1
|
Winnicki AC, Dietrich MH, Yeoh LM, Carias LL, Roobsoong W, Drago CL, Malachin AN, Redinger KR, Feufack-Donfack LB, Baldor L, Jung NC, McLaine OS, Skomorovska-Prokvolit Y, Orban A, Opi DH, Kirtley P, Nielson K, Aleshnick M, Zanghi G, Rezakhani N, Vaughan AM, Wilder BK, Sattabongkot J, Tham WH, Popovici J, Beeson JG, Bosch J, King CL. Potent AMA1-specific human monoclonal antibody against Plasmodium vivax Pre-erythrocytic and Blood Stages. Nat Commun 2024; 15:10556. [PMID: 39632799 PMCID: PMC11618605 DOI: 10.1038/s41467-024-53848-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
New therapeutics are necessary for preventing Plasmodium vivax malaria due to easy transmissibility and dormancy in the liver that increases the clinical burden due to recurrent relapse. In this manuscript we characterize 12 Pv Apical Membrane Antigen 1 (PvAMA1) specific human monoclonal antibodies from Peripheral Blood Mononuclear Cells of a Pv-exposed individual. PvAMA1 is essential for sporozoite and merozoite invasion, making it a unique therapeutic target. We show that humAb 826827 blocks the invasion of human reticulocytes using Pv clinical isolates and inhibits sporozoite invasion of human hepatocytes in vitro (IC50 of 0.3 - 3.7 µg/mL). Inoculation of human liver transgenic (FRG-humHep) female mice with humAb 826827 significantly reduces liver infection in vivo. The crystal structure of rPvAMA1 bound to 826827 shows that 826827 partially occupies the highly conserved hydrophobic groove in PvAMA1 that binds its known receptor, RON2. We have isolated a potent humAb that is isolate-transcendent, blocks both pre-erythrocytic and blood stage infection, and could be a potential therapy for Pv.
Collapse
MESH Headings
- Plasmodium vivax/immunology
- Animals
- Humans
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/drug therapy
- Antigens, Protozoan/immunology
- Antigens, Protozoan/metabolism
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Female
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Hepatocytes/parasitology
- Hepatocytes/immunology
- Hepatocytes/metabolism
- Antibodies, Protozoan/immunology
- Sporozoites/immunology
- Reticulocytes/parasitology
- Reticulocytes/metabolism
- Reticulocytes/immunology
- Erythrocytes/parasitology
- Erythrocytes/immunology
- Leukocytes, Mononuclear/immunology
- Liver/parasitology
Collapse
Affiliation(s)
- Anna C Winnicki
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Melanie H Dietrich
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lee M Yeoh
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Lenore L Carias
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chiara L Drago
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Alyssa N Malachin
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Karli R Redinger
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | | | - Lea Baldor
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Nicolai C Jung
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Olivia S McLaine
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Yelenna Skomorovska-Prokvolit
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Agnes Orban
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - D Herbert Opi
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne, Parkville, Victoria, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Payton Kirtley
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Kiersey Nielson
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Maya Aleshnick
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nastaran Rezakhani
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Brandon K Wilder
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne, Parkville, Victoria, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jürgen Bosch
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA.
- InterRayBio LLC, Cleveland, USA.
| | - Christopher L King
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA.
- Veterans Affairs Medical Center, Cleveland, OH, USA.
| |
Collapse
|
2
|
Saul FA, Vulliez-Le Normand B, Boes A, Spiegel H, Kocken CH, Faber BW, Bentley GA. Conformational variability in the D2 loop of Plasmodium Apical Membrane antigen 1. J Struct Biol X 2024; 10:100110. [PMID: 39324028 PMCID: PMC11422552 DOI: 10.1016/j.yjsbx.2024.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Apical Membrane Antigen 1 (AMA1) plays a vital role in the invasion of the host erythrocyte by the malaria parasite, Plasmodium. It is thus an important target for vaccine and anti-malaria therapeutic strategies that block the invasion process. AMA1, present on the surface of the parasite, interacts with RON2, a component of the parasite's rhoptry neck (RON) protein complex, which is transferred to the erythrocyte membrane during invasion. The D2 loop of AMA1 plays an essential role in invasion as it partially covers the RON2-binding site and must therefore be displaced for invasion to proceed. Several structural studies have shown that the D2 loop is very mobile, a property that is probably important for the function of AMA1. Here we present three crystal structures of AMA1 from P. falciparum (strains 3D7 and FVO) and P. vivax (strain Sal1), in which the D2 loop could be largely traced in the electron density maps. The D2 loop of PfAMA1-FVO and PvAMA1 (as a complex with a monoclonal antibody Fab) has a conformation previously noted in the P. knowlesi AMA1 structure. The D2 loop of PfAMA1-3D7, however, reveals a novel conformation. We analyse the conformational variability of the D2 loop in these structures, together with those previously reported. Three different conformations can be distinguished, all of which are highly helical and show some similarity in their secondary structure organisation. We discuss the significance of these observations in the light of the flexible nature of the D2 loop and its role in AMA1 function.
Collapse
Affiliation(s)
- Frederick A. Saul
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Plate-forme de Cristallographie C2RT, 75015 Paris, France
- Current address: Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Brigitte Vulliez-Le Normand
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015 Paris, France
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Current address: Leibniz-Institute for Interactive Materials, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Clemens H.M. Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Bart W. Faber
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Graham A. Bentley
- Institut Pasteur, CNRS URA 2185, Unité d’Immunologie Structurale, 75015 Paris, France
- Current address: Institut Pasteur, Université Paris Cité, 75015 Paris, France
| |
Collapse
|
3
|
Winnicki AC, King CL, Bosch J, Malachin AN, Carias LL, Skomorovska-Prokvolit Y, Tham WH, Dietrich MH, Popovici J, Roobsoong W, Beeson JG, Sattabongkot J, Yeoh LM, Opi DH, Feufack-Donfack LB, Orban A, Drago CL, McLaine OS, Redinger KR, Jung NC, Baldor L, Kirtley P, Neilsen K, Aleshnick M, Zanghi G, Rezakhani N, Vaughan AM, Wilder BK. Potent AMA1-specific human monoclonal antibody against P. vivax Pre-erythrocytic and Blood Stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579302. [PMID: 38370683 PMCID: PMC10871283 DOI: 10.1101/2024.02.07.579302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
New therapeutics are necessary for preventing Plasmodium vivax malaria due to easy transmissibility and dormancy in the liver that increases the clinical burden due to recurrent relapse. We isolated 12 Pv Apical Membrane Antigen 1 (PvAMA1) specific human monoclonal antibodies from Peripheral Blood Mononuclear Cells of a Pv exposed individual. PvAMA1 is essential for sporozoite and merozoite invasion, making it a unique therapeutic target. HumAb 826827 blocked the invasion of human erythrocytes using Pv clinical isolates and inhibited sporozoite invasion of human hepatocytes in vitro (IC50 of 0.3 to 3.7 ug/mL). It also significantly reduced liver infection of chimeric FRG humHep mice in vivo. The crystal structure of rPvAMA1 bound to 826827 shows that 826827 partially occupies the highly conserved hydrophobic groove in PvAMA1 that binds its known receptor, RON2. We have isolated a potent humAb that is isolate transcendent, blocks both pre erythrocytic and blood stage infection, and could be a new therapy for Pv.
Collapse
|
4
|
Cuy-Chaparro L, Barney-Borrero D, Arévalo-Pinzón G, Reyes C, Moreno-Pérez DA, Patarroyo MA. Babesia bovis RON2 binds to bovine erythrocytes through a highly conserved epitope. Vet Parasitol 2024; 326:110081. [PMID: 38113611 DOI: 10.1016/j.vetpar.2023.110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
B. bovis invasion of bovine erythrocytes requires tight junction formation involving AMA-1/RON2 complex interaction. RON2 has been considered a vaccine candidate since antibodies targeting the protein can inhibit parasite invasion of target cells; however, the mechanism controlling B. bovis RON2 interaction with red blood cells is not yet fully understood. This study was thus aimed at identifying B. bovis RON2 protein regions associated with interaction with bovine erythrocytes. Natural selection analysis of the ron2 gene identified predominantly negative selection signals in the C-terminal region. Interestingly, protein-cell and competition assays highlighted the RON2-C region's role in peptide 42918-mediated erythrocyte binding, probably to a sialoglycoprotein receptor. This peptide (1218SFIMVKPPALHCVLKPVETL1237) lies within an intrinsically disordered region of the RON2 secondary structure flanked by two helical residues. The study provides, for the first time, valuable insights into RON2's role in interaction with its target cells. Future studies are required for studying the peptide's potential as an anti-B. bovis vaccine component.
Collapse
Affiliation(s)
- Laura Cuy-Chaparro
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia [FIDIC], Carrera 50#26-20, Bogotá DC 111321, Colombia; PhD Programme in Biotechnology, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá DC 111321, Colombia.
| | - Danny Barney-Borrero
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia [FIDIC], Carrera 50#26-20, Bogotá DC 111321, Colombia.
| | - Gabriela Arévalo-Pinzón
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia [FIDIC], Carrera 50#26-20, Bogotá DC 111321, Colombia.
| | - César Reyes
- Structure Analysis Department, Fundación Instituto de Inmunología de Colombia [FIDIC], Carrera 50#26-20, Bogotá DC 111321, Colombia.
| | - Darwin Andrés Moreno-Pérez
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales [U.D.C.A.], Calle 222#55-37, Bogotá DC 111166, Colombia.
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia [FIDIC], Carrera 50#26-20, Bogotá DC 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá DC 111321, Colombia.
| |
Collapse
|
5
|
Defining species-specific and conserved interactions of apical membrane protein 1 during erythrocyte invasion in malaria to inform multi-species vaccines. Cell Mol Life Sci 2023; 80:74. [PMID: 36847896 PMCID: PMC9969379 DOI: 10.1007/s00018-023-04712-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 03/01/2023]
Abstract
Plasmodium falciparum and P. vivax are the major causes of human malaria, and P. knowlesi is an important additional cause in SE Asia. Binding of apical membrane antigen 1 (AMA1) to rhoptry neck protein 2 (RON2) was thought to be essential for merozoite invasion of erythrocytes by Plasmodium spp. Our findings reveal that P. falciparum and P. vivax have diverged and show species-specific binding of AMA1 to RON2, determined by a β-hairpin loop in RON2 and specific residues in AMA1 Loop1E. In contrast, cross-species binding of AMA1 to RON2 is retained between P. vivax and P. knowlesi. Mutation of specific amino acids in AMA1 Loop1E in P. falciparum or P. vivax ablated RON2 binding without impacting erythrocyte invasion. This indicates that the AMA1-RON2-loop interaction is not essential for invasion and additional AMA1 interactions are involved. Mutations in AMA1 that disrupt RON2 binding also enable escape of invasion inhibitory antibodies. Therefore, vaccines and therapeutics will need to be broader than targeting only the AMA1-RON2 interaction. Antibodies targeting AMA1 domain 3 had greater invasion-inhibitory activity when RON2-loop binding was ablated, suggesting this domain is a promising additional target for vaccine development. Targeting multiple AMA1 interactions involved in invasion may enable vaccines that generate more potent inhibitory antibodies and address the capacity for immune evasion. Findings on specific residues for invasion function and species divergence and conservation can inform novel vaccines and therapeutics against malaria caused by three species, including the potential for cross-species vaccines.
Collapse
|
6
|
Fatemi Motlagh M, Mousavi Gargari SL. A bivalent vaccine against avian necrotic enteritis and coccidiosis. J Appl Microbiol 2021; 132:113-125. [PMID: 34101942 DOI: 10.1111/jam.15178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/17/2021] [Accepted: 05/29/2021] [Indexed: 12/01/2022]
Abstract
AIMS In this study, we attempted to design a recombinant vaccine harbouring domain with a key role in enterocyte attachment and cell invasion in necrotic enteritis (NE) and coccidiosis. METHODS AND RESULTS In this study, we investigated whether a recombinant protein consisting of necrotic enteritis B-like toxin, C-terminal domain of alpha-toxin, apical membrane antigen 1 (AMA1), and Rhoptry neck protein 2 (RON2) which we call "NeCoVac" hereafter, can improve protection against both diseases compared to vaccination with each antigen in previous studies. Birds intestinal lesion scores and specific antibody levels were measured to determine protection after oral gavage challenges with virulent Clostridium perfringens and LIVACOX® T. Birds immunized with NeCoVac were protected up to 84% against NE and coccidiosis compared to unimmunized and even positive groups (groups treated with LIVACOX® T [coccidiosis live vaccine] and tylosin as routine veterinary interventions) (p < 0.05). CONCLUSIONS Our findings suggest that vaccination with NeCoVac is highly efficient in protecting birds from NE, coccidiosis and a combination of both diseases. SIGNIFICANCE AND IMPACT OF THE STUDY The present study is the first one to describe the combinatorial use of AMA1 and RON2 against coccidiosis, and the first report using NeCoVac against NE and coccidiosis together.
Collapse
|
7
|
Biswas A, Raran-Kurussi S, Narayan A, Kar A, Chandra Mashurabad P, Bhattacharyya MK, Mandal K. Efficient refolding and functional characterization of PfAMA1(DI+DII) expressed in E. coli. Biochem Biophys Rep 2021; 26:100950. [PMID: 33665380 PMCID: PMC7907217 DOI: 10.1016/j.bbrep.2021.100950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 11/30/2022] Open
Abstract
Apical membrane antigen 1 (AMA1) is a surface protein of Plasmodium sp. that plays a crucial role in forming moving junction (MJ) during the invasion of human red blood cells. The obligatory presence of AMA1 in the parasite lifecycle designates this protein as a potential vaccine candidate and an essential target for the development of novel peptide or protein therapeutics. However, due to multiple cysteine residues in the protein sequence, attaining the native fold with correct disulfide linkages during the refolding process after expression in bacteria has remained challenging for years. Although several approaches to obtain the refolded protein from bacterial expression have been reported previously, achieving high yield during refolding and proper functional validation of the expressed protein was lacking. We report here an improved method of refolding to obtain higher quantity of refolded protein. We have also validated the refolded protein's functional activity by evaluating the expressed AMA1 protein binding with a known inhibitory peptide, rhoptry neck protein 2 (RON2), using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). A simple yet effective protocol for P. falciparum AMA1 protein expression from E. coli. Highly reproducible and scalable refolding protocol. The modified refolding method uses a step-wise dialysis technique. Functional validation of the refolded protein shown by binding with PfRON2 ectodomain using SPR and ITC.
Collapse
Affiliation(s)
- Anamika Biswas
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Sreejith Raran-Kurussi
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Akash Narayan
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Abhisek Kar
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Purna Chandra Mashurabad
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana 500046, India
| | - Mrinal Kanti Bhattacharyya
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana 500046, India
| | - Kalyaneswar Mandal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
- Corresponding author.
| |
Collapse
|
8
|
Dual-Channel Stopped-Flow Apparatus for Simultaneous Fluorescence, Anisotropy, and FRET Kinetic Data Acquisition for Binary and Ternary Biological Complexes. BIOSENSORS 2020; 10:bios10110180. [PMID: 33227895 PMCID: PMC7699296 DOI: 10.3390/bios10110180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
The Stopped-Flow apparatus (SF) tracks molecular events by mixing the reactants in sub-millisecond regimes. The reaction of intrinsically or extrinsically labeled biomolecules can be monitored by recording the fluorescence, F(t), anisotropy, r(t), polarization, p(t), or FRET, F(t)FRET, traces at nanomolar concentrations. These kinetic measurements are critical to elucidate reaction mechanisms, structural information, and even thermodynamics. In a single detector SF, or L-configuration, the r(t), p(t), and F(t) traces are acquired by switching the orientation of the emission polarizer to collect the IVV and IVH signals however it requires two-shot experiments. In a two-detector SF, or T-configuration, these traces are collected in a single-shot experiment, but it increases the apparatus’ complexity and price. Herein, we present a single-detector dual-channel SF to obtain the F(t) and r(t) traces simultaneously, in which a photo-elastic modulator oscillates by 90° the excitation light plane at a 50 kHz frequency, and the emission signal is processed by a set of electronic filters that split it into the r(t) and F(t) analog signals that are digitized and stored into separated spreadsheets by a custom-tailored instrument control software. We evaluated the association kinetics of binary and ternary biological complexes acquired with our dual-channel SF and the traditional methods; such as a single polarizer at the magic angle to acquire F(t), a set of polarizers to track F(t), and r(t), and by energy transfer quenching, F(t)FRET. Our dual-channel SF economized labeled material and yielded rate constants in excellent agreement with the traditional methods.
Collapse
|
9
|
Horta MF, Andrade LO, Martins-Duarte ÉS, Castro-Gomes T. Cell invasion by intracellular parasites - the many roads to infection. J Cell Sci 2020; 133:133/4/jcs232488. [PMID: 32079731 DOI: 10.1242/jcs.232488] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intracellular parasites from the genera Toxoplasma, Plasmodium, Trypanosoma, Leishmania and from the phylum Microsporidia are, respectively, the causative agents of toxoplasmosis, malaria, Chagas disease, leishmaniasis and microsporidiosis, illnesses that kill millions of people around the globe. Crossing the host cell plasma membrane (PM) is an obstacle these parasites must overcome to establish themselves intracellularly and so cause diseases. The mechanisms of cell invasion are quite diverse and include (1) formation of moving junctions that drive parasites into host cells, as for the protozoans Toxoplasma gondii and Plasmodium spp., (2) subversion of endocytic pathways used by the host cell to repair PM, as for Trypanosoma cruzi and Leishmania, (3) induction of phagocytosis as for Leishmania or (4) endocytosis of parasites induced by specialized structures, such as the polar tubes present in microsporidian species. Understanding the early steps of cell entry is essential for the development of vaccines and drugs for the prevention or treatment of these diseases, and thus enormous research efforts have been made to unveil their underlying biological mechanisms. This Review will focus on these mechanisms and the factors involved, with an emphasis on the recent insights into the cell biology of invasion by these pathogens.
Collapse
Affiliation(s)
- Maria Fátima Horta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Luciana Oliveira Andrade
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Érica Santos Martins-Duarte
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Thiago Castro-Gomes
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| |
Collapse
|
10
|
Akter M, Drinkwater N, Devine SM, Drew SC, Krishnarjuna B, Debono CO, Wang G, Scanlon MJ, Scammells PJ, McGowan S, MacRaild CA, Norton RS. Identification of the Binding Site of Apical Membrane Antigen 1 (AMA1) Inhibitors Using a Paramagnetic Probe. ChemMedChem 2019; 14:603-612. [PMID: 30653832 DOI: 10.1002/cmdc.201800802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Indexed: 11/08/2022]
Abstract
Apical membrane antigen 1 (AMA1) is essential for the invasion of host cells by malaria parasites. Several small-molecule ligands have been shown to bind to a conserved hydrophobic cleft in Plasmodium falciparum AMA1. However, a lack of detailed structural information on the binding pose of these molecules has hindered their further optimisation as inhibitors. We have developed a spin-labelled peptide based on RON2, the native binding partner of AMA1, to probe the binding sites of compounds on PfAMA1. The crystal structure of this peptide bound to PfAMA1 shows that it binds at one end of the hydrophobic groove, leaving much of the binding site unoccupied and allowing fragment hits to bind without interference. In paramagnetic relaxation enhancement (PRE)-based NMR screening, the 1 H relaxation rates of compounds binding close to the probe were enhanced. Compounds experienced different degrees of PRE as a result of their different orientations relative to the spin label while bound to AMA1. Thus, PRE-derived distance constraints can be used to identify binding sites and guide further hit optimisation.
Collapse
Affiliation(s)
- Mansura Akter
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Nyssa Drinkwater
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Shane M Devine
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Simon C Drew
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Cael O Debono
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Geqing Wang
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Martin J Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Christopher A MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| |
Collapse
|
11
|
Delgadillo RF, Mueser TC, Zaleta-Rivera K, Carnes KA, González-Valdez J, Parkhurst LJ. Detailed characterization of the solution kinetics and thermodynamics of biotin, biocytin and HABA binding to avidin and streptavidin. PLoS One 2019; 14:e0204194. [PMID: 30818336 PMCID: PMC6394990 DOI: 10.1371/journal.pone.0204194] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/01/2019] [Indexed: 01/02/2023] Open
Abstract
The high affinity (KD ~ 10−15 M) of biotin for avidin and streptavidin is the essential component in a multitude of bioassays with many experiments using biotin modifications to invoke coupling. Equilibration times suggested for these assays assume that the association rate constant (kon) is approximately diffusion limited (109 M-1s-1) but recent single molecule and surface binding studies indicate that they are slower than expected (105 to 107 M-1s-1). In this study, we asked whether these reactions in solution are diffusion controlled, which reaction model and thermodynamic cycle describes the complex formation, and if there are any functional differences between avidin and streptavidin. We have studied the biotin association by two stopped-flow methodologies using labeled and unlabeled probes: I) fluorescent probes attached to biotin and biocytin; and II) unlabeled biotin and HABA, 2-(4’-hydroxyazobenzene)-benzoic acid. Both native avidin and streptavidin are homo-tetrameric and the association data show no cooperativity between the binding sites. The kon values of streptavidin are faster than avidin but slower than expected for a diffusion limited reaction in both complexes. Moreover, the Arrhenius plots of the kon values revealed strong temperature dependence with large activation energies (6–15 kcal/mol) that do not correspond to a diffusion limited process (3–4 kcal/mol). Accordingly, we propose a simple reaction model with a single transition state for non-immobilized reactants whose forward thermodynamic parameters complete the thermodynamic cycle, in agreement with previously reported studies. Our new understanding and description of the kinetics, thermodynamics, and spectroscopic parameters for these complexes will help to improve purification efficiencies, molecule detection, and drug screening assays or find new applications.
Collapse
Affiliation(s)
- Roberto F. Delgadillo
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (RFD); (LJP)
| | - Timothy C. Mueser
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, United States of America
| | - Kathia Zaleta-Rivera
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Katie A. Carnes
- GlaxoSmithKline, Medicinal Science and Technology, R&D, King of Prussia, Pennsylvania, United States of America
| | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science, NL, Monterrey, Mexico
| | - Lawrence J. Parkhurst
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (RFD); (LJP)
| |
Collapse
|
12
|
Bermúdez M, Arévalo-Pinzón G, Rubio L, Chaloin O, Muller S, Curtidor H, Patarroyo MA. Receptor-ligand and parasite protein-protein interactions in Plasmodium vivax: Analysing rhoptry neck proteins 2 and 4. Cell Microbiol 2018; 20:e12835. [PMID: 29488316 DOI: 10.1111/cmi.12835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 02/21/2018] [Indexed: 11/28/2022]
Abstract
Elucidating receptor-ligand and protein-protein interactions represents an attractive alternative for designing effective Plasmodium vivax control methods. This article describes the ability of P. vivax rhoptry neck proteins 2 and 4 (RON2 and RON4) to bind to human reticulocytes. Biochemical and cellular studies have shown that two PvRON2- and PvRON4-derived conserved regions specifically interact with protein receptors on reticulocytes marked by the CD71 surface transferrin receptor. Mapping each protein fragment's binding region led to defining the specific participation of two 20 amino acid-long regions selectively competing for PvRON2 and PvRON4 binding to reticulocytes. Binary interactions between PvRON2 (ligand) and other parasite proteins, such as PvRON4, PvRON5, and apical membrane antigen 1 (AMA1), were evaluated and characterised by surface plasmon resonance. The results revealed that both PvRON2 cysteine-rich regions strongly interact with PvAMA1 Domains II and III (equilibrium constants in the nanomolar range) and at a lower extent with the complete PvAMA1 ectodomain and Domains I and II. These results strongly support that these proteins participate in P. vivax's complex invasion process, thus providing new pertinent targets for blocking P. vivax merozoites' specific entry to their target cells.
Collapse
Affiliation(s)
- Maritza Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Gabriela Arévalo-Pinzón
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Laura Rubio
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Olivier Chaloin
- CNRS, Immunopathology and therapeutic chemistry, Institut de Biologie Moléculaire et Cellulaire (IBMC), Strasbourg, France
| | - Sylviane Muller
- CNRS, Immunopathology and therapeutic chemistry, Institut de Biologie Moléculaire et Cellulaire (IBMC), Strasbourg, France.,CNRS, Biotechnology and cell signaling, University of Strasbourg, France / Laboratory of Excellence Medalis, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
13
|
Disrupting CD147-RAP2 interaction abrogates erythrocyte invasion by Plasmodium falciparum. Blood 2018; 131:1111-1121. [PMID: 29352039 DOI: 10.1182/blood-2017-08-802918] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/08/2018] [Indexed: 11/20/2022] Open
Abstract
Effective vaccines against malaria caused by Plasmodium falciparum are still lacking, and the molecular mechanism of the host-parasite interaction is not fully understood. Here we demonstrate that the interaction of RAP2, a parasite-secreted rhoptry protein that functions in the parasitophorous vacuole formation stage of the invasion, and CD147 on the host erythrocyte is essential for erythrocyte invasion by P falciparum and is independent from all previously identified interactions involved. Importantly, the blockade of the CD147-RAP2 interaction by HP6H8, a humanized CD147 antibody, completely abolished the parasite invasion with both cure and preventative functions in a humanized mouse model. Together with its long half-life on human red blood cells and its safety profile in cynomolgus monkeys, HP6H8 is the first antibody that offers an advantageous approach by targeting a more conserved late-stage parasite ligand for preventing as well as treating severe malaria.
Collapse
|
14
|
Arévalo-Pinzón G, Bermúdez M, Hernández D, Curtidor H, Patarroyo MA. Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep 2017; 7:9616. [PMID: 28855657 PMCID: PMC5577344 DOI: 10.1038/s41598-017-10025-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022] Open
Abstract
The malarial parasite’s invasion is complex, active and coordinated, involving many low and high affinity interactions with receptors on target cell membrane. Proteomics analysis has described around 40 proteins in P. vivax which could be involved in reticulocyte invasion; few have been studied with the aim of elucidating how many of them establish specific interactions with their respective host cells. Given the importance of knowing which of the parasite’s protein regions are functionally important for invasion, minimum regions mediating specific interaction between Plasmodium vivax apical membrane antigen 1 (PvAMA-1) and its host cell were here elucidated. The region covering PvAMA-1 domains I and II (PvAMA-DI-II) specifically bound to the CD71+ red blood cell subpopulation. A 20 residue-long region (81EVENAKYRIPAGRCPVFGKG100) located in domain I was capable of inhibiting PvAMA-DI-II recombinant protein binding to young reticulocytes (CD71+CD45−) and rosette formation. This conserved peptide specifically interacted with high affinity with reticulocytes (CD71+) through a neuraminidase- and chymotrypsin-treatment sensitive receptor. Such results showed that, despite AMA-1 having universal functions during late Plasmodium invasion stages, PvAMA-1 had reticulocyte-preferring binding regions, suggesting that P. vivax target cell selection is not just restricted to initial interactions but maintained throughout the erythrocyte invasion cycle, having important implications for designing a specific anti-P. vivax vaccine.
Collapse
Affiliation(s)
- Gabriela Arévalo-Pinzón
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24 #, 63C-69, Bogotá, Colombia
| | - Maritza Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,MSc Program in Biological Sciences, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia
| | - Diana Hernández
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 #, 63C-69, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia. .,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 #, 63C-69, Bogotá, Colombia.
| |
Collapse
|
15
|
Rittipornlertrak A, Nambooppha B, Simking P, Punyapornwithaya V, Tiwananthagorn S, Jittapalapong S, Chung YT, Sthitmatee N. Low levels of genetic diversity associated with evidence of negative selection on the Babesia bovis apical membrane antigen 1 from parasite populations in Thailand. INFECTION GENETICS AND EVOLUTION 2017; 54:447-454. [PMID: 28807856 DOI: 10.1016/j.meegid.2017.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Babesia bovis, a parasite infecting cattle and buffalo, continues to spread throughout the developing world. The babesial vaccine was developed to be a sustainable alternative treatment to control the parasite. However, genetic diversity is a major obstacle for designing and developing a safe and effective vaccine. The apical membrane antigen 1 (AMA-1) is considered to be a potential vaccine candidate antigen among immunogenic genes of B. bovis. To gain a more comprehensive understanding of B. bovis AMA-1 (BbAMA-1), three B. bovis DNA samples were randomly selected to characterize in order to explore genetic diversity and natural selection and to predict the antigen epitopes. The sequence analysis revealed that BbAMA-1 has a low level of polymorphism and is highly conserved (95.46-99.94%) among Thai and global isolates. The majority of the polymorphic sites were observed in domains I and III. Conversely, domain II contained no polymorphic sites. We report the first evidence of strong negative or purifying selection across the full length of the gene, especially in domain I, by demonstrating a significant excess of the average number of synonymous (dS) over the non-synonymous (dN) substitutions. Finally, we also predict the linear and conformational B-cell epitope. The predicted B-cell epitopes appeared to be involved with the amino acid changes. Collectively, the results suggest that the conserved BbAMA-1 may be used to detect regional differences in the B. bovis parasite. Importantly, the limitation of BbAMA-1 diversity under strong negative selection indicates strong functional constraints on this gene. Thus, the gene could be a valuable target vaccine candidate antigen.
Collapse
Affiliation(s)
| | | | - Pacharathon Simking
- Faculty of Agricultural Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
| | | | | | | | - Yang-Tsung Chung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Nattawooti Sthitmatee
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Excellent Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
16
|
Devine SM, MacRaild CA, Norton RS, Scammells PJ. Antimalarial drug discovery targeting apical membrane antigen 1. MEDCHEMCOMM 2017; 8:13-20. [PMID: 30108688 PMCID: PMC6072474 DOI: 10.1039/c6md00495d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/27/2016] [Indexed: 01/06/2023]
Abstract
Malaria continues to frustrate humanity's attempts to eradicate this deadly disease. Although gains have been made over the last 15 years, drug resistance to malaria continues to be a major concern. The lack of new antimalarials with novel mechanisms of action continues to challenge the scientific community to find innovative targets to combat this persistent disease. One such target, apical membrane antigen 1 (AMA1), is an essential protein that helps the parasite invade host erythrocytes. Recently, a number of efforts have focused on the druggability of this target, aiming to block the interactions of AMA1 that mediate invasion of host cells. This review covers recent progress in drug discovery targeting this crucial protein-protein interaction in malaria.
Collapse
Affiliation(s)
- Shane M Devine
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - Christopher A MacRaild
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - Raymond S Norton
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - Peter J Scammells
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| |
Collapse
|
17
|
Expression of truncated Babesia microti apical membrane protein 1 and rhoptry neck protein 2 and evaluation of their protective efficacy. Exp Parasitol 2016; 172:5-11. [PMID: 27876473 DOI: 10.1016/j.exppara.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/04/2016] [Accepted: 11/18/2016] [Indexed: 11/20/2022]
Abstract
In this study, we evaluated the protective effect of recombinant Babesia microti apical membrane protein 1 (rBmAMA1) and rhoptry neck protein 2 (rBmRON2) against B. microti infection using a hamster model. The genes encoding the predicted domains I and II of BmAMA1 and the gene encoding the predicted transmembrane regions 2 and 3 of BmRON2 were expressed as His fusion recombinant proteins in Escherichia coli. Three groups with 5 hamsters in each group were immunized with rBmAMA1, rBmRON2 and rBmAMA1+rBmRON2, then challenged with B. microti. The result showed that only the group immunized with rBmAMA1+rBmRON2 exhibited limited protection against B. microti challenge infection, characterized by significant decreased of parasitemia and higher hematocrit values from day 6-10 post challenge infection. However, there was no significant difference in the groups immunized with rBmAMA1 or rBmRON2 alone. The absence of a significant difference in the total amount of antibodies against rBmAMA1 and rBmRON2 between the group immunized with single and combined proteins. This result suggests that the protection cannot be solely attributed to the quantity of antibodies produced, but also to their ability to target important epitopes from both antigens. These results suggest that combined immunization with rBmAMA1 and rBmRON2 is a promising strategy against B. microti.
Collapse
|