1
|
Schneider E, O'Riordan KJ, Clarke G, Cryan JF. Feeding gut microbes to nourish the brain: unravelling the diet-microbiota-gut-brain axis. Nat Metab 2024; 6:1454-1478. [PMID: 39174768 DOI: 10.1038/s42255-024-01108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The prevalence of brain disorders, including stress-related neuropsychiatric disorders and conditions with cognitive dysfunction, is rising. Poor dietary habits contribute substantially to this accelerating trend. Conversely, healthy dietary intake supports mood and cognitive performance. Recently, the communication between the microorganisms within the gastrointestinal tract and the brain along the gut-brain axis has gained prominence as a potential tractable target to modulate brain health. The composition and function of the gut microbiota is robustly influenced by dietary factors to alter gut-brain signalling. To reflect this interconnection between diet, gut microbiota and brain functioning, we propose that a diet-microbiota-gut-brain axis exists that underpins health and well-being. In this Review, we provide a comprehensive overview of the interplay between diet and gut microbiota composition and function and the implications for cognition and emotional functioning. Important diet-induced effects on the gut microbiota for the development, prevention and maintenance of neuropsychiatric disorders are described. The diet-microbiota-gut-brain axis represents an uncharted frontier for brain health diagnostics and therapeutics across the lifespan.
Collapse
Affiliation(s)
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
2
|
Boucher L, Leduc L, Leclère M, Costa MC. Current Understanding of Equine Gut Dysbiosis and Microbiota Manipulation Techniques: Comparison with Current Knowledge in Other Species. Animals (Basel) 2024; 14:758. [PMID: 38473143 DOI: 10.3390/ani14050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Understanding the importance of intestinal microbiota in horses and the factors influencing its composition have been the focus of many studies over the past few years. Factors such as age, diet, antibiotic administration, and geographic location can affect the gut microbiota. The intra- and inter-individual variability of fecal microbiota in horses complicates its interpretation and has hindered the establishment of a clear definition for dysbiosis. Although a definitive causal relationship between gut dysbiosis in horses and diseases has not been clearly identified, recent research suggests that dysbiosis may play a role in the pathogenesis of various conditions, such as colitis and asthma. Prebiotics, probiotics, and fecal microbiota transplantation to modulate the horse's gastrointestinal tract may eventually be considered a valuable tool for preventing or treating diseases, such as antibiotic-induced colitis. This article aims to summarize the current knowledge on the importance of intestinal microbiota in horses and factors influencing its composition, and also to review the published literature on methods for detecting dysbiosis while discussing the efficacy of gut microbiota manipulation in horses.
Collapse
Affiliation(s)
- Laurie Boucher
- Department of Veterinary Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Laurence Leduc
- Department of Clinical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mathilde Leclère
- Department of Clinical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marcio Carvalho Costa
- Department of Veterinary Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
3
|
Kadyan S, Park G, Hochuli N, Miller K, Wang B, Nagpal R. Resistant starches from dietary pulses improve neurocognitive health via gut-microbiome-brain axis in aged mice. Front Nutr 2024; 11:1322201. [PMID: 38352704 PMCID: PMC10864001 DOI: 10.3389/fnut.2024.1322201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Cognitive decline is a common consequence of aging. Dietary patterns that lack fibers and are high in saturated fats worsen cognitive impairment by triggering pro-inflammatory pathways and metabolic dysfunctions. Emerging evidence highlights the neurocognitive benefits of fiber-rich diets and the crucial role of gut-microbiome-brain signaling. However, the mechanisms of this diet-microbiome-brain regulation remain largely unclear. Methods Accordingly, we herein investigated the unexplored neuroprotective mechanisms of dietary pulses-derived resistant starch (RS) in improving aging-associated neurocognitive function in an aged (60-weeks old) murine model carrying a human microbiome. Results and discussion Following 20-weeks dietary regimen which included a western-style diet without (control; CTL) or with 5% w/w fortification with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin fiber (INU), we find that RS, particularly from LEN, ameliorate the cognitive impairments induced by western diet. Mechanistically, RS-mediated improvements in neurocognitive assessments are attributed to positive remodeling of the gut microbiome-metabolome arrays, which include increased short-chain fatty acids and reduced branched-chain amino acids levels. This microbiome-metabolite-brain signaling cascade represses neuroinflammation, cellular senescence, and serum leptin/insulin levels, while enhancing lipid metabolism through improved hepatic function. Altogether, the data demonstrate the prebiotic effects of RS in improving neurocognitive function via modulating the gut-brain axis.
Collapse
Affiliation(s)
- Saurabh Kadyan
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Gwoncheol Park
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Nathaniel Hochuli
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Katelyn Miller
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Bo Wang
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
4
|
Herselman MF, Bobrovskaya L. The Effects of Chronic Unpredictable Mild Stress and Semi-Pure Diets on the Brain, Gut and Adrenal Medulla in C57BL6 Mice. Int J Mol Sci 2023; 24:14618. [PMID: 37834073 PMCID: PMC10572190 DOI: 10.3390/ijms241914618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Chronic stress is known to perturb serotonergic regulation in the brain, leading to mood, learning and memory impairments and increasing the risk of developing mood disorders. The influence of the gut microbiota on serotonergic regulation in the brain has received increased attention recently, justifying the investigation of the role of diet on the gut and the brain in mood disorders. Here, using a 4-week chronic unpredictable mild stress (CUMS) model in mice, we aimed to investigate the effects of a high-fat high-glycaemic index (HFD) and high-fibre fruit & vegetable "superfood" (SUP) modifications of a semi-pure AIN93M diet on behaviour, serotonin synthesis and metabolism pathway regulation in the brain and the gut, as well as the gut microbiota and the peripheral adrenal medullary system. CUMS induced anxiety-like behaviour, dysregulated the tryptophan and serotonin metabolic pathways in the hippocampus, prefrontal cortex, and colon, and altered the composition of the gut microbiota. CUMS reduced the catecholamine synthetic capacity of the adrenal glands. Differential effects were found in these parameters in the HFD and SUP diet. Thus, dietary modifications may profoundly affect the multiple dynamic systems involved in mood disorders.
Collapse
Affiliation(s)
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| |
Collapse
|
5
|
Pantoja-Feliciano IG, Karl JP, Perisin M, Doherty LA, McClung HL, Armstrong NJ, Renberg R, Racicot K, Branck T, Arcidiacono S, Soares JW. In vitro gut microbiome response to carbohydrate supplementation is acutely affected by a sudden change in diet. BMC Microbiol 2023; 23:32. [PMID: 36707764 PMCID: PMC9883884 DOI: 10.1186/s12866-023-02776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/16/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Interactions between diet, stress and the gut microbiome are of interest as a means to modulate health and performance. Here, in vitro fermentation was used to explore the effects of a sudden change in diet, 21 days sole sustenance on the Meal, Ready-to-Eat (MRE) U.S. military combat ration, on inter-species competition and functional potential of the human gut microbiota. Human fecal samples collected before and after MRE intervention or consuming a habitual diet (HAB) were introduced to nutrient-rich media supplemented with starch for in vitro fermentation under ascending colon conditions. 16S rRNA amplicon and Whole-metagenome sequencing (WMS) were used to measure community composition and functional potential. Specific statistical analyses were implemented to detect changes in relative abundance from taxa, genes and pathways. RESULTS Differential changes in relative abundance of 11 taxa, Dorea, Lachnospira, Bacteroides fragilis, Akkermansia muciniphila, Bifidobacterium adolescentis, Betaproteobacteria, Enterobacteriaceae, Bacteroides egerthii, Ruminococcus bromii, Prevotella, and Slackia, and nine Carbohydrate-Active Enzymes, specifically GH13_14, over the 24 h fermentation were observed as a function of the diet intervention and correlated to specific taxa of interest. CONCLUSIONS These findings suggest that consuming MRE for 21 days acutely effects changes in gut microbiota structure in response to carbohydrate but may induce alterations in metabolic capacity. Additionally, these findings demonstrate the potential of starch as a candidate supplemental strategy to functionally modulate specific gut commensals during stress-induced states.
Collapse
Affiliation(s)
| | - J. Philip Karl
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA USA
| | - Matthew Perisin
- grid.420282.e0000 0001 2151 958XU.S. Army DEVCOM Army Research Laboratory, Adelphi, MD USA
| | - Laurel A. Doherty
- Soldier Effectiveness Directorate (SED), U.S. Army DEVCOM Soldier Center, Natick, MA USA
| | - Holly L. McClung
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA USA
| | - Nicholes J. Armstrong
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA USA
| | - Rebecca Renberg
- grid.420282.e0000 0001 2151 958XGeneral Technical Services, U.S. Army DEVCOM Army Research Laboratory, Adelphi, MD USA
| | - Kenneth Racicot
- Soldier Effectiveness Directorate (SED), U.S. Army DEVCOM Soldier Center, Natick, MA USA
| | - Tobyn Branck
- Soldier Effectiveness Directorate (SED), U.S. Army DEVCOM Soldier Center, Natick, MA USA
| | - Steve Arcidiacono
- Soldier Effectiveness Directorate (SED), U.S. Army DEVCOM Soldier Center, Natick, MA USA
| | - Jason W. Soares
- Soldier Effectiveness Directorate (SED), U.S. Army DEVCOM Soldier Center, Natick, MA USA
| |
Collapse
|
6
|
Bhatt S, Kanoujia J, Mohana Lakshmi S, Patil CR, Gupta G, Chellappan DK, Dua K. Role of Brain-Gut-Microbiota Axis in Depression: Emerging Therapeutic Avenues. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:276-288. [PMID: 35352640 DOI: 10.2174/1871527321666220329140804] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/26/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
Abstract
The human gut microbiota plays a significant role in the pathophysiology of central nervous system-related diseases. Recent studies suggest correlations between the altered gut microbiota and major depressive disorder (MDD). It is proposed that normalization of the gut microbiota alleviates MDD. The imbalance of brain-gut-microbiota axis also results in dysregulation of the hypothalamicpituitary- adrenal (HPA) axis. This imbalance has a crucial role in the pathogenesis of depression. Treatment strategies with certain antibiotics lead to the depletion of useful microbes and thereby induce depression like effects in subjects. Microbiota is also involved in the synthesis of various neurotransmitters (NTs) like 5-hydroxy tryptamine (5-HT; serotonin), norepinephrine (NE) and dopamine (DA). In addition to NTs, the gut microbiota also has an influence on brain derived neurotrophic factor (BDNF) levels. Recent research findings have exhibited that transfer of stress prone microbiota in mice is also responsible for depression and anxiety-like behaviour in animals. The use of probiotics, prebiotics, synbiotics and proper diet have shown beneficial effects in the regulation of depression pathogenesis. Moreover, transplantation of fecal microbiota from depressed individuals to normal subjects also induces depression-like symptoms. With the precedence of limited therapeutic benefits from monoamine targeting drugs, the regulation of brain-gut microbiota is emerging as a new treatment modality for MDDs. In this review, we elaborate on the significance of brain-gut-microbiota axis in the progression of MDD, particularly focusing on the modulation of the gut microbiota as a mode of treating MDD.
Collapse
Affiliation(s)
- Shvetank Bhatt
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior -474005, Madhya Pradesh, India
| | - Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior -474005, Madhya Pradesh, India
| | - S Mohana Lakshmi
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior -474005, Madhya Pradesh, India
| | - C R Patil
- Department of Pharmacology, R.C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Maharashtra 425405, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
7
|
Deng L, Zhou X, Tao G, Hao W, Wang L, Lan Z, Song Y, Wu M, Huang JQ. Ferulic acid and feruloylated oligosaccharides alleviate anxiety and depression symptom via regulating gut microbiome and microbial metabolism. Food Res Int 2022; 162:111887. [DOI: 10.1016/j.foodres.2022.111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022]
|
8
|
Kobek-Kjeldager C, Schönherz AA, Canibe N, Pedersen LJ. Diet and microbiota-gut-brain axis in relation to tail biting in pigs: A review. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2021.105514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Liyanage GSG, Inoue R, Fujitani M, Ishijima T, Shibutani T, Abe K, Kishida T, Okada S. Effects of Soy Isoflavones, Resistant Starch and Antibiotics on Polycystic Ovary Syndrome (PCOS)-Like Features in Letrozole-Treated Rats. Nutrients 2021; 13:nu13113759. [PMID: 34836015 PMCID: PMC8621859 DOI: 10.3390/nu13113759] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in reproductive-aged women. Recently, various dietary interventions have been used extensively as a novel therapy against PCOS. In the present study, we show that soy isoflavone metabolites and resistant starch, together with gut microbiota modulations, were successful in decreasing the severity of PCOS-like reproductive features while increasing the expression of gut barrier markers and butyric acid in the gut. In the letrozole-induced PCOS model rats, the intake of both 0.05% soy isoflavones and 11% resistant starch, even with letrozole treatment, reduced the severity of menstrual irregularity and polycystic ovaries with a high concentration of soy isoflavones and equol in plasma. Antibiotic cocktail treatment suppressed soy isoflavone metabolism in the gut and showed no considerable effects on reducing the PCOS-like symptoms. The mRNA expression level of occludin significantly increased with soy isoflavone and resistant starch combined treatment. Bacterial genera such as Blautia, Dorea and Clostridium were positively correlated with menstrual irregularity under resistant starch intake. Moreover, the concentration of butyric acid was elevated by resistant starch intake. In conclusion, we propose that both dietary interventions and gut microbiota modulations could be effectively used in reducing the severity of PCOS reproductive features.
Collapse
Affiliation(s)
- Geethika S. G. Liyanage
- Food Functionality Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (G.S.G.L.); (T.I.); (T.S.); (K.A.)
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka 573-0101, Japan;
| | - Mina Fujitani
- Laboratory of Nutrition Science, Division of Applied Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan; (M.F.); (T.K.)
| | - Tomoko Ishijima
- Food Functionality Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (G.S.G.L.); (T.I.); (T.S.); (K.A.)
| | - Taisei Shibutani
- Food Functionality Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (G.S.G.L.); (T.I.); (T.S.); (K.A.)
| | - Keiko Abe
- Food Functionality Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (G.S.G.L.); (T.I.); (T.S.); (K.A.)
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Taro Kishida
- Laboratory of Nutrition Science, Division of Applied Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan; (M.F.); (T.K.)
- Food and Health Sciences Research Centre, Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Shinji Okada
- Food Functionality Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (G.S.G.L.); (T.I.); (T.S.); (K.A.)
- Correspondence: ; Tel.: +81-3-5841-1127
| |
Collapse
|
10
|
Zhang L, Zhang Z, Xu L, Zhang X. Maintaining the Balance of Intestinal Flora through the Diet: Effective Prevention of Illness. Foods 2021; 10:2312. [PMID: 34681359 PMCID: PMC8534928 DOI: 10.3390/foods10102312] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
The human body is home to a complex community of dynamic equilibrium microbiota, including bacteria, fungi, parasites, and viruses. It is known that the gut microbiome plays a crucial role in regulating innate and adaptive immune responses, intestinal peristalsis, intestinal barrier homeostasis, nutrient uptake, and fat distribution. The complex relationship between the host and microbiome suggests that when this relationship is out of balance, the microbiome may contribute to disease development. The brain-gut-microbial axis is composed of many signal molecules, gastrointestinal mucosal cells, the vagus nerve, and blood-brain barrier, which plays an essential role in developing many diseases. The microbiome can influence the central nervous system function through the brain-gut axis; the central nervous system can also affect the composition and partial functions of the gut microbiome in the same way. Different dietary patterns, specific dietary components, and functional dietary factors can significantly affect intestinal flora's structure, composition, and function, thereby affecting human health. Based on the above, this paper reviewed the relationship between diet, intestinal flora, and human health, and the strategies to prevent mental illness through the dietary modification of intestinal microorganisms.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (Z.Z.)
| | - Zhenying Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (Z.Z.)
| | - Lei Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
11
|
Specific Changes in the Mammalian Gut Microbiome as a Biomarker for Oxytocin-Induced Behavioral Changes. Microorganisms 2021; 9:microorganisms9091938. [PMID: 34576833 PMCID: PMC8465812 DOI: 10.3390/microorganisms9091938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Prolonged exposure to psychiatric pharmacological agents is often associated with marked gastrointestinal phenomena, including changes in food intake, bowel motility, gastric emptying, and transit time. Those changes are reflected in the gut microbiota composition of the patient and can, therefore, be objectively measured. This is in contrast to the standard psychiatric evaluation of patients, which includes symptoms that are subjectively assessed (i.e., mood, anxiety level, perception, thought disorders, etc.). The association between a drug’s effect on the microbiota and psychiatric symptoms may allow for quantifiable surrogate markers of treatment effectiveness. Changes in the levels of specific drug-sensitive bacterial species can, thus, potentially serve as biomarkers for the intake and effectiveness of psychiatric drugs. Here, we show substantial microbiota changes that were associated with oxytocin administration and the decreased anxiety/depression-like behaviors it conferred in a rat model of corticosterone-induced stress. Compared with oxytocin, citalopram produced more minor effects on the rats’ microbiota. Alterations in the gut microbiota may, therefore, reflect the consumption and effectiveness of some psychiatric drugs.
Collapse
|
12
|
Yu W, Zhou X, Li C. Application of first-order kinetics modeling to reveal the nature of starch digestion characteristics. Food Funct 2021; 12:6652-6663. [PMID: 34114587 DOI: 10.1039/d1fo00450f] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mathematical modeling of in vitro starch digestograms is essential to understand starch structure-digestibility relationships as it covers all detailed information of the starch digestograms with only a few kinetics-based parameters. However, many assumptions exist for these mathematical models, which are frequently overlooked by researchers and lead to inappropriate or even wrong interpretations of the fitted parameters. This review presents a critical evaluation of four mostly applied empirical first-order kinetics models including single first-order kinetics (SK), logarithm of slope (LOS) transformed kinetics, parallel first-order kinetics (PK) and the combination of parallel and sequential (CPS) kinetics models. For homogeneous food systems, the SK model is perfectly suitable, whereas the LOS, PK and CPS models were suitably developed for food systems containing multiple digestible fractions. For the digestion of starch containing multiple digestible fractions, the LOS model assumed a sequential digestion pattern, whereas the PK model assumed a parallel pattern. In the current review, there is also emphasis on the recently developed CPS model, which is able to differentiate the sequential and parallel digestion patterns for different starch digestible fractions existing in food systems. Understanding these assumptions enables a better selection of an appropriate mathematical model for improving the understanding of in vitro starch digestion characteristics. This review meets the growing interest of the food industry in terms of developing a new generation of foods with slower starch digestibility.
Collapse
Affiliation(s)
- Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City, China
| | | | | |
Collapse
|
13
|
Berding K, Vlckova K, Marx W, Schellekens H, Stanton C, Clarke G, Jacka F, Dinan TG, Cryan JF. Diet and the Microbiota-Gut-Brain Axis: Sowing the Seeds of Good Mental Health. Adv Nutr 2021; 12:1239-1285. [PMID: 33693453 PMCID: PMC8321864 DOI: 10.1093/advances/nmaa181] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the gut microbiota has emerged as a key component in regulating brain processes and behavior. Diet is one of the major factors involved in shaping the gut microbiota composition across the lifespan. However, whether and how diet can affect the brain via its effects on the microbiota is only now beginning to receive attention. Several mechanisms for gut-to-brain communication have been identified, including microbial metabolites, immune, neuronal, and metabolic pathways, some of which could be prone to dietary modulation. Animal studies investigating the potential of nutritional interventions on the microbiota-gut-brain axis have led to advancements in our understanding of the role of diet in this bidirectional communication. In this review, we summarize the current state of the literature triangulating diet, microbiota, and host behavior/brain processes and discuss potential underlying mechanisms. Additionally, determinants of the responsiveness to a dietary intervention and evidence for the microbiota as an underlying modulator of the effect of diet on brain health are outlined. In particular, we emphasize the understudied use of whole-dietary approaches in this endeavor and the need for greater evidence from clinical populations. While promising results are reported, additional data, specifically from clinical cohorts, are required to provide evidence-based recommendations for the development of microbiota-targeted, whole-dietary strategies to improve brain and mental health.
Collapse
Affiliation(s)
| | | | - Wolfgang Marx
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
| | - Harriet Schellekens
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Felice Jacka
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Black Dog Institute, Randwick, NSW, Australia
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Douglas, QLD, Australia
| | - Timothy G Dinan
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
14
|
Li W, Zhou Z, Fan S, Cai X, Chen J, Zhang Y, Huang Z, Hu H, Liang J. Formation of type 3 resistant starch from mechanical activation-damaged high-amylose maize starch by a high-solid method. Food Chem 2021; 363:130344. [PMID: 34147895 DOI: 10.1016/j.foodchem.2021.130344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/13/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023]
Abstract
This study focused on constructing a high-solid reaction system to prepare type 3 resistant starch (RS3) with high-amylose maize starch as raw material by mechanical activation (MA) pretreatment combined with thermal and freeze-thaw treatments. MA pretreatment effectively destroyed the crystal structure and molecular structure of native starch. MA damaged starch with a certain viscosity could form dough with a small amount of water to construct a starch continuous phase system. RS content increased with the damage levels of starch as the formation of double helix structure, attributed to that the molecules of MA damaged starch could be easy to move and form recrystallization structure. Thermal and freeze-thaw treatments contributed to strong interaction of starch-water and the re-formation of internal crystal structure of MA damaged starch to form RS3. This study provides insight into the development of a highly effective approach for large scale production of resistant starch.
Collapse
Affiliation(s)
- Wanhe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zan Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Songlin Fan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiunan Cai
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jing Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
15
|
Association between Fruit and Vegetable Intakes and Mental Health in the Australian Diabetes Obesity and Lifestyle Cohort. Nutrients 2021; 13:nu13051447. [PMID: 33923358 PMCID: PMC8146262 DOI: 10.3390/nu13051447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Increasing prevalence of mental health disorders within the Australian population is a serious public health issue. Adequate intake of fruits and vegetables (FV), dietary fibre (DF) and resistant starch (RS) is associated with better mental and physical health. Few longitudinal studies exist exploring the temporal relationship. Using a validated food frequency questionnaire, we examined baseline FV intakes of 5845 Australian adults from the AusDiab study and estimated food group-derived DF and RS using data from the literature. Perceived mental health was assessed at baseline and 5 year follow up using SF-36 mental component summary scores (MCS). We conducted baseline cross-sectional analysis and prospective analysis of baseline dietary intake with perceived mental health at 5 years. Higher baseline FV and FV-derived DF and RS intakes were associated with better 5 year MCS (p < 0.001). A higher FV intake (754 g/d vs. 251 g/d, Q4 vs. Q1) at baseline had 41% lower odds (OR = 0.59: 95% CI 0.46–0.75) of MCS below population average (<47) at 5 year follow up. Findings were similar for FV-derived DF and RS. An inverse association was observed with discretionary food-derived DF and RS. This demonstrates the association between higher intakes of FV and FV-derived DF and RS with better 5 year mental health outcomes. Further RCTs are necessary to understand mechanisms that underlie this association including elucidation of causal effects.
Collapse
|
16
|
Lin X, Luo Z, Pang S, Wang CC, Ge L, Dai Y, Zhou J, Chen F, Hong X, Zhang J. The effects of yam gruel on lowering fasted blood glucose in T2DM rats. Open Life Sci 2021; 15:763-773. [PMID: 33817264 PMCID: PMC7747525 DOI: 10.1515/biol-2020-0096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 11/15/2022] Open
Abstract
There is increasing evidence of the linkage between type 2 diabetes mellitus (T2DM) and gut microbiota. Based on our previous studies, we investigated the hypoglycemic mechanisms of yam gruel to provide a scientific basis for its popularization and application. Wistar rats were randomly divided into control and T2DM model groups. Rats in the model group were stimulated by a high-sugar/high-fat diet combined with an intraperitoneal injection of streptozotocin to induce T2DM. The T2DM rats were further subdivided randomly into three groups: (1) DM, (2) DM + yam gruel, and (3) DM + metformin. After 4 weeks of intervention, the changes in gut microbiota, short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), the expression of G protein-coupled receptor 43 (GPR43), glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and fasted blood glucose (FBG) levels were observed. Yam gruel intervention elevated the abundance of probiotic bacteria and increased the expression of SCFAs, GPR43 receptor, GLP-1, and PYY. It also reduced FBG levels. We conclude that yam gruel can lower FBG by promoting the growth of probiotic bacteria, increasing the content of SCFAs, and enhancing the expression of GPR43 receptor to increase the content of GLP-1 and PYY in serum.
Collapse
Affiliation(s)
- Xinjun Lin
- Institute of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Zongting Luo
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Shuqin Pang
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Carol Chunfeng Wang
- School of Nursing and Midwifery, Edith Cowan University, Perth, WA, 6027, Australia
| | - Li Ge
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Yanling Dai
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Jian Zhou
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Fang Chen
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Xuepei Hong
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Jiahui Zhang
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| |
Collapse
|
17
|
|
18
|
Bistoletti M, Bosi A, Banfi D, Giaroni C, Baj A. The microbiota-gut-brain axis: Focus on the fundamental communication pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 176:43-110. [PMID: 33814115 DOI: 10.1016/bs.pmbts.2020.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
19
|
Bear TLK, Dalziel JE, Coad J, Roy NC, Butts CA, Gopal PK. The Role of the Gut Microbiota in Dietary Interventions for Depression and Anxiety. Adv Nutr 2020; 11:890-907. [PMID: 32149335 PMCID: PMC7360462 DOI: 10.1093/advances/nmaa016] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/16/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
There is emerging evidence that an unhealthy dietary pattern may increase the risk of developing depression or anxiety, whereas a healthy dietary pattern may decrease it. This nascent research suggests that dietary interventions could help prevent, or be an alternative or adjunct therapy for, depression and anxiety. The relation, however, is complex, affected by many confounding variables, and is also likely to be bidirectional, with dietary choices being affected by stress and depression. This complexity is reflected in the data, with sometimes conflicting results among studies. As the research evolves, all characteristics of the relation need to be considered to ensure that we obtain a full understanding, which can potentially be translated into clinical practice. A parallel and fast-growing body of research shows that the gut microbiota is linked with the brain in a bidirectional relation, commonly termed the microbiome-gut-brain axis. Preclinical evidence suggests that this axis plays a key role in the regulation of brain function and behavior. In this review we discuss possible reasons for the conflicting results in diet-mood research, and present examples of areas of the diet-mood relation in which the gut microbiota is likely to be involved, potentially explaining some of the conflicting results from diet and depression studies. We argue that because diet is one of the most significant factors that affects human gut microbiota structure and function, nutritional intervention studies need to consider the gut microbiota as an essential piece of the puzzle.
Collapse
Affiliation(s)
- Tracey L K Bear
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Julie E Dalziel
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch Ltd Grasslands Research Centre, Palmerston North, New Zealand
| | - Jane Coad
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch Ltd Grasslands Research Centre, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Christine A Butts
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Pramod K Gopal
- Riddet Institute, Massey University, Palmerston North, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
20
|
Zhang Y, Chen L, Hu M, Kim JJ, Lin R, Xu J, Fan L, Qi Y, Wang L, Liu W, Deng Y, Si J, Chen S. Dietary type 2 resistant starch improves systemic inflammation and intestinal permeability by modulating microbiota and metabolites in aged mice on high-fat diet. Aging (Albany NY) 2020; 12:9173-9187. [PMID: 32452830 PMCID: PMC7288951 DOI: 10.18632/aging.103187] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/17/2020] [Indexed: 12/13/2022]
Abstract
Type 2 resistant starch (RS2) is a fermentable dietary fiber conferring health benefits. We investigated the effects of RS2 on host, gut microbiota, and metabolites in aged mice on high-fat diet. In eighteen-month old mice randomly assigned to control, high-fat (HF), or high-fat+20% RS2 (HFRS) diet for 16 weeks, RS2 reversed the weight gain and hepatic steatosis induced by high-fat diet. Serum and fecal LPS, colonic IL-2 and hepatic IL-4 mRNA expressions decreased while colonic mucin 2 mRNA and protein expressions increased in the HFRS compared to the HF and the control group. 16s rRNA sequencing of fecal microbial DNA demonstrated that RS2 decreased the abundance of pathogen taxa associated with obesity, inflammation, and aging including Desulfovibrio (Proteobacteria phylum), Ruminiclostridium 9, Lachnoclostridium, Helicobacteria, Oscillibacter, Alistipes, Peptococcus, and Rikenella. Additionally, RS2 increased the colonic butyric acid by 2.6-fold while decreasing the isobutyric and isovaleric acid levels by half compared to the HF group. Functional analyses based on Clusters of Orthologous Groups showed that RS2 increased carbohydrate while decreasing amino acid metabolism. These findings demonstrate that RS2 can reverse weight gain, hepatic steatosis, inflammation, and increased intestinal permeability in aged mice on high-fat diet mediated by changes in gut microbiome and metabolites.
Collapse
Affiliation(s)
- Yawen Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Luyi Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Mengjia Hu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - John J Kim
- Division of Gastroenterology, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Renbin Lin
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Jilei Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Lina Fan
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Weili Liu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yanyong Deng
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
21
|
Obesity Affects the Microbiota-Gut-Brain Axis and the Regulation Thereof by Endocannabinoids and Related Mediators. Int J Mol Sci 2020; 21:ijms21051554. [PMID: 32106469 PMCID: PMC7084914 DOI: 10.3390/ijms21051554] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
The hypothalamus regulates energy homeostasis by integrating environmental and internal signals to produce behavioral responses to start or stop eating. Many satiation signals are mediated by microbiota-derived metabolites coming from the gastrointestinal tract and acting also in the brain through a complex bidirectional communication system, the microbiota–gut–brain axis. In recent years, the intestinal microbiota has emerged as a critical regulator of hypothalamic appetite-related neuronal networks. Obesogenic high-fat diets (HFDs) enhance endocannabinoid levels, both in the brain and peripheral tissues. HFDs change the gut microbiota composition by altering the Firmicutes:Bacteroidetes ratio and causing endotoxemia mainly by rising the levels of lipopolysaccharide (LPS), the most potent immunogenic component of Gram-negative bacteria. Endotoxemia induces the collapse of the gut and brain barriers, interleukin 1β (IL1β)- and tumor necrosis factor α (TNFα)-mediated neuroinflammatory responses and gliosis, which alter the appetite-regulatory circuits of the brain mediobasal hypothalamic area delimited by the median eminence. This review summarizes the emerging state-of-the-art evidence on the function of the “expanded endocannabinoid (eCB) system” or endocannabinoidome at the crossroads between intestinal microbiota, gut-brain communication and host metabolism; and highlights the critical role of this intersection in the onset of obesity.
Collapse
|
22
|
Bendiks ZA, Knudsen KEB, Keenan MJ, Marco ML. Conserved and variable responses of the gut microbiome to resistant starch type 2. Nutr Res 2020; 77:12-28. [PMID: 32251948 DOI: 10.1016/j.nutres.2020.02.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/31/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
Resistant starch type 2 (RS2), a dietary fiber comprised solely of glucose, has been extensively studied in clinical trials and animal models for its capacity to improve metabolic and systemic health. Because the health modulatory effects of RS2 and other dietary fibers are thought to occur through modification of the gut microbiome, those studies frequently include assessments of RS2-mediated changes to intestinal microbial composition and function. In this review, we identify the conserved responses of the gut microbiome among 13 human and 35 animal RS2 intervention studies. Consistent outcomes of RS2 interventions include reductions in bacterial α-diversity; increased production of lumenal short-chain fatty acids; and enrichment of Ruminococcus bromii, Bifidobacterium adolescentis, and other gut taxa. Different taxa are usually responsive in animal models, and many RS2-mediated changes to the gut microbiome vary within and between studies. The root causes for this variation are examined with regard to methodological and analytical differences, host genetics and age, species differences (eg, human, animal), health status, intervention dose and duration, and baseline microbial composition. The significant variation found for this single dietary compound highlights the challenges in targeting the gut microbiome to improve health with dietary interventions. This knowledge on RS2 also provides opportunities to improve the design of nutrition studies targeting the gut microbiome and to ultimately identify the precise mechanisms via which dietary fiber benefits human health.
Collapse
Affiliation(s)
- Zachary A Bendiks
- Department of Food Science & Technology, University of California-Davis, Davis, CA.
| | - Knud E B Knudsen
- Department of Animal Science, Aarhus University, 8830, Tjele, Denmark.
| | - Michael J Keenan
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA.
| | - Maria L Marco
- Department of Food Science & Technology, University of California-Davis, Davis, CA.
| |
Collapse
|
23
|
Bustamante MF, Agustín-Perez M, Cedola F, Coras R, Narasimhan R, Golshan S, Guma M. Design of an anti-inflammatory diet (ITIS diet) for patients with rheumatoid arthritis. Contemp Clin Trials Commun 2020; 17:100524. [PMID: 32025586 PMCID: PMC6997513 DOI: 10.1016/j.conctc.2020.100524] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/01/2020] [Accepted: 01/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that affects synovial joints, leading to inflammation, joint destruction, loss of function, and disability. Although recent pharmaceutical advances have improved treatment of RA, patients with RA often inquire about dietary interventions to improve RA symptoms, as they perceive rapid changes in their symptoms after consumption of certain foods. There is evidence that some ingredients have pro- or anti-inflammatory effects. In addition, recent literature has shown a link between diet and microbiome changes. Both diet and the gut microbiome are linked to circulating metabolites that may modulate inflammation. However, evidence of the effects of an anti-inflammatory and probiotic-rich diet in patients with RA is scarce. There is also a need for biological data to support its anti-inflammatory effects. Methods The main goal of this study is to delineate the design process for a diet tailored to our RA population. To achieve this goal, we collected information on diet, supplements, cooking methods, and intake of different ingredients for each patient. Different groups were interviewed, and their feedback was assessed to design a diet that incorporates suggested anti-inflammatory ingredients in a manner that was easy for patients to adopt based on their lifestyles and backgrounds. Results We designed a diet that includes a high intake of potential anti-inflammatory ingredients. Feedback from highly motivated patients was critical in constructing an anti-inflammatory diet (ITIS diet) with elevated adherence. Conclusion In order to tailor our diet, we surveyed our patients on several different parameters. We obtained important feedback on how feasible our ITIS diet is for RA patients. Using this feedback, we made minor improvements and finalized the design of the ITIS diet. This diet is being used in an on-going pilot study to determine their anti-inflammatory effect in pain and joint swelling in RA patients. Trial registration Not applicable.
Collapse
Affiliation(s)
- Marta F Bustamante
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | | | - Francesca Cedola
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Roxana Coras
- Department of Medicine, University of California San Diego, San Diego, CA, USA.,Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193, Bellaterra, Barcelona, Spain
| | - Rekha Narasimhan
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Shahrokh Golshan
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Monica Guma
- Department of Medicine, University of California San Diego, San Diego, CA, USA.,Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
24
|
Wang A, Liu M, Shang W, Liu J, Dai Z, Strappe P, Zhou Z. Attenuation of metabolic syndrome in the ob/ob mouse model by resistant starch intervention is dose dependent. Food Funct 2019; 10:7940-7951. [PMID: 31777896 DOI: 10.1039/c9fo01771b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The current study applied an ob/ob mouse model of obesity for investigating the impact of different RS doses in a high-fat (HF) diet on the attenuation of metabolic syndrome. Although a significant reduction of body weight was not achieved, RS intervention significantly decreased liver weight with suppressed lipid accumulation in the liver tissue and reduced adipocyte size in the fat tissue. All levels of RS intervention were associated with significantly enriched pathways for PPAR, NAFLD and cGMP-PKG signaling. In contrast, either a medium or a higher RS intake (MRS and HRS, respectively) led the AMPK signaling pathway to be significantly enriched but not a diet with lower RS intake. More importantly, sphingolipid biosynthesis activity was noted with MRS and HRS intervention, which is highly associated with the improvement in insulin resistance, and the pathway of type II diabetes mellitus was correspondingly significantly enriched in the HRS group, demonstrating a dose-dependent manner. Similarly, there was no significant difference in the ratio of Bacteroidetes and Firmicutes between high-fat diet and RS groups until RS reached a certain level (i.e. in the HRS group). Furthermore, increased profiles of both Prevotellaceae and Coriobacteriaceae in the HF group were noted for the first time with a revised function from RS intervention, which is consistent with the content of lipopolysaccharides in their corresponding serum. Gut microbiota functional analysis showed that primary and secondary bile acid biosynthesis was also noted to be enriched following the RS intervention, benefiting cholesterol homeostasis. This study further highlights the association of RS consumption with the attenuation of metabolic syndrome in an obesity model, and its functionality is characterized by dose-dependence.
Collapse
Affiliation(s)
- Anqi Wang
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Bulmer LS, Murray JA, Burns NM, Garber A, Wemelsfelder F, McEwan NR, Hastie PM. High-starch diets alter equine faecal microbiota and increase behavioural reactivity. Sci Rep 2019; 9:18621. [PMID: 31819069 PMCID: PMC6901590 DOI: 10.1038/s41598-019-54039-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/23/2019] [Indexed: 02/08/2023] Open
Abstract
Gut microbiota have been associated with health, disease and behaviour in several species and are an important link in gut-brain axis communication. Diet plays a key role in affecting the composition of gut microbiota. In horses, high-starch diets alter the hindgut microbiota. High-starch diets are also associated with increased behavioural reactivity in horses. These changes in microbiota and behaviour may be associated. This study compares the faecal microbiota and behaviour of 10 naïve ponies. A cross-over design was used with experimental groups fed high-starch (HS) or high-fibre (HF) diets. Results showed that ponies were more reactive and less settled when being fed the HS diet compared to the HF diet. Irrespective of diet, the bacterial profile was dominated by two main phyla, Firmicutes, closely followed by Bacteroidetes. However, at lower taxonomic levels multivariate analysis of 16S rRNA gene sequencing data showed diet affected faecal microbial community structure. The abundance of 85 OTUs differed significantly related to diet. Correlative relationships exist between dietary induced alterations to faecal microbiota and behaviour. Results demonstrate a clear link between diet, faecal microbial community composition and behaviour. Dietary induced alterations to gut microbiota play a role in affecting the behaviour of the host.
Collapse
Affiliation(s)
- Louise S Bulmer
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| | - Jo-Anne Murray
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Neil M Burns
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Anna Garber
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Francoise Wemelsfelder
- Animal and Veterinary Sciences, SRUC, Roslin Institute Building, Midlothian, EH25 9RG, UK
| | - Neil R McEwan
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK
| | - Peter M Hastie
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| |
Collapse
|
26
|
Lim SM, Page A, Carragher J, Muhlhausler B. Could High-Amylose Wheat Have Greater Benefits on Diabesity and Gut Health than Standard Whole-wheat? FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1683743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- See Meng Lim
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- Centre for Community Health, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amanda Page
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - John Carragher
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, Australia
| | - Beverly Muhlhausler
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- Commonwealth Scientific and Industrial Research Organisation, Adelaide, Australia
| |
Collapse
|
27
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 1243] [Impact Index Per Article: 248.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
28
|
McCombe PA, Henderson RD, Lee A, Lee JD, Woodruff TM, Restuadi R, McRae A, Wray NR, Ngo S, Steyn FJ. Gut microbiota in ALS: possible role in pathogenesis? Expert Rev Neurother 2019; 19:785-805. [PMID: 31122082 DOI: 10.1080/14737175.2019.1623026] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: The gut microbiota has important roles in maintaining human health. The microbiota and its metabolic byproducts could play a role in the pathogenesis of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Areas covered: The authors evaluate the methods of assessing the gut microbiota, and also review how the gut microbiota affects the various physiological functions of the gut. The authors then consider how gut dysbiosis could theoretically affect the pathogenesis of ALS. They present the current evidence regarding the composition of the gut microbiota in ALS and in rodent models of ALS. Finally, the authors review therapies that could improve gut dysbiosis in the context of ALS. Expert opinion: Currently reported studies suggest some instances of gut dysbiosis in ALS patients and mouse models; however, these studies are limited, and more information with well-controlled larger datasets is required to make a definitive judgment about the role of the gut microbiota in ALS pathogenesis. Overall this is an emerging field that is worthy of further investigation. The authors advocate for larger studies using modern metagenomic techniques to address the current knowledge gaps.
Collapse
Affiliation(s)
- Pamela A McCombe
- Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital , Brisbane , Australia.,Department of Neurology, Royal Brisbane & Women's Hospital , Brisbane , Australia.,School of Medicine, The University of Queensland , Brisbane , Australia
| | - Robert D Henderson
- Wesley Medical Research, Level 8 East Wing, The Wesley Hospital , Brisbane , Australia.,Department of Neurology, Royal Brisbane & Women's Hospital , Brisbane , Australia.,School of Medicine, The University of Queensland , Brisbane , Australia.,Queensland Brain Institute, The University of Queensland , Brisbane , Australia
| | - Aven Lee
- Centre for Clinical Research, The University of Queensland , Brisbane , Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland , Brisbane , Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland , Brisbane , Australia
| | - Restuadi Restuadi
- Institute for Molecular Bioscience, The University of Queensland , Brisbane , Australia
| | - Allan McRae
- Institute for Molecular Bioscience, The University of Queensland , Brisbane , Australia
| | - Naomi R Wray
- Queensland Brain Institute, The University of Queensland , Brisbane , Australia.,Institute for Molecular Bioscience, The University of Queensland , Brisbane , Australia
| | - Shyuan Ngo
- Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital , Brisbane , Australia.,Department of Neurology, Royal Brisbane & Women's Hospital , Brisbane , Australia.,Queensland Brain Institute, The University of Queensland , Brisbane , Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane , Australia
| | - Frederik J Steyn
- Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital , Brisbane , Australia.,Department of Neurology, Royal Brisbane & Women's Hospital , Brisbane , Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane , Australia
| |
Collapse
|
29
|
Lyte JM. Eating for 3.8 × 10 13: Examining the Impact of Diet and Nutrition on the Microbiota-Gut-Brain Axis Through the Lens of Microbial Endocrinology. Front Endocrinol (Lausanne) 2019; 9:796. [PMID: 30761092 PMCID: PMC6361751 DOI: 10.3389/fendo.2018.00796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022] Open
Abstract
The study of host-microbe neuroendocrine crosstalk, termed microbial endocrinology, suggests the impact of diet on host health and microbial viability is, in part, reliant upon nutritional modulation of shared host-microbe neuroendocrine axes. In the 1990's it was first recognized that neuroendocrine pathways are major components of the microbiota-gut-brain axis, and that diet-induced changes in the gut microbiota were correlated with changes in host behavior and cognition. A causative link, however, between nutritional-induced shifts in microbiota composition and change in host behavior has yet to be fully elucidated. Substrates found in food which are utilized by bacteria in the production of microbial-derived neurochemicals, which are structurally identical to those made by the host, likely represent a microbial endocrinology-based route by which the microbiota causally influence the host and microbial community dynamics via diet. For example, food safety is strongly impacted by the microbial production of biogenic amines. While microbial-produced tyramine found in cheese can elicit hypertensive crises, microorganisms which are common inhabitants of the human intestinal tract can convert L-histidine found in common foodstuffs to histamine and thereby precipitate allergic reactions. Hence, there is substantial evidence suggesting a microbial endocrinology-based role by which the gastrointestinal microbiota can utilize host dietary components to produce neuroactive molecules that causally impact the host. Conversely, little is known regarding the reverse scenario whereby nutrition-mediated changes in host neuroendocrine production affect microbial viability, composition, and/or function. Mechanisms in the direction of brain-to-gut, such as how host production of catecholamines drives diverse changes in microbial growth and functionality within the gut, require greater examination considering well-known nutritional effects on host stress physiology. As dietary intake mediates changes in host stress, such as the effects of caffeine on the hypothalamic-pituitary-adrenal axis, it is likely that nutrition can impact host neuroendocrine production to affect the microbiota. Likewise, the plasticity of the microbiota to changes in host diet has been hypothesized to drive microbial regulation of host food preference via a host-microbe feedback loop. This review will focus on food as concerns microbial endocrinology with emphasis given to nutrition as a mediator of host-microbe bi-directional neuroendocrine crosstalk and its impact on microbial viability and host health.
Collapse
Affiliation(s)
- Joshua M. Lyte
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR, United States
| |
Collapse
|
30
|
Zhang T, Yang Y, Liang Y, Jiao X, Zhao C. Beneficial Effect of Intestinal Fermentation of Natural Polysaccharides. Nutrients 2018; 10:E1055. [PMID: 30096921 PMCID: PMC6116026 DOI: 10.3390/nu10081055] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/27/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
With the rapid development of modern society, many chronic diseases are increasing including diabetes, obesity, cardiovascular diseases, etc., which further cause an increased death rate worldwide. A high caloric diet with reduced natural polysaccharides, typically indigestible polysaccharides, is considered a health risk factor. With solid evidence accumulating that indigestible polysaccharides can effectively prevent and/or ameliorate symptoms of many chronic diseases, we give a narrative review of many natural polysaccharides extracted from various food resources which mainly contribute their health beneficial functions via intestinal fermentation.
Collapse
Affiliation(s)
- Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Yang Yang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Xu Jiao
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
31
|
|
32
|
Binda C, Lopetuso LR, Rizzatti G, Gibiino G, Cennamo V, Gasbarrini A. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig Liver Dis 2018; 50:421-428. [PMID: 29567414 DOI: 10.1016/j.dld.2018.02.012] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/26/2018] [Accepted: 02/19/2018] [Indexed: 02/06/2023]
Abstract
Actinobacteria are one the four major phyla of the gut microbiota and, although they represent only a small percentage, are pivotal in the maintenance of gut homeostasis. During the last decade many studies focused the attention on Actinobacteria, especially on their role both in gastrointestinal and systemic diseases and on their possible therapeutic use. In fact, classes of this phylum, especially Bifidobacteria, are widely used as probiotic demonstrating beneficial effects in many pathological conditions, even if larger in vivo studies are needed to confirm such encouraging results. This review aims to explore the current knowledge on their physiological functions and to speculate on their possible therapeutic role(s) in gastrointestinal and systemic diseases.
Collapse
Affiliation(s)
- Cecilia Binda
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy
| | - Loris Riccardo Lopetuso
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy
| | - Gianenrico Rizzatti
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy
| | - Giulia Gibiino
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy
| | - Vincenzo Cennamo
- Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Bologna, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy.
| |
Collapse
|
33
|
Stewart ML, Zimmer JP. Postprandial glucose and insulin response to a high-fiber muffin top containing resistant starch type 4 in healthy adults: a double-blind, randomized, controlled trial. Nutrition 2018; 53:59-63. [PMID: 29655779 DOI: 10.1016/j.nut.2018.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/08/2017] [Accepted: 01/12/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVES VERSAFIBE™ 2470 resistant starch (RS) is an RS type 4 that is derived from high-amylose maize starch,70% total dietary fiber (TDF; AOAC method 2009.01). This was a randomized, double-blind, crossover study to evaluate the postprandial blood glucose and insulin responses of healthy adults (n = 28) after the consumption of a muffin top made with VERSAFIBE™ 2470 RS (11.6 g TDF fiber muffin top) or a control muffin top (0.9 g TDF). METHODS The muffin tops were matched for weight, total carbohydrate, sugars, protein, and fat. During each treatment period, subjects consumed a standard evening meal, fasted for 12 h, and arrived at the study clinic the following morning. Serum glucose, serum insulin, and capillary glucose were measured at 0, 15, 30, 45, 60, 90, and 120 min after muffin top consumption. The subjects completed a 7-d washout period between treatments. RESULTS The consumption of the fiber muffin top resulted in a significant 33% reduction in postprandial serum glucose incremental area under the curve from 0 to 120 min and an 8% decrease in maximum glucose concentration versus the control muffin (P = 0.037 and P = 0.007, respectively). The fiber muffin top reduced postprandial serum insulin incremental area under the curve from 0 to 120 min by 38% compared with the control muffin top (P <0.001), which aligns with the blood glucose data. CONCLUSIONS This study demonstrated that the inclusion of a practical dose of dietary fiber (11.6 g TDF) from VERSAFIBE™ 2470 RS in a bakery product significantly reduced postprandial glucose and insulin responses in healthy adults.
Collapse
Affiliation(s)
- Maria L Stewart
- Global Nutrition R&D, Ingredion Incorporated, Bridgewater, New Jersey, USA.
| | - J Paul Zimmer
- Global Nutrition R&D, Ingredion Incorporated, Bridgewater, New Jersey, USA
| |
Collapse
|
34
|
Ceccarelli G, Fratino M, Selvaggi C, Giustini N, Serafino S, Schietroma I, Corano Scheri G, Pavone P, Passavanti G, Alunni Fegatelli D, Mezzaroma I, Antonelli G, Vullo V, Scagnolari C, d'Ettorre G. A pilot study on the effects of probiotic supplementation on neuropsychological performance and microRNA-29a-c levels in antiretroviral-treated HIV-1-infected patients. Brain Behav 2017; 7:e00756. [PMID: 28828217 PMCID: PMC5561317 DOI: 10.1002/brb3.756] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION The gut microbiota is involved in the regulation of cognition, mood, anxiety, and pain, and can impact cognitive functions by producing neuroactive substances or releasing bacterial by-products and metabolites. No information is available on the effects of a probiotic supplementation on brain function of HIV+ subjects. In light of the above considerations, we performed a pilot study in cART-treated HIV-1-positive patients with long-term virologic suppression. The aims were to analyze the effect of high-concentration multistrain probiotic supplementation (Vivomixx®; Visbiome®) on several neurocognitive abilities and to evaluate the safety of this supplementation. METHODS To address those issues, neurocognitive performances were explored by administering neuropsychological tests; moreover, miRNA-29a-c levels were measured in cerebrospinal fluid (CSF) to confirm the persistent undetectable levels of HIV-RNA in the central nervous system after probiotic supplementation. RESULTS Our results show that the Rey auditory verbal learning test (RAVLT) (immediate and delayed recall), Rey-Osterrieth complex figure test (ROCF) (copy immediate and delayed recall), phonological verbal fluency (PVF) test, Toronto alexithymia scale-20 (Tas-20), State-trait anxiety inventory Y-2 (STAY Y-2), and time and weight estimation test (STEP) scores improved significantly during the study. Moreover, we found unchanged levels, associated to high degree of individual variability, in miRNA-29 levels in CSF collected before and after probiotic supplementation. CONCLUSIONS In conclusion, we observed that HIV patients treated with 6 months of this probiotic supplementation appear to have an improvement in some neurocognitive functions; moreover, this approach is safe and did not modify significantly the levels of miRNA in CSF. Further studies are needed to better understand the contribution of the probiotics in modulating gut-brain-axis in HIV patients.
Collapse
Affiliation(s)
- Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases Sapienza University of Rome Rome Italy.,Pasteur Institute-Cenci Bolognetti Foundation Rome Italy
| | | | - Carla Selvaggi
- Pasteur Institute-Cenci Bolognetti Foundation Rome Italy.,Department of Molecular Medicine Laboratory of Virology Sapienza University of Rome Italy
| | - Noemi Giustini
- Department of Public Health and Infectious Diseases Sapienza University of Rome Rome Italy
| | - Sara Serafino
- Department of Public Health and Infectious Diseases Sapienza University of Rome Rome Italy
| | - Ivan Schietroma
- Department of Public Health and Infectious Diseases Sapienza University of Rome Rome Italy
| | - Giuseppe Corano Scheri
- Department of Public Health and Infectious Diseases Sapienza University of Rome Rome Italy
| | - Paolo Pavone
- Department of Public Health and Infectious Diseases Sapienza University of Rome Rome Italy
| | - Giulia Passavanti
- Department of Public Health and Infectious Diseases Sapienza University of Rome Rome Italy
| | | | - Ivano Mezzaroma
- Department of Clinical Medicine Sapienza University of Rome Italy
| | - Guido Antonelli
- Pasteur Institute-Cenci Bolognetti Foundation Rome Italy.,Department of Molecular Medicine Laboratory of Virology Sapienza University of Rome Italy
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases Sapienza University of Rome Rome Italy
| | - Carolina Scagnolari
- Pasteur Institute-Cenci Bolognetti Foundation Rome Italy.,Department of Molecular Medicine Laboratory of Virology Sapienza University of Rome Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases Sapienza University of Rome Rome Italy.,Pasteur Institute-Cenci Bolognetti Foundation Rome Italy
| |
Collapse
|
35
|
Effects of Commercial Apple Varieties on Human Gut Microbiota Composition and Metabolic Output Using an In Vitro Colonic Model. Nutrients 2017; 9:nu9060533. [PMID: 28538678 PMCID: PMC5490512 DOI: 10.3390/nu9060533] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/05/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022] Open
Abstract
Apples are a rich source of polyphenols and fiber. A major proportion of apple polyphenols escape absorption in the small intestine and together with non-digestible polysaccharides reach the colon, where they can serve as substrates for bacterial fermentation. Animal studies suggest a synergistic interaction between apple polyphenols and the soluble fiber pectin; however, the effects of whole apples on human gut microbiota are less extensively studied. Three commercial apple varieties—Renetta Canada, Golden Delicious and Pink Lady—were digested and fermented in vitro using a batch culture colonic model (pH 5.5–6.0, 37 °C) inoculated with feces from three healthy donors. Inulin and cellulose were used as a readily and a poorly fermentable plant fiber, respectively. Fecal microbiota composition was measured by 16S rRNA gene Illumina MiSeq sequencing (V3-V4 region) and Fluorescence in Situ Hybridization. Short chain fatty acids (SCFAs) and polyphenol microbial metabolites were determined. The three apple varieties significantly changed bacterial diversity, increased Actinobacteria relative abundance, acetate, propionate and total SCFAs (p < 0.05). Renetta Canada and Golden Delicious significantly decreased Bacteroidetes abundance and increased Proteobacteria proportion and bifidobacteria population (p < 0.05). Renetta Canada also increased Faecalibacterium prausnitzii, butyrate levels and polyphenol microbial metabolites (p < 0.05). Together, these data suggest that apples, particularly Renetta Canada, can induce substantial changes in microbiota composition and metabolic activity in vitro, which could be associated with potential benefits to human health. Human intervention studies are necessary to confirm these data and potential beneficial effects.
Collapse
|
36
|
McGavigan AK, Henseler ZM, Garibay D, Butler SD, Jayasinghe S, Ley RE, Davisson RL, Cummings BP. Vertical sleeve gastrectomy reduces blood pressure and hypothalamic endoplasmic reticulum stress in mice. Dis Model Mech 2017; 10:235-243. [PMID: 28093508 PMCID: PMC5374323 DOI: 10.1242/dmm.027474] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022] Open
Abstract
Bariatric surgery, such as vertical sleeve gastrectomy (VSG), causes remarkable improvements in cardiometabolic health, including hypertension remission. However, the mechanisms responsible remain undefined and poorly studied. Therefore, we developed and validated the first murine model of VSG that recapitulates the blood pressure-lowering effect of VSG using gold-standard radiotelemetry technology. We used this model to investigate several potential mechanisms, including body mass, brain endoplasmic reticulum (ER) stress signaling and brain inflammatory signaling, which are all critical contributors to the pathogenesis of obesity-associated hypertension. Mice fed on a high-fat diet underwent sham or VSG surgery and radiotelemeter implantation. Sham mice were fed ad libitum or were food restricted to match their body mass to VSG-operated mice to determine the role of body mass in the ability of VSG to lower blood pressure. Blood pressure was then measured in freely moving unstressed mice by radiotelemetry. VSG decreased energy intake, body mass and fat mass. Mean arterial blood pressure (MAP) was reduced in VSG-operated mice compared with both sham-operated groups. VSG-induced reductions in MAP were accompanied by a body mass-independent decrease in hypothalamic ER stress, hypothalamic inflammation and sympathetic nervous system tone. Assessment of gut microbial populations revealed VSG-induced increases in the relative abundance of Gammaproteobacteria and Enterococcus, and decreases in Adlercreutzia. These results suggest that VSG reduces blood pressure, but this is only partly due to the reduction in body weight. VSG-induced reductions in blood pressure may be driven by a decrease in hypothalamic ER stress and inflammatory signaling, and shifts in gut microbial populations. Summary: Vertical sleeve gastrectomy in mice decreases blood pressure independent of body mass, which may be due to a decrease in hypothalamic ER stress.
Collapse
Affiliation(s)
- Anne K McGavigan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Zachariah M Henseler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.,Department of Microbiome Science, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Darline Garibay
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Scott D Butler
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Sisitha Jayasinghe
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Ruth E Ley
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.,Department of Microbiome Science, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Robin L Davisson
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.,Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Bethany P Cummings
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
37
|
|
38
|
Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res 2017; 179:223-244. [PMID: 27832936 DOI: 10.1016/j.trsl.2016.10.002] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/08/2016] [Accepted: 10/06/2016] [Indexed: 02/07/2023]
Abstract
The microbial population residing within the human gut represents one of the most densely populated microbial niche in the human body with growing evidence showing it playing a key role in the regulation of behavior and brain function. The bidirectional communication between the gut microbiota and the brain, the microbiota-gut-brain axis, occurs through various pathways including the vagus nerve, the immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and the behavior that are often associated with neuropsychiatric conditions. Therefore, research targeting the modulation of this gut microbiota as a novel therapy for the treatment of various neuropsychiatric conditions is gaining interest. Numerous factors have been highlighted to influence gut microbiota composition, including genetics, health status, mode of birth, and environment. However, it is diet composition and nutritional status that has repeatedly been shown to be one of the most critical modifiable factors regulating the gut microbiota at different time points across the lifespan and under various health conditions. Thus the microbiota is poised to play a key role in nutritional interventions for maintaining brain health.
Collapse
Affiliation(s)
- Kiran V Sandhu
- APC Microbiome institute, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome institute, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome institute, University College Cork, Cork, Ireland; Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland; Teagasc Moorepark Food Research Centre, Fermoy, Co, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome institute, University College Cork, Cork, Ireland; Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|