1
|
Zheng SY, Shao X, Qi Z, Yan M, Tao MH, Wu XM, Zhang L, Ma J, Li A, Chang MX. Zebrafish nos2a benefits bacterial proliferation via suppressing ROS and inducing NO production to impair the expressions of inflammatory cytokines and antibacterial genes. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109178. [PMID: 37863126 DOI: 10.1016/j.fsi.2023.109178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
The enzyme nitric oxide synthase 2 or inducible NOS (NOS2), reactive oxygen species (ROS) and nitric oxide (NO) are important participants in various inflammatory and immune responses. However, the functional significances of the correlations among piscine NOS2, ROS and NO during pathogen infection remain unclear. In teleost, there are two nos2 genes (nos2a and nos2b). It has been previously reported that zebrafish nos2a behaves as a classical inducible NOS, and nos2b exerts some functions similar to mammalian NOS3. In the present study, we reported the functional characterization of zebrafish nos2a during bacterial infection. We found that zebrafish nos2a promoted bacterial proliferation, accompanied by an increased susceptibility to Edwardsiella piscicida infection. The nagative regulation of zebrafish nos2a during E. piscicida infection was characterized by the impaired ROS levels, the induced NO production and the decreased expressions of proinflammatory cytokines, antibacterial genes and oxidant factors. Furthermore, although both inducing ROS and inhibiting NO production significantly inhibited bacterial proliferation, only inhibiting NO production but not inducing ROS significantly increased resistance to E. piscicida infection. More importantly, ROS supplementation and inhibition of NO completely abolished this detrimental consequence mediated by zebrafish nos2a during E. piscicida infection. All together, these results firstly demonstrate that the innate response mediated by zebrafish nos2a in promoting bacterial proliferation is dependent on the lower ROS level and higher NO production. The present study also reveals that inhibition of NO can be effective in the protection against E. piscicida infection.
Collapse
Affiliation(s)
- Si Yao Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xinbin Shao
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, 325005, China
| | - Zhitao Qi
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Maocang Yan
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, 325005, China
| | - Min Hui Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lining Zhang
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, 325005, China
| | - Jianzhong Ma
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, 325005, China
| | - An Li
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, 325005, China.
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
2
|
Dahiya P, Hussain MA, Mazumder S. mtROS Induced via TLR-2-SOCE Signaling Plays Proapoptotic and Bactericidal Role in Mycobacterium fortuitum-Infected Head Kidney Macrophages of Clarias gariepinus. Front Immunol 2022; 12:748758. [PMID: 34987503 PMCID: PMC8720869 DOI: 10.3389/fimmu.2021.748758] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
The mechanisms underlying Mycobacterium fortuitum-induced mycobacteriosis remain unexplored. Using head kidney macrophages (HKM) from catfish (Clarias gariepinus), we report that Ca2+ surge across mitochondrial-Ca2+ uniporter (MICU), and consequent mitochondrial ROS (mtROS) production, is imperative for mycobactericidal activity. Inhibition of mtROS alleviated HKM apoptosis and enhanced bacterial survival. Based on RNA interference (RNAi) and inhibitor studies, we demonstrate that the Toll-like receptor (TLR)-2–endoplasmic reticulum (ER) stress–store-operated calcium entry (SOCE) axis is instrumental for activating the mt-Ca2+/mtROS cascade in M. fortuitum-infected HKM. Additionally, pharmacological inhibition of mtROS attenuated the expression of CHOP, STIM1, and Orai1, which suggests a positive feedback loop between ER-stress-induced SOCE and mtROS production. Elevated tumor necrosis factor alpha (TNF-α) levels and caspase-8 activity were observed in HKM consequent to M. fortuitum infection, and our results implicate that mtROS is crucial in activating the TNF-mediated caspase-8 activation. Our results for the first time demonstrate mitochondria as an innate immune signaling center regulating mycobacteriosis in fish. We conclude that M. fortuitum-induced persistent SOCE signaling leads to mtROS production, which in turn activates the TNF-α/caspase-8 axis culminating in HKM apoptosis and bacterial clearance.
Collapse
Affiliation(s)
- Priyanka Dahiya
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Md Arafat Hussain
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Faculty of Life Sciences & Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
3
|
Wang Q, Xu Z, Ai Q. Arginine metabolism and its functions in growth, nutrient utilization, and immunonutrition of fish. ACTA ACUST UNITED AC 2021; 7:716-727. [PMID: 34466676 PMCID: PMC8379419 DOI: 10.1016/j.aninu.2021.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
Fish have limited ability in endogenous biosynthesis of arginine. Arginine is an indispensable amino acid for fish, and the arginine requirement varies with fish species and fish size. Recent studies on fish have demonstrated that arginine influences nutrient metabolism, stimulates insulin release, is involved in nonspecific immune responses and antioxidant responses, and elevates disease resistance. Specifically, arginine can regulate energy homeostasis via modulating the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway, and also regulate protein synthesis via activating the target of rapamycin (TOR) signaling pathway. The present article reviews pertinent knowledge of arginine in fish, including dietary quantitative requirements, endogenous anabolism and catabolism, regulation of the endocrine and metabolic systems, and immune-regulatory functions under pathogenic challenge. Our findings showed that further data about the distribution of arginine after intake into specific cells, its sub-cellular sensor to initiate downstream signaling pathways, and its effects on fish mucosal immunity, especially the adaptive immune response against pathogenic infection in different species, are urgently needed.
Collapse
Affiliation(s)
- Qingchao Wang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Ocean University of China, Qingdao, China
| |
Collapse
|
4
|
Sharma S, Kumar M, Kumar J, Srivastava N, Hussain MA, Shelly A, Mazumder S. M. fortuitum-induced CNS-pathology: Deciphering the role of canonical Wnt signaling, blood brain barrier components and cytokines. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104111. [PMID: 33933535 DOI: 10.1016/j.dci.2021.104111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Molecular underpinning of mycobacteria-induced CNS-pathology is not well understood. In the present study, zebrafish were infected with Mycobacterium fortuitum and the prognosis of CNS-pathogenesis studied. We observed M. fortuitum triggers extensive brain-pathology. Evans blue extravasation demonstrated compromised blood-brain barrier (BBB) integrity. Further, decreased expression in tight-junction (TJ) and adherens junction complex (AJC) genes were noted in infected brain. Wnt-signaling has emerged as a major player in host-mycobacterial immunity but its involvement/role in brain-infection is not well studied. Sustained expression of wnt2, wnt3a, fzd5, lrp5/6 and β-catenin, with concordant decline in degradation complex components axin, gsk3β and β-catenin regulator capn2a were observed. The surge in ifng1 and tnfa expression preceding il10 and il4 suggested cytokine-interplay critical in M. fortuitum-induced brain-pathology. Therefore, we suggest adult zebrafish as a viable model for studying CNS-pathology and using the same, conclude that M. fortuitum infection is associated with repressed TJ-AJC gene expression and compromised BBB permeability. Our results implicate Wnt/β-catenin pathway in M. fortuitum-induced CNS-pathology wherein Th1-type signals facilitate bacterial clearance and Th2-type signals prevent the disease sequel.
Collapse
Affiliation(s)
- Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Jai Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Nidhi Srivastava
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India; Department of Zoology, School of Basic and Applied Sciences, Maharaja Agrasen University, Solan, Himachal Pradesh, 174103, India
| | - Md Arafat Hussain
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Asha Shelly
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India; Faculty of Life Sciences and Biotechnology, South Asian University, Delhi, 110021, India.
| |
Collapse
|
5
|
Dahiya P, Datta D, Hussain MA, Verma G, Shelly A, Mehta P, Mazumder S. The coordinated outcome of STIM1-Orai1 and superoxide signalling is crucial for headkidney macrophage apoptosis and clearance of Mycobacterium fortuitum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103800. [PMID: 32771347 DOI: 10.1016/j.dci.2020.103800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
The mechanisms underlying M. fortuitum-induced pathogenesis remains elusive. Using headkidney macrophages (HKM) from Clarias gariepinus, we report that TLR-2-mediated internalization of M. fortuitum is imperative to the induction of pathogenic effects. Inhibiting TLR-2 signalling alleviated HKM apoptosis, thereby favouring bacterial survival. Additionally, TLR-2-mediated cytosolic calcium (Ca2+)c elevation was instrumental for eliciting ER-stress in infected HKM. ER-stress triggered the activation of membrane-proximal calcium entry channels comprising stromal interaction molecule 1 (STIM1) and calcium-release activated calcium channel 1 (Orai1). RNAi studies suggested STIM1-Orai1 signalling initiate calpain-mediated cleavage of nitric oxide synthase interacting protein, prompting the release of pro-apoptotic nitric oxide. Inhibiting STIM1-Orai1 signalling attenuated superoxide production (O2•-) and vice versa. We conclude, TLR-2-induced ER-stress triggers STIM1/Orai1 expression and that the reciprocal association between STIM1-Orai1 signalling and oxidative stress is critical for sustaining (Ca2+)c level, thereby prolonging ER-stress and maintenance of pro-oxidant rich environment to induce HKM apoptosis and bacterial clearance.
Collapse
Affiliation(s)
- Priyanka Dahiya
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Debika Datta
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Md Arafat Hussain
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Gaurav Verma
- Lund University of Diabetes Centre, Lund University, Sweden, 21428, Malmo, Sweden
| | - Asha Shelly
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Priyanka Mehta
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007, India; Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110 021, India.
| |
Collapse
|
6
|
TLR-2 mediated cytosolic-Ca 2+ surge activates ER-stress-superoxide-NO signalosome augmenting TNF-α production leading to apoptosis of Mycobacterium smegmatis-infected fish macrophages. Sci Rep 2019; 9:12330. [PMID: 31444398 PMCID: PMC6707155 DOI: 10.1038/s41598-019-48847-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/05/2019] [Indexed: 01/14/2023] Open
Abstract
The implications of TLR-2 mediated alterations in cytosolic-Ca2+((Ca2+)c) levels in M. smegmatis infections is not well known. Using headkidney macrophages (HKM) from Clarias gariepinus, we observed TLR-2 signalling is required in the phagocytosis of M. smegmatis. M. smegmatis induced caspase-dependent HKM apoptosis in MOI, time and growth-phase dependent manner. RNAi and inhibitor studies demonstrated critical role of TLR-2 in eliciting (Ca2+)c-surge and c-Src-PI3K-PLC axis playing an intermediary role in the process. The (Ca2+)c-surge triggered downstream ER-stress and superoxide (O2−) generation. The cross-talk between ER-stress and O2− amplified TNF-α production, which led to HKM apoptosis and bacterial clearance. Release of nitric oxide (NO) was also observed and silencing the NOS2-NO axis enhanced intracellular bacterial survival and attenuated caspase activity. Pre-treatment with diphenyleneidonium chloride inhibited NO production implicating O2−–NO axis imperative in M. smegmatis-induced HKM apoptosis. NO positively impacted CHOP expression and TNF-α production in infected HKM. We conclude that, TLR-2 induced (Ca2+)c-surge and ensuing cross-talk between ER-stress and O2− potentiates HKM pathology by amplifying pro-inflammatory TNF-α production. Moreover, the pro-oxidant environment triggers NO release which prolonged ER-stress and TNF-α production, culminating in HKM apoptosis and bacterial clearance. Together, our study suggests HKM an alternate model to study macrophage-mycobacteria interactions.
Collapse
|
7
|
Nontuberculous Mycobacteria Persistence in a Cell Model Mimicking Alveolar Macrophages. Microorganisms 2019; 7:microorganisms7050113. [PMID: 31035520 PMCID: PMC6560506 DOI: 10.3390/microorganisms7050113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Nontuberculous Mycobacteria (NTM) respiratory infections have been gradually increasing. Here, THP-1 cells were used as a model to evaluate intracellular persistence of three NTM species (reference and clinical strains) in human alveolar macrophages. The contribution of phagosome acidification, nitric oxide (NO) production and cell dead on NTM intracellular fate was assessed. In addition, strains were characterized regarding their repertoire of virulence factors by whole-genome sequencing. NTM experienced different intracellular fates: M. smegmatis and M. fortuitum ATCC 6841 were cleared within 24h. In contrast, M. avium strains (reference/clinical) and M. fortuitum clinical strain were able to replicate. Despite this fact, unexpectedly high percentages of acidified phagosomes were found harbouring rab7, but not CD63. All NTM were able to survive in vitro at acidic pHs, with the exception of M. smegmatis. Our data further suggested a minor role for NO in intracellular persistence and that apoptosis mediated by caspase 8 and 3/7, but not necrosis, is triggered during NTM infection. Insights regarding the bacteria genomic backbone corroborated the virulence potential of M. avium and M. fortuitum. In conclusion, the phenotypic traits detected contrast with those described for M. tuberculosis, pointing out that NTM adopt distinct strategies to manipulate the host immune defense and persist intracellularly.
Collapse
|
8
|
Meena LS. Interrelation of Ca 2+ and PE_PGRS proteins during Mycobacterium tuberculosis pathogenesis. J Biosci 2019; 44:24. [PMID: 30837375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In today's era tuberculosis is a major threat to human population. The lethality of this disease is caused by very efficiently thrived bacteria Mycobacterium tuberculosis (M. tuberculosis). Ca2+ plays crucial role in maintenance of cellular homeostasis. Bacilli survival in human alveolar macrophages majorly depends on disruption in Ca2+ signaling. Bacilli sustainability in phagosome lies in the interruption of phagolysosomal fusion, which is possible because of low intracellular Ca2+ concentration. Bacilli contain various Ca2+ binding proteins which help in regulation of Ca2+ signaling for its own benefit. For the survival of pathogen, it requires alteration in normal Ca2+ concentration in healthy cell. In this review we aim to find the various Ca2+ binding domains which are present in several Ca2+ binding proteins of M. tuberculosis and variety of roles played by Ca2+ to survive bacilli within host cell. This manuscript emphasizes the Ca2+ binding domains present in PE_PGRS group of gene family and their functionality in M. tuberculosis survival and pathogenesis.
Collapse
Affiliation(s)
- Laxman S Meena
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110 007, India,
| |
Collapse
|
9
|
Meena LS. Interrelation of Ca2+ and PE_PGRS proteins during Mycobacterium tuberculosis pathogenesis. J Biosci 2019. [DOI: 10.1007/s12038-018-9828-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
|
11
|
Mycobacterium fortuitum-induced ER-Mitochondrial calcium dynamics promotes calpain/caspase-12/caspase-9 mediated apoptosis in fish macrophages. Cell Death Discov 2018. [PMID: 29531827 PMCID: PMC5841318 DOI: 10.1038/s41420-018-0034-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium fortuitum is a natural fish pathogen. It induces apoptosis in headkidney macrophages (HKM) of catfish, Clarias sp though the mechanism remains largely unknown. We observed M. fortuitum triggers calcium (Ca2+) insult in the sub-cellular compartments which elicits pro-apototic ER-stress factor CHOP. Alleviating ER-stress inhibited CHOP and attenuated HKM apoptosis implicating ER-stress in the pathogenesis of M. fortuitum. ER-stress promoted calpain activation and silencing the protease inhibited caspase-12 activation. The study documents the primal role of calpain/caspase-12 axis on caspase-9 activation in M. fortuitum-pathogenesis. Mobilization of Ca2+ from ER to mitochondria led to increased mitochondrial Ca2+ (Ca2+)m load,, mitochondrial permeability transition (MPT) pore opening, altered mitochondrial membrane potential (ΔΨm) and cytochrome c release eventually activating the caspase-9/-3 cascade. Ultra-structural studies revealed close apposition of ER and mitochondria and pre-treatment with (Ca2+)m-uniporter (MUP) blocker ruthenium red, reduced Ca2+ overload suggesting (Ca2+)m fluxes are MUP-driven and the ER-mitochondria tethering orchestrates the process. This is the first report implicating role of sub-cellular Ca2+ in the pathogenesis of M. fortuitum. We summarize, the dynamics of Ca2+ in sub-cellular compartments incites ER-stress and mitochondrial dysfunction, leading to activation of pro-apoptotic calpain/caspase-12/caspase-9 axis in M. fortuitum-infected HKM.
Collapse
|
12
|
Singh R, Hussain MA, Kumar J, Kumar M, Kumari U, Mazumder S. Chronic fluoride exposure exacerbates headkidney pathology and causes immune commotion in Clarias gariepinus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:30-39. [PMID: 28917943 DOI: 10.1016/j.aquatox.2017.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
The current study was aimed to understand the effects of chronic fluoride exposure on fish immune system. African sharp tooth catfish (Clarias gariepinus) were exposed to 73.45mg/L of fluoride corresponding to 1/10 96h LC50 for 30 d and the effects on general fish health and several immune parameters were studied. Chronic fluoride exposure led to significant alteration in serum biochemical parameters including alkaline phosphatase, alanine transaminase, aspartate transaminase, triglycerides, cholesterol and blood urea nitrogen levels revealing the detrimental effect of fluoride on general fish health. Upregulation in cytochrome P450 1A expression, both at mRNA and protein level suggested that fluoride activates the detoxification machinery in headkidney (HK) of C. gariepinus. Histopathological analysis of HK from exposed fish further revealed fluoride-induced hypertrophy, increase in melano-macrophage centers (MMCs) and the development of cell-depleted regions. Fluoride reduced headkidney somatic index (HKSI) and the phagocytic potential of headkidney macrophages (HKM). It induced caspase-3-dependent headkidney leukocyte (HKL) apoptosis, elevated superoxide generation and production of pro-inflammatory cytokine TNF-α besides suppressed T-cell proliferation in the exposed fish. We surmise the elevation in superoxide levels coupled with increased TNF-α production to be plausible causes of fluoride-induced HKL apoptosis. It is concluded that chronic fluoride exposure induces structure-function alterations in HK, the primary lymphoid organ in fish leading to impairment in immune responses.
Collapse
Affiliation(s)
- Rashmi Singh
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Md Arafat Hussain
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Jai Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Usha Kumari
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
13
|
Shelly A, Banerjee C, Saurav GK, Ray A, Rana VS, Raman R, Mazumder S. Aeromonas hydrophila-induced alterations in cytosolic calcium activate pro-apoptotic cPKC-MEK1/2-TNFα axis in infected headkidney macrophages of Clarias gariepinus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:392-402. [PMID: 28713009 DOI: 10.1016/j.dci.2017.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Alterations in intracellular-calcium (Ca2+)i homeostasis is critical to Aeromonas hydrophila-induced headkidney macrophages (HKM) apoptosis of Clarias gariepinus, though the implications are poorly understood. Here, we describe the role of intermediate molecules of Ca2+-signaling pathway that are involved in HKM apoptosis. We observed phosphoinositide-3-kinase/phospholipase C is critical for (Ca2+)i release in infected HKM. Heightened protein kinase-C (PKC) activity and phosphorylation of MEK1/2-ERK1/2 was noted which declined in presence of 2-APB, Go6976 and PD98059, inhibitors to IP3-receptor, conventional PKC isoforms (cPKC) and MEK1/2 respectively implicating Ca2+/cPKC/MEK-ERK1/2 axis imperative in A. hydrophila-induced HKM apoptosis. Significant tumor necrosis factor-α (TNFα) production and its subsequent reduction in presence of MEK-ERK1/2 inhibitor U0126 suggested TNFα production downstream to cPKC-mediated signaling via MEK1/2-ERK1/2 pathway. RNAi and inhibitor studies established the role of TNFα in inducing caspase-8-mediated apoptosis of infected HKM. We conclude, alterations in A. hydrophila-induced (Ca2+)i alterations activate cPKC-MEK1/2-ERK1/2-TNFα signaling cascade triggering HKM apoptosis.
Collapse
Affiliation(s)
- Asha Shelly
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Chaitali Banerjee
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Gunjan Kumar Saurav
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Atish Ray
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Vipin Singh Rana
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Rajagopal Raman
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
14
|
Nunes-Costa D, Maranha A, Costa M, Alarico S, Empadinhas N. Glucosylglycerate metabolism, bioversatility and mycobacterial survival. Glycobiology 2016; 27:213-227. [DOI: 10.1093/glycob/cww132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022] Open
|
15
|
Singh R, Banerjee C, Ray A, Rajamani P, Mazumder S. Fluoride-induced headkidney macrophage cell apoptosis involves activation of the CaMKII g-ERK 1/2-caspase-8 axis: the role of superoxide in initiating the apoptotic cascade. Toxicol Res (Camb) 2016; 5:1477-1489. [PMID: 30090451 DOI: 10.1039/c6tx00206d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/22/2016] [Indexed: 11/21/2022] Open
Abstract
Fluoride is known to induce apoptosis though the mechanisms remain obscure. The aim of the present study was to understand the underlying molecular mechanisms of fluoride-induced apoptosis using fish headkidney macrophages (HKMs). Exposure to fluoride triggered HKM cell apoptosis as evidenced by Hoechst 333432 and AnnexinV-propidium iodide staining, the presence of an internucleosomal DNA ladder and the comet assay. Our results suggest the influx of extra-cellular Ca2+ to be an initial event in fluoride-induced HKM cell apoptosis. We observed persistently elevated levels of superoxide anions and our inhibitor studies with EGTA suggested the primal role of the Ca2+ flux in triggering superoxide production in fluoride-exposed HKM cells. Fluoride exposure led to elevated levels of Ca2+/CaM dependent protein kinase II gamma (CaMKIIg) and pre-treatment with the inhibitor KN-93 but not its inactive structural analogue KN-92 reduced the number of apoptotic cells establishing the pro-apoptotic role of CaMKIIg in fluoride-induced HKM cell apoptosis. We report that the sustained superoxide generation is primarily responsible for the increased CaMKIIg levels observed in fluoride-exposed HKM cells. Our inhibitor studies further implicated CaMKIIg in the activation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) culminating in caspase-8/caspase-3 mediated apoptosis of HKM cells. We conclude that fluoride-induced apoptosis is largely dependent on Ca2+ induced superoxide generation leading to elevation in CaMKIIg which in turn induces the phosphorylation of ERK 1/2 and downstream activation of extrinsic caspase cascade in HKM cells.
Collapse
Affiliation(s)
- Rashmi Singh
- Immunobiology Laboratory , Department of Zoology , University of Delhi , Delhi 110 007 , India . ; ; Tel: +91-11-27667985
| | - Chaitali Banerjee
- Immunobiology Laboratory , Department of Zoology , University of Delhi , Delhi 110 007 , India . ; ; Tel: +91-11-27667985
| | - Atish Ray
- Immunobiology Laboratory , Department of Zoology , University of Delhi , Delhi 110 007 , India . ; ; Tel: +91-11-27667985
| | - Paulraj Rajamani
- School of Environmental Sciences , Jawaharlal Nehru University , Delhi , India
| | - Shibnath Mazumder
- Immunobiology Laboratory , Department of Zoology , University of Delhi , Delhi 110 007 , India . ; ; Tel: +91-11-27667985
| |
Collapse
|