1
|
Datta A, Istiaq A, Tamura S, Ohta K. Bacterial Ribosomes Induce Plasticity in Mouse Adult Fibroblasts. Cells 2024; 13:1116. [PMID: 38994968 PMCID: PMC11240311 DOI: 10.3390/cells13131116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
The incorporation of bacterial ribosome has been reported to induce multipotency in somatic and cancer cells which leads to the conversion of cell lineages. Queried on its universality, we observed that bacterial ribosome incorporation into trypsinized mouse adult fibroblast cells (MAF) led to the formation of ribosome-induced cell clusters (RICs) that showed strong positive alkaline phosphatase staining. Under in vitro differentiation conditions, RICs-MAF were differentiated into adipocytes, osteoblasts, and chondrocytes. In addition, RICs-MAF were able to differentiate into neural cells. Furthermore, RICs-MAF expressed early senescence markers without cell death. Strikingly, no noticeable expression of renowned stemness markers like Oct4, Nanog, Sox2, etc. was observed here. Later RNA-sequencing data revealed the expression of rare pluripotency-associated markers, i.e., Dnmt3l, Sox5, Tbx3 and Cdc73 in RICs-MAF and the enrichment of endogenous ribosomal status. These observations suggested that RICs-MAF might have experienced a non-canonical multipotent state during lineage conversion. In sum, we report a unique approach of an exo-ribosome-mediated plastic state of MAF that is amenable to multi-lineage conversion.
Collapse
Affiliation(s)
- Anamika Datta
- Department of Stem Cell Biology, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan;
| | - Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan;
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Shigehiko Tamura
- Department of Molecular Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan;
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan;
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan;
| |
Collapse
|
2
|
Abu Alhaija AA, Lone IN, Sekeroglu EO, Batur T, Angelov D, Dimitrov S, Hamiche A, Firat Karalar EN, Ercan ME, Yagci T, Alotaibi H, Diril MK. Development of a mouse embryonic stem cell model for investigating the functions of the linker histone H1-4. FEBS Open Bio 2024; 14:309-321. [PMID: 38098212 PMCID: PMC10839353 DOI: 10.1002/2211-5463.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/11/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024] Open
Abstract
The linker histone H1 C-terminal domain (CTD) plays a pivotal role in chromatin condensation. De novo frameshift mutations within the CTD coding region of H1.4 have recently been reported to be associated with Rahman syndrome, a neurological disease that causes intellectual disability and overgrowth. To investigate the mechanisms and pathogenesis of Rahman syndrome, we developed a cellular model using murine embryonic stem cells (mESCs) and CRISPR/Cas9 genome engineering. Our engineered mES cells facilitate detailed investigations, such as H1-4 dynamics, immunoprecipitation, and nuclear localization; in addition, we tagged the mutant H1-4 with a photoactivatable GFP (PA-GFP) and an HA tag to facilitate pulldown assays. We anticipate that these engineered cells could also be used for the development of a mouse model to study the in vivo role of the H1-4 protein.
Collapse
Affiliation(s)
- Abed Alkarem Abu Alhaija
- Department of Molecular Biology and Genetics, Faculty of Basic SciencesGebze Technical UniversityTurkey
- Izmir Biomedicine and Genome CenterTurkey
| | | | - Esin Ozkuru Sekeroglu
- Izmir Biomedicine and Genome CenterTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
| | | | - Dimitar Angelov
- Izmir Biomedicine and Genome CenterTurkey
- Laboratoire de Biologie et de Modélisation de la Cellule LBMC, CNRS UMR 5239Université de Lyon, Ecole Normale Supérieure de LyonFrance
| | - Stefan Dimitrov
- Izmir Biomedicine and Genome CenterTurkey
- Roumen Tsanev Institute of Molecular BiologyBulgarian Academy of SciencesSofiaBulgaria
- Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309Université Grenoble AlpesFrance
| | - Ali Hamiche
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)UdS, CNRS, INSERMStrasbourgFrance
| | | | | | - Tamer Yagci
- Department of Molecular Biology and Genetics, Faculty of Basic SciencesGebze Technical UniversityTurkey
| | - Hani Alotaibi
- Izmir Biomedicine and Genome CenterTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
| | - Muhammed Kasim Diril
- Izmir Biomedicine and Genome CenterTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
- Department of Medical Biology, Faculty of MedicineDokuz Eylül UniversityIzmirTurkey
| |
Collapse
|
3
|
Oses C, De Rossi MC, Bruno L, Verneri P, Diaz MC, Benítez B, Guberman A, Levi V. From the membrane to the nucleus: mechanical signals and transcription regulation. Biophys Rev 2023; 15:671-683. [PMID: 37681098 PMCID: PMC10480138 DOI: 10.1007/s12551-023-01103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023] Open
Abstract
Mechanical forces drive and modulate a wide variety of processes in eukaryotic cells including those occurring in the nucleus. Relevantly, forces are fundamental during development since they guide lineage specifications of embryonic stem cells. A sophisticated macromolecular machinery transduces mechanical stimuli received at the cell surface into a biochemical output; a key component in this mechanical communication is the cytoskeleton, a complex network of biofilaments in constant remodeling that links the cell membrane to the nuclear envelope. Recent evidence highlights that forces transmitted through the cytoskeleton directly affect the organization of chromatin and the accessibility of transcription-related molecules to their targets in the DNA. Consequently, mechanical forces can directly modulate transcription and change gene expression programs. Here, we will revise the biophysical toolbox involved in the mechanical communication with the cell nucleus and discuss how mechanical forces impact on the organization of this organelle and more specifically, on transcription. We will also discuss how live-cell fluorescence imaging is producing exquisite information to understand the mechanical response of cells and to quantify the landscape of interactions of transcription factors with chromatin in embryonic stem cells. These studies are building new biophysical insights that could be fundamental to achieve the goal of manipulating forces to guide cell differentiation in culture systems.
Collapse
Affiliation(s)
- Camila Oses
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - María Cecilia De Rossi
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Luciana Bruno
- Facultad de Ciencias Exactas Y Naturales, Instituto de Cálculo (IC), CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - María Candelaria Diaz
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Belén Benítez
- Instituto de Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Alejandra Guberman
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
- Facultad de Ciencias Exactas Y Naturales, Departamento de Fisiología, Universidad de Buenos Aires, Biología Molecular Y Celular, C1428EGA Buenos Aires, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
- Facultad de Ciencias Exactas Y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
4
|
Antona A, Leo G, Favero F, Varalda M, Venetucci J, Faletti S, Todaro M, Mazzucco E, Soligo E, Saglietti C, Stassi G, Manfredi M, Pelicci G, Corà D, Valente G, Capello D. Targeting lysine-specific demethylase 1 (KDM1A/LSD1) impairs colorectal cancer tumorigenesis by affecting cancer cells stemness, motility, and differentiation. Cell Death Discov 2023; 9:201. [PMID: 37385999 DOI: 10.1038/s41420-023-01502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
Among all cancers, colorectal cancer (CRC) is the 3rd most common and the 2nd leading cause of death worldwide. New therapeutic strategies are required to target cancer stem cells (CSCs), a subset of tumor cells highly resistant to present-day therapy and responsible for tumor relapse. CSCs display dynamic genetic and epigenetic alterations that allow quick adaptations to perturbations. Lysine-specific histone demethylase 1A (KDM1A also known as LSD1), a FAD-dependent H3K4me1/2 and H3K9me1/2 demethylase, was found to be upregulated in several tumors and associated with a poor prognosis due to its ability to maintain CSCs staminal features. Here, we explored the potential role of KDM1A targeting in CRC by characterizing the effect of KDM1A silencing in differentiated and CRC stem cells (CRC-SCs). In CRC samples, KDM1A overexpression was associated with a worse prognosis, confirming its role as an independent negative prognostic factor of CRC. Consistently, biological assays such as methylcellulose colony formation, invasion, and migration assays demonstrated a significantly decreased self-renewal potential, as well as migration and invasion potential upon KDM1A silencing. Our untargeted multi-omics approach (transcriptomic and proteomic) revealed the association of KDM1A silencing with CRC-SCs cytoskeletal and metabolism remodeling towards a differentiated phenotype, supporting the role of KDM1A in CRC cells stemness maintenance. Also, KDM1A silencing resulted in up-regulation of miR-506-3p, previously reported to play a tumor-suppressive role in CRC. Lastly, loss of KDM1A markedly reduced 53BP1 DNA repair foci, implying the involvement of KDM1A in the DNA damage response. Overall, our results indicate that KDM1A impacts CRC progression in several non-overlapping ways, and therefore it represents a promising epigenetic target to prevent tumor relapse.
Collapse
Affiliation(s)
- Annamaria Antona
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy.
| | - Giovanni Leo
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Francesco Favero
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, Department of Translational Medicine, Università del Piemonte Orientale, Corso Trieste 15/A, 28100, Novara, Italy
| | - Marco Varalda
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Jacopo Venetucci
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Stefania Faletti
- Department of Experimental Oncology, IRCCS, European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Eleonora Mazzucco
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Enrica Soligo
- Pathology Unit, Ospedale Sant'Andrea, Corso Mario Abbiate 21, 13100, Vercelli, Italy
| | - Chiara Saglietti
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences, Università di Palermo, Via del Vespro 131, 90127, Palermo, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, Department of Translational Medicine, Università del Piemonte Orientale, Corso Trieste 15/A, 28100, Novara, Italy
| | - Giuliana Pelicci
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Department of Experimental Oncology, IRCCS, European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Davide Corà
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, Department of Translational Medicine, Università del Piemonte Orientale, Corso Trieste 15/A, 28100, Novara, Italy
| | - Guido Valente
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Pathology Unit, Ospedale Sant'Andrea, Corso Mario Abbiate 21, 13100, Vercelli, Italy
| | - Daniela Capello
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
5
|
Putra VDL, Kilian KA, Knothe Tate ML. Biomechanical, biophysical and biochemical modulators of cytoskeletal remodelling and emergent stem cell lineage commitment. Commun Biol 2023; 6:75. [PMID: 36658332 PMCID: PMC9852586 DOI: 10.1038/s42003-022-04320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/30/2022] [Indexed: 01/20/2023] Open
Abstract
Across complex, multi-time and -length scale biological systems, redundancy confers robustness and resilience, enabling adaptation and increasing survival under dynamic environmental conditions; this review addresses ubiquitous effects of cytoskeletal remodelling, triggered by biomechanical, biophysical and biochemical cues, on stem cell mechanoadaptation and emergent lineage commitment. The cytoskeleton provides an adaptive structural scaffold to the cell, regulating the emergence of stem cell structure-function relationships during tissue neogenesis, both in prenatal development as well as postnatal healing. Identification and mapping of the mechanical cues conducive to cytoskeletal remodelling and cell adaptation may help to establish environmental contexts that can be used prospectively as translational design specifications to target tissue neogenesis for regenerative medicine. In this review, we summarize findings on cytoskeletal remodelling in the context of tissue neogenesis during early development and postnatal healing, and its relevance in guiding lineage commitment for targeted tissue regeneration. We highlight how cytoskeleton-targeting chemical agents modulate stem cell differentiation and govern responses to mechanical cues in stem cells' emerging form and function. We further review methods for spatiotemporal visualization and measurement of cytoskeletal remodelling, as well as its effects on the mechanical properties of cells, as a function of adaptation. Research in these areas may facilitate translation of stem cells' own healing potential and improve the design of materials, therapies, and devices for regenerative medicine.
Collapse
Affiliation(s)
- Vina D L Putra
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kristopher A Kilian
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Melissa L Knothe Tate
- Blue Mountains World Interdisciplinary Innovation Institute (bmwi³), Blue Mountains, NSW, Australia.
| |
Collapse
|
6
|
Atkins SK, Sonawane AR, Brouwhuis R, Barrientos J, Ha A, Rogers M, Tanaka T, Okui T, Kuraoka S, Singh SA, Aikawa M, Aikawa E. Induced pluripotent stem cell-derived smooth muscle cells to study cardiovascular calcification. Front Cardiovasc Med 2022; 9:925777. [PMID: 35958427 PMCID: PMC9357895 DOI: 10.3389/fcvm.2022.925777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular calcification is the lead predictor of cardiovascular events and the top cause of morbidity and mortality worldwide. To date, only invasive surgical options are available to treat cardiovascular calcification despite the growing understanding of underlying pathological mechanisms. Key players in vascular calcification are vascular smooth muscle cells (SMCs), which transform into calcifying SMCs and secrete mineralizing extracellular vesicles that form microcalcifications, subsequently increasing plaque instability and consequential plaque rupture. There is an increasing, practical need for a large scale and inexhaustible source of functional SMCs. Here we describe an induced pluripotent stem cell (iPSC)-derived model of SMCs by differentiating iPSCs toward SMCs to study the pathogenesis of vascular calcification. Specifically, we characterize the proteome during iPSC differentiation to better understand the cellular dynamics during this process. First, we differentiated human iPSCs toward an induced-SMC (iSMC) phenotype in a 10-day protocol. The success of iSMC differentiation was demonstrated through morphological analysis, immunofluorescent staining, flow cytometry, and proteomics characterization. Proteomics was performed throughout the entire differentiation time course to provide a robust, well-defined starting and ending cell population. Proteomics data verified iPSC differentiation to iSMCs, and functional enrichment of proteins on different days showed the key pathways changing during iSMC development. Proteomics comparison with primary human SMCs showed a high correlation with iSMCs. After iSMC differentiation, we initiated calcification in the iSMCs by culturing the cells in osteogenic media for 17 days. Calcification was verified using Alizarin Red S staining and proteomics data analysis. This study presents an inexhaustible source of functional vascular SMCs and calcifying vascular SMCs to create an in vitro model of vascular calcification in osteogenic conditions, with high potential for future applications in cardiovascular calcification research.
Collapse
Affiliation(s)
- Samantha K. Atkins
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Abhijeet R. Sonawane
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Abhijeet R. Sonawane,
| | - Romi Brouwhuis
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Johana Barrientos
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Anna Ha
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maximillian Rogers
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Takeshi Tanaka
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Takehito Okui
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Shiori Kuraoka
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Elena Aikawa,
| |
Collapse
|
7
|
Early Signs of Molecular Defects in iPSC-Derived Neural Stems Cells from Patients with Familial Parkinson’s Disease. Biomolecules 2022; 12:biom12070876. [PMID: 35883433 PMCID: PMC9313424 DOI: 10.3390/biom12070876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, classically associated with extensive loss of dopaminergic neurons of the substantia nigra pars compacta. The hallmark of the disease is the accumulation of pathogenic conformations of the presynaptic protein, α-synuclein (αSyn), and the formation of intraneuronal protein aggregate inclusions. Neurodegeneration of dopamine neurons leads to a prominent dopaminergic deficiency in the basal ganglia, responsible for motor disturbances. However, it is now recognized that the disease involves more widespread neuronal dysfunction, leading to early and late non-motor symptoms. The development of in vitro systems based on the differentiation of human-induced pluripotent stem cells provides us the unique opportunity to monitor alterations at the cellular and molecular level throughout the differentiation procedure and identify perturbations that occur early, even at the neuronal precursor stage. Here we aim to identify whether p.A53T-αSyn induced disturbances at the molecular level are already present in neural precursors. Towards this, we present data from transcriptomics analysis of control and p.A53T-αSyn NPCs showing altered expression in transcripts involved in axon guidance, adhesion, synaptogenesis, ion transport, and metabolism. The comparative analysis with the transcriptomics profile of p.A53T-αSyn neurons shows both distinct and overlapping pathways leading to neurodegeneration while meta-analysis with transcriptomics data from both neurodegenerative and neurodevelopmental disorders reveals that p.A53T-pathology has a significant overlap with the latter category. This is the first study showing that molecular dysregulation initiates early at the p.A53T-αSyn NPC level, suggesting that synucleinopathies may have a neurodevelopmental component.
Collapse
|
8
|
Liu S, Kanchanawong P. Emerging interplay of cytoskeletal architecture, cytomechanics and pluripotency. J Cell Sci 2022; 135:275761. [PMID: 35726598 DOI: 10.1242/jcs.259379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pluripotent stem cells (PSCs) are capable of differentiating into all three germ layers and trophoblasts, whereas tissue-specific adult stem cells have a more limited lineage potency. Although the importance of the cytoskeletal architecture and cytomechanical properties in adult stem cell differentiation have been widely appreciated, how they contribute to mechanotransduction in PSCs is less well understood. Here, we discuss recent insights into the interplay of cellular architecture, cell mechanics and the pluripotent states of PSCs. Notably, the distinctive cytomechanical and morphodynamic profiles of PSCs are accompanied by a number of unique molecular mechanisms. The extent to which such mechanobiological signatures are intertwined with pluripotency regulation remains an open question that may have important implications in developmental morphogenesis and regenerative medicine.
Collapse
Affiliation(s)
- Shiying Liu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore 117411, Republic of Singapore
| |
Collapse
|
9
|
Brookes O, Thorpe SD, Rigby Evans O, Keeling MC, Lee DA. Covariation of Pluripotency Markers and Biomechanical Properties in Mouse Embryonic Stem Cells. Front Cell Dev Biol 2022; 10:858884. [PMID: 35652102 PMCID: PMC9149596 DOI: 10.3389/fcell.2022.858884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/20/2022] [Indexed: 12/01/2022] Open
Abstract
Pluripotent cells are subject to much interest as a source of differentiated cellular material for research models, regenerative medical therapies and novel applications such as lab-cultured meat. Greater understanding of the pluripotent state and control over its differentiation is therefore desirable. The role of biomechanical properties in directing cell fate and cell behavior has been increasingly well described in recent years. However, many of the mechanisms which control cell morphology and mechanical properties in somatic cells are absent from pluripotent cells. We leveraged naturally occurring variation in biomechanical properties and expression of pluripotency genes in murine ESCs to investigate the relationship between these parameters. We observed considerable variation in a Rex1-GFP expression reporter line and found that this variation showed no apparent correlation to cell spreading morphology as determined by circularity, Feret ratio, phase contrast brightness or cell spread area, either on a parameter-by-parameter basis, or when evaluated using a combined metric derived by principal component analysis from the four individual criteria. We further confirmed that cell volume does not co-vary with Rex1-GFP expression. Interestingly, we did find that a subpopulation of cells that were readily detached by gentle agitation collectively exhibited higher expression of Nanog, and reduced LmnA expression, suggesting that elevated pluripotency gene expression may correlate with reduced adhesion to the substrate. Furthermore, atomic force microscopy and quantitative fluorescent imaging revealed a connection between cell stiffness and Rex1-GFP reporter expression. Cells expressing high levels of Rex1-GFP are consistently of a relatively low stiffness, while cells with low levels of Rex1-GFP tend toward higher stiffness values. These observations indicate some interaction between pluripotency gene expression and biomechanical properties, but also support a strong role for other interactions between the cell culture regime and cellular biomechanical properties, occurring independently of the core transcriptional network that supports pluripotency.
Collapse
Affiliation(s)
- Oliver Brookes
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Stephen D. Thorpe
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Olga Rigby Evans
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Michael C. Keeling
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - David A. Lee
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
10
|
Hagelaars MJ, Yousef Yengej FA, Verhaar MC, Rookmaaker MB, Loerakker S, Bouten CVC. Substrate Stiffness Determines the Establishment of Apical-Basal Polarization in Renal Epithelial Cells but Not in Tubuloid-Derived Cells. Front Bioeng Biotechnol 2022; 10:820930. [PMID: 35299632 PMCID: PMC8923587 DOI: 10.3389/fbioe.2022.820930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/01/2022] [Indexed: 11/15/2022] Open
Abstract
Mechanical guidance of tissue morphogenesis is an emerging method of regenerative medicine that can be employed to steer functional kidney architecture for the purpose of bioartificial kidney design or renal tissue engineering strategies. In kidney morphogenesis, apical-basal polarization of renal epithelial cells is paramount for tubule formation and subsequent tissue functions like excretion and resorption. In kidney epithelium, polarization is initiated by integrin-mediated cell-matrix adhesion at the cell membrane. Cellular mechanobiology research has indicated that this integrin-mediated adhesion is responsive to matrix stiffness, raising the possibility to use matrix stiffness as a handle to steer cell polarization. Herein, we evaluate apical-basal polarization in response to 2D substates of different stiffness (1, 10, 50 kPa and glass) in Madin Darby Canine Kidney cells (MDCKs), a classic canine-derived cell model of epithelial polarization, and in tubuloid-derived cells, established from human primary cells derived from adult kidney tissue. Our results show that sub-physiological (1 kPa) substrate stiffness with low integrin-based adhesion induces polarization in MDCKs, while MDCKs on supraphysiological (>10 kPa) stiffness remain unpolarized. Inhibition of integrin, indeed, allows for polarization on the supraphysiological substrates, suggesting that increased cellular adhesion on stiff substrates opposes polarization. In contrast, tubuloid-derived cells do not establish apical-basal polarization on 2D substrates, irrespective of substrate stiffness, despite their ability to polarize in 3D environments. Further analysis implies that the 2D cultured tubuloid-derived cells have a diminished mechanosensitive capacity when presented with different substrate stiffnesses due to immature focal adhesions and the absence of a connection between focal adhesions and the cytoskeleton. Overall, this study demonstrates that apical-basal polarization is a complex process, where cell type, the extracellular environment, and both the mechanical and chemical aspects in cell-matrix interactions performed by integrins play a role.
Collapse
Affiliation(s)
- Maria J. Hagelaars
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, Netherlands
| | - Fjodor A. Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sandra Loerakker
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, Netherlands
| | - Carlijn V. C. Bouten
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, Netherlands
- *Correspondence: Carlijn V. C. Bouten,
| |
Collapse
|
11
|
Romero JJ, De Rossi MC, Oses C, Echegaray CV, Verneri P, Francia M, Guberman A, Levi V. Nucleus-cytoskeleton communication impacts on OCT4-chromatin interactions in embryonic stem cells. BMC Biol 2022; 20:6. [PMID: 34996451 PMCID: PMC8742348 DOI: 10.1186/s12915-021-01207-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The cytoskeleton is a key component of the system responsible for transmitting mechanical cues from the cellular environment to the nucleus, where they trigger downstream responses. This communication is particularly relevant in embryonic stem (ES) cells since forces can regulate cell fate and guide developmental processes. However, little is known regarding cytoskeleton organization in ES cells, and thus, relevant aspects of nuclear-cytoskeletal interactions remain elusive. RESULTS We explored the three-dimensional distribution of the cytoskeleton in live ES cells and show that these filaments affect the shape of the nucleus. Next, we evaluated if cytoskeletal components indirectly modulate the binding of the pluripotency transcription factor OCT4 to chromatin targets. We show that actin depolymerization triggers OCT4 binding to chromatin sites whereas vimentin disruption produces the opposite effect. In contrast to actin, vimentin contributes to the preservation of OCT4-chromatin interactions and, consequently, may have a pro-stemness role. CONCLUSIONS Our results suggest roles of components of the cytoskeleton in shaping the nucleus of ES cells, influencing the interactions of the transcription factor OCT4 with the chromatin and potentially affecting pluripotency and cell fate.
Collapse
Affiliation(s)
- Juan José Romero
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - María Cecilia De Rossi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Camila Vázquez Echegaray
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Marcos Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Alejandra Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Hawdon A, Aberkane A, Zenker J. Microtubule-dependent subcellular organisation of pluripotent cells. Development 2021; 148:272646. [PMID: 34710215 DOI: 10.1242/dev.199909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
With the advancement of cutting-edge live imaging technologies, microtubule remodelling has evolved as an integral regulator for the establishment of distinct differentiated cells. However, despite their fundamental role in cell structure and function, microtubules have received less attention when unravelling the regulatory circuitry of pluripotency. Here, we summarise the role of microtubule organisation and microtubule-dependent events required for the formation of pluripotent cells in vivo by deciphering the process of early embryogenesis: from fertilisation to blastocyst. Furthermore, we highlight current advances in elucidating the significance of specific microtubule arrays in in vitro culture systems of pluripotent stem cells and how the microtubule cytoskeleton serves as a highway for the precise intracellular movement of organelles. This Review provides an informed understanding of the intrinsic role of subcellular architecture of pluripotent cells and accentuates their regenerative potential in combination with innovative light-inducible microtubule techniques.
Collapse
Affiliation(s)
- Azelle Hawdon
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Asma Aberkane
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jennifer Zenker
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
13
|
Mollo N, Esposito M, Aurilia M, Scognamiglio R, Accarino R, Bonfiglio F, Cicatiello R, Charalambous M, Procaccini C, Micillo T, Genesio R, Calì G, Secondo A, Paladino S, Matarese G, Vita GD, Conti A, Nitsch L, Izzo A. Human Trisomic iPSCs from Down Syndrome Fibroblasts Manifest Mitochondrial Alterations Early during Neuronal Differentiation. BIOLOGY 2021; 10:biology10070609. [PMID: 34209429 PMCID: PMC8301075 DOI: 10.3390/biology10070609] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The presence of mitochondrial alterations in Down syndrome suggests that it might affect neuronal differentiation. We established a model of trisomic iPSCs, differentiating into neural precursor cells (NPCs) to monitor the occurrence of differentiation defects and mitochondrial dysfunction. METHODS Isogenic trisomic and euploid iPSCs were differentiated into NPCs in monolayer cultures using the dual-SMAD inhibition protocol. Expression of pluripotency and neural differentiation genes was assessed by qRT-PCR and immunofluorescence. Meta-analysis of expression data was performed on iPSCs. Mitochondrial Ca2+, reactive oxygen species (ROS) and ATP production were investigated using fluorescent probes. Oxygen consumption rate (OCR) was determined by Seahorse Analyzer. RESULTS NPCs at day 7 of induction uniformly expressed the differentiation markers PAX6, SOX2 and NESTIN but not the stemness marker OCT4. At day 21, trisomic NPCs expressed higher levels of typical glial differentiation genes. Expression profiles indicated that mitochondrial genes were dysregulated in trisomic iPSCs. Trisomic NPCs showed altered mitochondrial Ca2+, reduced OCR and ATP synthesis, and elevated ROS production. CONCLUSIONS Human trisomic iPSCs can be rapidly and efficiently differentiated into NPC monolayers. The trisomic NPCs obtained exhibit greater glial-like differentiation potential than their euploid counterparts and manifest mitochondrial dysfunction as early as day 7 of neuronal differentiation.
Collapse
Affiliation(s)
- Nunzia Mollo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Matteo Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Miriam Aurilia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Roberta Scognamiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Rossella Accarino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Ferdinando Bonfiglio
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy;
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Rita Cicatiello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Maria Charalambous
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy; (M.C.); (C.P.); (G.C.)
| | - Claudio Procaccini
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy; (M.C.); (C.P.); (G.C.)
- Neuroimmunology Unit, IRCCS, Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Teresa Micillo
- Neuroimmunology Unit, IRCCS, Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Rita Genesio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Gaetano Calì
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy; (M.C.); (C.P.); (G.C.)
| | - Agnese Secondo
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Giuseppe Matarese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy; (M.C.); (C.P.); (G.C.)
| | - Gabriella De Vita
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Anna Conti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy; (M.C.); (C.P.); (G.C.)
| | - Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
- Correspondence: ; Tel.: +39-081-746-3237
| |
Collapse
|
14
|
Ramasubramanian A, Muckom R, Sugnaux C, Fuentes C, Ekerdt BL, Clark DS, Healy KE, Schaffer DV. High-Throughput Discovery of Targeted, Minimally Complex Peptide Surfaces for Human Pluripotent Stem Cell Culture. ACS Biomater Sci Eng 2021; 7:1344-1360. [PMID: 33750112 DOI: 10.1021/acsbiomaterials.0c01462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human pluripotent stem cells harbor an unlimited capacity to generate therapeutically relevant cells for applications in regenerative medicine. However, to utilize these cells in the clinic, scalable culture systems that activate defined receptors and signaling pathways to sustain stem cell self-renewal are required; and synthetic materials offer considerable promise to meet these needs. De novo development of materials that target novel pathways has been stymied by a limited understanding of critical receptor interactions maintaining pluripotency. Here, we identify peptide agonists for the human pluripotent stem cell (hPSC) laminin receptor and pluripotency regulator, α6-integrin, through unbiased, library-based panning strategies. Biophysical characterization of adhesion suggests that identified peptides bind hPSCs through α6-integrin with sub-μM dissociation constants similar to laminin. By harnessing a high-throughput microculture platform, we developed predictive guidelines for presenting these integrin-targeting peptides alongside canonical binding motifs at optimal stoichiometries to generate nascent culture surfaces. Finally, when presented as self-assembled monolayers, predicted peptide combinations supported hPSC expansion, highlighting how unbiased screens can accelerate the discovery of targeted biomaterials.
Collapse
Affiliation(s)
- Anusuya Ramasubramanian
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Riya Muckom
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Caroline Sugnaux
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Christina Fuentes
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Barbara L Ekerdt
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Kevin E Healy
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - David V Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Huang Y, Miyamoto D, Li PL, Sakai Y, Hara T, Adachi T, Soyama A, Hidaka M, Kanetaka K, Gu WL, Eguchi S. Chemical conversion of aged hepatocytes into bipotent liver progenitor cells. Hepatol Res 2021; 51:323-335. [PMID: 33378128 DOI: 10.1111/hepr.13609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
Abstract
AIM In the aging society, understanding the influence of hepatocyte age on hepatocyte donation may inform efforts to expand alternative cell sources to mitigate liver donor shortage. A combination of the molecules Y27632, A-83-01, and CHIR99021 has been used to reprogram rodent young hepatocytes into chemically induced liver progenitor (CLiP) cells; however, whether it could also reprogram aged hepatocytes has not yet been elucidated. METHODS Primary hepatocytes were isolated from aged and young donor rats, respectively. Hepatic histological changes were evaluated. Differences in gene expression in hepatocytes were identified. The in vitro reprogramming plasticity of hepatocytes as evidenced by CLiP conversion and the hepatocyte and cholangiocyte maturation capacity of reprogrammed CLIPs were analyzed. The effect of hepatocyte growth factor (HGF) on cell propagation was also investigated. RESULTS The histological findings revealed ongoing liver damage with inflammation, fibrosis, senescence, and ductular reaction in aged livers. Microarray analysis showed altered gene expression profiles in hepatocytes from aged donors, especially with regard to metabolic pathways. Aged hepatocytes could be converted into CLiPs (Aged-CLiPs) expressing progenitor cell markers, but with a relatively low proliferative rate compared with young hepatocytes. Aged-CLiPs possessed both hepatocyte and cholangiocyte maturation capacity. HGF facilitated CLiP conversion in aged hepatocytes, which was partly related to the activation of Erk1 and Akt1 signaling. CONCLUSIONS Aged rat hepatocytes have retained reprogramming plasticity as evidenced by CLiP conversion in culture. HGF promoted proliferation and CLiP conversion in aged hepatocytes. Hepatocytes from aged donors may be used as an alternative cell source to mitigate donor shortage.
Collapse
Affiliation(s)
- Yu Huang
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Surgery, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Daisuke Miyamoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Pei-Lin Li
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Surgery, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Yusuke Sakai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, Fukuoka, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Wei-Li Gu
- Department of Surgery, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
16
|
Bisogno LS, Yang J, Bennett BD, Ward JM, Mackey LC, Annab LA, Bushel PR, Singhal S, Schurman SH, Byun JS, Nápoles AM, Pérez-Stable EJ, Fargo DC, Gardner K, Archer TK. Ancestry-dependent gene expression correlates with reprogramming to pluripotency and multiple dynamic biological processes. SCIENCE ADVANCES 2020; 6:6/47/eabc3851. [PMID: 33219026 PMCID: PMC7679169 DOI: 10.1126/sciadv.abc3851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/02/2020] [Indexed: 05/10/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be derived from differentiated cells, enabling the generation of personalized disease models by differentiating patient-derived iPSCs into disease-relevant cell lines. While genetic variability between different iPSC lines affects differentiation potential, how this variability in somatic cells affects pluripotent potential is less understood. We generated and compared transcriptomic data from 72 dermal fibroblast-iPSC pairs with consistent variation in reprogramming efficiency. By considering equal numbers of samples from self-reported African Americans and White Americans, we identified both ancestry-dependent and ancestry-independent transcripts associated with reprogramming efficiency, suggesting that transcriptomic heterogeneity can substantially affect reprogramming. Moreover, reprogramming efficiency-associated genes are involved in diverse dynamic biological processes, including cancer and wound healing, and are predictive of 5-year breast cancer survival in an independent cohort. Candidate genes may provide insight into mechanisms of ancestry-dependent regulation of cell fate transitions and motivate additional studies for improvement of reprogramming.
Collapse
Affiliation(s)
- Laura S Bisogno
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jun Yang
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Brian D Bennett
- Integrative Bioinformatics, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - James M Ward
- Integrative Bioinformatics, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lantz C Mackey
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lois A Annab
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Pierre R Bushel
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sandeep Singhal
- Department of Pathology, Department of Computer Science, University of North Dakota, Grand Forks, ND, USA
| | - Shepherd H Schurman
- Clinical Research Unit, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jung S Byun
- Division of Intramural Research, Office of the Scientific Director, National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
| | - Anna María Nápoles
- Division of Intramural Research, Office of the Scientific Director, National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
| | - Eliseo J Pérez-Stable
- Division of Intramural Research, Office of the Scientific Director, National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
- Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - David C Fargo
- Office of Scientific Computing, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Kevin Gardner
- Division of Intramural Research, Office of the Scientific Director, National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Trevor K Archer
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
17
|
Functionalisation of a heat-derived and bio-inert albumin hydrogel with extracellular matrix by air plasma treatment. Sci Rep 2020; 10:12429. [PMID: 32709918 PMCID: PMC7382478 DOI: 10.1038/s41598-020-69301-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Albumin-based hydrogels are increasingly attractive in tissue engineering because they provide a xeno-free, biocompatible and potentially patient-specific platform for tissue engineering and drug delivery. The majority of research on albumin hydrogels has focused on bovine serum albumin (BSA), leaving human serum albumin (HSA) comparatively understudied. Different gelation methods are usually employed for HSA and BSA, and variations in the amino acid sequences of HSA and BSA exist; these account for differences in the hydrogel properties. Heat-induced gelation of aqueous HSA is the easiest method of synthesizing HSA hydrogels however hydrogel opacity and poor cell attachment limit their usefulness in downstream applications. Here, a solution to this problem is presented. Stable and translucent HSA hydrogels were created by controlled thermal gelation and the addition of sodium chloride. The resulting bio-inert hydrogel was then subjected to air plasma treatment which functionalised its surface, enabling the attachment of basement membrane matrix (Geltrex). In vitro survival and proliferation studies of foetal human osteoblasts subsequently demonstrated good biocompatibility of functionalised albumin hydrogels compared to untreated samples. Thus, air plasma treatment enables functionalisation of inert heat-derived HSA hydrogels with extracellular matrix proteins and these may be used as a xeno-free platform for biomedical research or cell therapy.
Collapse
|
18
|
Mishra P, Cohen RI, Zhao N, Moghe PV. Fluorescence-based actin turnover dynamics of stem cells as a profiling method for stem cell functional evolution, heterogeneity and phenotypic lineage parsing. Methods 2020; 190:44-54. [PMID: 32473293 DOI: 10.1016/j.ymeth.2020.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cells are widely explored in regenerative medicine as a source to produce diverse cell types. Despite the wide usage of stem cells like mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), there is a lack of robust methods to rapidly discern the phenotypic and functional heterogeneity of stem cells. The organization of actin cytoskeleton has been previously used to discern divergent stem cell differentiation pathways. In this paper, we highlight the versatility of a cell profiling method for actin turnover dynamics. Actin filaments in live stem cells are labeled using SiR-actin, a cell permeable fluorogenic probe, to determine the endogenous actin turnover. Live MSC imaging after days of induction successfully demonstrated lineage specific change in actin turnover. Next, we highlighted the differences in the cellular heterogeneity of actin dynamics during adipogenic or osteogenic MSC differentiation. Next, we applied the method to differentiating iPSCs in culture, and detected a progressive slowdown in actin turnover during differentiation upon stimulation with neural or cardiac media. Finally, as a proof of concept, the actin dynamic profiling was used to isolate MSCs via flow cytometry prior to sorting into three distinct sub-populations with low, intermediate or high actin dynamics. A greater fraction of MSCs with more rapid actin dynamics demonstrated increased inclination for adipogenesis, whereas, slower actin dynamics correlated with increased osteogenesis. Together, these results show that actin turnover can serve as a versatile biomarker to not only track cellular phenotypic heterogeneity but also harvest live cells with potential for differential phenotypic fates.
Collapse
Affiliation(s)
- Prakhar Mishra
- Molecular Biosciences Graduate Program in Cell and Developmental Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Ricky I Cohen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Nanxia Zhao
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
19
|
Fan YL, Li B, Zhao HP, Zhao HC, Feng XQ. A function of fascin1 in the colony formation of mouse embryonic stem cells. Stem Cells 2020; 38:1078-1090. [PMID: 32379912 DOI: 10.1002/stem.3197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/16/2020] [Indexed: 11/07/2022]
Abstract
Fascin1 is known to participate in the migration of cancer cells by binding to actin filaments. Recent studies evidenced that fascin1 also modulates processes such as the tumorigenesis and maintenance of pluripotency genes in cancer stem cells. However, the function of fascin1 in embryonic stem cells remains unclear. In this article, we report that fascin1 is highly expressed and widely distributed in mouse embryonic stem cells (mESCs), which are regulated by JAK-STAT3 and β-catenin. We found that the overexpression of fascin1 impairs the formation of mESC colonies via the downregulation of intercellular adhesion molecules, and that mimicking the dephosphorylated mutation of fascin1 or inhibiting phosphorylation with Gö6983 significantly enhances colony formation. Hyperphosphorylated fascin1 can promote the maintenance of pluripotency in mESCs via nuclear localization and suppressing DNA methyltransferase expression. Our findings demonstrate a novel function of fascin1, as a vital regulator, in the colony formation and pluripotency of mESCs and provide insights into the molecular mechanisms underlying embryonic stem cell self-organization and development in vitro.
Collapse
Affiliation(s)
- Yan-Lei Fan
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, AML, Tsinghua University, Beijing, People's Republic of China
| | - Bo Li
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, AML, Tsinghua University, Beijing, People's Republic of China
| | - Hong-Ping Zhao
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, AML, Tsinghua University, Beijing, People's Republic of China
| | - Hu-Cheng Zhao
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, AML, Tsinghua University, Beijing, People's Republic of China
| | - Xi-Qiao Feng
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, AML, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
20
|
Barzegari A, Gueguen V, Omidi Y, Ostadrahimi A, Nouri M, Pavon‐Djavid G. The role of Hippo signaling pathway and mechanotransduction in tuning embryoid body formation and differentiation. J Cell Physiol 2020; 235:5072-5083. [DOI: 10.1002/jcp.29455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
| | - Virginie Gueguen
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular BioengineeringUniversité Paris 13 Paris France
| | - Yadollah Omidi
- Research Center for Pharmaceutical NanotechnologyTabriz University of Medical Sciences Tabriz Iran
- Department of Pharmaceutics, Faculty of PharmacyTabriz University of Medical Sciences Tabriz Iran
| | - Alireza Ostadrahimi
- Nutrition Research CenterTabriz University of Medical Sciences Tabriz Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food SciencesTabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of MedicineTabriz University of Medical Sciences Tabriz Iran
| | - Graciela Pavon‐Djavid
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular BioengineeringUniversité Paris 13 Paris France
| |
Collapse
|
21
|
Rahimi M, Sharifi-Zarchi A, Zarghami N, Geranpayeh L, Ebrahimi M, Alizadeh E. Down-Regulation of miR-200c and Up-Regulation of miR-30c Target both Stemness and Metastasis Genes in Breast Cancer. CELL JOURNAL 2020; 21:467-478. [PMID: 31376329 PMCID: PMC6722452 DOI: 10.22074/cellj.2020.6406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 09/27/2018] [Indexed: 12/03/2022]
Abstract
OBJECTIVE microRNAs (miRNAs) play important role in progression of tumorigenesis. They can target self-renewal and epithelial-mesenchymal transition (EMT) abilities in tumor cells, especially in cancer stem cells (CSCs). The objective of this study was to implement data mining to identify important miRNAs for targeting both self-renewal and EMT. We also aimed to evaluate these factors in mammospheres as model of breast cancer stem cells (BCSCs) and metastatic tumor tissues. MATERIALS AND METHODS In this experimental study, mammospheres were derived from MCF-7 cells and characterized for the CSCs properties. Then expression pattern of the selected miRNAs in spheroids were evaluated, using the breast tumor cells obtained from seven patients. Correlation of miRNAs with self-renewal and EMT candidate genes were assessed in mammospheres and metastatic tumors. RESULTS The results showed that mammospheres represented more colonogenic and spheroid formation potential than MCF-7 cells (P<0.05). Additionally, they had enhanced migration and invasive capabilities. Our computational analyses determined that miR-200c and miR-30c could be candidates for targeting both stemness and EMT pathways. Expression level of miR-200c was reduced, while miR-30c expression level was enhanced in mammospheres, similar to the breast tumor tissues isolated from three patients with grade II/III who received neo-adjuvant treatment. Expression level of putative stem cell markers (OCT4, SOX2, c-MYC) and EMT-related genes (SNAIL1, CDH2, TWIST1/2) were also significantly increased in mammospheres and three indicated patients (P<0.05). CONCLUSION Simultaneous down-regulation and up-regulation of respectively miR-200c and miR-30c might be signature of BCSC enrichment in patients post neo-adjuvant therapy. Therefore, targeting both miR-200c and miR-30c could be useful for developing new therapeutic approaches, against BCSCs.
Collapse
Affiliation(s)
- Mahsa Rahimi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Sharifi-Zarchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lobat Geranpayeh
- Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.Electronic Address:
| | - Effat Alizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. Electronic Address:
| |
Collapse
|
22
|
David BG, Fujita H, Yasuda K, Okamoto K, Panina Y, Ichinose J, Sato O, Horie M, Ichimura T, Okada Y, Watanabe TM. Linking substrate and nucleus via actin cytoskeleton in pluripotency maintenance of mouse embryonic stem cells. Stem Cell Res 2019; 41:101614. [DOI: 10.1016/j.scr.2019.101614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/13/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
|
23
|
Schwedhelm I, Zdzieblo D, Appelt-Menzel A, Berger C, Schmitz T, Schuldt B, Franke A, Müller FJ, Pless O, Schwarz T, Wiedemann P, Walles H, Hansmann J. Automated real-time monitoring of human pluripotent stem cell aggregation in stirred tank reactors. Sci Rep 2019; 9:12297. [PMID: 31444389 PMCID: PMC6707254 DOI: 10.1038/s41598-019-48814-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/13/2019] [Indexed: 12/21/2022] Open
Abstract
The culture of human induced pluripotent stem cells (hiPSCs) at large scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Innovative monitoring options and emerging automated process control strategies allow for the necessary highly defined culture conditions. Next to standard process characteristics such as oxygen consumption, pH, and metabolite turnover, a reproducible and steady formation of hiPSC aggregates is vital for process scalability. In this regard, we developed a hiPSC-specific suspension culture unit consisting of a fully monitored CSTR system integrated into a custom-designed and fully automated incubator. As a step towards cost-effective hiPSC suspension culture and to pave the way for flexibility at a large scale, we constructed and utilized tailored miniature CSTRs that are largely made from three-dimensional (3D) printed polylactic acid (PLA) filament, which is a low-cost material used in fused deposition modelling. Further, the monitoring tool for hiPSC suspension cultures utilizes in situ microscopic imaging to visualize hiPSC aggregation in real-time to a statistically significant degree while omitting the need for time-intensive sampling. Suitability of our culture unit, especially concerning the developed hiPSC-specific CSTR system, was proven by demonstrating pluripotency of CSTR-cultured hiPSCs at RNA (including PluriTest) and protein level.
Collapse
Affiliation(s)
- Ivo Schwedhelm
- University Hospital Würzburg, Department Tissue Engineering and Regenerative Medicine (TERM), 97070, Würzburg, Germany
| | - Daniela Zdzieblo
- University Hospital Würzburg, Department Tissue Engineering and Regenerative Medicine (TERM), 97070, Würzburg, Germany
| | - Antje Appelt-Menzel
- University Hospital Würzburg, Department Tissue Engineering and Regenerative Medicine (TERM), 97070, Würzburg, Germany
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, 97070, Würzburg, Germany
| | - Constantin Berger
- University Hospital Würzburg, Department Tissue Engineering and Regenerative Medicine (TERM), 97070, Würzburg, Germany
| | - Tobias Schmitz
- University Hospital Würzburg, Department Tissue Engineering and Regenerative Medicine (TERM), 97070, Würzburg, Germany
| | - Bernhard Schuldt
- University Hospital Schleswig-Holstein, Department of Psychiatry and Psychotherapy, 24105, Kiel, Germany
| | - Andre Franke
- University Hospital Schleswig-Holstein, Institute of Clinical Molecular Biology, 24105, Kiel, Germany
| | - Franz-Josef Müller
- University Hospital Schleswig-Holstein, Department of Psychiatry and Psychotherapy, 24105, Kiel, Germany
| | - Ole Pless
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 22525, Hamburg, Germany
| | - Thomas Schwarz
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, 97070, Würzburg, Germany
| | - Philipp Wiedemann
- Mannheim University of Applied Sciences, Institute of Molecular and Cell Biology, 68163, Mannheim, Germany
| | - Heike Walles
- University Hospital Würzburg, Department Tissue Engineering and Regenerative Medicine (TERM), 97070, Würzburg, Germany
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, 97070, Würzburg, Germany
| | - Jan Hansmann
- University Hospital Würzburg, Department Tissue Engineering and Regenerative Medicine (TERM), 97070, Würzburg, Germany.
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, 97070, Würzburg, Germany.
| |
Collapse
|
24
|
Volonté YA, Vallese-Maurizi H, Dibo MJ, Ayala-Peña VB, Garelli A, Zanetti SR, Turpaud A, Craft CM, Rotstein NP, Politi LE, German OL. A Defective Crosstalk Between Neurons and Müller Glial Cells in the rd1 Retina Impairs the Regenerative Potential of Glial Stem Cells. Front Cell Neurosci 2019; 13:334. [PMID: 31402853 PMCID: PMC6670004 DOI: 10.3389/fncel.2019.00334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/08/2019] [Indexed: 01/02/2023] Open
Abstract
Müller glial cells (MGC) are stem cells in the retina. Although their regenerative capacity is very low in mammals, the use of MGC as stem cells to regenerate photoreceptors (PHRs) during retina degenerations, such as in retinitis pigmentosa, is being intensely studied. Changes affecting PHRs in diseased retinas have been thoroughly investigated; however, whether MGC are also affected is still unclear. We here investigated whether MGC in retinal degeneration 1 (rd1) mouse, an animal model of retinitis pigmentosa, have impaired stem cell properties or structure. rd1 MGC showed an altered morphology, both in culture and in the whole retina. Using mixed neuron-glial cultures obtained from newborn mice retinas, we determined that proliferation was significantly lower in rd1 than in wild type (wt) MGC. Levels of stem cell markers, such as Nestin and Sox2, were also markedly reduced in rd1 MGC compared to wt MGC in neuron-glial cultures and in retina cryosections, even before the onset of PHR degeneration. We then investigated whether neuron-glial crosstalk was involved in these changes. Noteworthy, Nestin expression was restored in rd1 MGC in co-culture with wt neurons. Conversely, Nestin expression decreased in wt MGC in co-culture with rd1 neurons, as occurred in rd1 MGC in rd1 neuron-glial mixed cultures. These results imply that MGC proliferation and stem cell markers are reduced in rd1 retinas and might be restored by their interaction with “healthy” PHRs, suggesting that alterations in rd1 PHRs lead to a disruption in neuron-glial crosstalk affecting the regenerative potential of MGC.
Collapse
Affiliation(s)
- Yanel A Volonté
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| | - Harmonie Vallese-Maurizi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| | - Marcos J Dibo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| | - Victoria B Ayala-Peña
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| | - Andrés Garelli
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| | - Samanta R Zanetti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| | - Axel Turpaud
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| | - Cheryl Mae Craft
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States.,Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| | - Luis E Politi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| | - Olga L German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
25
|
Fan YL, Zhao HC, Li B, Zhao ZL, Feng XQ. Mechanical Roles of F-Actin in the Differentiation of Stem Cells: A Review. ACS Biomater Sci Eng 2019; 5:3788-3801. [PMID: 33438419 DOI: 10.1021/acsbiomaterials.9b00126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the development and differentiation of stem cells, mechanical forces associated with filamentous actin (F-actin) play a crucial role. The present review aims to reveal the relationship among the chemical components, microscopic structures, mechanical properties, and biological functions of F-actin. Particular attention is given to the functions of the cytoplasmic and nuclear microfilament cytoskeleton and their regulation mechanisms in the differentiation of stem cells. The distributions of different types of actin monomers in mammal cells and the functions of actin-binding proteins are summarized. We discuss how the fate of stem cells is regulated by intra/extracellular mechanical and chemical cues associated with microfilament-related proteins, intercellular adhesion molecules, etc. In addition, we also address the differentiation-induced variation in the stiffness of stem cells and the correlation between the fate and geometric shape change of stem cells. This review not only deepens our understanding of the biophysical mechanisms underlying the fates of stem cells under different culture conditions but also provides inspirations for the tissue engineering of stem cells.
Collapse
Affiliation(s)
- Yan-Lei Fan
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hu-Cheng Zhao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zi-Long Zhao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Abu-Dawud R, Graffmann N, Ferber S, Wruck W, Adjaye J. Pluripotent stem cells: induction and self-renewal. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0213. [PMID: 29786549 DOI: 10.1098/rstb.2017.0213] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2017] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cells (PSCs) lie at the heart of modern regenerative medicine due to their properties of unlimited self-renewal in vitro and their ability to differentiate into cell types representative of the three embryonic germ layers-mesoderm, ectoderm and endoderm. The derivation of induced PSCs bypasses ethical concerns associated with the use of human embryonic stem cells and also enables personalized cell-based therapies. To exploit their regenerative potential, it is essential to have a firm understanding of the molecular processes associated with their induction from somatic cells. This understanding serves two purposes: first, to enable efficient, reliable and cost-effective production of excellent quality induced PSCs and, second, to enable the derivation of safe, good manufacturing practice-grade transplantable donor cells. Here, we review the reprogramming process of somatic cells into induced PSCs and associated mechanisms with emphasis on self-renewal, epigenetic control, mitochondrial bioenergetics, sub-states of pluripotency, naive ground state, naive and primed. A meta-analysis identified genes expressed exclusively in the inner cell mass and in the naive but not in the primed pluripotent state. We propose these as additional biomarkers defining naive PSCs.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- R Abu-Dawud
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Zahrawi Street, Riyadh 11211, Saudi Arabia
| | - N Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - S Ferber
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - W Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - J Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| |
Collapse
|
27
|
Harkness L, Chen X, Gillard M, Gray PP, Davies AM. Media composition modulates human embryonic stem cell morphology and may influence preferential lineage differentiation potential. PLoS One 2019; 14:e0213678. [PMID: 30889226 PMCID: PMC6424453 DOI: 10.1371/journal.pone.0213678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
Undifferentiated human embryonic stem cells have a distinct morphology (hESC). Changes in cell morphology during culture can be indicative of differentiation. hESC, maintained in diverse medias, demonstrated alterations in morphological parameters and subsequent alterations in underlying transcript expression and lineage differentiation. Analysis of morphological parameters showed distinct and significant differences between the undefined, less defined and Xeno-free medias while still maintaining pluripotency markers. This suggested that the less defined media may be creating dynamic instability in the cytoskeleton, with the cytoskeleton becoming more stabilised in the Xeno-free media as demonstrated by smaller and rounder cells. Examination of early lineage markers during undirected differentiation using d5 embryoid bodies demonstrated increased mesodermal lineage preference as compared to endodermal or ectoderm in cells originally cultured in Xeno-free media. Undefined media showed preference for mesoderm and ectoderm lineages, while less defined media (BSA present) demonstrated no preference. These data reveal that culture media may produce fundamental changes in cell morphology which are reflected in early lineage differentiation choice.
Collapse
Affiliation(s)
- Linda Harkness
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
- * E-mail:
| | - Xiaoli Chen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Marianne Gillard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Peter Paul Gray
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Anthony Mitchell Davies
- Translational Cell Imaging Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
28
|
Alteration of mesenchymal stem cells polarity by laminar shear stimulation promoting β-catenin nuclear localization. Biomaterials 2019; 190-191:1-10. [DOI: 10.1016/j.biomaterials.2018.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 10/19/2018] [Indexed: 12/28/2022]
|
29
|
Smith Q, Rochman N, Carmo AM, Vig D, Chan XY, Sun S, Gerecht S. Cytoskeletal tension regulates mesodermal spatial organization and subsequent vascular fate. Proc Natl Acad Sci U S A 2018; 115:8167-8172. [PMID: 30038020 PMCID: PMC6094121 DOI: 10.1073/pnas.1808021115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Morphogenesis during human development relies on the interplay between physiochemical cues that are mediated in part by cellular density and cytoskeletal tension. Here, we interrogated these factors on vascular lineage specification during human-induced pluripotent stem-cell (hiPSC) fate decision. We found that independent of chemical cues, spatially presented physical cues induce the self-organization of Brachyury-positive mesodermal cells, in a RhoA/Rho-associated kinase (ROCK)-dependent manner. Using unbiased support vector machine (SVM) learning, we found that density alone is sufficient to predict mesodermal fate. Furthermore, the long-withstanding presentation of spatial confinement during hiPSC differentiation led to an organized vascular tissue, reminiscent of native blood vessels, a process dependent on cell density as found by SVM analysis. Collectively, these results show how tension and density relate to vascular identity mirroring early morphogenesis. We propose that such a system can be applied to study other aspects of the stem-cell niche and its role in embryonic patterning.
Collapse
Affiliation(s)
- Quinton Smith
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Nash Rochman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Ana Maria Carmo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Dhruv Vig
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Xin Yi Chan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Sean Sun
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218;
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218;
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
30
|
Validation of Common Housekeeping Genes as Reference for qPCR Gene Expression Analysis During iPS Reprogramming Process. Sci Rep 2018; 8:8716. [PMID: 29880849 PMCID: PMC5992140 DOI: 10.1038/s41598-018-26707-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/16/2018] [Indexed: 11/23/2022] Open
Abstract
Induced pluripotent stem cell (iPS) reprogramming allows to turn a differentiated somatic cell into a pluripotent cell. This process is accompanied by many changes in fundamental cell properties, such as energy production, cell-to-cell interactions, cytoskeletal organization, and others. Real-time quantitative polymerase chain reaction (RT-qPCR) can be used as a quantitative method of gene expression analysis to investigate iPS reprogramming but it requires a validation of reference genes for the accurate assessment of target genes’ expression. Currently, studies evaluating the performance of reference genes during iPS reprogramming are lacking. In this study we analysed the stability of 12 housekeeping genes during 20 days of iPS reprogramming of murine cells based on statistical analyses of RT-qPCR data using five different statistical algorithms. This study reports strong variations in housekeeping gene stability during the reprogramming process. Most stable genes were Atp5f1, Pgk1 and Gapdh, while the least stable genes were Rps18, Hprt, Tbp and Actb. The results were validated by a proof-of-point qPCR experiment with pluripotent markers Nanog, Rex1 and Oct4 normalized to the best and the worst reference gene identified by the analyses. Overall, this study and its implications are particularly relevant to investigations on the cell-state and pluripotency in iPS reprogramming.
Collapse
|
31
|
Actin and myosin II modulate differentiation of pluripotent stem cells. PLoS One 2018; 13:e0195588. [PMID: 29664925 PMCID: PMC5903644 DOI: 10.1371/journal.pone.0195588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/25/2018] [Indexed: 12/20/2022] Open
Abstract
Use of stem cell-based therapies in tissue engineering and regenerative medicine is hindered by efficient means of directed differentiation. For pluripotent stem cells, an initial critical differentiation event is specification to one of three germ lineages: endoderm, mesoderm, and ectoderm. Differentiation is known to be regulated by numerous extracellular and intracellular factors, but the role of the cytoskeleton during specification, or early differentiation, is still unknown. In these studies, we used agonists and antagonists to modulate actin polymerization and the actin-myosin molecular motor during spontaneous differentiation of embryonic stem cells in embryoid bodies. We found that inhibiting either actin polymerization or actin-myosin interactions led to a decrease in differentiation to the mesodermal lineage and an increase in differentiation to the endodermal lineage. Thus, targeting processes that regulate cytoskeletal tension may be effective in enhancing or inhibiting differentiation towards cells of the endodermal or mesodermal lineages, which include hepatocytes, islets, cardiomyocytes, endothelial cells, and osteocytes. Therefore, these fundamental findings demonstrate that modulation of the cytoskeleton may be useful in production for a range of cell-based therapies, including for liver, pancreatic, cardiac, vascular, and orthopedic applications.
Collapse
|
32
|
Li R, Yu G, Azarin SM, Hubel A. Freezing Responses in DMSO-Based Cryopreservation of Human iPS Cells: Aggregates Versus Single Cells. Tissue Eng Part C Methods 2018; 24:289-299. [PMID: 29478388 DOI: 10.1089/ten.tec.2017.0531] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inadequate preservation methods of human induced pluripotent stem cells (hiPSCs) have impeded efficient reestablishment of cell culture after the freeze-thaw process. In this study, we examined roles of the cooling rate, seeding temperature, and difference between cell aggregates (3-50 cells) and single cells in controlled rate freezing of hiPSCs. Intracellular ice formation (IIF), post-thaw membrane integrity, cell attachment, apoptosis, and cytoskeleton organization were evaluated to understand the different freezing responses between hiPSC single cells and aggregates, among cooling rates of 1, 3, and 10°C/min, and between seeding temperatures of -4°C and -8°C. Raman spectroscopy images of ice showed that a lower seeding temperature (-8°C) did not affect IIF in single cells, but significantly increased IIF in aggregates, suggesting higher sensitivity of aggregates to supercooling. In the absence of IIF, Raman images showed greater variation of dimethyl sulfoxide concentration across aggregates than single cells, suggesting cryoprotectant transport limitations in aggregates. The ability of cryopreserved aggregates to attach to culture substrates did not correlate with membrane integrity for the wide range of freezing parameters, indicating inadequacy of using only membrane integrity-based optimization metrics. Lower cooling rates (1 and 3°C/min) combined with higher seeding temperature (-4°C) were better at preventing IIF and preserving cell function than a higher cooling rate (10°C/min) or lower seeding temperature (-8°C), proving the seeding temperature range of -7°C to -12°C from literature to be suboptimal. Unique f-actin cytoskeletal organization into a honeycomb-like pattern was observed in postpassage and post-thaw colonies and correlated with successful reestablishment of cell culture.
Collapse
Affiliation(s)
- Rui Li
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Guanglin Yu
- 2 Department of Mechanical Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Samira M Azarin
- 3 Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota
| | - Allison Hubel
- 2 Department of Mechanical Engineering, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
33
|
Bongiorno T, Gura J, Talwar P, Chambers D, Young KM, Arafat D, Wang G, Jackson-Holmes EL, Qiu P, McDevitt TC, Sulchek T. Biophysical subsets of embryonic stem cells display distinct phenotypic and morphological signatures. PLoS One 2018. [PMID: 29518080 PMCID: PMC5843178 DOI: 10.1371/journal.pone.0192631] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The highly proliferative and pluripotent characteristics of embryonic stem cells engender great promise for tissue engineering and regenerative medicine, but the rapid identification and isolation of target cell phenotypes remains challenging. Therefore, the objectives of this study were to characterize cell mechanics as a function of differentiation and to employ differences in cell stiffness to select population subsets with distinct mechanical, morphological, and biological properties. Biomechanical analysis with atomic force microscopy revealed that embryonic stem cells stiffened within one day of differentiation induced by leukemia inhibitory factor removal, with a lagging but pronounced change from spherical to spindle-shaped cell morphology. A microfluidic device was then employed to sort a differentially labeled mixture of pluripotent and differentiating cells based on stiffness, resulting in pluripotent cell enrichment in the soft device outlet. Furthermore, sorting an unlabeled population of partially differentiated cells produced a subset of “soft” cells that was enriched for the pluripotent phenotype, as assessed by post-sort characterization of cell mechanics, morphology, and gene expression. The results of this study indicate that intrinsic cell mechanical properties might serve as a basis for efficient, high-throughput, and label-free isolation of pluripotent stem cells, which will facilitate a greater biological understanding of pluripotency and advance the potential of pluripotent stem cell differentiated progeny as cell sources for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tom Bongiorno
- The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Jeremy Gura
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States of America
| | - Priyanka Talwar
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States of America
| | - Dwight Chambers
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States of America
| | - Katherine M. Young
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States of America
| | - Dalia Arafat
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Gonghao Wang
- The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Emily L. Jackson-Holmes
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Peng Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States of America
| | - Todd C. McDevitt
- Gladstone Institute for Cardiovascular Disease, San Francisco, CA, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, United States of America
| | - Todd Sulchek
- The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States of America
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
34
|
Urbanska M, Winzi M, Neumann K, Abuhattum S, Rosendahl P, Müller P, Taubenberger A, Anastassiadis K, Guck J. Single-cell mechanical phenotype is an intrinsic marker of reprogramming and differentiation along the mouse neural lineage. Development 2017; 144:4313-4321. [DOI: 10.1242/dev.155218] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022]
Abstract
Cellular reprogramming is a dedifferentiation process during which cells continuously undergo phenotypical remodeling. Although the genetic and biochemical details of this remodeling are fairly well understood, little is known about the change in cell mechanical properties during the process. In this study, we investigated changes in the mechanical phenotype of murine fetal neural progenitor cells (fNPCs) during reprogramming to induced pluripotent stem cells (iPSCs). We find that fNPCs become progressively stiffer en route to pluripotency, and that this stiffening is mirrored by iPSCs becoming more compliant during differentiation towards the neural lineage. Furthermore, we show that the mechanical phenotype of iPSCs is comparable with that of embryonic stem cells. These results suggest that mechanical properties of cells are inherent to their developmental stage. They also reveal that pluripotent cells can differentiate towards a more compliant phenotype, which challenges the view that pluripotent stem cells are less stiff than any cells more advanced developmentally. Finally, our study indicates that the cell mechanical phenotype might be utilized as an inherent biophysical marker of pluripotent stem cells.
Collapse
Affiliation(s)
- Marta Urbanska
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Maria Winzi
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Katrin Neumann
- Stem Cell Engineering, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Shada Abuhattum
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
- JPK Instruments AG, Colditzstraße 34-36, Berlin 12099, Germany
| | - Philipp Rosendahl
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Paul Müller
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Anna Taubenberger
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Jochen Guck
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| |
Collapse
|
35
|
Sengodan SK, Rajan A, Hemalatha SK, Nadhan R, Jaleel A, Srinivas P. Proteomic Profiling of β-hCG-Induced Spheres in BRCA1 Defective Triple Negative Breast Cancer Cells. J Proteome Res 2017; 17:276-289. [DOI: 10.1021/acs.jproteome.7b00562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Satheesh Kumar Sengodan
- Cancer Research Program and ‡Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Arathi Rajan
- Cancer Research Program and ‡Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Sreelatha Krishnakumar Hemalatha
- Cancer Research Program and ‡Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Revathy Nadhan
- Cancer Research Program and ‡Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Abdul Jaleel
- Cancer Research Program and ‡Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Priya Srinivas
- Cancer Research Program and ‡Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| |
Collapse
|
36
|
Khan AO, Simms VA, Pike JA, Thomas SG, Morgan NV. CRISPR-Cas9 Mediated Labelling Allows for Single Molecule Imaging and Resolution. Sci Rep 2017; 7:8450. [PMID: 28814796 PMCID: PMC5559501 DOI: 10.1038/s41598-017-08493-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/29/2017] [Indexed: 12/25/2022] Open
Abstract
Single molecule imaging approaches like dSTORM and PALM resolve structures at 10–20 nm, and allow for unique insights into protein stoichiometry and spatial relationships. However, key obstacles remain in developing highly accurate quantitative single molecule approaches. The genomic tagging of PALM fluorophores through CRISPR-Cas9 offers an excellent opportunity for generating stable cell lines expressing a defined single molecule probe at endogenous levels, without the biological disruption and variability inherent to transfection. A fundamental question is whether these comparatively low levels of expression can successfully satisfy the stringent labelling demands of super-resolution SMLM. Here we apply CRISPR-Cas9 gene editing to tag a cytoskeletal protein (α-tubulin) and demonstrate a relationship between expression level and the subsequent quality of PALM imaging, and that spatial resolutions comparable to dSTORM can be achieved with CRISPR-PALM. Our approach shows a relationship between choice of tag and the total expression of labelled protein, which has important implications for the development of future PALM tags. CRISPR-PALM allows for nanoscopic spatial resolution and the unique quantitative benefits of single molecule localization microscopy through endogenous expression, as well as the capacity for super-resolved live cell imaging.
Collapse
Affiliation(s)
- Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Victoria A Simms
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jeremy A Pike
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Steven G Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK. .,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK.
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
37
|
Rauschert I, Aldunate F, Preussner J, Arocena-Sutz M, Peraza V, Looso M, Benech JC, Agrelo R. Promoter hypermethylation as a mechanism for Lamin A/C silencing in a subset of neuroblastoma cells. PLoS One 2017; 12:e0175953. [PMID: 28422997 PMCID: PMC5397038 DOI: 10.1371/journal.pone.0175953] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/03/2017] [Indexed: 02/07/2023] Open
Abstract
Nuclear lamins support the nuclear envelope and provide anchorage sites for chromatin. They are involved in DNA synthesis, transcription, and replication. It has previously been reported that the lack of Lamin A/C expression in lymphoma and leukaemia is due to CpG island promoter hypermethylation. Here, we provide evidence that Lamin A/C is silenced via this mechanism in a subset of neuroblastoma cells. Moreover, Lamin A/C expression can be restored with a demethylating agent. Importantly, Lamin A/C reintroduction reduced cell growth kinetics and impaired migration, invasion, and anchorage-independent cell growth. Cytoskeletal restructuring was also induced. In addition, the introduction of lamin Δ50, known as Progerin, caused senescence in these neuroblastoma cells. These cells were stiffer and developed a cytoskeletal structure that differed from that observed upon Lamin A/C introduction. Of relevance, short hairpin RNA Lamin A/C depletion in unmethylated neuroblastoma cells enhanced the aforementioned tumour properties. A cytoskeletal structure similar to that observed in methylated cells was induced. Furthermore, atomic force microscopy revealed that Lamin A/C knockdown decreased cellular stiffness in the lamellar region. Finally, the bioinformatic analysis of a set of methylation arrays of neuroblastoma primary tumours showed that a group of patients (around 3%) gives a methylation signal in some of the CpG sites located within the Lamin A/C promoter region analysed by bisulphite sequencing PCR. These findings highlight the importance of Lamin A/C epigenetic inactivation for a subset of neuroblastomas, leading to enhanced tumour properties and cytoskeletal changes. Additionally, these findings may have treatment implications because tumour cells lacking Lamin A/C exhibit more aggressive behaviour.
Collapse
Affiliation(s)
- Ines Rauschert
- Laboratory of Cellular Signaling and Nanobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Fabian Aldunate
- Epigenetics of Cancer and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Jens Preussner
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Miguel Arocena-Sutz
- Epigenetics of Cancer and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Vanina Peraza
- Epigenetics of Cancer and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Juan C. Benech
- Laboratory of Cellular Signaling and Nanobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ruben Agrelo
- Epigenetics of Cancer and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
38
|
Tampaki EC, Tampakis A, Nonni A, Kontzoglou K, Patsouris E, Kouraklis G. Nestin and cluster of differentiation 146 expression in breast cancer: Predicting early recurrence by targeting metastasis? Tumour Biol 2017; 39:1010428317691181. [PMID: 28347241 DOI: 10.1177/1010428317691181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to investigate the relationship between the expression of stem-cell markers nestin and cluster of differentiation 146 with clinicopathological characteristics in breast cancer and to determine whether a prognostic impact of nestin and CD146 expression exists regarding occurrence of disease relapse in breast cancer. A total of 141 patients who were histologically diagnosed with breast cancer and underwent radical operations from November 2006 to October 2013 in Laiko General Hospital, National and Kapodistrian University of Athens, were enrolled in the study. CD146 and nestin protein expression were evaluated using immunohistochemistry. Nestin expression was observed in 18.4% (26/141) of the cases, while CD146 expression was observed in 35.5% (50/141) of the cases. Nestin expression is significantly higher in younger patients with breast cancer. Nestin and CD146 expression were not correlated with the tumor size and the presence of lymph node metastasis. On the contrary, a significantly higher expression of nestin and CD146 was observed with triple-negative cancers (p < 0.0001 for both markers), low differentiated tumors (p = 0.021 for nestin and p = 0.008 for CD146), and increased Ki-67 expression (p = 0.007 for nestin and p < 0.0001 for CD146). The nestin-positive group of patients and the CD146-positive group of patients presented significantly higher rates of disease recurrence (log-rank test, p = 0.022 for nestin and p = 0.003 for CD146) with a distant metastasis, 30 months after the primary treatment. CD146 but not nestin, however, predicted independently (p = 0.047) disease recurrence. Nestin and CD146 are expressed in breast cancer cells with highly aggressive potency. They might contribute to disease relapse in breast cancer by activating the epithelial-mesenchymal transition pathway and assist tumor neovascularization.
Collapse
Affiliation(s)
- Ekaterini Christina Tampaki
- 1 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | | | - Afroditi Nonni
- 3 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kontzoglou
- 1 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Efstratios Patsouris
- 3 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Gregory Kouraklis
- 1 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| |
Collapse
|
39
|
Dmello C, Sawant S, Alam H, Gangadaran P, Mogre S, Tiwari R, D’Souza Z, Narkar M, Thorat R, Patil K, Chaukar D, Kane S, Vaidya M. Vimentin regulates differentiation switch via modulation of keratin 14 levels and their expression together correlates with poor prognosis in oral cancer patients. PLoS One 2017; 12:e0172559. [PMID: 28225793 PMCID: PMC5321444 DOI: 10.1371/journal.pone.0172559] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/07/2017] [Indexed: 12/15/2022] Open
Abstract
Vimentin is an intermediate filament protein, predominantly expressed in cells of mesenchymal origin, although its aberrant expression is seen in many carcinomas during epithelial mesenchymal transition. In cancer, vimentin expression is associated with the transition from a more differentiated epithelial phenotype to a dedifferentiated state. In view of the perceived role of keratins (Ks) as regulators of differentiation in epithelia, it was important to understand whether vimentin modulates differentiation through the reprogramming of keratins, in transformed cells. To address this, vimentin was stably downregulated in oral cancer derived cells. Further, global keratin profiling was performed after high salt keratin extraction. K5/K14 pair was found to be significantly downregulated, both at protein and mRNA levels upon vimentin downregulation. The previous study from our laboratory has shown a role of the K5/K14 pair in proliferation and differentiation of squamous epithelial cells. Vimentin depleted cells showed an increase in the differentiation state, marked by an increase in the levels of differentiation specific markers K1, involucrin, filaggrin and loricrin while its proliferation status remained unchanged. Rescue experiments with the K5/K14 pair overexpressed in vimentin knockdown background resulted in decreased differentiation state. ΔNp63 emerged as one of the indirect targets of vimentin, through which it modulates the expression levels of K5/K14. Further, immunohistochemistry showed a significant correlation between high vimentin-K14 expression and recurrence/poor survival in oral cancer patients. Thus, in conclusion, vimentin regulates the differentiation switch via modulation of K5/K14 expression. Moreover, vimentin-K14 together may prove to be the novel markers for the prognostication of human oral cancer.
Collapse
Affiliation(s)
- Crismita Dmello
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training school complex, Anushakti Nagar, Mumbai, India
| | - Sharada Sawant
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training school complex, Anushakti Nagar, Mumbai, India
| | - Hunain Alam
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Prakash Gangadaran
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Saie Mogre
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Richa Tiwari
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training school complex, Anushakti Nagar, Mumbai, India
| | - Zinia D’Souza
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Manish Narkar
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Rahul Thorat
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Komal Patil
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Devendra Chaukar
- Homi Bhabha National Institute, Training school complex, Anushakti Nagar, Mumbai, India
- Surgical Oncology, Head and Neck Unit, Tata Memorial Hospital (TMH), Parel, Mumbai, India
| | - Shubhada Kane
- Homi Bhabha National Institute, Training school complex, Anushakti Nagar, Mumbai, India
- Department of Pathology, Tata Memorial Hospital (TMH), Parel, Mumbai, India
| | - Milind Vaidya
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training school complex, Anushakti Nagar, Mumbai, India
- * E-mail:
| |
Collapse
|
40
|
Identification of reference genes for qPCR analysis during hASC long culture maintenance. PLoS One 2017; 12:e0170918. [PMID: 28182697 PMCID: PMC5300122 DOI: 10.1371/journal.pone.0170918] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/12/2017] [Indexed: 01/15/2023] Open
Abstract
Up to now quantitative PCR based assay is the most common method for characterizing or confirming gene expression patterns and comparing mRNA levels in different sample populations. Since this technique is relative easy and low cost compared to other methods of characterization, e.g. flow cytometry, we used it to typify human adipose-derived stem cells (hASCs). hASCs possess several characteristics that make them attractive for scientific research and clinical applications. Accurate normalization of gene expression relies on good selection of reference genes and the best way to choose them appropriately is to follow the common rule of the “Best 3”, at least three reference genes, three different validation software and three sample replicates. Analysis was performed on hASCs cultivated until the eleventh cell confluence using twelve candidate reference genes, initially selected from literature, whose stability was evaluated by the algorithms NormFinder, BestKeeper, RefFinder and IdealRef, a home-made version of GeNorm. The best gene panel (RPL13A, RPS18, GAPDH, B2M, PPIA and ACTB), determined in one patient by IdealRef calculation, was then investigated in other four donors. Although patients demonstrated a certain gene expression variability, we can assert that ACTB is the most unreliable gene whereas ribosomal proteins (RPL13A and RPS18) show minor inconstancy in their mRNA expression. This work underlines the importance of validating reference genes before conducting each experiment and proposes a free software as alternative to those existing.
Collapse
|
41
|
Lin J, Kim D, Tse HT, Tseng P, Peng L, Dhar M, Karumbayaram S, Di Carlo D. High-throughput physical phenotyping of cell differentiation. MICROSYSTEMS & NANOENGINEERING 2017; 3:17013. [PMID: 31057860 PMCID: PMC6445007 DOI: 10.1038/micronano.2017.13] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/23/2016] [Accepted: 12/21/2016] [Indexed: 05/08/2023]
Abstract
In this report, we present multiparameter deformability cytometry (m-DC), in which we explore a large set of parameters describing the physical phenotypes of pluripotent cells and their derivatives. m-DC utilizes microfluidic inertial focusing and hydrodynamic stretching of single cells in conjunction with high-speed video recording to realize high-throughput characterization of over 20 different cell motion and morphology-derived parameters. Parameters extracted from videos include size, deformability, deformation kinetics, and morphology. We train support vector machines that provide evidence that these additional physical measurements improve classification of induced pluripotent stem cells, mesenchymal stem cells, neural stem cells, and their derivatives compared to size and deformability alone. In addition, we utilize visual interactive stochastic neighbor embedding to visually map the high-dimensional physical phenotypic spaces occupied by these stem cells and their progeny and the pathways traversed during differentiation. This report demonstrates the potential of m-DC for improving understanding of physical differences that arise as cells differentiate and identifying cell subpopulations in a label-free manner. Ultimately, such approaches could broaden our understanding of subtle changes in cell phenotypes and their roles in human biology.
Collapse
Affiliation(s)
- Jonathan Lin
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Donghyuk Kim
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Henry T. Tse
- CytoVale Inc., 384 Oyster Point Boulevard #7 South, San Francisco, CA 94080, USA
| | - Peter Tseng
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Lillian Peng
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Manjima Dhar
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Saravanan Karumbayaram
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, CA 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Department of Mechanical Engineering, University of California, Los Angeles, CA 90095, USA
- ()
| |
Collapse
|
42
|
Boraas LC, Ahsan T. Lack of vimentin impairs endothelial differentiation of embryonic stem cells. Sci Rep 2016; 6:30814. [PMID: 27480130 PMCID: PMC4969593 DOI: 10.1038/srep30814] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/08/2016] [Indexed: 12/18/2022] Open
Abstract
The cytoskeletal filament vimentin is inherent to the endothelial phenotype and is critical for the proper function of endothelial cells in adult mice. It is unclear, however, if the presence of vimentin is necessary during differentiation to the endothelial phenotype. Here we evaluated gene and protein expression of differentiating wild type embryonic stem cells (WT ESCs) and vimentin knockout embryonic stem cells (VIM −/− ESCs) using embryoid bodies (EBs) formed from both cell types. Over seven days of differentiation VIM −/− EBs had altered morphology compared to WT EBs, with a rippled outer surface and a smaller size due to decreased proliferation. Gene expression of pluripotency markers decreased similarly for EBs of both cell types; however, VIM −/− EBs had impaired differentiation towards the endothelial phenotype. This was quantified with decreased expression of markers along the specification pathway, specifically the early mesodermal marker Brachy-T, the lateral plate mesodermal marker FLK1, and the endothelial-specific markers TIE2, PECAM, and VE-CADHERIN. Taken together, these results indicate that the absence of vimentin impairs spontaneous differentiation of ESCs to the endothelial phenotype in vitro.
Collapse
Affiliation(s)
- Liana C Boraas
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Tabassum Ahsan
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
43
|
Song R, Liang J, Lin L, Zhang Y, Yang Y, Lin C. A facile construction of gradient micro-patterned OCP coatings on medical titanium for high throughput evaluation of biocompatibility. J Mater Chem B 2016; 4:4017-4024. [DOI: 10.1039/c6tb00458j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A facile construction of gradient micro-patterned octacalcium phosphate (OCP) coatings on titanium was developed for high-throughput screening of biocompatibility and bioactivity.
Collapse
Affiliation(s)
- Ran Song
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Jianhe Liang
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Longxiang Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Yanmei Zhang
- Beijing Medical Implant Engineering Research Center
- Beijing 100082
- China
- Beijing Engineering Laboratory of Functional Medical Materials and Devices
- Beijing 100082
| | - Yun Yang
- Beijing Medical Implant Engineering Research Center
- Beijing 100082
- China
- Beijing Engineering Laboratory of Functional Medical Materials and Devices
- Beijing 100082
| | - Changjian Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|