1
|
Lou D, Berghuijs WR, Ullah W, Zhu B, Shi D, Hu Y, Li C, Ullah S, Zhou H, Chai Y, Yu D. Uncertainty reduction for precipitation prediction in North America. PLoS One 2024; 19:e0301759. [PMID: 38776270 PMCID: PMC11111050 DOI: 10.1371/journal.pone.0301759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/20/2024] [Indexed: 05/24/2024] Open
Abstract
Large differences in projected future annual precipitation increases in North America exists across 27 CMIP6 models under four emission scenarios. These differences partly arise from weak representations of land-atmosphere interactions. Here we demonstrate an emergent constraint relationship between annual growth rates of future precipitation and growth rates of historical temperature. The original CMIP6 projections show 0.49% (SSP126), 0.98% (SSP245), 1.45% (SSP370) and 1.92% (SSP585) increases in precipitation per decade. Combining observed warming trends, the constrained results show that the best estimates of future precipitation increases are more likely to reach 0.40-0.48%, 0.83-0.93%, 1.29-1.45% and 1.70-1.87% respectively, implying an overestimated future precipitation increases across North America. The constrained results also are narrow the corresponding uncertainties (standard deviations) by 13.8-31.1%. The overestimated precipitation growth rates also reveal an overvalued annual growth rates in temperature (6.0-13.2% or 0.12-0.37°C) and in total evaporation (4.8-14.5%) by the original models' predictions. These findings highlight the important role of temperature for accurate climate predictions, which is important as temperature from current climate models' simulations often still have systematic errors.
Collapse
Affiliation(s)
- Dan Lou
- Nanjing Nriet Industrial Co., Ltd., Nanjing, China
| | - Wouter R. Berghuijs
- Department of Earth Sciences, Free University Amsterdam, Amsterdam, Netherlands
| | - Waheed Ullah
- Defense and Security, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Boyuan Zhu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, China
| | - Dawei Shi
- Lianyungang Meteorological Bureau, Haizhou District, Lianyungang City, Jiangsu Province, P.R. China
| | - Yong Hu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, China
| | - Chao Li
- Jiangsu Meteorological Observatory, Nanjing, China
| | - Safi Ullah
- Department of Atmosphere and Oceanic Sciences & Institute of Atmospheric Science, Fudan University, Shanghai, China
| | - Hao Zhou
- Peixian Meteorological Bureau, Jiangsu Province, China
| | - Yuanfang Chai
- Faculty of Geographical Science, State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
| | - Danyang Yu
- Department of Water Resources, ITC Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, The Netherlands
| |
Collapse
|
2
|
Cramer MD, Anthony Verboom G. Quantitative evaluation of the drivers of species richness in a Mediterranean ecosystem (Cape, South Africa). ANNALS OF BOTANY 2024; 133:801-818. [PMID: 37712853 PMCID: PMC11082525 DOI: 10.1093/aob/mcad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND AND AIMS Mediterranean ecosystems have a high vascular plant species richness (SR) relative to their surface area. This SR, representing the balance between speciation and extinction, has been attributed to multiple mechanisms that result in both high rates of speciation and/or low rates of extinction. An abiding question is, however, what is special about Mediterranean ecosystems that enables this high SR? Apart from the long-term climatic stability of the region, SR has also been related to resource availability, the many individuals hypothesis, resource spatial heterogeneity, temporal heterogeneity and biotic feedbacks. METHODS Spatial patterns of species richness were related to climatic, edaphic and biotic variables and to spatial variability within the Greater Cape Floristic Region (GCFR) of South Africa. Boosted regression tree models were used to explore the strength of relationships between SR and environmental predictors related to each hypothesized mechanism. KEY RESULTS Water availability (i.e. precipitation) was a stronger predictor of SR than potential evapotranspiration or temperature. Scarcity of nutrients was also related to SR. There was no indication that SR was related to the density of individuals and only temporal heterogeneity induced by fire was related to SR. Spatial heterogeneities of climatic, edaphic and biotic variables were strongly associated with SR. Biotic interactions remain difficult to assess, although we have some evidence for a putative role in regulating SR. CONCLUSIONS While the lack of ecosystem-resetting disturbances (e.g. glaciation) is undoubtedly a key requirement for high species accumulation, predictably, no one explanation holds the key to understanding SR. In the GCFR high SR is the product of a combination of adequate water, nutrient scarcity, spatial and temporal heterogeneity, and possibly biotic feedbacks.
Collapse
Affiliation(s)
- Michael D Cramer
- Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - G Anthony Verboom
- Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
3
|
de la Fuente A, Navarro A, Williams SE. The climatic drivers of long-term population changes in rainforest montane birds. GLOBAL CHANGE BIOLOGY 2023; 29:2132-2140. [PMID: 36654193 DOI: 10.1111/gcb.16608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 05/28/2023]
Abstract
Climate-driven biodiversity erosion is escalating at an alarming rate. The pressure imposed by climate change is exceptionally high in tropical ecosystems, where species adapted to narrow environmental ranges exhibit strong physiological constraints. Despite the observed detrimental effect of climate change on ecosystems at a global scale, our understanding of the extent to which multiple climatic drivers affect population dynamics is limited. Here, we disentangle the impact of different climatic stressors on 47 rainforest birds inhabiting the mountains of the Australian Wet Tropics using hierarchical population models. We estimate the effect of spatiotemporal changes in temperature, precipitation, heatwaves, droughts and cyclones on the population dynamics of rainforest birds between 2000 and 2016. We find a strong effect of warming and changes in rainfall patterns across the elevational-segregated bird communities, with lowland populations benefiting from increasing temperature and precipitation, while upland species show an inverse strong negative response to the same drivers. Additionally, we find a negative effect of heatwaves on lowland populations, a pattern associated with the observed distribution of these extreme events across elevations. In contrast, cyclones and droughts have a marginal effect on spatiotemporal changes in rainforest bird communities, suggesting a species-specific response unrelated to the elevational gradient. This study demonstrated the importance of unravelling the drivers of climate change impacts on population changes, providing significant insight into the mechanisms accelerating climate-induced biodiversity degradation.
Collapse
Affiliation(s)
- Alejandro de la Fuente
- Centre for Tropical Environmental and Sustainability Science, College of Science & Engineering, James Cook University, Townsville, Australia
| | - Alejandro Navarro
- Centre for Tropical Environmental and Sustainability Science, College of Science & Engineering, James Cook University, Townsville, Australia
| | - Stephen E Williams
- Centre for Tropical Environmental and Sustainability Science, College of Science & Engineering, James Cook University, Townsville, Australia
| |
Collapse
|
4
|
van Blerk JJ, West AG, Altwegg R, Hoffman MT. Does a trade-off between growth plasticity and resource conservatism mediate post-fire shrubland responses to rainfall seasonality? THE NEW PHYTOLOGIST 2021; 230:1407-1420. [PMID: 33524198 DOI: 10.1111/nph.17246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Growth plasticity may allow fire-prone species to maximize their recovery rates during temporary, sporadic periods of rainfall availability in the post-fire environment. However, moisture-driven growth plasticity could be maladaptive in nutrient-limited environments that require tighter control of growth and resource use. We investigated whether a trade-off between plasticity and conservatism mediates growth responses to altered rainfall seasonality in neighbouring shrubland communities that occupy different soils. We monitored post-fire vegetation regrowth in two structurally similar, Mediterranean-type shrublands for 3 years. We investigated the effects of experimentally altered rainfall seasonality on post-fire species' growth rates. We found that moisture-driven growth plasticity was higher among species occupying the fertile soils of the renosterveld site relative to those occupying the nutrient-poor soils of the fynbos site. This resulted in higher overall responsiveness of post-fire recovery patterns in renosterveld to experimental shifts in rainfall seasonality. In post-fire shrubland communities, the trade-off between moisture-dependent growth plasticity and resource conservatism could be mediated by soil nutrient availability. Therefore, edaphic differences between structurally similar shrublands could lead to differences in their sensitivity to post-fire rainfall seasonality.
Collapse
Affiliation(s)
- Justin J van Blerk
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Adam G West
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Res Altwegg
- Centre for Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - M Timm Hoffman
- Plant Conservation Unit, Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| |
Collapse
|
5
|
Sensitivity of Vegetation Growth to Precipitation in a Typical Afforestation Area in the Loess Plateau: Plant-Water Coupled Modelling. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Nematodes and cestodes of rodents in South Africa: baseline data on diversity and geographic distribution. J Helminthol 2019; 94:e81. [PMID: 31469060 DOI: 10.1017/s0022149x19000403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Currently, descriptive information on the host range and geographic distribution of helminth parasites associated with naturally occurring rodents in South and southern Africa is scant. Therefore, we embarked on a countrywide study to: (1) identify gastrointestinal helminths and their host range, and (2) provide baseline data on the geographic distribution of helminths across the country. Altogether, 55 helminth taxa were recovered from at least 13 rodent species (n = 1030) at 26 localities across South Africa. The helminth taxa represented 25 genera (15 nematodes, nine cestodes and one acanthocephalan). Monoxenous nematodes were the most abundant and prevalent group, while the occurrence of heteroxenous nematodes and cestodes was generally lower. The study recorded several novel helminth-host associations. Single-host-species infections were common, although multiple-host-species infections by helminth species were also recorded. Monoxenous nematodes and some cestodes were recovered countrywide, whereas heteroxenous nematodes were restricted to the eastern regions of South Africa. The study highlights the as yet unexplored diversity of helminth species associated with naturally occurring rodent species and provides initial data on their geographical distribution in South Africa.
Collapse
|
7
|
Spickett A, van der Mescht L, Junker K, Krasnov BR, Haukisalmi V, Matthee S. Beta diversity of gastrointestinal helminths in two closely related South African rodents: species and site contributions. Parasitol Res 2019; 118:2863-2875. [PMID: 31399870 DOI: 10.1007/s00436-019-06411-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Abstract
A fundamental aim of parasite ecology is to understand the mechanisms behind spatial variation in diversity and structure of parasite assemblages. To understand the contribution of individual parasite species and their assemblages to spatial variation in parasite communities, we examined species contributions to beta diversity (SCBD) and local contributions to beta diversity (LCBD) of parasitic gastrointestinal helminths (nematodes and cestodes) in two closely related rodents, Rhabdomys dilectus and Rhabdomys pumilio, from 20 localities across South Africa. Although the two Rhabdomys spp. are morphologically similar, they differ substantially in body size, habitat preference, and sociality. We asked whether the variation in life history traits and infection parameters are associated with SCBD of helminths and whether variation in environmental factors, host population density, and species richness of host communities are associated with LCBD of component assemblages of helminths. We also considered spatial factors to test whether LCBD of helminth assemblages demonstrate geographic structure. We found that the contribution of helminth species parasitic in both hosts to beta diversity significantly increased with characteristic prevalence of these species, whereas mean abundance, type of life cycle, and location in the host's gut had no effect on SCBD. The LCBD of helminth assemblages showed a significant positive correlation with environmental factors in both host species. Our results suggest that predictors of variation in SCBD and LCBD may substantially differ between parasites with different infection parameters and/or parasite communities at different hierarchical scales.
Collapse
Affiliation(s)
- Andrea Spickett
- Agricultural Research Council-Onderstepoort Veterinary Institute, Private Bag X05, Onderstepoort, 0110, South Africa.,Department of Conservation ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Luther van der Mescht
- Department of Conservation ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.,Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Kerstin Junker
- Agricultural Research Council-Onderstepoort Veterinary Institute, Private Bag X05, Onderstepoort, 0110, South Africa
| | - Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 84990, Beersheba, Israel
| | | | - Sonja Matthee
- Department of Conservation ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
8
|
Cramer MD, Wootton LM, Mazijk R, Verboom GA. New regionally modelled soil layers improve prediction of vegetation type relative to that based on global soil models. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Michael D. Cramer
- Department of Biological Sciences University of Cape Town Cape Town South Africa
| | - Lara M. Wootton
- Department of Biological Sciences University of Cape Town Cape Town South Africa
| | - Ruan Mazijk
- Department of Biological Sciences University of Cape Town Cape Town South Africa
| | | |
Collapse
|
9
|
Dirks I, Köhler J, Rachmilevitch S, Meier IC. The Phosphorus Economy of Mediterranean Oak Saplings Under Global Change. FRONTIERS IN PLANT SCIENCE 2019; 10:405. [PMID: 31024583 PMCID: PMC6459984 DOI: 10.3389/fpls.2019.00405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/18/2019] [Indexed: 05/26/2023]
Abstract
While a severe decrease in phosphorus (P) availability is already taking place in a large number of ecosystems, drought and nitrogen (N) deposition will likely further decrease the availability of P under global change. Plants have developed physiological strategies to cope with decreasing P resources, but it is unclear how these strategies respond to elevated N deposition and summer droughts. We investigated the influence of N and P availability and soil drought on P uptake (H3 33PO4 feeding experiment) and use efficiencies in young Quercus calliprinos Webb. trees. We hypothesized that (H1) the expected increases in soil N:P ratios will increase the efficiencies of P uptake and use of oak saplings but will decrease the efficiencies of N uptake and use, whereas (H2) drought will affect P uptake efficiency more than N uptake efficiency. In confirmation of (H1) we found that a sharp increase of the soil N:P ratio from 4 to 42 g g-1 significantly increased the instantaneous 33P uptake efficiency (33PUptakeE) by five-fold and long-term P uptake efficiency (PUptakeE) by six-fold, while it decreased N uptake efficiency (NUptakeE) and N use efficiency (NUE). In contradiction to (H1), P use efficiency (PUE) did not respond to the simulated extended gradient of soil N:P ratios but remained relatively constant. (H2) was only partially confirmed as soil drought reduced PUptakeE by up to a fourth at high soil N:P ratios but had no significant effect on NUptakeE. As a consequence, increasing summer droughts may decrease the response of PUptakeE to increasing P limitation, which - in the absence of adjustments of the efficiency of P use - can aggravate growth reductions in this eastern Mediterranean tree species under global change.
Collapse
Affiliation(s)
- Inga Dirks
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben Gurion University of the Negev, Beersheba, Israel
| | - Julia Köhler
- Plant Ecology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Shimon Rachmilevitch
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben Gurion University of the Negev, Beersheba, Israel
| | - Ina C. Meier
- Plant Ecology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Salazar-Tortosa D, Castro J, Villar-Salvador P, Viñegla B, Matías L, Michelsen A, Rubio de Casas R, Querejeta JI. The "isohydric trap": A proposed feedback between water shortage, stomatal regulation, and nutrient acquisition drives differential growth and survival of European pines under climatic dryness. GLOBAL CHANGE BIOLOGY 2018; 24:4069-4083. [PMID: 29768696 DOI: 10.1111/gcb.14311] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/11/2018] [Indexed: 05/15/2023]
Abstract
Climatic dryness imposes limitations on vascular plant growth by reducing stomatal conductance, thereby decreasing CO2 uptake and transpiration. Given that transpiration-driven water flow is required for nutrient uptake, climatic stress-induced nutrient deficit could be a key mechanism for decreased plant performance under prolonged drought. We propose the existence of an "isohydric trap," a dryness-induced detrimental feedback leading to nutrient deficit and stoichiometry imbalance in strict isohydric species. We tested this framework in a common garden experiment with 840 individuals of four ecologically contrasting European pines (Pinus halepensis, P. nigra, P. sylvestris, and P. uncinata) at a site with high temperature and low soil water availability. We measured growth, survival, photochemical efficiency, stem water potentials, leaf isotopic composition (δ13 C, δ18 O), and nutrient concentrations (C, N, P, K, Zn, Cu). After 2 years, the Mediterranean species Pinus halepensis showed lower δ18 O and higher δ13 C values than the other species, indicating higher time-integrated transpiration and water-use efficiency (WUE), along with lower predawn and midday water potentials, higher photochemical efficiency, higher leaf P, and K concentrations, more balanced N:P and N:K ratios, and much greater dry-biomass (up to 63-fold) and survival (100%). Conversely, the more mesic mountain pine species showed higher leaf δ18 O and lower δ13 C, indicating lower transpiration and WUE, higher water potentials, severe P and K deficiencies and N:P and N:K imbalances, and poorer photochemical efficiency, growth, and survival. These results support our hypothesis that vascular plant species with tight stomatal regulation of transpiration can become trapped in a feedback cycle of nutrient deficit and imbalance that exacerbates the detrimental impacts of climatic dryness on performance. This overlooked feedback mechanism may hamper the ability of isohydric species to respond to ongoing global change, by aggravating the interactive impacts of stoichiometric imbalance and water stress caused by anthropogenic N deposition and hotter droughts, respectively.
Collapse
Affiliation(s)
- Diego Salazar-Tortosa
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Jorge Castro
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Pedro Villar-Salvador
- Forest Ecology and Restoration Group, Departamento de Ciencias de la Vida, Universidad de Alcalá, Madrid, Spain
| | - Benjamín Viñegla
- Departamento de Biología Animal, Biología Vegetal y Ecología, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Luis Matías
- Departamento de Biología Animal, Biología Vegetal y Ecología, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Rafael Rubio de Casas
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - José I Querejeta
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
11
|
Riquelme C, Estay SA, López R, Pastore H, Soto-Gamboa M, Corti P. Protected areas' effectiveness under climate change: a latitudinal distribution projection of an endangered mountain ungulate along the Andes Range. PeerJ 2018; 6:e5222. [PMID: 30013852 PMCID: PMC6046192 DOI: 10.7717/peerj.5222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/21/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Climate change is one of the greatest threats to biodiversity, pushing species to shift their distribution ranges and making existing protected areas inadequate. Estimating species distribution and potential modifications under climate change are then necessary for adjusting conservation and management plans; this is especially true for endangered species. An example of this issue is the huemul (Hippocamelus bisulcus), an endemic endangered deer from the southern Andes Range, with less than 2,000 individuals. It is distributed in fragmented populations along a 2,000 km latitudinal gradient, in Chile and Argentina. Several threats have reduced its distribution to <50% of its former range. METHODS To estimate its potential distribution and protected areas effectiveness, we constructed a species distribution model using 2,813 huemul presence points throughout its whole distribution range, together with 19 bioclimatic layers and altitude information from Worldclim. Its current distribution was projected for years 2050 and 2070 using five different Global Climate Models estimated for scenarios representing two carbon Representative Concentration Routes (RCP)-RCP4.5 and RCP6.0. RESULTS Based on current huemul habitat variables, we estimated 91,617 km2 of suitable habitat. In future scenarios of climate change, there was a loss of suitable habitat due to altitudinal and latitudinal variation. Future projections showed a decrease of 59.86-60.26% for the year 2050 and 58.57-64.34% for the year 2070 according to RCP4.5 and RCP6.0, respectively. Protected areas only covered only 36.18% of the present distribution, 38.57-34.94% for the year 2050 and 30.79-31.94% for 2070 under climate change scenarios. DISCUSSION Modeling current and future huemul distributions should allow the establishment of priority conservation areas in which to focus efforts and funds, especially areas without official protection. In this way, we can improve management in areas heavily affected by climate change to help ensure the persistence of this deer and other species under similar circumstances worldwide.
Collapse
Affiliation(s)
- Carlos Riquelme
- Programa de Magíster en Ecología Aplicada, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Laboratorio de Manejo y Conservación de Vida Silvestre, Instituto de Ciencia Animal y Programa de Investigación Aplicada en Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Sergio A. Estay
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Hernán Pastore
- Dirección Regional Patagonia Norte, Administración de Parques Nacionales, San Carlos de Bariloche, Argentina
| | - Mauricio Soto-Gamboa
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Paulo Corti
- Laboratorio de Manejo y Conservación de Vida Silvestre, Instituto de Ciencia Animal y Programa de Investigación Aplicada en Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
12
|
Verboom GA, Stock WD, Cramer MD. Specialization to Extremely Low-Nutrient Soils Limits the Nutritional Adaptability of Plant Lineages. Am Nat 2017; 189:684-699. [DOI: 10.1086/691449] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Helminth parasitism in two closely related South African rodents: abundance, prevalence, species richness and impinging factors. Parasitol Res 2017; 116:1395-1409. [DOI: 10.1007/s00436-017-5419-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
|