1
|
El Abd A, Dasari H, Dodin P, Trottier H, Ducharme FM. Associations between vitamin D status and biomarkers linked with inflammation in patients with asthma: a systematic review and meta-analysis of interventional and observational studies. Respir Res 2024; 25:344. [PMID: 39322954 PMCID: PMC11423515 DOI: 10.1186/s12931-024-02967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Numerous studies indicate an association between vitamin D status and inflammatory biomarkers in patients with asthma, but findings are inconsistent. This review aims to summarize the relationship between serum vitamin D status, assessed by 25-hydroxyvitamin D (25(OH)D) level, and inflammatory biomarkers in children and adults with asthma. METHODS A literature search of interventional and observational studies on 25(OH)D up to November 2022 was conducted across six electronic databases. Outcomes of interest included a range of inflammatory biomarkers classified in four categories: T helper 2 (Th2) pro-inflammatory, non-Th2 pro-inflammatory, anti-inflammatory, and non-specific biomarkers. Study characteristics were extracted and risk of bias was evaluated using the American Academy of Nutrition and Dietetics tool. Meta-analysis was conducted on studies with a low risk of bias, while narrative reporting was used to present the direction of associations (positive, no association, or negative) for each biomarker, overall and within the low-risk studies. RESULTS We included 71 studies (3 interventional, 68 observational) involving asthma patients. These studies investigated the association between serum 25(OH)D and Th2 pro-inflammatory biomarkers (N = 58), non-Th2 pro-inflammatory biomarkers (N = 18), anti-inflammatory biomarkers (N = 16), and non-specific biomarkers (N = 10). Thirteen (18.3%) studies, 50 (70.4%), and 8 (11.3%) were at high, moderate, and low risk of bias, respectively. In all studies, irrespective of risk of bias, the most frequently reported finding was no significant association, followed by a negative association between 25(OH)D and pro-inflammatory biomarkers and a positive association with anti-inflammatory biomarkers. In low-risk studies, one biomarker could be meta-analysed. The pooled estimate for 25(OH)D and serum IgE showed a negative association (β (95% CI)= - 0.33 (-0.65 to - 0.01); I2 = 88%; N = 4 studies). A negative association between 25(OH)D and blood eosinophils was also observed in the largest of three studies, as well as with cathelicidin (LL-37) in the only study reporting it. For other biomarkers, most low-risk studies revealed no significant association with 25(OH)D. CONCLUSION Serum 25(OH)D is negatively associated with serum IgE and possibly with blood eosinophils and LL-37, supporting an in vivo immunomodulatory effect of 25(OH)D. Future research should employ rigorous methodologies and standardized reporting for meta-analysis aggregation to further elucidate these associations.
Collapse
Affiliation(s)
- Asmae El Abd
- Sainte-Justine University Health Center, Research Center, Montreal, Quebec, Canada.
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Quebec, Canada.
| | - Harika Dasari
- Sainte-Justine University Health Center, Research Center, Montreal, Quebec, Canada
| | - Philippe Dodin
- Sainte-Justine University Health Center, Research Center, Montreal, Quebec, Canada
| | - Helen Trottier
- Sainte-Justine University Health Center, Research Center, Montreal, Quebec, Canada
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Quebec, Canada
| | - Francine M Ducharme
- Sainte-Justine University Health Center, Research Center, Montreal, Quebec, Canada
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Sainte-Justine Hospital, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Abi-Ayad M, Nedjar I, Chabni N. Association between 25-hydroxy vitamin D and lung function (FEV1, FVC, FEV1/FVC) in children and adults with asthma: A systematic review. Lung India 2023; 40:449-456. [PMID: 37787360 PMCID: PMC10553772 DOI: 10.4103/lungindia.lungindia_213_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/22/2023] [Accepted: 07/09/2023] [Indexed: 10/04/2023] Open
Abstract
Asthma is a chronic respiratory disease that poses significant individual, social, financial and healthcare burdens. Physicians and researchers have recommended 25-hydroxy vitamin D supplementation, in combination with prescribed medication, as a potential means of reducing asthma severity. This systematic review focuses on the association between 25-hydroxy vitamin D levels and lung function in both children and adults with asthma. We identified published work by searching MEDLINE via PubMed, using regular search terms related to 25-hydroxy vitamin D and asthma. Fourteen studies were screened out of 643 eligible citations from MEDLINE research that involved 65 children and 951 adults. A strong positive association was observed in four studies, whereas five showed a moderate association, and two had no correlation. The majority of studies found a negative correlation between 25-hydroxy vitamin D deficiency and mild, uncontrolled and partly controlled asthma. 25-hydroxy vitamin D 25 OH values were below 20 ng/ml in the majority of studies, and those with uncontrolled severe asthma showed the lowest values.
Collapse
Affiliation(s)
| | - Imane Nedjar
- First Cycle Department, Higher School of Applied Sciences of Tlemcen, Algeria
- Biomedical Engineering Laboratory, University of Tlemcen, Algeria
| | - Nafissa Chabni
- Epidemiology Department, University-Hospital of Tlemcen, Algeria
| |
Collapse
|
3
|
Tibrewal C, Modi NS, Bajoria PS, Dave PA, Rohit RK, Patel P, Gandhi SK, Gutlapalli SD, Gottlieb P, Nfonoyim J. Therapeutic Potential of Vitamin D in Management of Asthma: A Literature Review. Cureus 2023; 15:e41956. [PMID: 37588324 PMCID: PMC10425698 DOI: 10.7759/cureus.41956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/16/2023] [Indexed: 08/18/2023] Open
Abstract
Asthma, a prevalent chronic respiratory illness, affects a substantial number of individuals worldwide, with an estimated occurrence of 358 million cases. Evidence for the benefits of vitamin D in treating asthma is ambiguous and contradictory. The goal of this review article is to emphasize the value of vitamin D supplementation for people with asthma. Medical subject headings (MeSH) terminology was used to search the PubMed Central, MEDLINE, and PubMed databases for articles on vitamin D supplementation in asthma patients. We selected a comprehensive range of academic writing examples published in English, encompassing various types of texts. The study included a total of 37 papers, of which 18 were randomized controlled trials (RCTs) and five were meta-analyses. The use of a corticosteroid, with or without the inclusion of an adrenergic receptor agonist, improves the disease's symptoms, but it is unable to halt the long-term decline in lung function. Over the past 20 years, vitamin D has developed into a potent immunomodulator, influencing both immunological and structural cells, most notably airway smooth muscle cells. Among adults with low 25-hydroxyvitamin D levels, the administration of vitamin D supplements was found to have positive effects in a reduction in the likelihood of asthma exacerbations requiring systemic corticosteroids. The provision of vitamin D supplements during pregnancy significantly reduces the risk of asthma in babies. Both children and adults with inadequate vitamin D levels who have been given vitamin D supplements have shown evident preventive effects against asthma. Therefore, we conclude there should be a lower threshold for prescribing vitamin D to patients with asthma who are vitamin D deficient.
Collapse
Affiliation(s)
- Charu Tibrewal
- Department of Internal Medicine, Civil Hospital Ahmedabad, Ahmedabad, IND
| | | | - Parth S Bajoria
- Department of Internal Medicine, GMERS Medical College Gandhinagar, Gandhinagar, IND
| | | | - Ralph Kingsford Rohit
- Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Priyansh Patel
- Department of Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Department of Internal Medicine, Medical College Baroda, Vadodara, IND
| | - Siddharth Kamal Gandhi
- Department of Internal Medicine, Shri M.P. Shah Government Medical College, Jamnagar, IND
| | - Sai Dheeraj Gutlapalli
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, USA
- Department of Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Peter Gottlieb
- Department of Pulmonary and Critical Care Medicine, Richmond University Medical Center, Staten Island, USA
| | - Jay Nfonoyim
- Department of Pulmonary and Critical Care Medicine, Richmond University Medical Center, Staten Island, USA
| |
Collapse
|
4
|
Liu J, Yang N, Yi X, Wang G, Wang C, Lin H, Sun L, Wang F, Zhu D. Integration of transcriptomics and metabolomics to reveal the effect of ginsenoside Rg3 on allergic rhinitis in mice. Food Funct 2023; 14:2416-2431. [PMID: 36786409 DOI: 10.1039/d2fo03885d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Increasing studies have demonstrated that ginsenoside Rg3 (Rg3) plays an important role in the prevention and treatment of various diseases, including allergic lower airway inflammation such as asthma. To investigate the role of Rg3 in allergic upper airway disease, the effect and therapeutic mechanism of Rg3 in allergic rhinitis (AR) were studied. Ovalbumin-induced AR model mice were intragastrically administered with Rg3. Nasal symptoms, levels of IgE, IL-4, IL-5, IL-13, SOD and MDA in serum, and histopathological analysis of nasal mucosa were used to evaluate the effect of Rg3 on ameliorating AR in mice. Moreover, nasal mucosa samples from the normal control group, AR model group and high dosage of Rg3 were collected to perform omics analysis. The differentially expressed genes and significantly changed metabolites were screened based on transcriptomics and metabolomics analyses, respectively. Integrative analysis was further performed to confirm the hub genes, metabolites and pathways. After Rg3 intervention, the nasal symptoms and inflammatory infiltration were effectively improved, the levels of IgE, IL-4, IL-5, IL-13 and MDA were significantly reduced, and the level of SOD was obviously increased. The results of the qRT-PCR assay complemented the transcriptomic findings. Integrated analysis showed that Rg3 played an anti-AR role mainly by regulating the interaction network, which was constructed by 12 genes, 8 metabolites and 4 pathways. Our findings suggested that Rg3 had a therapeutic effect on ovalbumin-induced AR in mice by inhibiting inflammation development and reducing oxidative stress. The present study could provide a potential natural agent for the treatment of AR.
Collapse
Affiliation(s)
- Jianming Liu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun 130021, China.
| | - Na Yang
- Clinical Pharmacy Department, First Hospital of Jilin University, Changchun 130021, China
| | - Xingcheng Yi
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hongqiang Lin
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Liwei Sun
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun 130021, China.
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun 130021, China. .,Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun 130021, China
| |
Collapse
|
5
|
Hong L, Herjan T, Bulek K, Xiao J, Comhair SAA, Erzurum SC, Li X, Liu C. Mechanisms of Corticosteroid Resistance in Type 17 Asthma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1860-1869. [PMID: 36426949 PMCID: PMC9666330 DOI: 10.4049/jimmunol.2200288] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022]
Abstract
IL-17A plays an important role in the pathogenesis of asthma, particularly the neutrophilic corticosteroid (CS)-resistant subtype of asthma. Clinical studies suggest that a subset of asthma patients, i.e., Th17/IL-17A-mediated (type 17) CS-resistant neutrophilic asthma, may improve with Th17/IL-17A pathway blockade. However, little is known about the mechanisms underlying type 17 asthma and CS response. In this article, we show that blood levels of lipocalin-2 (LCN2) and serum amyloid A (SAA) levels are positively correlated with IL-17A levels and are not inhibited by high-dose CS usage in asthma patients. In airway cell culture systems, IL-17A induces these two secreted proteins, and their induction is enhanced by CS. Furthermore, plasma LCN2 and SAA levels are increased in mice on a preclinical type 17 asthma model, correlated to IL-17A levels, and are not reduced by glucocorticoid (GC). In the mechanistic studies, we identify CEBPB as the critical transcription factor responsible for the synergistic induction of LCN2 and SAA by IL-17A and GC. IL-17A and GC collaboratively regulate CEBPB at both transcriptional and posttranscriptional levels. The posttranscriptional regulation of CEBPB is mediated in part by Act1, the adaptor and RNA binding protein in IL-17A signaling, which directly binds CEBPB mRNA and inhibits its degradation. Overall, our findings suggest that blood LCN2 and SAA levels may be associated with a type 17 asthma subtype and provide insight into the molecular mechanism of the IL-17A-Act1/CEBPB axis on these CS-resistant genes.
Collapse
Affiliation(s)
- Lingzi Hong
- Inflammation and Immunity, Cleveland Clinic, Cleveland, OH; and
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Tomasz Herjan
- Inflammation and Immunity, Cleveland Clinic, Cleveland, OH; and
| | - Katarzyna Bulek
- Inflammation and Immunity, Cleveland Clinic, Cleveland, OH; and
| | - Jianxin Xiao
- Inflammation and Immunity, Cleveland Clinic, Cleveland, OH; and
| | | | | | - Xiaoxia Li
- Inflammation and Immunity, Cleveland Clinic, Cleveland, OH; and
| | - Caini Liu
- Inflammation and Immunity, Cleveland Clinic, Cleveland, OH; and
| |
Collapse
|
6
|
Golec M, Lemieszek MK, Dutkiewicz J, Milanowski J, Barteit S. A Scoping Analysis of Cathelicidin in Response to Organic Dust Exposure and Related Chronic Lung Illnesses. Int J Mol Sci 2022; 23:ijms23168847. [PMID: 36012117 PMCID: PMC9408003 DOI: 10.3390/ijms23168847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/21/2022] Open
Abstract
Over two billion people worldwide are exposed to organic dust, which can cause respiratory disorders. The discovery of the cathelicidin peptide provides novel insights into the lung’s response to organic dust; however, its role in the lung’s response to organic dust exposure and chronic lung diseases remains limited. We conducted a scoping review to map the current evidence on the role of cathelicidin LL-37/CRAMP in response to organic dust exposure and related chronic lung diseases: hypersensitivity pneumonitis (HP), chronic obstructive pulmonary disease (COPD) and asthma. We included a total of n = 53 peer-reviewed articles in this review, following the process of (i) a preliminary screening; (ii) a systematic MEDLINE/PubMed database search; (iii) title, abstract and full-text screening; (iv) data extraction and charting. Cathelicidin levels were shown to be altered in all clinical settings investigated; its pleiotropic function was confirmed. It was found that cathelicidin contributes to maintaining homeostasis and participates in lung injury response and repair, in addition to exerting a positive effect against microbial load and infections. In addition, LL-37 was found to sustain continuous inflammation, increase mucus formation and inhibit microorganisms and corticosteroids. In addition, studies investigated cathelicidin as a treatment modality, such as cathelicidin inhalation in experimental HP, which had positive effects. However, the primary focus of the included articles was on LL-37’s antibacterial effect, leading to the conclusion that the beneficial LL-37 activity has not been adequately examined and that further research is required.
Collapse
Affiliation(s)
- Marcin Golec
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, 69117 Heidelberg, Germany
- Correspondence:
| | - Marta Kinga Lemieszek
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Jacek Dutkiewicz
- Department of Biological Health Hazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Sandra Barteit
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, 69117 Heidelberg, Germany
| |
Collapse
|
7
|
Aghapour M, Ubags ND, Bruder D, Hiemstra PS, Sidhaye V, Rezaee F, Heijink IH. Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. Eur Respir Rev 2022; 31:31/163/210112. [PMID: 35321933 PMCID: PMC9128841 DOI: 10.1183/16000617.0112-2021] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic exposure to environmental pollutants is a major contributor to the development and progression of obstructive airway diseases, including asthma and COPD. Understanding the mechanisms underlying the development of obstructive lung diseases upon exposure to inhaled pollutants will lead to novel insights into the pathogenesis, prevention and treatment of these diseases. The respiratory epithelial lining forms a robust physicochemical barrier protecting the body from inhaled toxic particles and pathogens. Inhalation of airborne particles and gases may impair airway epithelial barrier function and subsequently lead to exaggerated inflammatory responses and airway remodelling, which are key features of asthma and COPD. In addition, air pollutant-induced airway epithelial barrier dysfunction may increase susceptibility to respiratory infections, thereby increasing the risk of exacerbations and thus triggering further inflammation. In this review, we discuss the molecular and immunological mechanisms involved in physical barrier disruption induced by major airborne pollutants and outline their implications in the pathogenesis of asthma and COPD. We further discuss the link between these pollutants and changes in the lung microbiome as a potential factor for aggravating airway diseases. Understanding these mechanisms may lead to identification of novel targets for therapeutic intervention to restore airway epithelial integrity in asthma and COPD. Exposure to air pollution induces airway epithelial barrier dysfunction through several mechanisms including increased oxidative stress, exaggerated cytokine responses and impaired host defence, which contributes to development of asthma and COPD. https://bit.ly/3DHL1CA
Collapse
Affiliation(s)
- Mahyar Aghapour
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Epalinges, Switzerland
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Venkataramana Sidhaye
- Pulmonary and Critical Care Medicine, Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Fariba Rezaee
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, OH, USA.,Dept of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Depts of Pathology and Medical Biology and Pulmonology, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| |
Collapse
|
8
|
Jaeger N, McDonough RT, Rosen AL, Hernandez-Leyva A, Wilson NG, Lint MA, Russler-Germain EV, Chai JN, Bacharier LB, Hsieh CS, Kau AL. Airway Microbiota-Host Interactions Regulate Secretory Leukocyte Protease Inhibitor Levels and Influence Allergic Airway Inflammation. Cell Rep 2021; 33:108331. [PMID: 33147448 PMCID: PMC7685510 DOI: 10.1016/j.celrep.2020.108331] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/22/2020] [Accepted: 10/08/2020] [Indexed: 01/04/2023] Open
Abstract
Homeostatic mucosal immune responses are fine-tuned by naturally evolved interactions with native microbes, and integrating these relationships into experimental models can provide new insights into human diseases. Here, we leverage a murine-adapted airway microbe, Bordetella pseudohinzii (Bph), to investigate how chronic colonization impacts mucosal immunity and the development of allergic airway inflammation (AAI). Colonization with Bph induces the differentiation of interleukin-17A (IL-17A)-secreting T-helper cells that aid in controlling bacterial abundance. Bph colonization protects from AAI and is associated with increased production of secretory leukocyte protease inhibitor (SLPI), an antimicrobial peptide with anti-inflammatory properties. These findings are additionally supported by clinical data showing that higher levels of upper respiratory SLPI correlate both with greater asthma control and the presence of Haemophilus, a bacterial genus associated with AAI. We propose that SLPI could be used as a biomarker of beneficial host-commensal relationships in the airway. Asthma is known to be modified by airway microbes. Jaeger et al. use a murine-adapted bacterium to show that airway colonization evokes a Th17 response associated with increased SLPI, an antimicrobial peptide, and protection from lung inflammation. In people, SLPI was correlated with airway microbiota composition.
Collapse
Affiliation(s)
- Natalia Jaeger
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan T McDonough
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anne L Rosen
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ariel Hernandez-Leyva
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Naomi G Wilson
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael A Lint
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emilie V Russler-Germain
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiani N Chai
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leonard B Bacharier
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L Kau
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
Nilsson BO. Mechanisms involved in regulation of periodontal ligament cell production of pro-inflammatory cytokines: Implications in periodontitis. J Periodontal Res 2020; 56:249-255. [PMID: 33305420 PMCID: PMC7984126 DOI: 10.1111/jre.12823] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
It is well recognized that human periodontal ligament cells (PDL cells) may represent local immune cells of the periodontal tissues. However, it is unclear whether they represent “true” immune cells, since they can produce pro‐inflammatory cytokines not only after stimulation with bacterial lipopolysaccharides but also in response to other stimuli such as mechanical stress. Stimulation with bacterial lipopolysaccharides strongly enhances PDL cell production of pro‐inflammatory cytokines through activation of toll‐like receptors and NF‐κB signaling. Less information is available regarding putative modulators of cytokine production and their mechanisms of action in PDL cells. The anti‐inflammatory glucocorticoid dexamethasone reduces lipopolysaccharide‐induced PDL cell production of cytokines. Recent observations show that vitamin D and the antimicrobial peptide LL‐37 antagonize lipopolysaccharide‐stimulated PDL cell production of pro‐inflammatory cytokines. Secretory leukocyte protease inhibitor is endogenously expressed by PDL cells, and this protein negatively regulates PDL cell‐evoked cytokine production. More information and knowledge about the regulation of PDL cell production of cytokines may clarify the role of PDL cells in oral innate immunity and their importance in periodontitis.
Collapse
Affiliation(s)
- Bengt-Olof Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Mues N, Chu HW. Out-Smarting the Host: Bacteria Maneuvering the Immune Response to Favor Their Survival. Front Immunol 2020; 11:819. [PMID: 32477341 PMCID: PMC7235365 DOI: 10.3389/fimmu.2020.00819] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/09/2020] [Indexed: 12/29/2022] Open
Abstract
Bacteria adapt themselves to various environmental conditions in nature, which can lead to bacterial adaptation and persistence in the host as commensals or pathogens. In healthy individuals, host defense mechanisms prevent the opportunistic bacteria/commensals from becoming a pathological infection. However, certain pathological conditions can impair normal defense barriers leading to bacterial survival and persistence. Under pathological conditions such as chronic lung inflammation, bacteria employ various mechanisms from structural changes to protease secretion to manipulate and evade the host immune response and create a niche permitting commensal bacteria to thrive into infections. Therefore, understanding the mechanisms by which pathogenic bacteria survive in the host tissues and organs may offer new strategies to overcome persistent bacterial infections. In this review, we will discuss and highlight the complex interactions between airway pathogenic bacteria and immune responses in several major chronic inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Nastaran Mues
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
11
|
Almasmoum H, Refaat B, Ghaith MM, Almaimani RA, Idris S, Ahmad J, Abdelghany AH, BaSalamah MA, El-Boshy M. Protective effect of Vitamin D3 against lead induced hepatotoxicity, oxidative stress, immunosuppressive and calcium homeostasis disorders in rat. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103246. [PMID: 31465891 DOI: 10.1016/j.etap.2019.103246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Lead (Pb) is an extremely poisonous, non-essential trace element and toxicity develops in humans following frequent exposure to the heavy metal in polluted environmental and occupational settings. Pb induces hepatic damage through the depletion of the antioxidant system, enhancing cellular oxidative stress and stimulation of proinflammatory cytokines. Although the antioxidant and anti-inflammatory actions of vitamin D3 (VD3) are well-established, a minority of studies measured the protective actions of VD3 against Pb toxicity. Therefore, this work studied the effects of vitamin VD3 therapy on the fundamental molecular basis underlying hepatic injury induced by chronic Pb toxicity. Twenty-four adult male rats were distributed equally into the negative controls (NC), positive controls (PC) and VD3 groups. While both the PC and VD3 groups received Pb-acetate in drinking water (1000 mg/L) for four weeks, the latter group also received intramuscular VD3 injections (1000 IU/kg; 3 days/week) simultaneously with Pb. The liver enzymes together with the serum and hepatic tissue Pb concentrations increased markedly in the PC group compared with the NC group. Pb toxicity also drastically induced hepatocyte apoptosis/necrosis, increased the hepatic tissue concentrations of malondialdehyde and the pro-inflammatory cytokines (TGF-β, IL-4 & TNF-α) as well as reduced the anti-oxidative enzymes (GSH, GPx & CAT) and the anti-inflammatory cytokine, IL-10, compared with the NC group. Pb also significantly decreased the serum concentrations of VD3 and Ca2+. Additionally, the hepatic expressions of VD receptor, Cyp24a1 enzyme, L-type Ca2+-channel, calbindin-D28k & -D29k, calmodulin and calmodulin-dependent protein kinase II were significantly upregulated, whereas the VD binding protein, CYP2R1 enzyme and T-type Ca2+-channel were markedly inhibited at the gene and protein levels following Pb intoxication. VD3 alleviated the hepatic damage, inhibited the oxidative stress and pro-inflammatory molecules as well as upregulated the anti-oxidant and anti-inflammatory markers and restored the expression of the VD/Ca2+ regulatory molecules compared with the PC group. VD3 supplementation discloses promising protective effects against Pb-induced hepatic damage, through its anti-inflammatory and antioxidant actions as well as by modulating the hepatocyte calcium homeostatic molecules.
Collapse
Affiliation(s)
- Hussain Almasmoum
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| | - Mazen M Ghaith
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| | - Riyad A Almaimani
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| | - Abdelghany H Abdelghany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Mohammad A BaSalamah
- Pathology Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Saudi Arabia.
| | - Mohamed El-Boshy
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia; Department of Clinical Pathology, Fac. Vet. Med, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
12
|
Bartley J, Garrett J, Camargo CA, Scragg R, Vandal A, Sisk R, Milne D, Tai R, Jeon G, Cursons R, Wong C. Vitamin D 3 supplementation in adults with bronchiectasis: A pilot study. Chron Respir Dis 2018; 15:384-392. [PMID: 29490469 PMCID: PMC6234573 DOI: 10.1177/1479972318761646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/24/2018] [Indexed: 11/15/2022] Open
Abstract
Vitamin D supplementation prevents acute respiratory infections and, through modulating innate and adaptive immunity, could have a potential role in bronchiectasis management. The primary aims of this pilot study were to assess serum 25-hydroxyvitamin D (25(OH)D) levels in New Zealand adults with bronchiectasis, and their 25(OH)D levels after vitamin D3 supplementation. Adults with bronchiectasis received an initial 2.5 mg vitamin D3 oral loading dose and 0.625 mg vitamin D3 weekly for 24 weeks. The primary outcome was serum 25(OH)D levels before and after vitamin D3 supplementation. Secondary outcomes (time to first infective exacerbation, exacerbation frequency, spirometry, health-related quality of life measures, sputum bacteriology and cell counts and chronic rhinosinusitis) were also assessed. This study is registered with the Australian New Zealand Clinical Trials Registry (ACTRN 12612001222831). The initial, average 25(OH)D level was 71 nmol/L (95% confidence interval (CI): [58, 84]), rising to 218 nmol/L (95% CI: [199, 237]) at 12 weeks and 205 nmol/L (95% CI: [186, 224]) at 24 weeks. The initial serum cathelicidin level was 25 nmol/L (95% CI: [17, 33]), rising to 102 nmol/L (95% CI: [48, 156]) at 12 weeks and 151 nmol/L (95% CI: [97, 205]) at 24 weeks. Over the 24-week study period, we observed statistically significant changes of 1.11 (95% CI: [0.08, 2.14]) in the Leicester Cough Questionnaire and -1.97 (95% CI: [-3.71, -0.23]) in the Dartmouth COOP charts score. No significant adverse effects were recorded. Many New Zealand adults with bronchiectasis have adequate 25(OH)D levels. Weekly vitamin D3 supplementation significantly improved 25(OH)D levels.
Collapse
Affiliation(s)
- Jim Bartley
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Jeff Garrett
- Department of Respiratory Medicine, Middlemore Hospital, Auckland, New Zealand
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Robert Scragg
- School of Population Health, The University of Auckland, Auckland, New Zealand
| | - Alain Vandal
- Department of Biostatistics and Epidemiology, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Ko Awatea, Counties Manukau District Health Board, Auckland, New Zealand
| | - Rose Sisk
- Department of Biostatistics and Epidemiology, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - David Milne
- Department of Radiology, Auckland City Hospital, Auckland District Health Board, Auckland, New Zealand
| | - Ray Tai
- Department of Radiology, Auckland City Hospital, Auckland District Health Board, Auckland, New Zealand
| | - Gene Jeon
- Middlemore Clinical Trials Unit, Middlemore Hospital, Auckland, New Zealand
| | - Ray Cursons
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Conroy Wong
- Department of Respiratory Medicine, Middlemore Hospital, Auckland, New Zealand
| |
Collapse
|
13
|
Casanova V, Sousa FH, Stevens C, Barlow PG. Antiviral therapeutic approaches for human rhinovirus infections. Future Virol 2018; 13:505-518. [PMID: 30245735 PMCID: PMC6136076 DOI: 10.2217/fvl-2018-0016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022]
Abstract
Human rhinoviruses are the primary etiological agent of the common cold. This infection can be mild and self-limiting in immunocompetent hosts, but can be associated with bronchiolitis in infants, pneumonia in the immunosuppressed and exacerbations of pre-existing pulmonary conditions such as asthma or chronic obstructive pulmonary disease. Many of these conditions can place significant economic costs upon healthcare infrastructure. There is currently no licensed vaccine for rhinovirus, as the large variety of rhinovirus serotypes has posed significant challenges for research. In this review, we discuss current knowledge around antiviral drugs and small molecule inhibitors of rhinovirus infection, as well as antiviral host defense peptides as exciting prospects to approach the development of novel therapeutics which target human rhinovirus.
Collapse
Affiliation(s)
- Victor Casanova
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, Scotland
| | - Filipa H Sousa
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, Scotland
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, Scotland
| | - Peter G Barlow
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, Scotland
| |
Collapse
|
14
|
Hauger H, Ritz C, Mortensen C, Mølgaard C, Metzdorff SB, Frøkiær H, Damsgaard CT. Winter cholecalciferol supplementation at 55°N has little effect on markers of innate immune defense in healthy children aged 4–8 years: a secondary analysis from a randomized controlled trial. Eur J Nutr 2018; 58:1453-1462. [DOI: 10.1007/s00394-018-1671-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/21/2018] [Indexed: 01/11/2023]
|
15
|
Hellwege JN, Russell SB, Williams SM, Edwards TL, Velez Edwards DR. Gene-based evaluation of low-frequency variation and genetically-predicted gene expression impacting risk of keloid formation. Ann Hum Genet 2018; 82:206-215. [PMID: 29484647 DOI: 10.1111/ahg.12245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/08/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022]
Abstract
Keloids are benign dermal tumors occurring approximately 20 times more often in individuals of African descent as compared to individuals of European descent. While most keloids occur sporadically, a genetic predisposition is supported by both familial aggregation of some keloids and large differences in risk among populations. Despite Africans and African Americans being at increased risk over lighter-skinned individuals, little genetic research exists into this phenotype. Using a combination of admixture mapping and exome analysis, we reported multiple common variants within chr15q21.2-22.3 associated with risk of keloid formation in African Americans. Here we describe a gene-based association analysis using 478 African American samples with exome genotyping data to identify genes containing low-frequency variants associated with keloids, with evaluation of genetically-predicted gene expression in skin tissues using association summary statistics. The strongest signal from gene-based association was located in C15orf63 (P-value = 6.6 × 10-6 ) located at 15q15.3. The top result from gene expression was increased predicted DCAF4 expression (P-value = 5.5 × 10-4 ) in non-sun-exposed skin, followed by increased predicted OR10A3 expression in sun-exposed skin (P-value = 6.9 × 10-4 ). Our findings identify variation with putative roles in keloid formation, enhanced by the use of predicted gene expression to support the biological roles of variation identified only though genetic association studies.
Collapse
Affiliation(s)
- Jacklyn N Hellwege
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shirley B Russell
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Dermatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
16
|
Vargas MH, Becerril-Ángeles M, Medina-Reyes IS, Rascón-Pacheco RA. Altitude above 1500 m is a major determinant of asthma incidence. An ecological study. Respir Med 2017; 135:1-7. [PMID: 29414446 DOI: 10.1016/j.rmed.2017.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Previous studies suggest an inverse correlation between asthma and altitude. In the present work, we performed an in-depth analysis of asthma incidence in the 758 Mexican counties covered by the largest medical institution in the country (∼37.5 million insured subjects), and evaluated its relationships with altitude and other factors. METHODS Asthma incidence in each county was calculated from new cases diagnosed by family physicians. Other variables in the same counties, including selected diseases, geographical variables, and socioeconomic factors, were also obtained and their association with asthma was evaluated through bivariate and multivariate analyses. RESULTS Median asthma incidence was 296.2 × 100,000 insured subjects, but tended to be higher in those counties located on or near the coast. When asthma incidence was plotted against altitude, a two-stage pattern was evident: asthma rates were relatively stable in counties located below an altitude of ∼1500 m, while these rates progressively decreased as altitude increased beyond this level (rS = -0.51, p < .001). Multivariate analysis showed that, once each variable was adjusted by the potential influence of the others, asthma incidence was inversely correlated with altitude (standardized β coefficient, -0.577), helminthiasis (-0.173), pulmonary tuberculosis (-0.130), and latitude (-0.126), and was positively correlated with acute respiratory tract infection (0.382), pneumonia (0.289), type 2 diabetes (0.138), population (0.108), and pharyngotonsillitis (0.088), all with a p ≤ .001. CONCLUSION Our study showed that altitude higher than ∼1500 m comprises a major factor in determining asthma incidence, with the risk of new-onset asthma decreasing as altitude increases. Other less influential conditions were also identified.
Collapse
Affiliation(s)
- Mario H Vargas
- Unidad de Investigación Médica en Enfermedades Respiratorias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico; Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Martín Becerril-Ángeles
- Departamento de Alergia e Inmunología Clínica, Hospital de Especialidades, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| | - Ismael Seth Medina-Reyes
- División de Información Epidemiológica, Coordinación de Vigilancia Epidemiológica y Apoyo en Contingencias, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Ramón Alberto Rascón-Pacheco
- División de Información Epidemiológica, Coordinación de Vigilancia Epidemiológica y Apoyo en Contingencias, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
17
|
Secretory leukocyte protease inhibitor regulates human periodontal ligament cell production of pro-inflammatory cytokines. Inflamm Res 2017; 66:823-831. [PMID: 28597116 PMCID: PMC5529494 DOI: 10.1007/s00011-017-1062-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/05/2017] [Accepted: 06/02/2017] [Indexed: 01/09/2023] Open
Abstract
Objective Regulation of immune-like cell properties of periodontal ligament (PDL) cells is not understood. We investigate the importance of secretory leukocyte protease inhibitor (SLPI) for production of pro-inflammatory cytokines in human PDL cells. Materials and methods PDL cells were isolated from teeth extracted for orthodontic reasons. Cellular location of SLPI was investigated by immunocytochemistry. Cytokine transcript and protein expression were assessed by quantitative real-time RT-PCR and Western blotting. SLPI gene activity was knocked-down by siRNA. NF-κB signaling was assessed by measuring IκBα, and phosphorylated p65 and p105 protein expression. Results PDL cells showed cytoplasmic expression of SLPI. Cellular expression level of SLPI negatively correlated to LPS-induced stimulation of IL-6 and MCP-1. Both SLPI gene activity and protein were reduced by about 70% in PDL cells treated with SLPI siRNA compared to cells treated with non-coding construct. Treatment with SLPI siRNA was associated with up-regulation of both basal and LPS-stimulated IL-6, MCP-1 and TLRs mRNA expression. The up-regulation of MCP-1 transcript in SLPI siRNA-treated cells was confirmed on protein level. SLPI siRNA-treatment enhanced the phosphorylated NF-κB p105 protein expression. Conclusions SLPI regulates PDL cell pro-inflammatory cytokine expression and modulates NF-κB signaling, suggesting that SLPI governs the immune cell-like properties of PDL cells.
Collapse
|
18
|
Jung JW, Kang HR. Evaluation of vitamin D in patients with asthma. ALLERGY ASTHMA & RESPIRATORY DISEASE 2016. [DOI: 10.4168/aard.2016.4.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jae-Woo Jung
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hye-Ryun Kang
- Department of Internal Medicine, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|