1
|
Bhattarai S, Sugita BM, Nunes-Souza E, Fonseca AS, Chandrashekar DS, Bhargava M, Cavalli LR, Aneja R. Dysregulated miRNA Expression and Androgen Receptor Loss in Racially Distinct Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:13679. [PMID: 39769441 PMCID: PMC11679545 DOI: 10.3390/ijms252413679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Androgen receptor (AR)-negative triple-negative breast cancer (TNBC), often termed quadruple-negative breast cancer (QNBC), disproportionately impacts women of African descent, leading to poorer overall survival (OS). MiRNAs regulate the expression of gene drivers involved in critical signaling pathways in TNBC, such as the AR gene, and their expression varies across races and breast cancer subtypes. This study investigates whether differentially expressed miRNAs influence AR transcription, potentially contributing to the observed disparities between African American (AA) and European American (EA) QNBC patients. Race-annotated TNBC samples (n = 129) were analyzed for AR expression status and revealed the prevalence of QNBC in AA patients compared to EA (76.6% vs. 57.7%) and a significant association of AR loss with poor survival among AAs. The Cancer Genome Atlas (TCGA) RNA-seq data showed that AAs with TNBC (n = 32) had lower AR mRNA levels than EAs (n = 67). Among TCGA patients in the AR-low group, AAs had significantly poorer OS than EAs. In our cohort, 46 miRNAs exhibited differential expression between AAs and EAs with QNBC. Ten of these miRNAs (miR-1185-5p, miR-1305, miR-3161, miR-3690, miR-494-3p, miR-509-3-5p, miR-619-3p, miR-628-3p, miR-873-5p, and miR-877-5p) were predicted to target the AR gene/signaling. The loss of AR expression is linked to poorer prognoses in AA women. The understanding of the specific miRNAs involved and their regulatory mechanisms on AR expression could provide valuable insights into why AA women are more prone to QNBC.
Collapse
Affiliation(s)
- Shristi Bhattarai
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | - Bruna M. Sugita
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
| | - Emanuelle Nunes-Souza
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
| | - Aline S. Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
| | - Darshan Shimoga Chandrashekar
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Mahak Bhargava
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Luciane R. Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Duarte-Delgado D, Vogt I, Dadshani S, Léon J, Ballvora A. Expression interplay of genes coding for calcium-binding proteins and transcription factors during the osmotic phase provides insights on salt stress response mechanisms in bread wheat. PLANT MOLECULAR BIOLOGY 2024; 114:119. [PMID: 39485577 PMCID: PMC11530504 DOI: 10.1007/s11103-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024]
Abstract
Bread wheat is an important crop for the human diet, but the increasing soil salinization is reducing the yield. The Ca2+ signaling events at the early stages of the osmotic phase of salt stress are crucial for the acclimation response of the plants through the performance of calcium-sensing proteins, which activate or repress transcription factors (TFs) that affect the expression of downstream genes. Physiological, genetic mapping, and transcriptomics studies performed with the contrasting genotypes Syn86 (synthetic, salt-susceptible) and Zentos (elite cultivar, salt-tolerant) were integrated to gain a comprehensive understanding of the salt stress response. The MACE (Massive Analysis of cDNA 3'-Ends) based transcriptome analysis until 4 h after stress exposure revealed among the salt-responsive genes, the over-representation of genes coding for calcium-binding proteins. The functional and structural diversity within this category was studied and linked with the expression levels during the osmotic phase in the contrasting genotypes. The non-EF-hand category from calcium-binding proteins was found to be enriched for the susceptibility response. On the other side, the tolerant genotype was characterized by a faster and higher up-regulation of genes coding for proteins with EF-hand domain, such as RBOHD orthologs, and TF members. This study suggests that the interplay of calcium-binding proteins, WRKY, and AP2/ERF TF families in signaling pathways at the start of the osmotic phase can affect the expression of downstream genes. The identification of SNPs in promoter sequences and 3' -UTR regions provides insights into the molecular mechanisms controlling the differential expression of these genes through differential transcription factor binding affinity or altered mRNA stability.
Collapse
Affiliation(s)
- Diana Duarte-Delgado
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
- Research Group of Genetics of Agronomic Traits, Faculty of Agricultural Sciences, National University of Colombia, Bogotá, Colombia
- Bean Program, Crops for Nutrition and Health, Alliance Bioversity International & International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Inci Vogt
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Said Dadshani
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Jens Léon
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- INRES-Plant Breeding, University of Bonn, Bonn, Germany.
| |
Collapse
|
3
|
Saferali A, Kim W, Xu Z, Chase RP, Cho MH, Laederach A, Castaldi PJ, Hersh CP. Colocalization analysis of 3' UTR alternative polyadenylation quantitative trait loci reveals novel mechanisms underlying associations with lung function. Hum Mol Genet 2024; 33:1164-1175. [PMID: 38569558 DOI: 10.1093/hmg/ddae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/02/2024] [Indexed: 04/05/2024] Open
Abstract
While many disease-associated single nucleotide polymorphisms (SNPs) are expression quantitative trait loci (eQTLs), a large proportion of genome-wide association study (GWAS) variants are of unknown function. Alternative polyadenylation (APA) plays an important role in posttranscriptional regulation by allowing genes to shorten or extend 3' untranslated regions (UTRs). We hypothesized that genetic variants that affect APA in lung tissue may lend insight into the function of respiratory associated GWAS loci. We generated alternative polyadenylation (apa) QTLs using RNA sequencing and whole genome sequencing on 1241 subjects from the Lung Tissue Research Consortium (LTRC) as part of the NHLBI TOPMed project. We identified 56 179 APA sites corresponding to 13 582 unique genes after filtering out APA sites with low usage. We found that a total of 8831 APA sites were associated with at least one SNP with q-value < 0.05. The genomic distribution of lead APA SNPs indicated that the majority are intronic variants (33%), followed by downstream gene variants (26%), 3' UTR variants (17%), and upstream gene variants (within 1 kb region upstream of transcriptional start site, 10%). APA sites in 193 genes colocalized with GWAS data for at least one phenotype. Genes containing the top APA sites associated with GWAS variants include membrane associated ring-CH-type finger 2 (MARCHF2), nectin cell adhesion molecule 2 (NECTIN2), and butyrophilin subfamily 3 member A2 (BTN3A2). Overall, these findings suggest that APA may be an important mechanism for genetic variants in lung function and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Aabida Saferali
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, United States
| | - Wonji Kim
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, United States
| | - Zhonghui Xu
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, United States
| | - Robert P Chase
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, United States
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, United States
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, United States
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, 120 South Road, Chapel Hill, NC 27599, United States
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, United States
- Division of General Medicine and Primary Care, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, United States
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, United States
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, United States
| |
Collapse
|
4
|
Almohaywi M, Sugita BM, Centa A, Fonseca AS, Antunes VC, Fadda P, Mannion CM, Abijo T, Goldberg SL, Campbell MC, Copeland RL, Kanaan Y, Cavalli LR. Deregulated miRNA Expression in Triple-Negative Breast Cancer of Ancestral Genomic-Characterized Latina Patients. Int J Mol Sci 2023; 24:13046. [PMID: 37685851 PMCID: PMC10487916 DOI: 10.3390/ijms241713046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/10/2023] Open
Abstract
Among patients with triple-negative breast cancer (TNBC), several studies have suggested that deregulated microRNA (miRNA) expression may be associated with a more aggressive phenotype. Although tumor molecular signatures may be race- and/or ethnicity-specific, there is limited information on the molecular profiles in women with TNBC of Hispanic and Latin American ancestry. We simultaneously profiled TNBC biopsies for the genome-wide copy number and miRNA global expression from 28 Latina women and identified a panel of 28 miRNAs associated with copy number alterations (CNAs). Four selected miRNAs (miR-141-3p, miR-150-5p, miR-182-5p, and miR-661) were validated in a subset of tumor and adjacent non-tumor tissue samples, with miR-182-5p being the most discriminatory among tissue groups (AUC value > 0.8). MiR-141-3p up-regulation was associated with increased cancer recurrence; miR-661 down-regulation with larger tumor size; and down-regulation of miR-150-5p with larger tumor size, high p53 expression, increased cancer recurrence, presence of distant metastasis, and deceased status. This study reinforces the importance of integration analysis of CNAs and miRNAs in TNBC, allowing for the identification of interactions among molecular mechanisms. Additionally, this study emphasizes the significance of considering the patients ancestral background when examining TNBC, as it can influence the relationship between intrinsic tumor molecular characteristics and clinical manifestations of the disease.
Collapse
Affiliation(s)
- Maram Almohaywi
- Microbiology Department, Howard University Cancer Center, Howard University, Washington, DC 20059, USA
| | - Bruna M. Sugita
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Ariana Centa
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Aline S. Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Valquiria C. Antunes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ciaran M. Mannion
- Department of Pathology, Hackensack University Medical Center, Hackensack, NJ 07701, USA
| | - Tomilowo Abijo
- National Institute of Diabetes and Kidney Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | - Stuart L. Goldberg
- John Theurer Cancer Center, Hackensack Meridian School of Medicine, Hackensack, NJ 07701, USA
- COTA, Inc., New York, NY 10014, USA
| | - Michael C. Campbell
- Department of Biological Sciences Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA 90089, USA
| | - Robert L. Copeland
- Pharmacology Department, Howard University Cancer Center, Howard University, Washington, DC 20059, USA
| | - Yasmine Kanaan
- Microbiology Department, Howard University Cancer Center, Howard University, Washington, DC 20059, USA
| | - Luciane R. Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
- Oncology Department, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
5
|
Regulation of HLA class I expression by non-coding gene variations. PLoS Genet 2022; 18:e1010212. [PMID: 35666741 PMCID: PMC9170083 DOI: 10.1371/journal.pgen.1010212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/20/2022] [Indexed: 11/19/2022] Open
Abstract
The Human Leukocyte Antigen (HLA) is a critical genetic system for different outcomes after solid organ and hematopoietic cell transplantation. Its polymorphism is usually determined by molecular technologies at the DNA level. A potential role of HLA allelic expression remains under investigation in the context of the allogenic immune response between donors and recipients. In this study, we quantified the allelic expression of all three HLA class I loci (HLA-A, B and C) by RNA sequencing and conducted an analysis of expression quantitative traits loci (eQTL) to investigate whether HLA expression regulation could be associated with non-coding gene variations. HLA-B alleles exhibited the highest expression levels followed by HLA-C and HLA-A alleles. The max fold expression variation was observed for HLA-C alleles. The expression of HLA class I loci of distinct individuals demonstrated a coordinated and paired expression of both alleles of the same locus. Expression of conserved HLA-A~B~C haplotypes differed in distinct PBMC's suggesting an individual regulated expression of both HLA class I alleles and haplotypes. Cytokines TNFα /IFNβ, which induced a very similar upregulation of HLA class I RNA and cell surface expression across alleles did not modify the individually coordinated expression at the three HLA class I loci. By identifying cis eQTLs for the HLA class I genes, we show that the non-coding eQTLs explain 29%, 13%, and 31% of the respective HLA-A, B, C expression variance in unstimulated cells, and 9%, 23%, and 50% of the variance in cytokine-stimulated cells. The eQTLs have significantly higher effect sizes in stimulated cells compared to unstimulated cells for HLA-B and HLA-C genes expression. Our data also suggest that the identified eQTLs are independent from the coding variation which defines HLA alleles and thus may be influential on intra-allele expression variability although they might not represent the causal eQTLs.
Collapse
|
6
|
Abstract
Diploidy has profound implications for population genetics and susceptibility to genetic diseases. Although two copies are present for most genes in the human genome, they are not necessarily both active or active at the same level in a given individual. Genomic imprinting, resulting in exclusive or biased expression in favor of the allele of paternal or maternal origin, is now believed to affect hundreds of human genes. A far greater number of genes display unequal expression of gene copies due to cis-acting genetic variants that perturb gene expression. The availability of data generated by RNA sequencing applied to large numbers of individuals and tissue types has generated unprecedented opportunities to assess the contribution of genetic variation to allelic imbalance in gene expression. Here we review the insights gained through the analysis of these data about the extent of the genetic contribution to allelic expression imbalance, the tools and statistical models for gene expression imbalance, and what the results obtained reveal about the contribution of genetic variants that alter gene expression to complex human diseases and phenotypes.
Collapse
Affiliation(s)
- Siobhan Cleary
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway H91 H3CY, Ireland;
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway H91 H3CY, Ireland;
| |
Collapse
|
7
|
Sharma AR, Patagi S, Uk AR, Shetty R, Umakanth S, Satyamoorthy K, Rai PS. MirSNPs in clopidogrel metabolism genes predict cardiovascular disease risk: a case-control study and meta-analysis. Pharmacogenomics 2020; 22:99-113. [PMID: 33356544 DOI: 10.2217/pgs-2020-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The present study was conducted to decipher the inter-relationship of SNPs and miRNAs involved in pharmacogenomics of clopidogrel on predisposition to cardiovascular diseases (CVDs). Materials & methods: A case-control study was conducted on 410 cases and 386 controls to analyze the association of 13 mirSNPs on CVDs risk. Genotyping was performed by tetra-primer amplification refractory mutation system PCR and validated using Sanger DNA sequencing. miRNA expression analysis was performed using TaqMan assays. A meta-analysis was performed for PON1 rs662 with coronary artery disease. Results & conclusion: PON1 rs662, PON1 rs3917577, CYP3A5 rs15524, COL4A1 rs874204 and PTGIR rs1126510 polymorphisms showed association with CVDs. The miRNA hsa-miR-224-5p showed differential expression in the PON1 rs3917577 GG genotype. The meta-analysis showed the population-specific impact of PON1 rs662 on South Asian and Middle East populations.
Collapse
Affiliation(s)
- Anu Radha Sharma
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sourav Patagi
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Abdul Razak Uk
- Department of Cardiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ranjan Shetty
- Department of Cardiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shashikiran Umakanth
- Department of Medicine, Dr. T.M.A. Pai Rotary Hospital, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
8
|
Mariella E, Marotta F, Grassi E, Gilotto S, Provero P. The Length of the Expressed 3' UTR Is an Intermediate Molecular Phenotype Linking Genetic Variants to Complex Diseases. Front Genet 2019; 10:714. [PMID: 31475030 PMCID: PMC6707137 DOI: 10.3389/fgene.2019.00714] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/05/2019] [Indexed: 11/13/2022] Open
Abstract
In the last decades, genome-wide association studies (GWAS) have uncovered tens of thousands of associations between common genetic variants and complex diseases. However, these statistical associations can rarely be interpreted functionally and mechanistically. As the majority of the disease-associated variants are located far from coding sequences, even the relevant gene is often unclear. A way to gain insight into the relevant mechanisms is to study the genetic determinants of intermediate molecular phenotypes, such as gene expression and transcript structure. We propose a computational strategy to discover genetic variants affecting the relative expression of alternative 3′ untranslated region (UTR) isoforms, generated through alternative polyadenylation, a widespread posttranscriptional regulatory mechanism known to have relevant functional consequences. When applied to a large dataset in which whole genome and RNA sequencing data are available for 373 European individuals, 2,530 genes with alternative polyadenylation quantitative trait loci (apaQTL) were identified. We analyze and discuss possible mechanisms of action of these variants, and we show that they are significantly enriched in GWAS hits, in particular those concerning immune-related and neurological disorders. Our results point to an important role for genetically determined alternative polyadenylation in affecting predisposition to complex diseases, and suggest new ways to extract functional information from GWAS data.
Collapse
Affiliation(s)
- Elisa Mariella
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federico Marotta
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elena Grassi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Stefano Gilotto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Center for Tranlational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
9
|
Lauschke VM, Ingelman-Sundberg M. Prediction of drug response and adverse drug reactions: From twin studies to Next Generation Sequencing. Eur J Pharm Sci 2019; 130:65-77. [PMID: 30684656 DOI: 10.1016/j.ejps.2019.01.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/12/2023]
Abstract
Understanding and predicting inter-individual differences related to the success of drug therapy is of tremendous importance, both during drug development and for clinical applications. Importantly, while seminal twin studies indicate that the majority of inter-individual differences in drug disposition are driven by hereditary factors, common genetic polymorphisms explain only less than half of this genetically encoded variability. Recent progress in Next Generation Sequencing (NGS) technologies has for the first time allowed to comprehensively map the genetic landscape of human pharmacogenes. Importantly, these projects have unveiled vast numbers of rare genetic variants, which are estimated to contribute substantially to the missing heritability of drug metabolism phenotypes. However, functional interpretation of these rare variants remains challenging and constitutes one of the important frontiers of contemporary pharmacogenomics. Furthermore, NGS technologies face challenges in the interrogation of genes residing in complex genomic regions, such as CYP2D6 and HLA genes. We here provide an update of the implementation of pharmacogenomic variations in the clinical setting and present emerging strategies that facilitate the translation of NGS data into clinically useful information. Importantly, we anticipate that these developments will soon result in a paradigm shift of pre-emptive genotyping away from the interrogation to candidate variants and towards the comprehensive profiling of an individuals genotype, thus allowing for a true individualization of patient drug treatment regimens.
Collapse
Affiliation(s)
- Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
10
|
Khanizadeh S, Hasanvand B, Nikoo HR, Anbari K, Adhikary H, Shirkhani S, Lashgarian HE. Association between miRNA-146a rs2910164 (G/C) polymorphism with the susceptibility to chronic HBV infection and spontaneous viral clearance in an Iranian population. J Med Virol 2019; 91:1063-1068. [PMID: 30624803 DOI: 10.1002/jmv.25394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
Abstract
Hepatitis B virus (HBV) infection is one of the clinical dilemmas in chronic liver diseases. MicroRNAs (miRNAs) are small noncoding RNA molecules that play an important role in the pathogenesis of liver diseases and single nucleotide polymorphisms (SNPs) in miRNA genes affect the clinical course of HBV infection. Previous studies have shown that miRNA-146a rs2910164 polymorphism can be associated with the pathogenesis of liver diseases such as hepatocellular carcinoma. The present study investigated the association between miRNA-146a rs2910164 polymorphism and susceptibility to HBV infection in an Iranian population. The study comprised 266 patients with chronic HBV infection, 172 patients with spontaneous viral clearance (SVC) after acute HBV infection, and 266 healthy control adjusted for sex and age. The genotyping of the miRNA-146a rs2910164 polymorphism was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Our data revealed that GG genotype and G allele of miRNA-146a rs2910164 SNP is dominated (P < 0.001) in patients with chronic HBV infection (Odds ratio [OR] = 3.92; 95% confidence interval [CI] = 2.1-7.32). miRNA-146a rs2910164 polymorphism showed a statistically significant association (P < 0.001) between CC genotype and allele C with SVC (OR = 2.92; 95% CI = 1.56-546). Our findings suggest miRNA-146a SNP (C/G) in our population may be associated with the susceptibility to HBV infection and CC genotype is associated with SVC. Also, the GG genotype and G allele at miRNA-146a rs2910164 is associated with chronic HBV infection in our population.
Collapse
Affiliation(s)
- Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Banafsheh Hasanvand
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hadi Razavi Nikoo
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Khatereh Anbari
- School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hemanta Adhikary
- Laboratory Dr Kyle K Biggar, Nesbitt Biology Building, Carleton University, Ottawa, Ontario, Canada
| | - Somayeh Shirkhani
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Esmaeili Lashgarian
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
11
|
Uncovering association networks through an eQTL analysis involving human miRNAs and lincRNAs. Sci Rep 2018; 8:15050. [PMID: 30301969 PMCID: PMC6177424 DOI: 10.1038/s41598-018-33420-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022] Open
Abstract
Non-coding RNAs (ncRNA) have an essential role in the complex landscape of human genetic regulatory networks. One area that is poorly explored is the effect of genetic variations on the interaction between ncRNA and their targets. By integrating a significant amount of public data, the present study cataloged the vast landscape of the regulatory effect of microRNAs (miRNA) and long intergenic noncoding RNAs (lincRNA) in the human genome. An expression quantitative trait loci (eQTL) analysis was used to identify genetic variants associated with miRNA and lincRNA and whose genotypes affect gene expression. Association networks were built for eQTL associated to traits of clinical and/or pharmacological relevance.
Collapse
|
12
|
Krause K, Kopp BT, Tazi MF, Caution K, Hamilton K, Badr A, Shrestha C, Tumin D, Hayes D, Robledo-Avila F, Hall-Stoodley L, Klamer BG, Zhang X, Partida-Sanchez S, Parinandi NL, Kirkby SE, Dakhlallah D, McCoy KS, Cormet-Boyaka E, Amer AO. The expression of Mirc1/Mir17-92 cluster in sputum samples correlates with pulmonary exacerbations in cystic fibrosis patients. J Cyst Fibros 2018; 17:454-461. [PMID: 29241629 PMCID: PMC5995663 DOI: 10.1016/j.jcf.2017.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/27/2017] [Accepted: 11/16/2017] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a multi-organ disorder characterized by chronic sino-pulmonary infections and inflammation. Many patients with CF suffer from repeated pulmonary exacerbations that are predictors of worsened long-term morbidity and mortality. There are no reliable markers that associate with the onset or progression of an exacerbation or pulmonary deterioration. Previously, we found that the Mirc1/Mir17-92a cluster which is comprised of 6 microRNAs (Mirs) is highly expressed in CF mice and negatively regulates autophagy which in turn improves CF transmembrane conductance regulator (CFTR) function. Therefore, here we sought to examine the expression of individual Mirs within the Mirc1/Mir17-92 cluster in human cells and biological fluids and determine their role as biomarkers of pulmonary exacerbations and response to treatment. METHODS Mirc1/Mir17-92 cluster expression was measured in human CF and non-CF plasma, blood-derived neutrophils, and sputum samples. Values were correlated with pulmonary function, exacerbations and use of CFTR modulators. RESULTS Mirc1/Mir17-92 cluster expression was not significantly elevated in CF neutrophils nor plasma when compared to the non-CF cohort. Cluster expression in CF sputum was significantly higher than its expression in plasma. Elevated CF sputum Mirc1/Mir17-92 cluster expression positively correlated with pulmonary exacerbations and negatively correlated with lung function. Patients with CF undergoing treatment with the CFTR modulator Ivacaftor/Lumacaftor did not demonstrate significant change in the expression Mirc1/Mir17-92 cluster after six months of treatment. CONCLUSIONS Mirc1/Mir17-92 cluster expression is a promising biomarker of respiratory status in patients with CF including pulmonary exacerbation.
Collapse
Affiliation(s)
- Kathrin Krause
- Department of Microbial Infection and Immunity, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Benjamin T Kopp
- Department of Pediatrics, Columbus, OH, USA; Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mia F Tazi
- Department of Microbial Infection and Immunity, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kyle Caution
- Department of Microbial Infection and Immunity, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kaitlin Hamilton
- Department of Microbial Infection and Immunity, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Asmaa Badr
- Department of Microbial Infection and Immunity, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Chandra Shrestha
- Department of Pediatrics, Columbus, OH, USA; Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dmitry Tumin
- Department of Anesthesiology & Pain Medicine, Columbus, OH, USA; Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Don Hayes
- Department of Pediatrics, Columbus, OH, USA; Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Frank Robledo-Avila
- Department of Pediatrics, Columbus, OH, USA; Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brett G Klamer
- Center for Biostatistics, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Xiaoli Zhang
- Center for Biostatistics, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Santiago Partida-Sanchez
- Department of Pediatrics, Columbus, OH, USA; Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Narasimham L Parinandi
- Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Stephen E Kirkby
- Department of Pediatrics, Columbus, OH, USA; Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Duaa Dakhlallah
- Microbiology, Immunology and Cell Biology Department, West Virginia University, Morgantown, WV, USA
| | - Karen S McCoy
- Department of Pediatrics, Columbus, OH, USA; Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA
| | - Amal O Amer
- Department of Microbial Infection and Immunity, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
13
|
Taguchi YH. Tensor Decomposition-Based Unsupervised Feature Extraction Can Identify the Universal Nature of Sequence-Nonspecific Off-Target Regulation of mRNA Mediated by MicroRNA Transfection. Cells 2018; 7:cells7060054. [PMID: 29867052 PMCID: PMC6025034 DOI: 10.3390/cells7060054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022] Open
Abstract
MicroRNA (miRNA) transfection is known to degrade target mRNAs and to decrease mRNA expression. In contrast to the notion that most of the gene expression alterations caused by miRNA transfection involve downregulation, they often involve both up- and downregulation; this phenomenon is thought to be, at least partially, mediated by sequence-nonspecific off-target effects. In this study, I used tensor decomposition-based unsupervised feature extraction to identify genes whose expression is likely to be altered by miRNA transfection. These gene sets turned out to largely overlap with one another regardless of the type of miRNA or cell lines used in the experiments. These gene sets also overlap with the gene set associated with altered expression induced by a Dicer knockout. This result suggests that the off-target effect is at least as important as the canonical function of miRNAs that suppress translation. The off-target effect is also suggested to consist of competition for the protein machinery between transfected miRNAs and miRNAs in the cell. Because the identified genes are enriched in various biological terms, these genes are likely to play critical roles in diverse biological processes.
Collapse
Affiliation(s)
- Y-H Taguchi
- Department of Physics, Chuo University, Tokyo 112-8551, Japan.
| |
Collapse
|
14
|
de Almeida RC, Chagas VS, Castro MAA, Petzl-Erler ML. Integrative Analysis Identifies Genetic Variants Associated With Autoimmune Diseases Affecting Putative MicroRNA Binding Sites. Front Genet 2018; 9:139. [PMID: 29755505 PMCID: PMC5932181 DOI: 10.3389/fgene.2018.00139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
Genome-wide and fine mapping studies have shown that more than 90% of genetic variants associated with autoimmune diseases (AID) are located in non-coding regions of the human genome and especially in regulatory sequences, including microRNAs (miRNA) target sites. MiRNAs are small endogenous noncoding RNAs that modulate gene expression at the post-transcriptional level. Single nucleotide polymorphisms (SNPs) located within the 3' untranslated region of their target mRNAs (miRSNP) can alter miRNA binding sites. Yet, little is known about their effect on regulation by miRNA and the consequences for AID. Conversely, it is well known that two or more AID may share part of their genetic background. Here, we hypothesized that miRSNPs could be associated with more than one AID. To identify miRSNPs associated with AID, we integrated results from three different prediction tools (Polymirts, miRSNP, and miRSNPscore) using a naïve Bayes classifier approach to identify miRSNPs predicted to affect binding sites of miRNAs. Further, to detect miRSNPs associated with two or more AID, we integrated predictions with summary statistics from 12 AID studies. In addition, to prioritize miRSNPs, miRNAs and AID-associated target genes, we used public expression quantitative trait locus (eQTL) data and mRNA-seq and small RNA-seq data. We identified 34 miRNSPs associated with at least two AID. Furthermore, we found 86 miRNAs predicted to target 18 of the associated gene's mRNAs. Our integrative approach revealed new insights into miRNAs and AID associated target genes. Thus, it helped to prioritize AID noncoding risk SNPs that might be involved in the causal mechanisms, providing valuable information for further functional studies.
Collapse
Affiliation(s)
- Rodrigo C. de Almeida
- Human Molecular Genetics Laboratory, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Vinícius S. Chagas
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba, Brazil
| | - Mauro A. A. Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba, Brazil
| | - Maria L. Petzl-Erler
- Human Molecular Genetics Laboratory, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
15
|
Zanger UM, Klein K, Kugler N, Petrikat T, Ryu CS. Epigenetics and MicroRNAs in Pharmacogenetics. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 83:33-64. [PMID: 29801581 DOI: 10.1016/bs.apha.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Germline pharmacogenetics has so far mainly studied common variants in "pharmacogenes," i.e., genes encoding drug metabolizing enzymes and transporters (DMET genes), certain auxiliary and regulatory genes, and drug target genes. Despite remarkable progress in understanding genetically determined differences in pharmacokinetics and pharmacodynamics of drugs, currently known common variants even in important pharmacogenes explain genetic variability only partially. This suggests "missing heritability" that may in part be due to rare variants in the classical pharmacogenes, but current evidence suggests that largely unexplored resources with potential for pharmacogenetics exist, both within already known pharmacogenes and in entirely new areas. In particular, recent studies suggest that epigenetic processes and noncoding RNAs, including mostly microRNAs (miRNAs), represent important and largely unexplored layers of DMET gene regulation that may fill some of the gaps in understanding interindividual variability and lead to new biomarkers. In this chapter we summarize recent advances in the understanding of genetic variability in epigenetic and miRNA-mediated processes with focus on their significance for DMET regulation and pharmacokinetic or pharmacological endpoints.
Collapse
Affiliation(s)
- Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University Hospital Tübingen, Tübingen, Germany.
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Nicole Kugler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Tamara Petrikat
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Chang S Ryu
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| |
Collapse
|
16
|
Ramachandran S, Coffin SL, Tang TY, Jobaliya CD, Spengler RM, Davidson BL. Cis-acting single nucleotide polymorphisms alter MicroRNA-mediated regulation of human brain-expressed transcripts. Hum Mol Genet 2018; 25:4939-4950. [PMID: 28171541 PMCID: PMC5418741 DOI: 10.1093/hmg/ddw317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022] Open
Abstract
Substantial variability exists in the presentation of complex neurological disorders, and the study of single nucleotide polymorphisms (SNPs) has shed light on disease mechanisms and pathophysiological variability in some cases. However, the vast majority of disease-linked SNPs have unidentified pathophysiological relevance. Here, we tested the hypothesis that SNPs within the miRNA recognition element (MRE; the region of the target transcript to which the miRNA binds) can impart changes in the expression of those genes, either by enhancing or reducing transcript and protein levels. To test this, we cross-referenced 7,153 miRNA-MRE brain interactions with the SNP database (dbSNP) to identify candidates, and functionally assessed 24 SNPs located in the 3’UTR or the coding sequence (CDS) of targets. For over half of the candidates tested, SNPs either enhanced (4 genes) or disrupted (10 genes) miRNA binding and target regulation. Additionally, SNPs causing a shift from a common to rare codon within the CDS facilitated miRNA binding downstream of the SNP, dramatically repressing target gene expression. The biological activity of the SNPs on miRNA regulation was also confirmed in induced pluripotent stem cell (iPSC) lines. These studies strongly support the notion that SNPs in the 3’UTR or the coding sequence of disease-relevant genes may be important in disease pathogenesis and should be reconsidered as candidate modifiers.
Collapse
Affiliation(s)
- Shyam Ramachandran
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Stephanie L Coffin
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Tin-Yun Tang
- Howard Hughes Medical Institute Medical Research Fellow, Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Chintan D Jobaliya
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, USA.,Human Pluripotent Stem Cell Core, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ryan M Spengler
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, USA.,The Department of Pathology & Laboratory Medicine, The Children’s Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Seoane IV, Martínez C, García-Vicuña R, Ortiz AM, Juarranz Y, Talayero VC, González-Álvaro I, Gomariz RP, Lamana A. Vasoactive intestinal peptide gene polymorphisms, associated with its serum levels, predict treatment requirements in early rheumatoid arthritis. Sci Rep 2018; 8:2035. [PMID: 29391448 PMCID: PMC5794878 DOI: 10.1038/s41598-018-20400-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
We previously reported that early arthritis (EA) patients with low vasoactive intestinal peptide (VIP) serum levels demonstrate a worse clinical disease course. In this study, we analysed whether variants in the VIP gene correlated with its serum levels and clinical EA parameters. The VIP gene was sequenced in patients with extremely high/low VIP levels, measured by enzyme immunoassay. Sixteen single nucleotide polymorphisms (SNPs) were differentially distributed between both groups, which were subsequently genotyped in two patients’ sets. We observed that patients with rs688136 CC genotype showed higher VIP levels in both discovery (n = 91; p = 0.033) and validation populations (n = 131; p = 0.007). This effect was attenuated by the presence of minor alleles rs35643203 and rs12201140, which showed a clear trend towards low VIP level association (p = 0.118 and p = 0.049, respectively). Functional studies with miR-205-5p, which has a target site in the 3′ UTR close to rs688136, revealed a miRNA-mediated regulatory mechanism explaining the higher VIP gene expression in homozygous patients. Moreover, patients with an rs688136 CC genotype and no minor alleles of the other polymorphisms required less treatment (p = 0.009). We concluded that the identification of polymorphisms associated with VIP serum levels would complement the clinical assessment of the disease severity in rheumatoid arthritis patients.
Collapse
Affiliation(s)
- Iria V Seoane
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Carmen Martínez
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Rosario García-Vicuña
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Ana M Ortiz
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Vanessa C Talayero
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Rosa P Gomariz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| | - Amalia Lamana
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| |
Collapse
|
18
|
Cabana-Domínguez J, Roncero C, Pineda-Cirera L, Palma-Álvarez RF, Ros-Cucurull E, Grau-López L, Esojo A, Casas M, Arenas C, Ramos-Quiroga JA, Ribasés M, Fernàndez-Castillo N, Cormand B. Association of the PLCB1 gene with drug dependence. Sci Rep 2017; 7:10110. [PMID: 28860459 PMCID: PMC5579249 DOI: 10.1038/s41598-017-10207-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/04/2017] [Indexed: 12/27/2022] Open
Abstract
Genetic factors involved in the susceptibility to drug addiction still remain largely unknown. MiRNAs seem to play key roles in the drug-induced plasticity of the brain that likely drives the emergence of addiction. In this work we explored the role of miRNAs in drug addiction. With this aim, we selected 62 SNPs located in the 3'UTR of target genes that are predicted to alter the binding of miRNA molecules and performed a case-control association study in a Spanish sample of 735 cases (mainly cocaine-dependent subjects with multiple drug dependencies) and 739 controls. We found an association between rs1047383 in the PLCB1 gene and drug dependence that was replicated in an independent sample (663 cases and 667 controls). Then we selected 9 miRNAs predicted to bind the rs1047383 region, but none of them showed any effect on PLCB1 expression. We also assessed two miRNAs binding a region that contains a SNP in linkage disequilibrium with rs1047383, but although one of them, hsa-miR-582, was found to downregulate PLCB1, no differences were observed between alleles. Finally, we explored the possibility that PLCB1 expression is altered by cocaine and we observed a significant upregulation of the gene in the nucleus accumbens of cocaine abusers and in human dopaminergic-like neurons after cocaine treatment. Our results, together with previous studies, suggest that PLCB1 participates in the susceptibility to drug dependence.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Carlos Roncero
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Laura Pineda-Cirera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - R Felipe Palma-Álvarez
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Elena Ros-Cucurull
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Lara Grau-López
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Abderaman Esojo
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Miquel Casas
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Concepció Arenas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Josep Antoni Ramos-Quiroga
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Ribasés
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
19
|
Dietary factors and polymorphisms in vitamin D metabolism genes: the risk and prognosis of colorectal cancer in northeast China. Sci Rep 2017; 7:8827. [PMID: 28821819 PMCID: PMC5562792 DOI: 10.1038/s41598-017-09356-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/28/2017] [Indexed: 12/31/2022] Open
Abstract
CYP24A1 and CYP27B1 are critical genes determining 1α,25(OH)2D3 concentration and impacting on carcinogenesis. A case–control study including 528 colorectal cancer (CRC) patients and 605 cancer-free controls and a follow-up study with 317 cases were conducted in northeast China. Genotypes were tested by TaqMan Genotyping Assays. Individuals carrying the GG genotype of CYP27B1 G > T (rs10877012) exhibited decreased CRC risk compared with those with the TT genotype (ORadjusted (ORadj) = 0.57, 95% Confidence Interval (CI) = 0.38–0.84). Compared with the TT genotype, a significant association between the CC genotype of CYP27B1 C > T (rs4646536) and a reduced risk of CRC was observed (ORadj = 0.59, 95% CI = 0.40–0.88). We also observed significant combined effects of the two polymorphisms in CYP27B1 with dietary factors, including the intake of cereals, overnight meal, allium vegetables, pork, canned fruit, and braised fish, on CRC risk. These associations remained significant after Bonferroni correction for multiple comparisons. The Hazard Ration (HR) of patients with the AA genotype (CYP24A1 A > G, rs4809957) was 2.38 (95% CI = 1.30–4.37) when compared with the GG genotype. Thus, our findings suggested that two polymorphisms in CYP27B1 are associated with CRC susceptibility. CYP24A1 A > G (rs4809957) polymorphism may lead to a worse prognosis of CRC.
Collapse
|
20
|
D'Astous-Pagé J, Gariépy C, Blouin R, Cliche S, Méthot S, Sullivan B, Fortin F, Palin MF. Identification of single nucleotide polymorphisms in carnosine-related genes and effects of genotypes on pork meat quality attributes. Meat Sci 2017; 134:54-60. [PMID: 28759885 DOI: 10.1016/j.meatsci.2017.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022]
Abstract
Carnosine has pH-buffering and antioxidant properties that may bring advantages in terms of meat quality attributes. This study aimed at identifying polymorphisms in carnosine-related genes (CARNS1, SLC6A6, SLC15A3, SLC15A4) that might associate with muscle carnosine content and meat quality traits in pigs (Duroc, Landrace, Yorkshire). Twenty seven SNPs were identified and association analyses performed for SLC15A3 c.*35C>T and c.*52C>T (3' UTR region), and SLC15A4 c.658A>G (Ile220Val) and c.818G>A (Ser273Asn) SNPs. Associations were observed for SNP c.658A>G with carnosine content, color b* and L*, drip and cooking losses, pH24h and glycolytic potential values (P≤0.05). The same associations were observed for SNP c.818G>A, but they were not significant after FDR correction. Results suggest that specific SLC15A4 gene variants might increase muscle carnosine content and improve meat quality. With a minor allele frequency of 0.17 for SNP c.658A>G in Yorkshire pigs, selection in favor of the c.658A allele may be considered as a mean to improve pork quality attributes.
Collapse
Affiliation(s)
- Joël D'Astous-Pagé
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, Canada; Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, Canada
| | - Claude Gariépy
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 boul. Casavant West, Saint-Hyacinthe, QC, Canada
| | - Richard Blouin
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, Canada
| | - Simon Cliche
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 boul. Casavant West, Saint-Hyacinthe, QC, Canada
| | - Steve Méthot
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, Canada
| | - Brian Sullivan
- Canadian Centre for Swine Improvement, 960 Carling Avenue, Building 75, Ottawa, ON, Canada
| | - Frédéric Fortin
- Centre de développement du porc du Québec, Place de la Cité - Tour Belle Cour, 450 - 2590, boulevard Laurier, Québec, QC, Canada
| | - Marie-France Palin
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, Canada.
| |
Collapse
|
21
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|