 17.76 ng/mL; P = 0.60), leptin (geometric mean difference: 2.09 ng/mL; P = 0.14), adiponectin (geometric mean difference: 381.7 ng/mL; P = 0.32), and hs-CRP (geometric mean difference: -0.018 mg/dL; P = 0.08) were not statistically significant. No significant interaction was observed between EF and body fat percentage on appetite regulation and inflammatory biomarkers. CONCLUSIONS No differences was observed in fasting ghrelin, leptin, adiponectin, and hs-CRP comparing high and low EF. Future studies are needed to understand the physiology of EF and appetite as they relate to metabolic health. This trial was registered at clinicaltrials.gov as NCT02392897.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Jeannette M Schenk
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Martine Perrigue
- Department of Nutrition and Exercise Physiology, College of Medicine, Washington State University, Spokane, WA, United States
| | - Adam Drewnowski
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
| | - Ching-Yun Wang
- Biostatistics Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Sarah J Beatty
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Marian L Neuhouser
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, United States.
| |
Collapse
|
2
|
Roy N, Haddad D, Yang W, Rosas SE. Adipokines and coronary artery calcification in incident dialysis participants. Endocrine 2022; 77:272-280. [PMID: 35751773 DOI: 10.1007/s12020-022-03111-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Adipokines have been associated with increased risk of cardiovascular disease. Our aim was to determine if adipokine levels are associated with coronary artery calcification (CAC) as well as all-cause mortality in incident dialysis patients. METHODS In patients new to dialysis, we prospectively investigated the association of adiponectin, leptin and resistin with coronary artery calcification measured by ECG-gated computer tomography. Participants were recruited a median of two months after starting dialysis. RESULTS The mean age was 50.0 (12.6) years and 31.1% were women. About 42% percent had BMI > 30. Higher adiponectin levels were inversely associated with CAC progression as change in Agatston score [-155.1 (-267.9, -42.2), p = 0.008] or change in CAC volumes between scans [-2.8 (-4.9, -0.6), p = 0.01]. Higher leptin levels were associated with CAC progression [110.4 (34.3-186.6), p = 0.005]. Decreased leptin [HR 0.5 (0.3-0.9), p = 0.05] was associated with all-cause mortality in adjusted models. There was no significant association between all-cause mortality and adiponectin [1.4 (0.6-3.4), p = 0.4] or resistin [HR 1.7 (0.5-5.0), p = 0.4]. CONCLUSION High adiponectin protects against CAC progression, but is not associated with increased all-cause mortality. Higher leptin, as well as higher leptin to adiponectin ratio, is associated with CAC progression. Lower leptin levels were associated with all-cause mortality. The association of adipokines and cardiovascular disease in individuals on dialysis is complex and requires further study.
Collapse
Affiliation(s)
- Neil Roy
- Kidney and Hypertension Unit, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Danny Haddad
- RWJ Barnabas -Jersey City Medical Center, Jersey City, NJ, USA
| | - Wei Yang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sylvia E Rosas
- Kidney and Hypertension Unit, Joslin Diabetes Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
de Assis GG, Murawska-Ciałowicz E. Leptin-A Potential Bridge between Fat Metabolism and the Brain's Vulnerability to Neuropsychiatric Disorders: A Systematic Review. J Clin Med 2021; 10:jcm10235714. [PMID: 34884416 PMCID: PMC8658385 DOI: 10.3390/jcm10235714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Obesity and being overweight have been described as potential causes of neurological disorders. Leptin, a peptide expressed in fat tissue, importantly participates in energy homeostasis and storage and has recently been identified for its signaling receptors in neuronal circuits of the brain. AIM To elucidate whether the endogenous modulation of leptin can be a protection against neuropsychiatric disorders. METHOD A systematic review was performed in accordance with the PRISMA-P method, and reports of studies containing data of leptin concentrations in healthy individuals with or without obesity were retrieved from the PubMed database, using the combinations of Mesh terms for "Leptin" and "Metabolism". RESULTS Forty-seven randomized and non-randomized controlled trials, dating from 2000 to 2021, were included in the qualitative synthesis. DISCUSSION AND CONCLUSIONS Leptin secretion displays a stabilizing pattern that is more sensitive to a negative energy intake imbalance. Leptin levels influence body weight and fat mass as a pro-homeostasis factor. However, long-term exposure to elevated leptin levels may lead to mental/behavioral disorders related to the feeding and reward systems.
Collapse
Affiliation(s)
- Gilmara Gomes de Assis
- Department of Molecular Biology, Gdansk University of Physical Education and Sports, 80-336 Gdansk, Poland
- Laboratory of Behavioral Endocrinology—BELab—Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Correspondence:
| | - Eugenia Murawska-Ciałowicz
- Department of Physiology and Biochemistry, University School of Physical Education, 51-612 Wroclaw, Poland;
| |
Collapse
|
4
|
Shibata K, Yamamoto M, Yamada S, Kobayashi T, Morita S, Kagase A, Tokuda T, Shimura T, Tsunaki T, Tada N, Naganuma T, Araki M, Yamanaka F, Shirai S, Mizutani K, Tabata M, Ueno H, Takagi K, Higashimori A, Watanabe Y, Hayashida K. Clinical Outcomes of Subcutaneous and Visceral Adipose Tissue Characteristics Assessed in Patients Underwent Transcatheter Aortic Valve Replacement. CJC Open 2021; 3:142-151. [PMID: 33644728 PMCID: PMC7893200 DOI: 10.1016/j.cjco.2020.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Adipose tissue (AT) characteristics are considered to be a marker for predicting clinical outcomes. This study aimed to investigate the prognostic value of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) computed tomography (CT) assessment in patients who underwent transcatheter aortic valve replacement (TAVR). METHODS We used the Japanese multicentre registry data of 1372 patients (age: 84.5 ± 5.0 years, women: 70.6%) who underwent TAVR. The SAT and VAT were assessed according to the preprocedural CT area and density. Baseline characteristics and clinical outcomes were compared based on the differences in AT characteristics. The independent associations with all-cause mortality after TAVR were evaluated according to the CT area and density of AT. RESULTS Low-volume area of SAT and VAT was associated with worse clinical outcomes compared with high-volume area of SAT and VAT in patients who underwent TAVR (log-rank test P = 0.016 and P = 0.014). High CT density of SAT and VAT was associated with increasing mortality in comparison with low CT density of SAT and VAT (log-rank test P < 0.001 and P = 0.007). The Cox regression multivariate analysis demonstrated the independent association of increased all-cause mortality in the high SAT and VAT density (hazard ratio [HR]: 1.41, 95% confidence interval [CI]: 1.06-1.88, P = 0.019, and HR: 1.34, 95% CI: 1.03-1.76, P = 0.031, respectively), but not in the low SAT and VAT area (HR: 0.85, 95% CI: 0.74-1.29, P = 0.85, and HR: 0.78, 95% CI: 0.60-1.03, P = 0.085, respectively). CONCLUSIONS CT-derived AT characteristics, particularly the qualitative assessments, were useful for predicting the prognosis in patients after TAVR.
Collapse
Affiliation(s)
- Kenichi Shibata
- Department of Cardiology, Nagoya Heart Canter, Nagoya, Japan
| | - Masanori Yamamoto
- Department of Cardiology, Nagoya Heart Canter, Nagoya, Japan
- Department of Cardiology, Toyohashi Heart Canter, Toyohashi, Japan
| | - Sumio Yamada
- Department of Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Satoshi Morita
- Department of Cardiology, Nagoya Heart Canter, Nagoya, Japan
| | - Ai Kagase
- Department of Cardiology, Nagoya Heart Canter, Nagoya, Japan
| | - Takahiro Tokuda
- Department of Cardiology, Nagoya Heart Canter, Nagoya, Japan
| | - Testuro Shimura
- Department of Cardiology, Toyohashi Heart Canter, Toyohashi, Japan
| | - Tatsuya Tsunaki
- Department of Cardiology, Toyohashi Heart Canter, Toyohashi, Japan
| | - Norio Tada
- Department of Cardiology, Sendai Kosei Hospital, Sendai, Japan
| | - Toru Naganuma
- Department of Cardiology, New Tokyo Hospital, Chiba, Japan
| | - Motoharu Araki
- Department of Cardiology, Saiseikai Yokohama City Eastern Hospital, Yokohama, Japan
| | - Futoshi Yamanaka
- Department of Cardiology, Syonan Kamakura General Hospital, Kanagawa, Japan
| | - Shinichi Shirai
- Department of Cardiology, Kokura Memorial Hospital, Kokura, Japan
| | - Kazuki Mizutani
- Department of Cardiovascular Medicine, Osaka City University Graduates School of Medicine, Osaka, Japan
| | - Minoru Tabata
- Department of Cardiovascular Surgery, Tokyo Bay Urayasu-Ichikawa Medical Center, Chiba, Japan
| | - Hiroshi Ueno
- Department of Cardiology, Toyama University Hospital, Toyama, Japan
| | - Kensuke Takagi
- Department of Cardiology, Ogaki Municipal Hospital, Gifu, Japan
| | | | - Yusuke Watanabe
- Department of Cardiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Kentaro Hayashida
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - OCEAN-TAVI investigators
- Department of Cardiology, Nagoya Heart Canter, Nagoya, Japan
- Department of Cardiology, Toyohashi Heart Canter, Toyohashi, Japan
- Department of Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Cardiology, Sendai Kosei Hospital, Sendai, Japan
- Department of Cardiology, New Tokyo Hospital, Chiba, Japan
- Department of Cardiology, Saiseikai Yokohama City Eastern Hospital, Yokohama, Japan
- Department of Cardiology, Syonan Kamakura General Hospital, Kanagawa, Japan
- Department of Cardiology, Kokura Memorial Hospital, Kokura, Japan
- Department of Cardiovascular Medicine, Osaka City University Graduates School of Medicine, Osaka, Japan
- Department of Cardiovascular Surgery, Tokyo Bay Urayasu-Ichikawa Medical Center, Chiba, Japan
- Department of Cardiology, Toyama University Hospital, Toyama, Japan
- Department of Cardiology, Ogaki Municipal Hospital, Gifu, Japan
- Department of Cardiology, Kishiwada Tokushukai Hospital, Kishiwada, Japan
- Department of Cardiology, Teikyo University School of Medicine, Tokyo, Japan
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Liu HW, Cheng HC, Tsai SH, Sun WH. Effect of Progressive Resistance Training on Circulating Adipogenesis-, Myogenesis-, and Inflammation-Related microRNAs in Healthy Older Adults: An Exploratory Study. Gerontology 2020; 66:562-570. [PMID: 33022678 DOI: 10.1159/000510148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/14/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Functional and physiological adaptations induced by resistance training have been extensively studied in older adults. However, microRNA (miRNA) as the novel regulator in protective effects remains poorly understood. OBJECTIVE The purpose of an exploratory study was to analyze the response of a panel of circulating miRNAs to adaptations mediated by resistance training. METHODS Ten healthy older adults (age: 67.6 ± 2.2 years, 7 women and 3 men) without previous experience in resistance training were recruited. Blood samples were collected at baseline and after a 12-week resistance training. Next-generation sequencing was used to determine circulating miRNA responses to chronic resistance training. RESULTS After the 12-week training, physical functions including grip strength, lower body strength and endurance, and walking capacity were improved in the older adults, while the serum levels of leptin (from 18.1 ± 20.0 to 14.9 ± 17.6 ng/mL, p = 0.029) and tumor necrosis factor alpha (TNFα; from 4.4 ± 0.6 to 4.0 ± 0.6 pg/mL, p < 0.001) were significantly decreased. In addition, adipogenesis-related miRNAs (miR-103a-3p, -103b, -143-5p, -146b-3p, -146b-5p, -17-5p, -181a-2-3p, -181b-5p, -199a-5p, -204-3p, and -378c), anti-adipogenesis-related miRNAs (miR-155-3p, -448, and -363-3p), myogenesis-related miRNAs (miR-125b-1-3p, -128-3p, -133a-3p, 155-3p, -181a-2-3p, -181b-5p, -199a-5p, -223-3p, and -499a-5p), and inflammation-related miRNAs (miR-146b-3p, -146b-5p, -155-3p, -181a-2-3p, and -181b-5p) were changed significantly in the older adults after training (fold change >2, p < 0.05). The log2 fold change of miRNA-125-1-3p was inversely correlated with delta walking time (R = -0.685, p = 0.029) and change in insulin-like growth factor 1 (R = -0.644, p = 0.044). CONCLUSIONS Our results can help explain the link between specific circulating miRNAs and beneficial effects of resistance training on functional and physiological adaptations in older adults.
Collapse
Affiliation(s)
- Hung-Wen Liu
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan,
| | - Hao-Chien Cheng
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan
| | - Shun-Hsi Tsai
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan
| | - Wen-Hsien Sun
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
6
|
Rava A, Pihlak A, Kums T, Purge P, Pääsuke M, Jürimäe J. Resistin concentration is inversely associated with objectively measured physical activity in healthy older women. Aging Clin Exp Res 2020; 32:475-481. [PMID: 31115876 DOI: 10.1007/s40520-019-01222-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/10/2019] [Indexed: 01/01/2023]
Abstract
Regular physical activity (PA) has been associated with decreased risk of many chronic diseases and increased longevity among older adults. In addition, ageing has been associated with higher levels of different inflammatory biomarkers while the association between inflammatory biomarkers and PA has remained controversial. The aim of the current investigation was to examine the association between blood biomarkers and objectively assessed PA among a sample of healthy older women with different levels of PA engagement. A total of 81 healthy women were recruited. Study participants were allocated to three groups according to accelerometer-obtained PA data. Body composition was assessed with dual-energy X-ray absorptiometry. Fasting blood samples were collected for the measurement of resistin, leptin, tumour necrosis factor alpha (TNFα) and C-reactive protein (CRP) concentrations. There were no significant differences between groups for resistin, leptin, TNFα and for CRP concentrations; however, higher moderate-to-vigorous physical activity (MVPA) groups tended to have lower level of blood biomarker concentrations. There was a significant negative relationship between resistin and steps per day. Inverse association between leptin and MVPA was significant after controlling for age. In multivariate stepwise linear regression analysis, steps per day were the strongest independent predictor for resistin, whereas for leptin, TNFα and CRP the strongest independent predictor was whole body fat mass. In conclusion, this study demonstrated negative association between resistin concentration and steps per day. Sedentary time and light PA had no relationship with resistin, leptin, TNFα or CRP concentrations.
Collapse
|
7
|
Gervasini G, García-Pino G, Mota-Zamorano S, Luna E, García-Cerrada M, Tormo MÁ, Cubero JJ. Association of polymorphisms in leptin and adiponectin genes with long-term outcomes in renal transplant recipients. THE PHARMACOGENOMICS JOURNAL 2019; 20:388-397. [PMID: 31787754 DOI: 10.1038/s41397-019-0128-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/07/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022]
Abstract
The effect of polymorphims in leptin and adiponectin genes on long-term outcomes of renal transplantation is unknown. In 349 renal transplant recipients (RTR), we aimed to determine associations between five SNPs in the leptin receptor (LEPR) and adiponectin (ADIPOQ) genes and these outcomes. Follow-up time ranged from 2 to 25 years (mean 10.29 ± 5.16 years). Two SNPs showed associations with long-term outcomes and their statistical significance greatly increased after 39 RTR with a history of cardiovascular events prior to transplantation were removed from the analysis. Adjusted odds ratios (OR) for LEPR rs1805094 and ADIPOQ rs1501299 and risk of graft loss were 0.35 (0.16-0.74) p = 0.006 and 2.37 (1.28-4.37) p = 0.006, respectively. The assessment of risk for global mortality revealed OR values of 0.20 (0.06-0.62), p = 0.005, and 2.43 (1.08-5.44), p = 0.031 for LEPR rs1805094 and ADIPOQ rs1501299, respectively. Our results show that polymorphism in genes involved in leptin and adiponectin function modify long-term outcomes in renal transplantation.
Collapse
Affiliation(s)
- Guillermo Gervasini
- Department of Medical and Surgical Therapeutics, Medical School, University of Extremadura, Badajoz, Spain.
| | - Guadalupe García-Pino
- Department of Medical and Surgical Therapeutics, Medical School, University of Extremadura, Badajoz, Spain.,Service of Nephrology, Hospital de Zafra, Extremadura, Spain
| | - Sonia Mota-Zamorano
- Department of Medical and Surgical Therapeutics, Medical School, University of Extremadura, Badajoz, Spain
| | - Enrique Luna
- Service of Nephrology, University Hospital, Badajoz, Spain
| | | | - María Ángeles Tormo
- Deparment of Physiology, Medical School, University of Extremadura, Badajoz, Spain
| | | |
Collapse
|
8
|
MacCormack JK, Muscatell KA. The metabolic mind: A role for leptin and ghrelin in affect and social cognition. SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS 2019. [DOI: 10.1111/spc3.12496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Bonzón-Kulichenko E, Moltó E, Pintado C, Fernández A, Arribas C, Schwudke D, Gallardo N, Shevchenko A, Andrés A. Changes in Visceral Adipose Tissue Plasma Membrane Lipid Composition in Old Rats Are Associated With Adipocyte Hypertrophy With Aging. J Gerontol A Biol Sci Med Sci 2019; 73:1139-1146. [PMID: 29668887 DOI: 10.1093/gerona/gly081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/13/2018] [Indexed: 12/17/2022] Open
Abstract
Increased adiposity, through adipocyte hypertrophy, and/or hyperplasia, characterizes aging and obesity. Both are leptin-resistant states, associated with disturbed lipid metabolism, reduced insulin sensitivity and inflammation. Nevertheless, fat tissue dysfunction appears earlier in obesity than in normal aging. In contrast, lipodystrophy is accompanied by diabetes, and improving the fat cell capacity to expand rescues the diabetic phenotype. Fat tissue dysfunction is extensively studied in the diet-induced obesity, but remains relatively neglected in the aging-associated obesity. In the Wistar rat, as occurs in humans, early or middle aging is accompanied by an increase in adiposity. Using this experimental model, we describe the molecular mechanisms contributing to the white adipose tissue (WAT) hypertrophy. WAT from middle-old age rats is characterized by decreased basal lipogenesis and lipolysis, increased esterification, as demonstrated by the higher TAG and cholesterol content in visceral WAT, and the maintenance of total ceramide levels within normal values. In addition, we describe alterations in the adipose tissue plasma membrane lipid composition, as increased total ether-phosphatidylcholine, sphingomyelin, and free cholesterol levels that favor an enlarged fat cell size with aging. All these metabolic changes may be regarded as a survival advantage that prevents the aged rats from becoming overtly diabetic.
Collapse
Affiliation(s)
- Elena Bonzón-Kulichenko
- Área de Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Eduardo Moltó
- Área de Bioquímica, Facultad de Ciencias Medioambientales y Bioquímica, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Toledo, Spain
| | - Cristina Pintado
- Área de Bioquímica, Facultad de Ciencias Medioambientales y Bioquímica, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Toledo, Spain
| | - Alejandro Fernández
- Área de Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Carmen Arribas
- Área de Bioquímica, Facultad de Ciencias Medioambientales y Bioquímica, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Toledo, Spain
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Germany
| | - Nilda Gallardo
- Área de Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Antonio Andrés
- Área de Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
10
|
Cohen AA, Legault V, Li Q, Fried LP, Ferrucci L. Men Sustain Higher Dysregulation Levels Than Women Without Becoming Frail. J Gerontol A Biol Sci Med Sci 2019; 73:175-184. [PMID: 28977345 DOI: 10.1093/gerona/glx146] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022] Open
Abstract
The aging process differs in important ways between the sexes, with women living longer but at higher risk for frailty (the male-female health-survival paradox). The underlying biological mechanisms remain poorly understood, but may relate to sex differences in physiological dysregulation patterns. Here, using biomarkers from two longitudinal cohort studies (InCHIANTI and BLSA) and one cross-sectional survey (NHANES), we assess sex differences in trajectories of dysregulation globally and for five physiological systems: oxygen transport, electrolytes, hematopoiesis, lipids, and liver/kidney function. We found higher dysregulation levels in men, both globally and in the oxygen transport and hematopoietic systems (p < .001 for all), though differences for other systems were mixed (electrolytes) or absent (lipids and liver/kidney). There was no clear evidence for sex differences in rates of change in dysregulation with age. Although risk of frailty and mortality increase with dysregulation, there was no evidence for differences in these effects between sexes. These findings imply that the greater susceptibility of women to frailty is not simply due to a tolerance for higher dysregulation; rather, it may actually be men that have a greater tolerance for dysregulation, creating a male-female dysregulation-frailty paradox. However, the precise physiological mechanisms underlying the sex differences appear to be diffuse and hard to pin down.
Collapse
Affiliation(s)
- Alan A Cohen
- Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, Quebec, Canada
| | - Véronique Legault
- Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, Quebec, Canada
| | - Qing Li
- Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, Quebec, Canada
| | - Linda P Fried
- Mailman School of Public Health, Columbia University, New York, New York
| | - Luigi Ferrucci
- Translational Gerontology Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital, Baltimore, Maryland
| |
Collapse
|
11
|
Zhou F, Chen S. Effects of Gender and Other Confounding Factors on Leptin Concentrations in Alzheimer's Disease: Evidence from the Combined Analysis of 27 Case-Control Studies. J Alzheimers Dis 2019; 62:477-486. [PMID: 29439354 DOI: 10.3233/jad-170983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Leptin, as a link between fat mass and the brain, has been reported to be associated with gender. The gender differences in leptin levels between Alzheimer's disease (AD) and healthy elderly controls are inconclusive so far. To quantitatively summarize the leptin data available from female and male patients with AD, we searched PubMed and EMBASE for articles published from inception to July 20, 2017. Data were extracted from 27 studies, consisting of 3,014 participants. The pooled results showed that the overall leptin levels were lower in AD (Hedges' g = -0.481; p = 0.002) than in controls, and the leptin levels in whole blood and serum were decreased with moderate and large effect sizes (g = -0.677, -0.839; respectively; both of p-values <0.001) in AD compared with controls. In blood, there were significantly lower concentrations of leptin in female AD than in female controls (g = -0.590; p = 0.014), but not in male case-control group (g = -0.666; p = 0.067). Meta-regression analysis demonstrated that the decreased extent of leptin levels in AD paralleled the degree of the severity of dementia symptoms, as well as the alterations of body mass index (p-values ≤0.002). The findings provide strong evidence that 1) the blood concentrations of leptin are lower in female AD patients than in female controls; and 2) the greater the severity of dementia symptoms, the greater the decreases in the blood leptin levels. But more future investigations on the blood leptin levels in male AD patients is warranted.
Collapse
Affiliation(s)
- Futao Zhou
- College of Medicine and Health, Lishui University, Lishui Zhejiang, China
| | - Shuangrong Chen
- College of Engineering, Lishui University, Lishui Zhejiang, China
| |
Collapse
|
12
|
Kuo CH, Lin YL, Wang CH, Lai YH, Syu RJ, Hsu BG. High serum leptin levels are associated with central arterial stiffness in geriatric patients on hemodialysis. Tzu Chi Med J 2018; 30:227-232. [PMID: 30305786 PMCID: PMC6172900 DOI: 10.4103/tcmj.tcmj_10_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/10/2017] [Accepted: 07/14/2017] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Central arterial stiffness predicts cardiovascular (CV) mortality in hemodialysis (HD) patients. The aging process transforms lipid distribution and thus alters adipokine secretion. The harmful effects of leptin on CV events may change in the elderly. The purpose of this study was to investigate the relationship between leptin and central arterial stiffness markers through carotid-femoral pulse wave velocity (cfPWV) in geriatric HD patients. MATERIALS AND METHODS Patients over 65 years old on chronic HD were recruited. Blood samples were collected, and the cfPWV was measured with the SphygmoCor system. The patients with cfPWV values >10 m/s were defined as the high arterial stiffness group. RESULTS In total, 30 (51.7%) of the 58 geriatric patients on chronic HD in this study were in the high arterial stiffness group. The high arterial stiffness group had higher rates of diabetes mellitus (P = 0.019), hypertension (P = 0.019), and higher systolic blood pressure (P = 0.018), pulse pressure (P = 0.019), body mass index (P = 0.018), serum leptin levels (P = 0.008), and hemoglobin levels (P = 0.040) than those in the low arterial stiffness group. Multivariable forward stepwise linear regression analysis showed logarithmically transformed leptin (log-leptin, β =0.408, adjusted R 2 change = 0.164; P = 0.001) and diabetes (β =0.312, adjusted R 2 change = 0.085; P = 0.009) were associated with cfPWV values in geriatric HD patients. Moreover, an increased serum leptin level (odds ratio: 1.053; 95% confidence interval: 1.007-1.100; P = 0.023) was an independent factor for central arterial stiffness among geriatric HD patients after multivariate logistic regression analysis. CONCLUSION In this study, a higher serum leptin level was correlated with central arterial stiffness in geriatric HD patients.
Collapse
Affiliation(s)
- Chiu-Huang Kuo
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Yu-Li Lin
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Chih-Hsien Wang
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Yu-Hsien Lai
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Ru-Jiang Syu
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Bang-Gee Hsu
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
13
|
Abstract
Leptin is a peptide hormone produced mainly in white adipose tissue. It is known to regulate energy homeostasis, inflammation, metabolism, and sympathetic nerve activity. Increasing evidence suggests it has a role in ventilatory function and upper airway obstruction. Leptin levels correlate positively with measurements of adiposity and can potentially provide important insights into the pathophysiology of diseases associated with obesity. Obesity is a strong risk factor for obstructive sleep apnea, a disease characterized by periodic upper airway occlusion during sleep. The neuromuscular activity that maintains upper airway patency during sleep and the anatomy of upper airway are key factors involved in its pathogenesis. Experimental studies using animal models of a low leptin state such as leptin deficiency have shown that leptin regulates sleep architecture, upper airway patency, ventilatory function, and hypercapnic ventilatory response. However, findings from human studies do not consistently support the data from the animal models. The effect of leptin on the pathophysiology of obstructive sleep apnea is being investigated, but the results of studies have been confounded by leptin's diurnal variation and the short-term effects of feeding, adiposity, age, and sex. Improved study design and methods of assessing functional leptin levels, specifically their central versus peripheral effects, will improve understanding of the role of leptin in sleep apnea.
Collapse
|
14
|
Euclydes VLV, Castro NP, Lima LR, Brito C, Ribeiro L, Simões FA, Requena G, Luzia LA, Rondó PH. Cord blood concentrations of leptin, zinc-α2-glycoprotein, and adiponectin, and adiposity gain during the first 3 mo of life. Nutrition 2018; 54:89-93. [PMID: 29758496 DOI: 10.1016/j.nut.2018.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/21/2017] [Accepted: 02/06/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Adipose tissue development starts in intrauterine life and cytokines are involved in this process. Therefore, understanding the role of cytokines in the fat mass gain of infants is crucial to prevent obesity later in life. Furthermore, recent evidence indicates a sex-specific link between cytokines and adipose tissue development. The objective of this study was to assess sex-specific relationships of cord blood concentrations of the cytokines leptin, zinc-α2-glycoprotein (ZAG), and adiponectin with infant adiposity during the first 3 mo of life. METHODS This was a prospective cohort study of 104 mother-infant pairs that were selected from a maternity hospital in Sao Paulo, Brazil. Cord blood leptin, ZAG, and adiponectin were determined by enzyme-linked immunosorbent assays. The body composition of the infants was assessed monthly by air displacement plethysmography. A multiple linear regression analysis was conducted with the average fat mass gain from birth to the third month of life as the outcome and cord blood leptin, ZAG, and adiponectin as the variables of interest. RESULTS Leptin was inversely associated with fat mass gain in the first 3 mo of life (P = 0.003; adjusted R2 = 0.09). There were inverse associations of leptin (P = 0.021), ZAG (P = 0.042), and maternal body mass index (P = 0.04) with fat mass gain in girls (adjusted R2 = 0.29) but fat mass gain in boys was positively associated with gestational age (P = 0.01; adjusted R2 = 0.15). CONCLUSIONS The results of this study suggest that adiposity programming is sex-specific, which highlights the need to investigate the different metabolic mechanisms that are involved in adipogenesis.
Collapse
Affiliation(s)
- Verônica L V Euclydes
- Postgraduate Program in Applied Human Nutrition, University of Sao Paulo, Sao Paulo, Brazil
| | - Natalia P Castro
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Lourdes R Lima
- Laboratory of Immunology, Adolfo Lutz Institute, Sao Paulo, Brazil
| | - Cyro Brito
- Laboratory of Immunology, Adolfo Lutz Institute, Sao Paulo, Brazil
| | - Laisa Ribeiro
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernanda Agapito Simões
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Guaraci Requena
- Institute of Mathematics and Statistics, University of Sao Paulo, Sao Paulo, Brazil
| | - Liania Alves Luzia
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Patricia Helen Rondó
- Postgraduate Program in Applied Human Nutrition, University of Sao Paulo, Sao Paulo, Brazil; Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
15
|
Jenks MZ, Fairfield HE, Johnson EC, Morrison RF, Muday GK. Sex Steroid Hormones Regulate Leptin Transcript Accumulation and Protein Secretion in 3T3-L1 Cells. Sci Rep 2017; 7:8232. [PMID: 28811502 PMCID: PMC5558017 DOI: 10.1038/s41598-017-07473-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 06/29/2017] [Indexed: 01/05/2023] Open
Abstract
Leptin is an adipokine produced by fat cells that regulates food consumption and metabolic activity. Sexual dimorphism in leptin and fat stores have been observed in humans and rodents with females having more leptin and greater levels of subcutaneous fat than males. One potential mechanism leading to this dimorphism is steroid hormone regulated synthesis of transcripts encoding leptin. Identification of direct regulatory mechanisms is difficult in animals or primary adipocytes due to these intertwined dimorphisms. We used well-characterized 3T3-L1 murine adipocytes to demonstrate that dihydrotestosterone (DHT) reduced Leptin (Lep) transcript abundance and cytosolic and secreted leptin protein. The magnitude of this effect was greatest on secreted leptin, which was decreased by DHT to 30% of the control. In contrast, 17β-estradiol significantly increased the abundance of transcripts encoding leptin and increased secreted leptin to 230% of the control. Treatment with estrogen and androgen receptor antagonists had opposite effects on Lep transcript abundance to steroid treatments, indicating that these transcriptional effects are mediated through the canonical steroid hormone signaling pathways. These results indicate that short-term treatments with steroid hormones are sufficient to alter both Lep transcript accumulation and leptin protein secretion, and may play a role in the sexual dimorphism of this adipokine.
Collapse
Affiliation(s)
- Mónica Z Jenks
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, North Carolina, USA
| | - Heather E Fairfield
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, North Carolina, USA
| | - Erik C Johnson
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, North Carolina, USA
| | - Ron F Morrison
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Gloria K Muday
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, North Carolina, USA.
| |
Collapse
|
16
|
Ho JE, McCabe EL, Wang TJ, Larson MG, Levy D, Tsao C, Aragam J, Mitchell GF, Benjamin EJ, Vasan RS, Cheng S. Cardiometabolic Traits and Systolic Mechanics in the Community. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.116.003536. [PMID: 28495953 DOI: 10.1161/circheartfailure.116.003536] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 03/24/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Obesity and cardiometabolic dysfunction are associated with increased risk of heart failure and other cardiovascular diseases. We sought to examine the association of cardiometabolic traits with left ventricular (LV) cardiac mechanics. We hypothesized that specific obesity-related phenotypes are associated with distinct aspects of LV strain. METHODS AND RESULTS We evaluated the associations of obesity-related phenotypes, including central adiposity, diabetes mellitus, insulin resistance, and circulating adipokine concentrations with echocardiographic measures of LV mechanical function among participants of the Framingham Heart Study Offspring and Third Generation cohorts. Among 6231 participants, the mean age was 51±16 years, and 54% were women. Greater body mass index was associated with worse LV longitudinal strain, radial strain (apical view), and longitudinal synchrony (multivariable-adjusted P<0.0001). After accounting for body mass index, we found that central adiposity, as measured by waist circumference, was associated with worse global longitudinal strain and synchrony (P≤0.006). Measures of insulin resistance, dyslipidemia, and diabetes mellitus also were associated with distinct aspects of LV mechanical function. Circulating leptin concentrations were associated with global longitudinal and radial strain (apical view, P<0.0001), whereas no such association was found with leptin receptor, adiponectin, or C-reactive protein. CONCLUSIONS Our findings highlight the association of central obesity and related cardiometabolic phenotypes above and beyond body mass index with subclinical measures of LV mechanical function. Interestingly, obesity-related traits were associated with distinct aspects of LV mechanics, underscoring potential differential effects along specific LV planes of deformation. These findings may shed light onto obesity-related cardiac remodeling and heart failure.
Collapse
Affiliation(s)
- Jennifer E Ho
- From the Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston (J.E.H.); National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA (J.E.H., E.L.M., M.G.L., D.L., C.T., E.J.B., R.S.V., S.C.); Cardiology Division, Department of Medicine, Vanderbilt University, Nashville, TN (T.J.W.); Department of Biostatistics (M.G.L.) and Department of Epidemiology (E.J.B., R.S.V.), Boston University School of Public Health, MA; Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA (C.T.); Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (J.A., S.C.); Division of Cardiology, Department of Medicine, Veterans Affairs Boston Healthcare System, MA (J.A.); Cardiovascular Engineering, Inc, Norwood, MA (G.F.M.); and Cardiovascular Medicine Section (E.J.B.), Section of Preventive Medicine and Epidemiology (E.J.B., R.S.V.), and Section of Cardiology (E.J.B., R.S.V.), Department of Medicine, Boston University School of Medicine, MA.
| | - Elizabeth L McCabe
- From the Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston (J.E.H.); National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA (J.E.H., E.L.M., M.G.L., D.L., C.T., E.J.B., R.S.V., S.C.); Cardiology Division, Department of Medicine, Vanderbilt University, Nashville, TN (T.J.W.); Department of Biostatistics (M.G.L.) and Department of Epidemiology (E.J.B., R.S.V.), Boston University School of Public Health, MA; Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA (C.T.); Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (J.A., S.C.); Division of Cardiology, Department of Medicine, Veterans Affairs Boston Healthcare System, MA (J.A.); Cardiovascular Engineering, Inc, Norwood, MA (G.F.M.); and Cardiovascular Medicine Section (E.J.B.), Section of Preventive Medicine and Epidemiology (E.J.B., R.S.V.), and Section of Cardiology (E.J.B., R.S.V.), Department of Medicine, Boston University School of Medicine, MA
| | - Thomas J Wang
- From the Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston (J.E.H.); National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA (J.E.H., E.L.M., M.G.L., D.L., C.T., E.J.B., R.S.V., S.C.); Cardiology Division, Department of Medicine, Vanderbilt University, Nashville, TN (T.J.W.); Department of Biostatistics (M.G.L.) and Department of Epidemiology (E.J.B., R.S.V.), Boston University School of Public Health, MA; Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA (C.T.); Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (J.A., S.C.); Division of Cardiology, Department of Medicine, Veterans Affairs Boston Healthcare System, MA (J.A.); Cardiovascular Engineering, Inc, Norwood, MA (G.F.M.); and Cardiovascular Medicine Section (E.J.B.), Section of Preventive Medicine and Epidemiology (E.J.B., R.S.V.), and Section of Cardiology (E.J.B., R.S.V.), Department of Medicine, Boston University School of Medicine, MA
| | - Martin G Larson
- From the Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston (J.E.H.); National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA (J.E.H., E.L.M., M.G.L., D.L., C.T., E.J.B., R.S.V., S.C.); Cardiology Division, Department of Medicine, Vanderbilt University, Nashville, TN (T.J.W.); Department of Biostatistics (M.G.L.) and Department of Epidemiology (E.J.B., R.S.V.), Boston University School of Public Health, MA; Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA (C.T.); Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (J.A., S.C.); Division of Cardiology, Department of Medicine, Veterans Affairs Boston Healthcare System, MA (J.A.); Cardiovascular Engineering, Inc, Norwood, MA (G.F.M.); and Cardiovascular Medicine Section (E.J.B.), Section of Preventive Medicine and Epidemiology (E.J.B., R.S.V.), and Section of Cardiology (E.J.B., R.S.V.), Department of Medicine, Boston University School of Medicine, MA
| | - Daniel Levy
- From the Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston (J.E.H.); National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA (J.E.H., E.L.M., M.G.L., D.L., C.T., E.J.B., R.S.V., S.C.); Cardiology Division, Department of Medicine, Vanderbilt University, Nashville, TN (T.J.W.); Department of Biostatistics (M.G.L.) and Department of Epidemiology (E.J.B., R.S.V.), Boston University School of Public Health, MA; Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA (C.T.); Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (J.A., S.C.); Division of Cardiology, Department of Medicine, Veterans Affairs Boston Healthcare System, MA (J.A.); Cardiovascular Engineering, Inc, Norwood, MA (G.F.M.); and Cardiovascular Medicine Section (E.J.B.), Section of Preventive Medicine and Epidemiology (E.J.B., R.S.V.), and Section of Cardiology (E.J.B., R.S.V.), Department of Medicine, Boston University School of Medicine, MA
| | - Connie Tsao
- From the Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston (J.E.H.); National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA (J.E.H., E.L.M., M.G.L., D.L., C.T., E.J.B., R.S.V., S.C.); Cardiology Division, Department of Medicine, Vanderbilt University, Nashville, TN (T.J.W.); Department of Biostatistics (M.G.L.) and Department of Epidemiology (E.J.B., R.S.V.), Boston University School of Public Health, MA; Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA (C.T.); Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (J.A., S.C.); Division of Cardiology, Department of Medicine, Veterans Affairs Boston Healthcare System, MA (J.A.); Cardiovascular Engineering, Inc, Norwood, MA (G.F.M.); and Cardiovascular Medicine Section (E.J.B.), Section of Preventive Medicine and Epidemiology (E.J.B., R.S.V.), and Section of Cardiology (E.J.B., R.S.V.), Department of Medicine, Boston University School of Medicine, MA
| | - Jayashri Aragam
- From the Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston (J.E.H.); National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA (J.E.H., E.L.M., M.G.L., D.L., C.T., E.J.B., R.S.V., S.C.); Cardiology Division, Department of Medicine, Vanderbilt University, Nashville, TN (T.J.W.); Department of Biostatistics (M.G.L.) and Department of Epidemiology (E.J.B., R.S.V.), Boston University School of Public Health, MA; Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA (C.T.); Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (J.A., S.C.); Division of Cardiology, Department of Medicine, Veterans Affairs Boston Healthcare System, MA (J.A.); Cardiovascular Engineering, Inc, Norwood, MA (G.F.M.); and Cardiovascular Medicine Section (E.J.B.), Section of Preventive Medicine and Epidemiology (E.J.B., R.S.V.), and Section of Cardiology (E.J.B., R.S.V.), Department of Medicine, Boston University School of Medicine, MA
| | - Gary F Mitchell
- From the Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston (J.E.H.); National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA (J.E.H., E.L.M., M.G.L., D.L., C.T., E.J.B., R.S.V., S.C.); Cardiology Division, Department of Medicine, Vanderbilt University, Nashville, TN (T.J.W.); Department of Biostatistics (M.G.L.) and Department of Epidemiology (E.J.B., R.S.V.), Boston University School of Public Health, MA; Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA (C.T.); Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (J.A., S.C.); Division of Cardiology, Department of Medicine, Veterans Affairs Boston Healthcare System, MA (J.A.); Cardiovascular Engineering, Inc, Norwood, MA (G.F.M.); and Cardiovascular Medicine Section (E.J.B.), Section of Preventive Medicine and Epidemiology (E.J.B., R.S.V.), and Section of Cardiology (E.J.B., R.S.V.), Department of Medicine, Boston University School of Medicine, MA
| | - Emelia J Benjamin
- From the Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston (J.E.H.); National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA (J.E.H., E.L.M., M.G.L., D.L., C.T., E.J.B., R.S.V., S.C.); Cardiology Division, Department of Medicine, Vanderbilt University, Nashville, TN (T.J.W.); Department of Biostatistics (M.G.L.) and Department of Epidemiology (E.J.B., R.S.V.), Boston University School of Public Health, MA; Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA (C.T.); Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (J.A., S.C.); Division of Cardiology, Department of Medicine, Veterans Affairs Boston Healthcare System, MA (J.A.); Cardiovascular Engineering, Inc, Norwood, MA (G.F.M.); and Cardiovascular Medicine Section (E.J.B.), Section of Preventive Medicine and Epidemiology (E.J.B., R.S.V.), and Section of Cardiology (E.J.B., R.S.V.), Department of Medicine, Boston University School of Medicine, MA
| | - Ramachandran S Vasan
- From the Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston (J.E.H.); National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA (J.E.H., E.L.M., M.G.L., D.L., C.T., E.J.B., R.S.V., S.C.); Cardiology Division, Department of Medicine, Vanderbilt University, Nashville, TN (T.J.W.); Department of Biostatistics (M.G.L.) and Department of Epidemiology (E.J.B., R.S.V.), Boston University School of Public Health, MA; Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA (C.T.); Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (J.A., S.C.); Division of Cardiology, Department of Medicine, Veterans Affairs Boston Healthcare System, MA (J.A.); Cardiovascular Engineering, Inc, Norwood, MA (G.F.M.); and Cardiovascular Medicine Section (E.J.B.), Section of Preventive Medicine and Epidemiology (E.J.B., R.S.V.), and Section of Cardiology (E.J.B., R.S.V.), Department of Medicine, Boston University School of Medicine, MA
| | - Susan Cheng
- From the Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston (J.E.H.); National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA (J.E.H., E.L.M., M.G.L., D.L., C.T., E.J.B., R.S.V., S.C.); Cardiology Division, Department of Medicine, Vanderbilt University, Nashville, TN (T.J.W.); Department of Biostatistics (M.G.L.) and Department of Epidemiology (E.J.B., R.S.V.), Boston University School of Public Health, MA; Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA (C.T.); Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (J.A., S.C.); Division of Cardiology, Department of Medicine, Veterans Affairs Boston Healthcare System, MA (J.A.); Cardiovascular Engineering, Inc, Norwood, MA (G.F.M.); and Cardiovascular Medicine Section (E.J.B.), Section of Preventive Medicine and Epidemiology (E.J.B., R.S.V.), and Section of Cardiology (E.J.B., R.S.V.), Department of Medicine, Boston University School of Medicine, MA
| |
Collapse
|
17
|
Fonfara S, Kitz S, Hetzel U, Kipar A. Myocardial leptin transcription in feline hypertrophic cardiomyopathy. Res Vet Sci 2017; 112:105-108. [DOI: 10.1016/j.rvsc.2017.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 01/24/2023]
|
18
|
Gómez-Hurtado N, Domínguez-Rodríguez A, Mateo P, Fernández-Velasco M, Val-Blasco A, Aizpún R, Sabourin J, Gómez AM, Benitah JP, Delgado C. Beneficial effects of leptin treatment in a setting of cardiac dysfunction induced by transverse aortic constriction in mouse. J Physiol 2017; 595:4227-4243. [PMID: 28374413 DOI: 10.1113/jp274030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Leptin, is a 16 kDa pleiotropic peptide not only primarily secreted by adipocytes, but also produced by other tissues, including the heart. Controversy exists regarding the adverse and beneficial effects of leptin on the heart We analysed the effect of a non-hypertensive dose of leptin on cardiac function, [Ca2+ ]i handling and cellular electrophysiology, which participate in the genesis of pump failure and related arrhythmias, both in control mice and in mice subjected to chronic pressure-overload by transverse aorta constriction. We find that leptin activates mechanisms that contribute to cardiac dysfunction under physiological conditions. However, after the establishment of pressure overload, an increase in leptin levels has protective cardiac effects with respect to rescuing the cellular heart failure phenotype. These beneficial effects of leptin involve restoration of action potential duration via normalization of transient outward potassium current and sarcoplasmic reticulum Ca2+ content via rescue of control sarcoplasmic/endoplasmic reticulum Ca2+ ATPase levels and ryanodine receptor function modulation, leading to normalization of Ca2+ handling parameters. ABSTRACT Leptin, is a 16 kDa pleiotropic peptide not only primary secreted by adipocytes, but also produced by other tissues, including the heart. Evidence indicates that leptin may have either adverse or beneficial effects on the heart. To obtain further insights, in the present study, we analysed the effect of leptin treatment on cardiac function, [Ca2+ ]i handling and cellular electrophysiology, which participate in the genesis of pump failure and related arrhythmias, both in control mice and in mice subjected to chronic pressure-overload by transverse aorta constriction (TAC). Three weeks after surgery, animals received either leptin (0.36 mg kg-1 day-1 ) or vehicle via osmotic minipumps for 3 weeks. Echocardiographic measurements showed that, although leptin treatment was deleterious on cardiac function in sham, leptin had a cardioprotective effect following TAC. [Ca2+ ]i transient in cardiomyocytes followed similar pattern. Patch clamp experiments showed prolongation of action potential duration (APD) in TAC and leptin-treated sham animals, whereas, following TAC, leptin reduced the APD towards control values. APD variations were associated with decreased transient outward potassium current and Kv4.2 and KChIP2 protein expression. TAC myocytes showed a higher incidence of triggered activities and spontaneous Ca2+ waves. These proarrhythmic manifestations, related to Ca2+ /calmodulin-dependent protein kinase II and ryanodine receptor phosphorylation, were reduced by leptin. The results of the present study demonstrate that, although leptin treatment was deleterious on cardiac function in control animals, leptin had a cardioprotective effect following TAC, normalizing cardiac function and reducing arrhythmogeneity at the cellular level.
Collapse
Affiliation(s)
- Nieves Gómez-Hurtado
- Departament of Pharmacology, School of Medicine, Complutense University, Madrid, Spain.,UMR-S 1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,Division of Clinical Pharmacology, Oates Institute for Experimental Therapeutics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alejandro Domínguez-Rodríguez
- UMR-S 1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,Institute of Biomedicine of Seville/CIBER-CV, Seville, Spain
| | - Philippe Mateo
- UMR-S 1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | | | | | - Rafael Aizpún
- Departament of Pharmacology, School of Medicine, Complutense University, Madrid, Spain
| | - Jessica Sabourin
- UMR-S 1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Ana María Gómez
- UMR-S 1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean-Pierre Benitah
- UMR-S 1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Carmen Delgado
- Departament of Pharmacology, School of Medicine, Complutense University, Madrid, Spain.,Biomedical Research Institute Alberto Sols/CIBER-CV, Madrid, Spain
| |
Collapse
|
19
|
Circulating leptin and adiponectin concentrations in healthy exceptional longevity. Mech Ageing Dev 2017; 162:129-132. [DOI: 10.1016/j.mad.2016.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/05/2016] [Accepted: 02/28/2016] [Indexed: 11/18/2022]
|
20
|
Molnar MZ, Nagy K, Remport A, Gaipov A, Fülöp T, Czira ME, Kovesdy CP, Mucsi I, Mathe Z. Association Between Serum Leptin Level and Mortality in Kidney Transplant Recipients. J Ren Nutr 2016; 27:53-61. [PMID: 27666945 DOI: 10.1053/j.jrn.2016.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE Leptin is a hormone made by adipocytes and associated with hypertension, inflammation, and coronary artery disease. Low serum leptin level was associated with higher risk of death in patients with advanced chronic kidney disease. Little is known about the association of serum leptin with outcomes in kidney transplant recipients. DESIGN Prospective prevalent cohort. SETTING AND SUBJECT We collected sociodemographic and clinical parameters, medical and transplant history, and laboratory data of 979 prevalent kidney transplant recipients. Associations between serum leptin level and death with a functioning graft, all-cause death, and death-censored graft loss over a 6-year follow-up period were examined in survival models. RESULTS Serum leptin levels showed moderate negative correlation with eGFR (R = -0.21, P < .001) and positive correlations with BMI (R = 0.48, P < .001) and C-reactive protein (R = 0.20, P < .001). Each 10 ng/mL higher serum leptin level was associated with 7% lower risk of death with functioning graft (hazard ratio [HR] (95% confidence interval [CI]), 0.93 (0.87-0.99)), and this association persisted after adjustment for confounders: HR (95% CI), 0.90 (0.82-0.99). Similar associations were found with all-cause death as outcome. The association between serum leptin level and risk of graft loss was nonlinear, and only low serum leptin level was associated with higher risk of graft loss. CONCLUSIONS In prevalent kidney transplant recipients, lower serum leptin was an independent predictor of death.
Collapse
Affiliation(s)
- Miklos Z Molnar
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary.
| | - Kristof Nagy
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Adam Remport
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Abduzhappar Gaipov
- Department of Extracorporeal Hemocorrection, National Scientific Medical Research Center, Astana, Kazakhstan
| | - Tibor Fülöp
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Maria E Czira
- Institute of Epidemiology and Social Medicine, University of Muenster, Muenster, Germany
| | - Csaba P Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Nephrology Section, Memphis Veterans Affairs Medical Center, Memphis, Tennessee
| | - Istvan Mucsi
- Department of Medicine, Division of Nephrology and Multiorgan Transplant Program, University Health Network, University of Toronto, Toronto, Canada
| | - Zoltan Mathe
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| |
Collapse
|
21
|
The combined effect of adiponectin and resistin on all-cause mortality in patients with type 2 diabetes: Evidence of synergism with abdominal adiposity. Atherosclerosis 2016; 250:23-9. [DOI: 10.1016/j.atherosclerosis.2016.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023]
|