1
|
Bixby M, French SK, Wizenberg SB, Jamieson A, Pepinelli M, Cunningham MM, Conflitti IM, Foster LJ, Zayed A, Guarna MM. Identifying and modeling the impact of neonicotinoid exposure on honey bee colony profit. JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae227. [PMID: 39436769 DOI: 10.1093/jee/toae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Pollination by the European honey bee, Apis mellifera, is essential for the production of many crops, including highbush blueberries (Vaccinum corymbosum). To understand the impact of agrochemicals (specifically, neonicotinoids, a class of synthetic, neurotoxic insecticides) on these pollinators, we conducted a field study during the blueberry blooms of 2020 and 2021 in British Columbia (B.C.). Forty experimental honey bee colonies were placed in the Fraser Valley: half of the colonies were located within 1.5 km of highbush blueberry fields ("near" colonies) and half were located more than 1.5 km away ("far" colonies). We calculated risk quotients for these compounds using their chronic lethal dietary dose (LDD50) and median lethal concentration (LC50). Pesticide risk was similar between colonies located near and far from blueberry forage, suggesting that toxicity risks are regionally ubiquitous. Two systemic neonicotinoid insecticides, clothianidin and thiamethoxam, were found at quantities that exceeded chronic international levels of concern. We developed a profit model for a pollinating beekeeper in B.C. that was parameterized by: detected pesticide levels; lethal and sublethal bee health; and economic data. For colonies exposed to neonicotinoid pesticides in and out of the blueberry forage radii, there were economic consequences from colony mortality and sublethal effects such as a loss of honey production and compromised colony health. Further, replacing dead colonies with local bees was more profitable than replacing them with imported packages, illustrating that beekeeping management selection of local options can have a positive effect on overall profit.
Collapse
Affiliation(s)
- Miriam Bixby
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah K French
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Aidan Jamieson
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Morgan M Cunningham
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada
| | | | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON, Canada
| | - Maria Marta Guarna
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada
| |
Collapse
|
2
|
Chapman A, McAfee A, Tarpy DR, Fine J, Rempel Z, Peters K, Currie R, Foster LJ. Common viral infections inhibit egg laying in honey bee queens and are linked to premature supersedure. Sci Rep 2024; 14:17285. [PMID: 39068210 PMCID: PMC11283550 DOI: 10.1038/s41598-024-66286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
With their long lives and extreme reproductive output, social insect queens have escaped the classic trade-off between fecundity and lifespan, but evidence for a trade-off between fecundity and immunity has been inconclusive. This is in part because pathogenic effects are seldom decoupled from effects of immune induction. We conducted parallel, blind virus infection experiments in the laboratory and in the field to interrogate the idea of a reproductive immunity trade-off in honey bee (Apis mellifera) queens and to better understand how these ubiquitous stressors affect honey bee queen health. We found that queens injected with infectious virus had smaller ovaries and were less likely to recommence egg-laying than controls, while queens injected with UV-inactivated virus displayed an intermediate phenotype. In the field, heavily infected queens had smaller ovaries and infection was a meaningful predictor of whether supersedure cells were observed in the colony. Immune responses in queens receiving live virus were similar to queens receiving inactivated virus, and several of the same immune proteins were negatively associated with ovary mass in the field. This work supports the hypothesized relationship between virus infection and symptoms associated with queen failure and suggests that a reproductive-immunity trade-off is partially, but not wholly responsible for these effects.
Collapse
Affiliation(s)
- Abigail Chapman
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - David R Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Julia Fine
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, Davis, CA, USA
| | - Zoe Rempel
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Kira Peters
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Rob Currie
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Arad M, Ku K, Frey C, Hare R, McAfee A, Ghafourifar G, Foster LJ. What proteomics has taught us about honey bee (Apis mellifera) health and disease. Proteomics 2024:e2400075. [PMID: 38896501 DOI: 10.1002/pmic.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The Western honey bee, Apis mellifera, is currently navigating a gauntlet of environmental pressures, including the persistent threat of parasites, pathogens, and climate change - all of which compromise the vitality of honey bee colonies. The repercussions of their declining health extend beyond the immediate concerns of apiarists, potentially imposing economic burdens on society through diminished agricultural productivity. Hence, there is an imperative to devise innovative monitoring techniques for assessing the health of honey bee populations. Proteomics, recognized for its proficiency in biomarker identification and protein-protein interactions, is poised to play a pivotal role in this regard. It offers a promising avenue for monitoring and enhancing the resilience of honey bee colonies, thereby contributing to the stability of global food supplies. This review delves into the recent proteomic studies of A. mellifera, highlighting specific proteins of interest and envisioning the potential of proteomics to improve sustainable beekeeping practices amidst the challenges of a changing planet.
Collapse
Affiliation(s)
- Maor Arad
- Department of Chemistry, University of the Fraser Valley, Abbotsford, BC, Canada
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Kenneth Ku
- Department of Chemistry, University of the Fraser Valley, Abbotsford, BC, Canada
| | - Connor Frey
- Department of Chemistry, University of the Fraser Valley, Abbotsford, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rhien Hare
- Department of Chemistry, University of the Fraser Valley, Abbotsford, BC, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Golfam Ghafourifar
- Department of Chemistry, University of the Fraser Valley, Abbotsford, BC, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Ulgezen ZN, Van Langevelde F, van Dooremalen C. Stress-induced loss of social resilience in honeybee colonies and its implications on fitness. Proc Biol Sci 2024; 291:20232460. [PMID: 38196354 PMCID: PMC10777151 DOI: 10.1098/rspb.2023.2460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Stressors may lead to a shift in the timing of life-history events of species, causing a mismatch with optimal environmental conditions, potentially reducing fitness. In honeybees, the timing of brood rearing and nest emergence in late winter/early spring is critical as colonies need to grow fast after winter to prepare for reproduction. However, the effects of stress on these life-history events in late winter/early spring and the possible consequences are not well understood. Therefore, we tested whether (i) honeybee colonies shift timing of brood rearing and nest emergence as response to stressors, and (ii) if there is a consequent loss of social resilience, reflected in colony fitness (survival, growth and reproduction). We monitored stressed (high load of the parasitic mite Varroa destructor or nutrition restricted) colonies and presumably non-stressed colonies from the beginning of 2020 till spring of 2021. We found that honeybee colonies do not shift the timing of brood rearing and nest emergence in spring as a coping mechanism to stressors. However, we show that there is loss of social resilience in stressed colonies, leading to reduced growth and reproduction. Our study contributes to better understanding the effects of stressors on social resilience in eusocial organisms.
Collapse
Affiliation(s)
- Zeynep N. Ulgezen
- Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Wildlife Ecology and Conservation Group, Department of Environmental Sciences, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| | - Frank Van Langevelde
- Wildlife Ecology and Conservation Group, Department of Environmental Sciences, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| | - Coby van Dooremalen
- Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
5
|
Holmes LA, Ovinge LP, Kearns JD, Ibrahim A, Wolf Veiga P, Guarna MM, Pernal SF, Hoover SE. Queen quality, performance, and winter survival of imported and domestic honey bee queen stocks. Sci Rep 2023; 13:17273. [PMID: 37828046 PMCID: PMC10570385 DOI: 10.1038/s41598-023-44298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Canadian beekeepers have faced high colony mortality each winter over the last decade. Frequently citing "poor queen quality" as a top contributing factor to colony loss, Canadian beekeepers report needing to replace half their queens each year. Domestic queen production exists throughout Canada but is limited due to the short season and can be further limited when colony mortality is high. Consequently, Canadian beekeepers import over 260,000 queens annually, primarily from locations with warmer climates. In this study, newly mated imported queens from Hawaii (USA) and New Zealand were compared to domestic Canadian queens produced in British Columbia; these stocks were evaluated on their morphological and sperm storage characteristics. Stock quality was also evaluated in the field at two locations in Alberta, Canada over two production seasons. Our results show initial variation in queen morphology and fertility among imported and domestic queen stocks. Most striking, the New Zealand queens weighed 10-13% less than the Hawaii and British Columbia queens, respectively upon arrival. Colony performance over a two-year field study suggests: (1) brood pattern solidness has a positive nonlinear correlation with honey production regardless of queen stock and environment; (2) environment (i.e., apiary location) and queen stock variably predict colony health and productivity depending on year; specifically, apiary site appears to be a stronger predictor of colony health and productivity than queen stock in year one, but in year two, queen stock appears to be a stronger predictor than apiary site; (3) high clinical symptoms of chalkbrood may explain the prevalence of poor brood patterns in colonies headed by queens from New Zealand; (4) domestic queens are 25% more likely to survive winter in Alberta than imported queens. Therefore, it is important to consider possible mismatches in disease immunity and climate conditioning of imported queen stocks heading colonies in temperate regions that face drastically different seasonal climates and disease ecology dynamics.
Collapse
Affiliation(s)
- L A Holmes
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada.
| | - L P Ovinge
- Alberta Beekeepers Commission, Edmonton, AB, Canada
| | - J D Kearns
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - A Ibrahim
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, AB, Canada
| | - P Wolf Veiga
- National Bee Diagnostics Centre, Northwestern Polytechnic, Beaverlodge, AB, Canada
| | - M M Guarna
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, AB, Canada
| | - S F Pernal
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, AB, Canada
| | - S E Hoover
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
6
|
da Silva Morais L, de Araujo Neto ER, da Silva AM, Bezerra LGP, da Cunha AFS, de Sousa Chagas NO, Dos Santos RP, Bergamo GC, Façanha DAE, Gramacho KP, Silva AR. Africanized honeybee (Apis mellifera) semen freezing using Tris-based and Collins extenders. Trop Anim Health Prod 2023; 55:329. [PMID: 37749291 DOI: 10.1007/s11250-023-03762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
This study is aimed at evaluating the effect of different extenders on the cryopreservation of semen from Africanized honeybees (A. mellifera). Semen from honeybee drones from 10 different colonies was obtained by endophallus exposure technique and immediately evaluated for motility, viability using fluorescent probes, functional membrane integrity using the water test, and morphology. Samples from each colony were divided in three aliquots and subjected to a dilution ratio of 12:1 (diluent: semen) using Tris, Tris + egg yolk (Tris+EY), and Collins extender. Samples were cryopreserved and stored in liquid nitrogen for one week and then rewarmed and reevaluated. Immediate dilution provoked no significant effect on sperm motility and functional membrane integrity, regardless of the extender used; however, the greatest values (P < 0.05) for normal sperm morphology were found at the use of isolate Tris (69.3 ± 1.9%). After thawing, there were no significant differences among extenders with relation to the preservation of sperm motility, viability, and functional membrane integrity, but the Tris extender provided the highest post-thawing values (P < 0.05) for sperm normal morphology (49.2 ± 4.9%) while the Collins extender provoked the highest amounts (P < 0.05) of curled tail defects (67.5 ± 3.2%). Moreover, the Tris was the only extender at preserving the proportion of normal sperm after thawing similar to what was verified for fresh samples. In summary, we suggest the use of a Tris-based extender for the cryopreservation of Africanized honeybee semen.
Collapse
Affiliation(s)
- Lucas da Silva Morais
- Beekeeping Technological Training Center, Federal Rural University of Semi-Arid (UFERSA), Mossoro, RN, Brazil.
| | | | - Andreia Maria da Silva
- Laboratory on Animal Germplasm Conservation, Federal Rural University of Semi-Arid, Mossoro, RN, Brazil
| | | | | | | | | | - Genevile Carife Bergamo
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of Semi-Arid, Mossoro, RN, Brazil
| | | | - Katia Peres Gramacho
- Beekeeping Technological Training Center, Federal Rural University of Semi-Arid (UFERSA), Mossoro, RN, Brazil
| | - Alexandre Rodrigues Silva
- Laboratory on Animal Germplasm Conservation, Federal Rural University of Semi-Arid, Mossoro, RN, Brazil
| |
Collapse
|
7
|
Bixby M, Scarlett R, Hoover SE. Winter mortality, diversification, and self-sufficiency affect honey bee (Hymenoptera: Apidae) colony profit in Canada: a model of commercial Alberta beekeepers. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:686-696. [PMID: 37040616 DOI: 10.1093/jee/toad056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/17/2023] [Accepted: 03/17/2023] [Indexed: 06/14/2023]
Abstract
Canadian beekeepers faced widespread levels of high honey bee colony mortality over the winter of 2021/2022, with an average winter loss of 45%. To understand the economic impact of winter colony mortality in Canada and the beekeeping management strategies used to mitigate these losses, we develop a profit model of commercial beekeeping operations in Alberta, Canada. Our model shows that for operations engaging in commercial pollination as well as honey production (compared to honey production alone), per colony profit is higher and operations are better able to withstand fluctuations in exogenous variables such as prices and environmental factors affecting productivity including winter mortality rates. The results also suggest that beekeeping operations that replace winter colony losses with splits instead of package bees accrue higher per colony profit than those importing packages to replace losses. Further, operations that produce their own queens to use in their replacement splits, accrue even higher profit. Our results demonstrate that the profitability of beekeeping operations is dependent on several factors including winter mortality rates, colony replacement strategies, and the diversification of revenue sources. Beekeepers who are not as susceptible to price and risk fluctuations in international markets and imported bee risks accrue more consistently positive profits.
Collapse
Affiliation(s)
- Miriam Bixby
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Rod Scarlett
- Canadian Honey Council, #218, 51519 RR 220, Sherwood Park, AB T8E 1H1, Canada
| | - Shelley E Hoover
- Department of Biological Sciences, University of Lethbridge, 4401 University Dr W, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
8
|
Campion C, Rajamohan A, Dillon ME. Sperm can't take the heat: Short-term temperature exposures compromise fertility of male bumble bees (Bombus impatiens). JOURNAL OF INSECT PHYSIOLOGY 2023; 146:104491. [PMID: 36773841 DOI: 10.1016/j.jinsphys.2023.104491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Bumble bee (genus Bombus) populations are increasingly under threat from habitat fragmentation, pesticides, pathogens, and climate change. Climate change is likely a prime driver of bumble bee declines but the mechanisms by which changing climates alter local abundance, leading to shifts in geographic range are unclear. Heat tolerance is quite high in worker bumble bees (CTmax ∼ 48-55 °C), making it unlikely for them to experience these high temperatures, even with climate warming. However, the thermal tolerance of whole organisms often exceeds that of their gametes; many insects can be sterilized by exposure to temperatures well below their upper thermal tolerance. Male bumble bees are independent from the colony and may encounter more frequent temperature extremes, but whether these exposures compromise spermatozoa is still unclear. Using commercially-reared Bombus impatiens colonies, males were reared in the lab and spermatozoa were exposed (in vivo and isolated in vitro) to sublethal temperatures near lower and upper thermal tolerance (CTmin and CTmax, respectively). Heat exposure (45 °C for up to 85 min) reduced spermatozoa viability both for whole males (in vivo; control = 79.5 %, heat exposed = 58 %, heat stupor = 57.7 %) and isolated seminal vesicles (in vitro; control = 85.5 %, heat exposed = 62.9 %). Whole males exposed to 4 °C for 85 min (in vivo; control = 79.2 %, cold = 72.4 %), isolated seminal vesicles exposed to 4 °C for 85 min (in vitro; control = 85.5 %, cold = 85.1 %), and whole males exposed to for 4 °C for 48 h (in vivo; control = 88.7 %, cold = 84.3 %) did not differ significantly in spermatozoa viability. After<85 min at 45 °C, males had significantly reduced spermatozoa viability, suggesting that short-term heat waves below CTmax could strongly reduce the fertility of male bumble bees with potential population-level impacts.
Collapse
Affiliation(s)
- Claire Campion
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.
| | - Arun Rajamohan
- Edward T. Schafer Agricultural Research Center, USDA-ARS, 1616 Fargo, ND 58102, USA
| | - Michael E Dillon
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
9
|
Pineaux M, Grateau S, Lirand T, Aupinel P, Richard FJ. Honeybee queen exposure to a widely used fungicide disrupts reproduction and colony dynamic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121131. [PMID: 36709033 DOI: 10.1016/j.envpol.2023.121131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Pollinators have to cope with a wide range of stressful, not necessarily lethal factors limiting their performance and the ecological services they provide. Among these stressors are pesticides, chemicals that are originally designed to target crop-harming organisms but that also disrupt various functions in pollinators, including flight, communication, orientation and memory. Although all these functions are crucial for reproductive individuals when searching for mates or nesting places, it remains poorly understood how pesticides affect reproduction in pollinators. In this study, we investigated how a widely used fungicide, boscalid, affects reproduction in honey bees (Apis mellifera), an eusocial insect in which a single individual, the queen, fulfills the reproductive functions of the whole colony. Boscalid is a succinate dehydrogenase inhibitor (SDHI) fungicide mainly used on rapeseed flowers to target mitochondrial respiration in fungi but it is also suspected to disrupt foraging-linked functions in bees. We found that immature queen exposure to sublethal, field relevant doses of boscalid disrupted reproduction, as indicated by a dramatic increase in queen mortality during and shortly after the nuptial flights period and a decreased number of spermatozoa stored in the spermatheca of surviving queens. However, we did not observe a decreased paternity frequency in exposed queens that successfully established a colony. Queen exposure to boscalid had detrimental consequences on the colonies they later established regarding brood production, Varroa destructor infection and pollen storage but not nectar storage and population size. These perturbations at the colony-level correspond to nutritional stress conditions, and may have resulted from queen reduced energy provisioning to the eggs. Accordingly, we found that exposed queens had decreased gene expression levels of vitellogenin, a protein involved in egg-yolk formation. Overall, our results indicate that boscalid decreases honey bee queen reproductive quality, thus supporting the need to include reproduction in the traits measured during pesticide risk assessment procedures.
Collapse
Affiliation(s)
- Maxime Pineaux
- Unité Expérimentale d'Entomologie, INRAe, Le Magneraud, Surgères, France; Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions UMR CNRS 7267, Equipe Ecologie Evolution Symbiose, France.
| | - Stéphane Grateau
- Unité Expérimentale d'Entomologie, INRAe, Le Magneraud, Surgères, France
| | - Tiffany Lirand
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions UMR CNRS 7267, Equipe Ecologie Evolution Symbiose, France
| | - Pierrick Aupinel
- Unité Expérimentale d'Entomologie, INRAe, Le Magneraud, Surgères, France
| | - Freddie-Jeanne Richard
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions UMR CNRS 7267, Equipe Ecologie Evolution Symbiose, France.
| |
Collapse
|
10
|
Leponiemi M, Wirta H, Freitak D. Trans-generational immune priming against American Foulbrood does not affect the performance of honeybee colonies. Front Vet Sci 2023; 10:1129701. [PMID: 36923051 PMCID: PMC10008890 DOI: 10.3389/fvets.2023.1129701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
Honeybees are major pollinators for our food crops, but at the same time they face many stressors all over the world. One of the major threats to honeybee health are bacterial diseases, the most severe of which is the American Foulbrood (AFB). Recently a trans-generational vaccination approach against AFB has been proposed, showing strong potential in protecting the colonies from AFB outbreaks. Yet, what remains unstudied is whether the priming of the colony has any undesired side-effects. It is widely accepted that immune function is often a trade-off against other life-history traits, hence immune priming could have an effect on the colony performance. In this experiment we set up 48 hives, half of them with primed queens and half of them as controls. The hives were placed in six apiaries, located as pair of apiaries in three regions. Through a 2-year study we monitored the hives and measured their health and performance. We measured hive weight and frame contents such as brood amount, worker numbers, and honey yield. We studied the prevalence of the most common honeybee pathogens in the hives and expression of relevant immune genes in the offspring at larval stage. No effect of trans-generational immune priming on any of the hive parameters was found. Instead, we did find other factors contributing on various hive performance parameters. Interestingly not only time but also the region, although only 10 km apart from each other, had an effect on the performance and health of the colonies, suggesting that the local environment plays an important role in hive performance. Our results suggest that exploiting the trans-generational priming could serve as a safe tool in fighting the AFB in apiaries.
Collapse
Affiliation(s)
| | - Helena Wirta
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
11
|
Yan L, Song H, Tang X, Peng X, Li Y, Yang H, Zhou Z, Xu J. Spermatophore development in drones indicates the metabolite support for sperm storage in honey bees ( Apis cerana). Front Physiol 2023; 14:1107660. [PMID: 36909221 PMCID: PMC9992413 DOI: 10.3389/fphys.2023.1107660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Developing effective long-term sperm storage strategies to maintain activity requires an understanding of the underlying spermatophore developmental phase in drones. Here we compared the developmental processes and metabolites about seminal vesicles of drones from different parentages (0-24 d)in honeybee colonies, including mated queens, virgin queens, and worker bees. The results showed a similar developmental trend of seminal vesicles in thethree groups of drones on the whole, although there were significant differences in developmental levels, as well as in other indicators. Correlation analysis showed significant positive correlations between seminal vesicle width and sperm viability. The metabolomics of the seminal vesicles in drones from mated queens showed differences of the metabolites in each stage. Particularly, squalene identified among them was validated a protective effect on sperm vitality in vitro experiments. Together the results of these assays support that there were significant differences in the developmental levels of seminal vesicles among the three groups of drones in honeybees, wherein a significant correlation between sperm viability and the developmental levels of seminal vesicles were dissected. The metabolomics analysis and semen storage experiments in vitro display signatures of squalene that may act as an effective protective agent in maintaining sperm viability. Collectively, our findings indicate that spermatophore development in drones provides metabolite support, which contributes to research on the differences of sperm viability among drones in the future.
Collapse
Affiliation(s)
- Lele Yan
- College of Life Sciences, Chongqing Normal University, Chongqing, China.,Key Laboratory of Conservation and Utilization of Pollinator Insect of the upper reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Huali Song
- College of Life Sciences, Chongqing Normal University, Chongqing, China.,Key Laboratory of Conservation and Utilization of Pollinator Insect of the upper reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Xiangyou Tang
- College of Life Sciences, Chongqing Normal University, Chongqing, China.,Key Laboratory of Conservation and Utilization of Pollinator Insect of the upper reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Xiaomei Peng
- College of Life Sciences, Chongqing Normal University, Chongqing, China.,Key Laboratory of Conservation and Utilization of Pollinator Insect of the upper reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Yaohui Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China.,Key Laboratory of Conservation and Utilization of Pollinator Insect of the upper reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Huan Yang
- College of Life Sciences, Chongqing Normal University, Chongqing, China.,Key Laboratory of Conservation and Utilization of Pollinator Insect of the upper reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Zeyang Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing, China.,Key Laboratory of Conservation and Utilization of Pollinator Insect of the upper reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Jinshan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing, China.,Key Laboratory of Conservation and Utilization of Pollinator Insect of the upper reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| |
Collapse
|
12
|
Bratu IC, Igna V, Simiz E, Dunea IB, Pătruică S. The Influence of Body Weight on Semen Parameters in Apis mellifera Drones. INSECTS 2022; 13:1141. [PMID: 36555051 PMCID: PMC9785928 DOI: 10.3390/insects13121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The quantity and quality of the honey bee drone semen have a significant determination on the performance of bee colonies. The existence of a smaller number of mature drones to participate in the mating of queens, as well as a sufficient number of drones but with poor quality semen can have serious implications for the productivity of bee colonies. Our study aimed to investigate the correlation between two body weight ranges of drones and semen parameters in the Buckfast honey bee, data that could be integrated into the optimization of instrumental insemination in been queens. Semen was collected from two groups of drones with different body weights (200−240 mg and 240−280 mg). Semen volume, semen concentration, motility, morphology and membrane integrity of spermatozoa were analyzed. The phenotype indicator related to body weight in correlation with the main semen parameters studied gives a weak influence or causality ratio. In drones with 240−280 mg body weight, a higher percentage of spermatozoa with abnormal morphology (>9.60%) was recorded, compared to drones with 200−240 mg body weight. The study reveals that a higher weight of honey bee drones is correlated with higher sperm concentration and total number of spermatozoa/ejaculate, with an increase in the percentage of spermatozoa with abnormal morphology.
Collapse
Affiliation(s)
- Ioan Cristian Bratu
- Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania
| | - Violeta Igna
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania
| | - Eliza Simiz
- Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania
| | - Ioan Bănățean Dunea
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania
| | - Silvia Pătruică
- Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania
| |
Collapse
|
13
|
Pandey AK, Sharma V, Ravi Ram K. Drosophila ecdysone receptor activity-based ex vivo assay to assess the endocrine disruption potential of environmental chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56430-56441. [PMID: 35338461 DOI: 10.1007/s11356-022-19789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Insect pollinators, critical for both agricultural output and the ecosystem, are declining at an alarming levels partly due to human-made chemicals. Majority of environmental chemicals hamper the endocrine function and studies on the same in insects remain neglected. Here, we report a Drosophila-based ex vivo assay system that employs a reproductive tissue from transgenic males carrying a reporter gene (lacZ) downstream of ecdysone receptor response element (EcRE) and permits the evaluation of chemical-mediated activity modulation of all three isoforms of ecdysone receptor, which are critical for male fertility. We show agonistic [plasticizers, cypermethrin, atrazine, methyl parathion, imidacloprid, cadmium chloride, mercuric chloride or 3-(4-methylbenzylidene) camphor] or antagonistic (apigenin, tributyltin chloride) effects or lack of effect thereof (rutin hydrate, dichlorvos, lead acetate, parabens) for seven different classes of environmental chemicals on ecdysone receptor activity reflecting the specificity and sensitivity of the developed ex vivo assay. Exposure to a few of these chemicals in vivo hampers the fertility of Drosophila males, thus linking the observed endocrine disruption to a quantifiable reproductive phenotype. The developed ex vivo assay offers a quick Drosophila-based screening tool for throughput monitoring of environmental chemicals for their ability to hamper the endocrine function of insect pollinators and other invertebrates.
Collapse
Affiliation(s)
- Anuj Kumar Pandey
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Respiratory Medicine, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Vandana Sharma
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad , 201002, India
| | - Kristipati Ravi Ram
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad , 201002, India.
| |
Collapse
|
14
|
Li G, Zhang S, Wang H, Liang L, Liu Z, Wang Y, Xu B, Zhao H. Differential Expression Characterisation of the Heat Shock Proteins DnaJB6, DnaJshv, DnaJB13, and DnaJB14 in Apis cerana cerana Under Various Stress Conditions. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.873791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As key pollinators, bees are frequently exposed to multiple environmental stresses and have developed crucial mechanisms by which they adapt to these stressors. However, the molecular bases mediated at the gene level remain to be discovered. Here, we found four heat shock protein DnaJB subfamily genes, DnaJB6, DnaJshv, DnaJB13, and DnaJB14, from Apis cerana cerana, that all have J domains in their protein sequences. The expression levels of DnaJB6 and DnaJshv were upregulated by different degrees of heat stress, and the transcript level of DnaJB14 was gradually upregulated as the degree of heat stress increased, while the mRNA level of DnaJB13 was downregulated at multiple time points during heat stress treatment. The mRNA levels of all four DnaJBs were upregulated by cold and UV stress. In addition, the expression levels of DnaJB6, DnaJshv and DnaJB13 were reduced under abamectin, imidacloprid, cypermethrin, bifenthrin, spirodiclofen, and methomyl stresses. The transcript level of DnaJB14 was decreased by imidacloprid, cypermethrin, spirodiclofen, and methomyl exposure but increased by abamectin and bifenthrin exposure. These results indicate that the demand of A. cerana cerana for these four DnaJBs differs under various stress conditions. To further explore the role of DnaJBs in the stress response, we successfully silenced DnaJshv and DnaJB14. The content of protein carbonyl was increased, while the content of VC, the enzymatic activities of CAT, GST, and SOD, the mRNA levels of many antioxidant-related genes, and the total antioxidant capacity were reduced after knockdown of DnaJshv and DnaJB14 in A. cerana cerana. These results indicate that silencing DnaJshv and DnaJB14 increases oxidative damage and decreases the antioxidant ability of A. cerana cerana. Taken together, our results demonstrate that DnaJB6, DnaJshv, DnaJB13, and DnaJB14 are differentially expressed under stress conditions and play crucial roles in response to various stressors, possibly through the antioxidant signalling pathway. These findings will be conducive to understanding the molecular basis of bee responses to environmental stresses and are beneficial for improving bee protection.
Collapse
|
15
|
Bixby MEF, Polinsky M, Scarlett R, Higo H, Common J, Hoover SE, Foster LJ, Zayed A, Cunningham M, Guarna MM. Impacts of COVID-19 on Canadian Beekeeping: Survey Results and a Profitability Analysis. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2245-2254. [PMID: 34545929 PMCID: PMC8500005 DOI: 10.1093/jee/toab180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 06/13/2023]
Abstract
To gauge the impact of COVID-19 on the Canadian beekeeping sector, we conducted a survey of over 200 beekeepers in the fall of 2020. Our survey results show Canadian beekeepers faced two major challenges: 1) disrupted importation of honey bees (Hymenoptera: Apidae) (queen and bulk bees) that maintain populations; and 2) disrupted arrival of temporary foreign workers (TFWs). Disruptions in the arrival of bees and labor resulted in fewer colonies and less colony management, culminating in higher costs and lower productivity. Using the survey data, we develop a profitability analysis to estimate the impact of these disruptions on colony profit. Our results suggest that a disruption in either foreign worker or bee arrival allows beekeepers to compensate and while colony profits are lower, they remain positive. When both honey bee and foreign workers arrivals are disrupted for a beekeeper, even when the beekeeper experiences less significant colony health and cost impacts, a colony with a single pollination contract is no longer profitable, and a colony with two pollination contracts has significantly reduced profitability. As COVID-19 disruptions from 2020 and into 2021 become more significant to long-term colony health and more costly to a beekeeping operation, economic losses could threaten the industry's viability as well as the sustainability of pollination-dependent crop sectors across the country. The economic and agricultural impacts from the COVID-19 pandemic have exposed a vulnerability within Canada's beekeeping industry stemming from its dependency on imported labor and bees. Travel disruptions and border closures pose an ongoing threat to Canadian agriculture and apiculture in 2021 and highlight the need for Canada's beekeeping industry to strengthen domestic supply chains to minimize future risks.
Collapse
Affiliation(s)
- Miriam E F Bixby
- Department of Biochemistry & Molecular Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Matthew Polinsky
- Department of Biochemistry & Molecular Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Rod Scarlett
- Canadian Honey Council, #218, 51519 RR 220, Sherwood Park, AB, T8E 1H1, Canada
| | - Heather Higo
- Department of Biochemistry & Molecular Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Julia Common
- Department of Biochemistry & Molecular Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Shelley E Hoover
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 3M4, Canada
| | - Leonard J Foster
- Department of Biochemistry & Molecular Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Amro Zayed
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Morgan Cunningham
- Agriculture & Agri-Food Canada, Beaverlodge Research Farm, Box PO 29, Beaverlodge, AB, T0H 0C0, Canada
- Department of Biology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - M Marta Guarna
- Agriculture & Agri-Food Canada, Beaverlodge Research Farm, Box PO 29, Beaverlodge, AB, T0H 0C0, Canada
| |
Collapse
|
16
|
Bruckner S, Straub L, Neumann P, Williams GR. Synergistic and Antagonistic Interactions Between Varroa destructor Mites and Neonicotinoid Insecticides in Male Apis mellifera Honey Bees. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.756027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pressures from multiple, sometimes interacting, stressors can have negative consequences to important ecosystem-service providing species like the western honey bee (Apis mellifera). The introduced parasite Varroa destructor and the neonicotinoid class of insecticides each represent important, nearly ubiquitous biotic and abiotic stressors to honey bees, respectively. Previous research demonstrated that they can synergistically interact to negatively affect non-reproductive honey bee female workers, but no data exist on how concurrent exposure may affect reproductive honey bee males (drones). This is important, given that the health of reproductive females (queens), possibly because of poor mating, is frequently cited as a major driver of honey bee colony loss. To address this, known age cohorts of drones were obtained from 12 honey bee colonies—seven were exposed to field-relevant concentrations of two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) during development via supplementary pollen patties; five colonies received patties not spiked with neonicotinoids. Artificially emerged drones were assessed for natural V. destructor infestation, weighed, and then allocated to the following treatment groups: 1. Control, 2. V. destructor only, 3. Neonicotinoid only, and 4. Combined (both mites and neonicotinoid). Adult drones were maintained in laboratory cages alongside attendant workers (1 drone: 2 worker ratio) until they have reached sexual maturity after 14 days so sperm concentration and viability could be assessed. The data suggest that V. destructor and neonicotinoids interacted synergistically to negatively affect adult drone survival, but that they interacted antagonistically on emergence mass. Although sample sizes were too low to assess the effects of V. destructor and combined exposure on sperm quality, we observed no influence of neonicotinoids on sperm concentration or viability. Our findings highlight the diverse effects of concurrent exposure to stressors on honey bees, and suggest that V. destructor and neonicotinoids can severely affect the number of sexually mature adult drones available for mating.
Collapse
|
17
|
Metz BN, Tarpy DR. Reproductive and Morphological Quality of Commercial Honey Bee (Hymenoptera: Apidae) Drones in the United States. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6414649. [PMID: 34723330 PMCID: PMC8559163 DOI: 10.1093/jisesa/ieab048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 06/13/2023]
Abstract
Exploration into reproductive quality in honey bees (Apis mellifera Linneaus (Hymenoptera: Apidae) largely focuses on factors that affect queens, with drones primarily being considered insofar as they pass on effects of environmental stressors to the queen and subsequent offspring. In those studies that consider drone quality explicitly, a primary focus has been on the dimorphic nature of drones laid in worker cells (either through rare queen error or worker reproduction) as compared to drones laid by the queen in the slightly larger drone cells. The implication from these studies is that that there exists a bimodality of drone morphological quality that is related to reproductive quality and competitive ability during mating. Our study quantifies the presence of such small drones in commercial populations, finding that rates of 'low-quality' drones are far higher than theoretically predicted under optimum conditions. Observations from commercial colonies also show significant inter-colony variation among the size and fecundity of drones produced, prompting speculation as to the mechanisms inducing such variation and the potential use of drone-quality variation for the colony- or apiary-level exposure to nutrition, agrichemical, or parasitic stressors.
Collapse
Affiliation(s)
- Bradley N Metz
- Department of Entomology & Plant Pathology, NC State Apiculture, Campus Box 7613, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - David R Tarpy
- Department of Entomology & Plant Pathology, NC State Apiculture, Campus Box 7613, North Carolina State University, Raleigh, NC 27695-7613, USA
- Biology Graduate Program—Ecology & Evolution, NC State Apiculture, Campus Box 7613, North Carolina State University, Raleigh, NC 27695-7613, USA
| |
Collapse
|
18
|
Slater GP, Smith NMA, Harpur BA. Prospects in Connecting Genetic Variation to Variation in Fertility in Male Bees. Genes (Basel) 2021; 12:1251. [PMID: 34440424 PMCID: PMC8392204 DOI: 10.3390/genes12081251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022] Open
Abstract
Bees are economically and ecologically important pollinating species. Managed and native bee species face increasing pressures from human-created stressors such as habitat loss, pesticide use, and introduced pathogens. There has been increasing attention towards how each of these factors impacts fertility, especially sperm production and maintenance in males. Here, we turn our attention towards another important factor impacting phenotypic variation: genetics. Using honey bees as a model, we explore the current understanding of how genetic variation within and between populations contributes to variation in sperm production, sperm maintenance, and insemination success among males. We conclude with perspectives and future directions in the study of male fertility in honey bees and non-Apis pollinators more broadly, which still remain largely understudied.
Collapse
Affiliation(s)
- Garett P. Slater
- Department of Entomology, Purdue University, 901 W State St., West Lafayette, IN 47907, USA;
| | - Nicholas M. A. Smith
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD 4072, Australia;
| | - Brock A. Harpur
- Department of Entomology, Purdue University, 901 W State St., West Lafayette, IN 47907, USA;
| |
Collapse
|
19
|
McAfee A, Tarpy DR, Foster LJ. Queen honey bees exhibit variable resilience to temperature stress. PLoS One 2021; 16:e0255381. [PMID: 34379669 PMCID: PMC8357134 DOI: 10.1371/journal.pone.0255381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
Extreme temperature exposure can reduce stored sperm viability within queen honey bees; however, little is known about how thermal stress may directly impact queen performance or other maternal quality metrics. Here, in a blind field trial, we recorded laying pattern, queen mass, and average callow worker mass before and after exposing queens to a cold temperature (4°C, 2 h), hot temperature (42°C, 2 h), and hive temperature (33°C, control). We measured sperm viability at experiment termination, and investigated potential vertical effects of maternal temperature stress on embryos using proteomics. We found that cold stress, but not heat stress, reduced stored sperm viability; however, we found no significant effect of temperature stress on any other recorded metrics (queen mass, average callow worker mass, laying patterns, the egg proteome, and queen spermathecal fluid proteome). Previously determined candidate heat and cold stress biomarkers were not differentially expressed in stressed queens, indicating that these markers only have short-term post-stress diagnostic utility. Combined with variable sperm viability responses to temperature stress reported in different studies, these data also suggest that there is substantial variation in temperature tolerance, with respect to impacts on fertility, amongst queens. Future research should aim to quantify the variation and heritability of temperature tolerance, particularly heat, in different populations of queens in an effort to promote queen resilience.
Collapse
Affiliation(s)
- Alison McAfee
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - David R. Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
McAfee A, Milone JP, Metz B, McDermott E, Foster LJ, Tarpy DR. Honey bee queen health is unaffected by contact exposure to pesticides commonly found in beeswax. Sci Rep 2021; 11:15151. [PMID: 34312437 PMCID: PMC8313582 DOI: 10.1038/s41598-021-94554-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/01/2021] [Indexed: 11/24/2022] Open
Abstract
Honey bee queen health is crucial for colony health and productivity, and pesticides have been previously associated with queen loss and premature supersedure. Prior research has investigated the effects of indirect pesticide exposure on queens via workers, as well as direct effects on queens during development. However, as adults, queens are in constant contact with wax as they walk on comb and lay eggs; therefore, direct pesticide contact with adult queens is a relevant but seldom investigated exposure route. Here, we conducted laboratory and field experiments to investigate the impacts of topical pesticide exposure on adult queens. We tested six pesticides commonly found in wax: coumaphos, tau-fluvalinate, atrazine, 2,4-DMPF, chlorpyriphos, chlorothalonil, and a cocktail of all six, each administered at 1, 4, 8, 16, and 32 times the concentrations typically found in wax. We found no effect of any treatment on queen mass, sperm viability, or fat body protein expression. In a field trial testing queen topical exposure of a pesticide cocktail, we found no impact on egg-laying pattern, queen mass, emergence mass of daughter workers, and no proteins in the spermathecal fluid were differentially expressed. These experiments consistently show that pesticides commonly found in wax have no direct impact on queen performance, reproduction, or quality metrics at the doses tested. We suggest that previously reported associations between high levels of pesticide residues in wax and queen failure are most likely driven by indirect effects of worker exposure (either through wax or other hive products) on queen care or queen perception.
Collapse
Affiliation(s)
- Alison McAfee
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA. .,Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
| | - Joseph P Milone
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Bradley Metz
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Erin McDermott
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - David R Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
21
|
Ben Abdelkader F, Çakmak İ, Çakmak SS, Nur Z, İncebıyık E, Aktar A, Erdost H. Toxicity assessment of chronic exposure to common insecticides and bee medications on colony development and drones sperm parameters. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:806-817. [PMID: 33932203 DOI: 10.1007/s10646-021-02416-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
The effect of agrochemicals and beekeeping treatments on drones have not been widely investigated compared to workers or queens. In the present study, we investigated the chronic exposure of chemicals set (deltamethrin, acetamiprid, oxalic acid, fumagillin, and amitraz) on some sperm parameters and on the histomorphology of seminal vesicles. We also assessed the colony development and nosema load before and after the exposure. Thirty native Apis mellifera anatolica honeybee colonies with sister queens equalized with brood and total frame of bees were used for this experiment. Five colonies were used for each group. Deltamethrin, acetamiprid and fumagillin were given as oral chronic exposure at final concentrations of 25.10-6 mg L-1, 0.01 m L-1 and 50 mg L-1 respectively in syrup solution (50/50). Colonies were exposed to oxalic acid by spraying 5 mL per frame space of 3% (w/v) of oxalic acid dihydrate. Finally, the amitraz was applied based on the manufacturer's instructions. The concentrations chosen represented the field-realistic concentrations and those used by beekeepers in the region. Results showed that deltamethrin reduced brood production. In the same group, we found a high increase in nosema load. All treatments decreased sperm count except for fumagillin but this compound increased sperm mortality and increased the percentage of sperm with defected acrosome integrity. The amitraz exhibited a high sperm mortality and high percentage of sperm with defected membrane integrity function. The sperm parameters such as the count, the motility, the acrosome integrity, the membrane function of sperm, and the histomorphology of seminal vesicles of drones exposed to oxalic acid were the most affected. Bee medications commonly used such as oxalic acid and fumagillin should be more investigated and should be considered by beekeepers and particularly queen breeders.
Collapse
Affiliation(s)
- Faten Ben Abdelkader
- Bursa Uludag University, Beekeeping Development-Application and Research Center, Bursa, Turkey.
| | - İbrahim Çakmak
- Faculty of Agriculture, Department of Animal Science, Bursa Uludag University, Beekeeping Development-Application and Research Center, Bursa, Turkey
| | | | - Zekariya Nur
- Faculty of Veterinary Medicine, Department of Reproduction, and Artificial Insemination, Bursa Uludağ University, Bursa, Turkey
| | - Ece İncebıyık
- Faculty of Veterinary Medicine, Department of Histology, and Embryology, Bursa Uludağ University, Bursa, Turkey
| | - Ahmet Aktar
- Faculty of Veterinary Medicine, Department of Reproduction, and Artificial Insemination, Bursa Uludağ University, Bursa, Turkey
| | - Hatice Erdost
- Faculty of Veterinary Medicine, Department of Histology, and Embryology, Bursa Uludağ University, Bursa, Turkey
| |
Collapse
|
22
|
Introduction of Varroa destructor has not altered honey bee queen mating success in the Hawaiian archipelago. Sci Rep 2021; 11:1366. [PMID: 33446846 PMCID: PMC7809478 DOI: 10.1038/s41598-020-80525-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/22/2020] [Indexed: 11/08/2022] Open
Abstract
Beekeepers struggle to minimize the mortality of their colonies as a consequence of the parasitic mite Varroa destructor in order to maintain a sustainable managed pollinator population. However, little is known about how varroa mites might diminish local populations of honey bee males (drones) that might affect the mating success of queens. As one of the world's last localities invaded by varroa mites, the Hawaiian Islands offer a unique opportunity to examine this question by comparing queens mated on mite-infested and mite-free islands. We raised queen bees on four Hawaiian Islands (Kaua'i, O'ahu, Maui, and Hawai'i) and subsequently collected their offspring to determine queen mating frequency and insemination success. No significant difference for mating success was found between the islands with and without varroa mites, and relatively high levels of polyandry was detected overall. We also found a significant association between the number of sperm stored in the queens' spermathecae and the number of managed colonies within the localities of the queens mated. Our findings suggest that varroa mites, as they currently occur in Hawai'i, may not significantly reduce mating success of honey bee queens, which provides insight for both the reproductive biology of honey bees as well as the apiculture industry in Hawai'i.
Collapse
|
23
|
Trade-offs between sperm viability and immune protein expression in honey bee queens (Apis mellifera). Commun Biol 2021; 4:48. [PMID: 33420325 PMCID: PMC7794525 DOI: 10.1038/s42003-020-01586-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Queens of many social hymenoptera keep sperm alive within their specialized storage organ, the spermatheca, for years, defying the typical trade-off between lifespan and reproduction. However, whether honey bee (Apis mellifera) queens experience a trade-off between reproduction and immunity is unknown, and the biochemical processes underlying sperm viability are poorly understood. Here, we survey quality metrics and viral loads of honey bee queens from nine genetic sources. Queens rated as 'failed' by beekeepers had lower sperm viability, fewer sperm, and higher levels of sacbrood virus and black queen cell virus. Quantitative proteomics on N = 123 spermathecal fluid samples shows, after accounting for sperm count, health status, and apiary effects, five spermathecal fluid proteins significantly correlating with sperm viability: odorant binding protein (OBP)14, lysozyme, serpin 88Ea, artichoke, and heat-shock protein (HSP)10. The significant negative correlation of lysozyme-a conserved immune effector-with sperm viability is consistent with a reproduction vs. immunity trade-off in honey bee queens.
Collapse
|
24
|
Martinet B, Zambra E, Przybyla K, Lecocq T, Anselmo A, Nonclercq D, Rasmont P, Michez D, Hennebert E. Mating under climate change: Impact of simulated heatwaves on the reproduction of model pollinators. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13738] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Baptiste Martinet
- Laboratory of Zoology Research Institute of Biosciences University of Mons Mons Belgium
- Evolutionary Biology & Ecology Université Libre de Bruxelles Bruxelles Belgium
| | - Ella Zambra
- Laboratory of Zoology Research Institute of Biosciences University of Mons Mons Belgium
| | - Kimberly Przybyla
- Laboratory of Zoology Research Institute of Biosciences University of Mons Mons Belgium
| | - Thomas Lecocq
- Laboratory of Zoology Research Institute of Biosciences University of Mons Mons Belgium
- INRAEURAFPAUniversity of Lorraine Nancy France
| | - Abigaël Anselmo
- Laboratory of Zoology Research Institute of Biosciences University of Mons Mons Belgium
| | - Denis Nonclercq
- Laboratory of Histology Research Institute of BiosciencesUniversity of Mons Mons Belgium
| | - Pierre Rasmont
- Laboratory of Zoology Research Institute of Biosciences University of Mons Mons Belgium
| | - Denis Michez
- Laboratory of Zoology Research Institute of Biosciences University of Mons Mons Belgium
| | - Elise Hennebert
- Laboratory of Cell Biology Research Institute of BiosciencesUniversity of Mons Mons Belgium
| |
Collapse
|
25
|
Shih SR, Huntsman EM, Flores ME, Snow JW. Reproductive potential does not cause loss of heat shock response performance in honey bees. Sci Rep 2020; 10:19610. [PMID: 33184302 PMCID: PMC7661715 DOI: 10.1038/s41598-020-74456-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
In other species characterized to date, aging, as a function of reproductive potential, results in the breakdown of proteaostasis and a decreased capacity to mount responses by the heat shock response (HSR) and other proteostatic network pathways. Our understanding of the maintenance of stress pathways, such as the HSR, in honey bees, and in the reproductive queen in particular, is incomplete. Based on the findings in other species showing an inverse relationship between reproductive potential and HSR function, one might predict that that HSR function would be lost in the reproductive queens. However, as queens possess an atypical uncoupling of the reproduction-maintenance trade-off typically found in solitary organisms, HSR maintenance might also be expected. Here we demonstrate that reproductive potential does not cause loss of HSR performance in honey bees as queens induce target gene expression to levels comparable to those induced in attendant worker bees. Maintenance of HSR function with advent of reproductive potential is unique among invertebrates studied to date and provides a potential model for examining the molecular mechanisms regulating the uncoupling of the reproduction-maintenance trade-off in queen bees, with important consequences for understanding how stresses impact different types of individuals in honey bee colonies.
Collapse
Affiliation(s)
- S R Shih
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - E M Huntsman
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - M E Flores
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - J W Snow
- Biology Department, Barnard College, New York, NY, 10027, USA.
| |
Collapse
|
26
|
Liu Z, Liu F, Li G, Chi X, Wang Y, Wang H, Ma L, Han K, Zhao G, Guo X, Xu B. Metabolite Support of Long-Term Storage of Sperm in the Spermatheca of Honeybee ( Apis mellifera) Queens. Front Physiol 2020; 11:574856. [PMID: 33240099 PMCID: PMC7683436 DOI: 10.3389/fphys.2020.574856] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 01/12/2023] Open
Abstract
The polyandrous mating system of honeybees (Apis mellifera L.) has garnered widespread attention. Long-lived honeybee queens only mate early in maturation, and the sperm obtained from the aerial mating is stored in the spermatheca. The maintenance of sperm viability in the spermatheca is an intriguing and complex process. However, the key physiological and biochemical adaptations underlying the long-term storage of sperm remain unclear. Analysis of the metabolite profile could help better understand the biology of the spermatheca and offer insights into the breeding and conservation of honeybees and even pest control strategies. Here, the changes in metabolites in the spermatheca were quantified between virgin queens and new-laying queens (with stored sperm) via liquid chromatography-mass spectrometry. Compared with virgin queens, changes occurred in lipids and lipid-like molecules, including fatty acyls and glycerophospholipids (GPL), prenol lipids, and sterol lipids, during storage of sperm in new-laying honeybee queens. Furthermore, the metabolic pathways that were enriched with the differentially expressed metabolites were identified and included GPL metabolism, biosynthesis of amino acids, and the mTOR signaling pathway. The likely roles of the pathways in the maintenance and protection of sperm are discussed. The study identifies key metabolites and pathways in the complex interplay of substances that contribute to the long-term storage of sperm and ultimately reproductive success of honeybee queens.
Collapse
Affiliation(s)
- Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Feng Liu
- Apiculture Institute of Jiangxi Province, Nanchang, China
| | - Guilin Li
- School of Life Sciences, Qufu Normal University, Qufu, China
| | - Xuepeng Chi
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Lanting Ma
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Kai Han
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
27
|
Power K, Martano M, Altamura G, Maiolino P. Histopathological Findings in Testes from Apparently Healthy Drones of Apis mellifera ligustica. Vet Sci 2020; 7:vetsci7030124. [PMID: 32887234 PMCID: PMC7560084 DOI: 10.3390/vetsci7030124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
It is well known that factors acting on the decrease of population of honeybees, can act on the male and female reproductive system, compromising the fertility of queens and drones. While there are many studies on female fertility, only a few studies have focused on male fertility and the possible alterations of the reproductive system. The testes of 25 samples of adult drones of Apis mellifera ligustica were analyzed by histopathology using an innovative histological processing technique and the alterations that were found are here described. Most of the samples showed unaltered testes but, in some cases, samples showed degenerated seminiferous tubules, while others appeared immature. Although a limited number of samples were analyzed, the results obtained displayed that histopathological alterations of the testes exist also in honeybees and that more interest should be put to the matter, as honeybees could be considered as bioindicators for endocrine disruptors. Future studies on a larger number of samples are necessary to analyze how different environmental factors can act and induce alterations in the honeybee reproductive system.
Collapse
|
28
|
McAfee A, Milone J, Chapman A, Foster LJ, Pettis JS, Tarpy DR. Candidate stress biomarkers for queen failure diagnostics. BMC Genomics 2020; 21:571. [PMID: 32819278 PMCID: PMC7441638 DOI: 10.1186/s12864-020-06992-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/13/2020] [Indexed: 01/15/2023] Open
Abstract
Background Queen failure is a persistent problem in beekeeping operations, but in the absence of overt symptoms it is often difficult, if not impossible, to ascertain the root cause. Stressors like heat-shock, cold-shock, and sublethal pesticide exposure can reduce stored sperm viability and lead to cryptic queen failure. Previously, we suggested candidate protein markers indicating heat-shock in queens. Here, we further investigate these heat-shock markers and test new stressors to identify additional candidate protein markers. Results We found that heat-shocking queens for upwards of 1 h at 40 °C was necessary to induce significant changes in the two strongest candidate heat-shock markers, and that relative humidity significantly influenced the degree of activation. In blind heat-shock experiments, we tested the efficiency of these markers at assigning queens to their respective treatment groups and found that one marker was sufficient to correctly assign queens 75% of the time. Finally, we compared cold-shocked queens at 4 °C and pesticide-exposed queens to controls to identify candidate markers for these additional stressors, and compared relative abundances of all markers to queens designated as ‘healthy’ and ‘failing’ by beekeepers. Queens that failed in the field had higher expression of both heat-shock and pesticide protein markers, but not cold-shock markers. Conclusions This work offers some of the first steps towards developing molecular diagnostic tools to aid in determining cryptic causes of queen failure. Further work will be necessary to determine how long after the stress event a marker’s expression remains elevated, and how accurate these markers will be for field diagnoses.
Collapse
Affiliation(s)
- Alison McAfee
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA.
| | - Joseph Milone
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Abigail Chapman
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
29
|
Bixby M, Hoover SE, McCallum R, Ibrahim A, Ovinge L, Olmstead S, Pernal SF, Zayed A, Foster LJ, Guarna MM. Honey Bee Queen Production: Canadian Costing Case Study and Profitability Analysis. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1618-1627. [PMID: 32484511 PMCID: PMC7313926 DOI: 10.1093/jee/toaa102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 06/11/2023]
Abstract
The decline in managed honey bee (Hymenoptera: Apidae) colony health worldwide has had a significant impact on the beekeeping industry. To mitigate colony losses, beekeepers in Canada and around the world introduce queens into replacement colonies; however, Canada's short queen rearing season has historically limited the production of early season queens. As a result, Canadian beekeepers rely on the importation of foreign bees, particularly queens from warmer climates. Importing a large proportion of (often mal-adapted) queens each year creates a dependency on foreign bee sources, putting beekeeping, and pollination sectors at risk in the event of border closures, transportation issues, and other restrictions as is currently happening due to the 2020 Covid-19 pandemic. Although traditional Canadian queen production is unable to fully meet early season demand, increasing domestic queen production to meet mid- and later season demand would reduce Canada's dependency. As well, on-going studies exploring the potential for overwintering queens in Canada may offer a strategy to have early season domestic queens available. Increasing the local supply of queens could provide Canadian beekeepers, farmers, and consumers with a greater level of agricultural stability and food security. Our study is the first rigorous analysis of the economic feasibility of queen production. We present the costs of queen production for three Canadian operations over two years. Our results show that it can be profitable for a beekeeping operation in Canada to produce queen cells and mated queens and could be one viable strategy to increase the sustainability of the beekeeping industry.
Collapse
Affiliation(s)
- Miriam Bixby
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shelley E Hoover
- Alberta Agriculture and Forestry, Lethbridge Research and Development Centre, South, Lethbridge, Alberta, Canada
| | - Robyn McCallum
- Atlantic Tech Transfer Team for Apiculture, Bible Hill, Nova Scotia, Canada
| | - Abdullah Ibrahim
- Agriculture & Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta, Canada
| | - Lynae Ovinge
- Alberta Agriculture and Forestry, Lethbridge Research and Development Centre, South, Lethbridge, Alberta, Canada
| | - Sawyer Olmstead
- Atlantic Tech Transfer Team for Apiculture, Bible Hill, Nova Scotia, Canada
| | - Stephen F Pernal
- Agriculture & Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta, Canada
| | - Amro Zayed
- Department of Biology, York University, Lumbers Building #208, Toronto, Ontario, Canada
| | - Leonard J Foster
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Marta Guarna
- Agriculture & Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta, Canada
| |
Collapse
|
30
|
Sperm Quality Assessment in Honey Bee Drones. BIOLOGY 2020; 9:biology9070174. [PMID: 32708362 PMCID: PMC7408582 DOI: 10.3390/biology9070174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022]
Abstract
The quality of honey bee drone semen is relevant in different contexts, ranging from colony productivity to pathology, toxicology and biodiversity preservation. Despite its importance, considerably less knowledge is available on this subject for the honey bee when compared to other domestic animal species. A proper assessment of sperm quality requires a multiple testing approach which discriminates between the different aspects of sperm integrity and functionality. Most studies on drone semen quality have only assessed a few parameters, such as sperm volume, sperm concentration and/or sperm plasma membrane integrity. Although more recent studies have focused on a broader variety of aspects of semen quality, some techniques currently used in vertebrates, such as computer-assisted sperm analysis (CASA) or multiparametric sperm quality testing, still remain to be developed in the honey bee. This may be attributed to the particular sperm morphology and physiology in this species, requiring the development of technologies specifically adapted to it. This article reviews the present knowledge of sperm quality in honey bee drones, highlighting its peculiarities and proposing future lines of research.
Collapse
|
31
|
Amiri E, Strand MK, Tarpy DR, Rueppell O. Honey Bee Queens and Virus Infections. Viruses 2020; 12:E322. [PMID: 32192060 PMCID: PMC7150968 DOI: 10.3390/v12030322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/11/2023] Open
Abstract
The honey bee queen is the central hub of a colony to produce eggs and release pheromones to maintain social cohesion. Among many environmental stresses, viruses are a major concern to compromise the queen's health and reproductive vigor. Viruses have evolved numerous strategies to infect queens either via vertical transmission from the queens' parents or horizontally through the worker and drones with which she is in contact during development, while mating, and in the reproductive period in the colony. Over 30 viruses have been discovered from honey bees but only few studies exist on the pathogenicity and direct impact of viruses on the queen's phenotype. An apparent lack of virus symptoms and practical problems are partly to blame for the lack of studies, and we hope to stimulate new research and methodological approaches. To illustrate the problems, we describe a study on sublethal effects of Israeli Acute Paralysis Virus (IAPV) that led to inconclusive results. We conclude by discussing the most crucial methodological considerations and novel approaches for studying the interactions between honey bee viruses and their interactions with queen health.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA;
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA;
| | - Micheline K. Strand
- Life Sciences Division, U.S. Army Research Office, CCDC-ARL, Research Triangle Park, NC 27709-2211, USA;
| | - David R. Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA;
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA;
| |
Collapse
|
32
|
Chapman NC, Dos Santos Cocenza R, Blanchard B, Nguyen LM, Lim J, Buchmann G, Oldroyd BP. Genetic Diversity in the Progeny of Commercial Australian Queen Honey Bees (Hymenoptera: Apidae) Produced in Autumn and Early Spring. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:33-39. [PMID: 30285107 DOI: 10.1093/jee/toy308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Honey bee [Apis mellifera L. (Hymenoptera: Apidae)] queens are polyandrous, mating with an average 12 males (drones). Polyandry has been shown to confer benefits to queens and the colonies they head, including avoidance of inviable brood that can arise via sex locus homozygosity, increased resilience to pests and pathogens, and increased survival and productivity, leading to improved colony-level fitness. Queens with an effective mating frequency (ke) greater than 7 are considered adequately mated, whereas queens that fall below this threshold head colonies that have increased likelihood of failure and may be less productive for beekeepers. We determined ke in queens produced in early Spring and Autumn by five Australian commercial queen producers to determine whether the queens they produced were suitably mated. Drone populations are low at these times of year, and therefore, there is an increased risk that queens would fall below the ke > 7 threshold. We found that 33.8% of Autumn-produced queens did not meet the threshold, whereas 93.8% of Spring queens were adequately mated. The number of colonies contributing drones to the mating pool was similarly high in both seasons, suggesting that although many colonies have drones, their numbers may be decreased in Autumn and management strategies may be required to boost drone numbers at this time. Finally, queens had similar levels of homozygosity to workers, and inbreeding coefficients were very low, suggesting that inbreeding is not a problem.
Collapse
Affiliation(s)
- Nadine C Chapman
- Ecology, Evolution and Environment, Behaviour and Genetics of Social Insects Laboratory, University of Sydney, School of Life and Environmental Science, Macleay Building, Sydney, NSW
| | - Rani Dos Santos Cocenza
- Ecology, Evolution and Environment, Behaviour and Genetics of Social Insects Laboratory, University of Sydney, School of Life and Environmental Science, Macleay Building, Sydney, NSW
| | - Benjamin Blanchard
- Ecology, Evolution and Environment, Behaviour and Genetics of Social Insects Laboratory, University of Sydney, School of Life and Environmental Science, Macleay Building, Sydney, NSW
| | - Lucy M Nguyen
- Ecology, Evolution and Environment, Behaviour and Genetics of Social Insects Laboratory, University of Sydney, School of Life and Environmental Science, Macleay Building, Sydney, NSW
| | - Julianne Lim
- Ecology, Evolution and Environment, Behaviour and Genetics of Social Insects Laboratory, University of Sydney, School of Life and Environmental Science, Macleay Building, Sydney, NSW
| | - Gabriele Buchmann
- Ecology, Evolution and Environment, Behaviour and Genetics of Social Insects Laboratory, University of Sydney, School of Life and Environmental Science, Macleay Building, Sydney, NSW
| | - Benjamin P Oldroyd
- Ecology, Evolution and Environment, Behaviour and Genetics of Social Insects Laboratory, University of Sydney, School of Life and Environmental Science, Macleay Building, Sydney, NSW
| |
Collapse
|
33
|
Lee KV, Goblirsch M, McDermott E, Tarpy DR, Spivak M. Is the Brood Pattern within a Honey Bee Colony a Reliable Indicator of Queen Quality? INSECTS 2019; 10:insects10010012. [PMID: 30626029 PMCID: PMC6359415 DOI: 10.3390/insects10010012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/23/2018] [Accepted: 08/29/2018] [Indexed: 01/24/2023]
Abstract
Failure of the queen is often identified as a leading cause of honey bee colony mortality. However, the factors that can contribute to “queen failure” are poorly defined and often misunderstood. We studied one specific sign attributed to queen failure: poor brood pattern. In 2016 and 2017, we identified pairs of colonies with “good” and “poor” brood patterns in commercial beekeeping operations and used standard metrics to assess queen and colony health. We found no queen quality measures reliably associated with poor-brood colonies. In the second year (2017), we exchanged queens between colony pairs (n = 21): a queen from a poor-brood colony was introduced into a good-brood colony and vice versa. We observed that brood patterns of queens originally from poor-brood colonies significantly improved after placement into a good-brood colony after 21 days, suggesting factors other than the queen contributed to brood pattern. Our study challenges the notion that brood pattern alone is sufficient to judge queen quality. Our results emphasize the challenges in determining the root source for problems related to the queen when assessing honey bee colony health.
Collapse
Affiliation(s)
- Kathleen V Lee
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, Suite 219, Saint Paul, MN 55108, USA.
| | - Michael Goblirsch
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, Suite 219, Saint Paul, MN 55108, USA.
| | - Erin McDermott
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Marla Spivak
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, Suite 219, Saint Paul, MN 55108, USA.
| |
Collapse
|
34
|
Reproductive Senescence in Drones of the Honey Bee (Apis mellifera). INSECTS 2019; 10:insects10010011. [PMID: 30626026 PMCID: PMC6358831 DOI: 10.3390/insects10010011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/21/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Abstract
In the face of high proportions of yearly colony losses, queen health and fecundity has been a major focus of industry and research. Much of the reproductive quality of the queen, though, is a function of the mating success and quality of the drones (males). Many environmental factors can negatively impact drone semen quality, but little is known about factors that impact the drones' ability to successfully mate and deliver that semen, or how widely drones vary. In our study, we observed the daily variation in honey bee drone reproductive quality over time, along with a number of morphological traits. Drones were reared in cages in bank colonies, and 20 individuals were dissected and measured daily. The number of viable spermatozoa in the seminal vesicles was zero at emergence and reached an average maximum of 7.39 ± 0.19 million around 20 days of life. Decline in spermatozoa count occurred after day 30, though viability was constant throughout life, when controlling for count. Older drones had smaller wet weights, head widths, and wing lengths. We predict that this is likely due to sampling bias due to a differential lifespan among larger, more reproductively developed drones. Our study shows that drones are more highly variable than previously suggested and that they have a significant variation in reproductive physiology as a function of age.
Collapse
|
35
|
Fine JD, Shpigler HY, Ray AM, Beach NJ, Sankey AL, Cash-Ahmed A, Huang ZY, Astrauskaite I, Chao R, Zhao H, Robinson GE. Quantifying the effects of pollen nutrition on honey bee queen egg laying with a new laboratory system. PLoS One 2018; 13:e0203444. [PMID: 30183759 PMCID: PMC6124782 DOI: 10.1371/journal.pone.0203444] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/21/2018] [Indexed: 11/21/2022] Open
Abstract
Honey bee populations have been declining precipitously over the past decade, and multiple causative factors have been identified. Recent research indicates that these frequently co-occurring stressors interact, often in unpredictable ways, therefore it has become important to develop robust methods to assess their effects both in isolation and in combination. Most such efforts focus on honey bee workers, but the state of a colony also depends on the health and productivity of its queen. However, it is much more difficult to quantify the performance of queens relative to workers in the field, and there are no laboratory assays for queen performance. Here, we present a new system to monitor honey bee queen egg laying under laboratory conditions and report the results of experiments showing the effects of pollen nutrition on egg laying. These findings suggest that queen egg laying and worker physiology can be manipulated in this system through pollen nutrition, which is consistent with findings from field colonies. The results generated using this controlled, laboratory-based system suggest that worker physiology controls queen egg laying behavior. Additionally, the quantitative data generated in these experiments highlight the utility of the system for further use as a risk assessment tool.
Collapse
Affiliation(s)
- Julia D. Fine
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Hagai Y. Shpigler
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Allyson M. Ray
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Nathanael J. Beach
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Alison L. Sankey
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Amy Cash-Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Zachary Y. Huang
- Department of Entomology, Michigan State University, East Lansing, United States of America
| | - Ieva Astrauskaite
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Ran Chao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, United States of America
- LifeFoundry, Inc., Champaign, United States of America
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Gene E. Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, United States of America
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, United States of America
- * E-mail:
| |
Collapse
|
36
|
McMenamin AJ, Daughenbaugh KF, Parekh F, Pizzorno MC, Flenniken ML. Honey Bee and Bumble Bee Antiviral Defense. Viruses 2018; 10:E395. [PMID: 30060518 PMCID: PMC6115922 DOI: 10.3390/v10080395] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Bees are important plant pollinators in both natural and agricultural ecosystems. Managed and wild bees have experienced high average annual colony losses, population declines, and local extinctions in many geographic regions. Multiple factors, including virus infections, impact bee health and longevity. The majority of bee-infecting viruses are positive-sense single-stranded RNA viruses. Bee-infecting viruses often cause asymptomatic infections but may also cause paralysis, deformity or death. The severity of infection is governed by bee host immune responses and influenced by additional biotic and abiotic factors. Herein, we highlight studies that have contributed to the current understanding of antiviral defense in bees, including the Western honey bee (Apis mellifera), the Eastern honey bee (Apis cerana) and bumble bee species (Bombus spp.). Bee antiviral defense mechanisms include RNA interference (RNAi), endocytosis, melanization, encapsulation, autophagy and conserved immune pathways including Jak/STAT (Janus kinase/signal transducer and activator of transcription), JNK (c-Jun N-terminal kinase), MAPK (mitogen-activated protein kinases) and the NF-κB mediated Toll and Imd (immune deficiency) pathways. Studies in Dipteran insects, including the model organism Drosophila melanogaster and pathogen-transmitting mosquitos, provide the framework for understanding bee antiviral defense. However, there are notable differences such as the more prominent role of a non-sequence specific, dsRNA-triggered, virus limiting response in honey bees and bumble bees. This virus-limiting response in bees is akin to pathways in a range of organisms including other invertebrates (i.e., oysters, shrimp and sand flies), as well as the mammalian interferon response. Current and future research aimed at elucidating bee antiviral defense mechanisms may lead to development of strategies that mitigate bee losses, while expanding our understanding of insect antiviral defense and the potential evolutionary relationship between sociality and immune function.
Collapse
Affiliation(s)
- Alexander J McMenamin
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Fenali Parekh
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Marie C Pizzorno
- Biology Department, Bucknell University, Lewisburg, PA 17837, USA.
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
37
|
Ricigliano VA, Mott BM, Floyd AS, Copeland DC, Carroll MJ, Anderson KE. Honey bees overwintering in a southern climate: longitudinal effects of nutrition and queen age on colony-level molecular physiology and performance. Sci Rep 2018; 8:10475. [PMID: 29992997 PMCID: PMC6041268 DOI: 10.1038/s41598-018-28732-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/28/2018] [Indexed: 11/25/2022] Open
Abstract
Honey bee colony nutritional ecology relies on the acquisition and assimilation of floral resources across a landscape with changing forage conditions. Here, we examined the impact of nutrition and queen age on colony health across extended periods of reduced forage in a southern climate. We measured conventional hive metrics as well as colony-level gene expression of eight immune-related genes and three recently identified homologs of vitellogenin (vg), a storage glycolipoprotein central to colony nutritional state, immunity, oxidative stress resistance and life span regulation. Across three apiary sites, concurrent longitudinal changes in colony-level gene expression and nutritional state reflected the production of diutinus (winter) bees physiologically altered for long-term nutrient storage. Brood production by young queens was significantly greater than that of old queens, and was augmented by feeding colonies supplemental pollen. Expression analyses of recently identified vg homologs (vg-like-A, -B, and -C) revealed distinct patterns that correlated with colony performance, phenology, and immune-related gene transcript levels. Our findings provide new insights into dynamics underlying managed colony performance on a large scale. Colony-level, molecular physiological profiling is a promising approach to effectively identify factors influencing honey bee health in future landscape and nutrition studies.
Collapse
Affiliation(s)
| | - Brendon M Mott
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA
| | - Amy S Floyd
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Duan C Copeland
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA.,Department of Microbiology, School of Animal & Comparative Biomedical Sciences; University of Arizona, Tucson, AZ, 85721, USA
| | - Mark J Carroll
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA
| | - Kirk E Anderson
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA. .,Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
38
|
Hernando MD, Gámiz V, Gil-Lebrero S, Rodríguez I, García-Valcárcel AI, Cutillas V, Fernández-Alba AR, Flores JM. Viability of honeybee colonies exposed to sunflowers grown from seeds treated with the neonicotinoids thiamethoxam and clothianidin. CHEMOSPHERE 2018; 202:609-617. [PMID: 29597178 DOI: 10.1016/j.chemosphere.2018.03.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
In this study, honeybee colonies were monitored in a field study conducted on sunflowers grown from seeds treated with the systemic neonicotinoids thiamethoxam or clothianidin. This field trial was carried out in different representative growing areas in Spain over a beekeeping season. The health and development of the colonies was assessed by measuring factors that have a significant influence on their strength and overwintering ability. The parameters assessed were: colony strength (adult bees), brood development, amount of pollen and honey stores and presence and status of the queen. The concentration of residues (clothianidin and thiamethoxam) in samples of beebread and in adult bees was at the level of ng.g-1; in the ranges of 0.10-2.89 ng g-1 and 0.05-0.12 ng g-1; 0.10-0.37 ng g-1 and 0.01-0.05 ng g-1, respectively. Multivariate models were applied to evaluate the interaction among factors. No significant differences were found between the honeybee colonies of the different treatment groups, either exposed or not to the neonicotinoids. The seasonal development of the colonies was affected by the environmental conditions which, together with the initial strength of the bee colonies and the characteristics of the plots, had a significant effect on the different variables studied.
Collapse
Affiliation(s)
- M Dolores Hernando
- National Institute for Agricultural and Food Research and Technology (INIA), 28040, Madrid, Spain.
| | - Victoria Gámiz
- Department of Zoology, University of Córdoba, Campus of Rabanales, 14071, Córdoba, Spain
| | - Sergio Gil-Lebrero
- Department of Zoology, University of Córdoba, Campus of Rabanales, 14071, Córdoba, Spain
| | - Inmaculada Rodríguez
- Department of Nutrition and Bromatology, University of Córdoba, Campus of Rabanales, 14071, Córdoba, Spain
| | - Ana I García-Valcárcel
- National Institute for Agricultural and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - V Cutillas
- Agrifood Campus of International Excellence (ceiA3), Department of Chemistry and Physics, University of Almeria. European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, 04120, Almería, Spain
| | - Amadeo R Fernández-Alba
- Agrifood Campus of International Excellence (ceiA3), Department of Chemistry and Physics, University of Almeria. European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, 04120, Almería, Spain
| | - José M Flores
- Department of Zoology, University of Córdoba, Campus of Rabanales, 14071, Córdoba, Spain
| |
Collapse
|
39
|
Stress-induced reproductive arrest in Drosophila occurs through ETH deficiency-mediated suppression of oogenesis and ovulation. BMC Biol 2018; 16:18. [PMID: 29382341 PMCID: PMC5791332 DOI: 10.1186/s12915-018-0484-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Environmental stressors induce changes in endocrine state, leading to energy re-allocation from reproduction to survival. Female Drosophila melanogaster respond to thermal and nutrient stressors by arresting egg production through elevation of the steroid hormone ecdysone. However, the mechanisms through which this reproductive arrest occurs are not well understood. RESULTS Here we report that stress-induced elevation of ecdysone is accompanied by decreased levels of ecdysis triggering hormone (ETH). Depressed levels of circulating ETH lead to attenuated activity of its targets, including juvenile hormone-producing corpus allatum and, as we describe here for the first time, octopaminergic neurons of the oviduct. Elevation of steroid thereby results in arrested oogenesis, reduced octopaminergic input to the reproductive tract, and consequent suppression of ovulation. ETH mitigates heat or nutritional stress-induced attenuation of fecundity, which suggests that its deficiency is critical to reproductive adaptability. CONCLUSIONS Our findings indicate that, as a dual regulator of octopamine and juvenile hormone release, ETH provides a link between stress-induced elevation of ecdysone levels and consequent reduction in fecundity.
Collapse
|
40
|
Forfert N, Troxler A, Retschnig G, Gauthier L, Straub L, Moritz RFA, Neumann P, Williams GR. Neonicotinoid pesticides can reduce honeybee colony genetic diversity. PLoS One 2017; 12:e0186109. [PMID: 29059234 PMCID: PMC5653293 DOI: 10.1371/journal.pone.0186109] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/25/2017] [Indexed: 12/02/2022] Open
Abstract
Neonicotinoid insecticides can cause a variety of adverse sub-lethal effects in bees. In social species such as the honeybee, Apis mellifera, queens are essential for reproduction and colony functioning. Therefore, any negative effect of these agricultural chemicals on the mating success of queens may have serious consequences for the fitness of the entire colony. Queens were exposed to the common neonicotinoid pesticides thiamethoxam and clothianidin during their developmental stage. After mating, their spermathecae were dissected to count the number of stored spermatozoa. Furthermore, their worker offspring were genotyped with DNA microsatellites to determine the number of matings and the genotypic composition of the colony. Colonies providing the male mating partners were also inferred. Both neonicotinoid and control queens mated with drones originating from the same drone source colonies, and stored similar number of spermatozoa. However, queens reared in colonies exposed to both neonicotinoids experienced fewer matings. This resulted in a reduction of the genetic diversity in their colonies (i.e. higher intracolonial relatedness). As decreased genetic diversity among worker bees is known to negatively affect colony vitality, neonicotinoids may have a cryptic effect on colony health by reducing the mating frequency of queens.
Collapse
Affiliation(s)
- Nadège Forfert
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Aline Troxler
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Gina Retschnig
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Robin F. A. Moritz
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Social Insect Research Group, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Geoffrey R. Williams
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
41
|
Brandt A, Grikscheit K, Siede R, Grosse R, Meixner MD, Büchler R. Immunosuppression in Honeybee Queens by the Neonicotinoids Thiacloprid and Clothianidin. Sci Rep 2017; 7:4673. [PMID: 28680118 PMCID: PMC5498664 DOI: 10.1038/s41598-017-04734-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/19/2017] [Indexed: 01/13/2023] Open
Abstract
Queen health is crucial to colony survival of honeybees, since reproduction and colony growth rely solely on the queen. Queen failure is considered a relevant cause of colony losses, yet few data exist concerning effects of environmental stressors on queens. Here we demonstrate for the first time that exposure to field-realistic concentrations of neonicotinoid pesticides can severely affect the immunocompetence of queens of western honeybees (Apis mellifera L.). In young queens exposed to thiacloprid (200 µg/l or 2000 µg/l) or clothianidin (10 µg/l or 50 µg/l), the total hemocyte number and the proportion of active, differentiated hemocytes was significantly reduced. Moreover, functional aspects of the immune defence namely the wound healing/melanisation response, as well as the antimicrobial activity of the hemolymph were impaired. Our results demonstrate that neonicotinoid insecticides can negatively affect the immunocompetence of queens, possibly leading to an impaired disease resistance capacity.
Collapse
Affiliation(s)
- Annely Brandt
- LLH Bee Institute, Erlenstr. 9, 35274, Kirchhain, Germany.
| | - Katharina Grikscheit
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, 35032, Marburg, Germany
| | - Reinhold Siede
- LLH Bee Institute, Erlenstr. 9, 35274, Kirchhain, Germany
| | - Robert Grosse
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, 35032, Marburg, Germany
| | | | - Ralph Büchler
- LLH Bee Institute, Erlenstr. 9, 35274, Kirchhain, Germany
| |
Collapse
|
42
|
Amiri E, Strand MK, Rueppell O, Tarpy DR. Queen Quality and the Impact of Honey Bee Diseases on Queen Health: Potential for Interactions between Two Major Threats to Colony Health. INSECTS 2017; 8:E48. [PMID: 28481294 PMCID: PMC5492062 DOI: 10.3390/insects8020048] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/15/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Abstract
Western honey bees, Apis mellifera, live in highly eusocial colonies that are each typically headed by a single queen. The queen is the sole reproductive female in a healthy colony, and because long-term colony survival depends on her ability to produce a large number of offspring, queen health is essential for colony success. Honey bees have recently been experiencing considerable declines in colony health. Among a number of biotic and abiotic factors known to impact colony health, disease and queen failure are repeatedly reported as important factors underlying colony losses. Surprisingly, there are relatively few studies on the relationship and interaction between honey bee diseases and queen quality. It is critical to understand the negative impacts of pests and pathogens on queen health, how queen problems might enable disease, and how both factors influence colony health. Here, we review the current literature on queen reproductive potential and the impacts of honey bee parasites and pathogens on queens. We conclude by highlighting gaps in our knowledge on the combination of disease and queen failure to provide a perspective and prioritize further research to mitigate disease, improve queen quality, and ensure colony health.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Micheline K Strand
- Life Science Division, U.S. Army Research Office, Research Triangle Park, Durham, NC 27709, USA.
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
43
|
Veiga JC, Menezes C, Contrera FAL. Insights into the role of age and social interactions on the sexual attractiveness of queens in an eusocial bee, Melipona flavolineata (Apidae, Meliponini). Naturwissenschaften 2017; 104:31. [PMID: 28299419 DOI: 10.1007/s00114-017-1450-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 11/28/2022]
Abstract
The attraction of sexual partners is a vital necessity among insects, and it involves conflict of interests and complex communication systems among male and female. In this study, we investigated the developing of sexual attractiveness in virgin queens (i.e., gynes) of Melipona flavolineata, an eusocial stingless bee. We followed the development of sexual attractiveness in 64 gynes, belonging to seven age classes (0, 3, 6, 9, 15, 18 days post-emergence), and we also evaluated the effect of different social interactions (such as competition between queens and interactions with workers) on the development of attractiveness in other 60 gynes. We used the number of males that tried to mate with a focal gyne as a representative variable of its sexual attractiveness. During the essays, each gyne was individually presented to 10 sexually mature males, and during 3 min, we counted the number of males that everted their genitalia in response to the presence of a gyne. Here, we show that M. flavolineata gynes are capable to (i) maintain their sexual attractiveness for long periods through adult life, (ii) they need a minimum social interaction to trigger the development of sexual attractiveness, and (iii) that gynes express this trait only within a social context. We conclude that the effective occurrence of matings is conditional on potential social interactions that gynes experienced before taking the nuptial flight, when they are still in the nest. These findings bring insights into the factors determining reproductive success in social insects.
Collapse
Affiliation(s)
- Jamille Costa Veiga
- Laboratório de Biologia e Ecologia de Abelhas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa 01, Campus Básico, Belém, Pará, 66075-110, Brazil.
| | - Cristiano Menezes
- Laboratório de Botânica, Embrapa Amazônia Oriental, Travessa Enéas Pinheiro, s/n; PO. 18, Belém, Pará, 66095-100, Brazil
| | - Felipe Andrés León Contrera
- Laboratório de Biologia e Ecologia de Abelhas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa 01, Campus Básico, Belém, Pará, 66075-110, Brazil
| |
Collapse
|
44
|
Neumann P, Blacquière T. The Darwin cure for apiculture? Natural selection and managed honeybee health. Evol Appl 2017; 10:226-230. [PMID: 28250807 PMCID: PMC5322407 DOI: 10.1111/eva.12448] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/06/2016] [Indexed: 02/02/2023] Open
Abstract
Recent major losses of managed honeybee, Apis mellifera, colonies at a global scale have resulted in a multitude of research efforts to identify the underlying mechanisms. Numerous factors acting singly and/or in combination have been identified, ranging from pathogens, over nutrition to pesticides. However, the role of apiculture in limiting natural selection has largely been ignored. This is unfortunate, because honeybees are more exposed to environmental stressors compared to other livestock and management can severely compromise bee health. Here, we briefly review apicultural factors that influence bee health and focus on those most likely interfering with natural selection, which offers a broad range of evolutionary applications for field practice. Despite intense breeding over centuries, natural selection appears to be much more relevant for the health of managed A. mellifera colonies than previously thought. We conclude that sustainable solutions for the apicultural sector can only be achieved by taking advantage of natural selection and not by attempting to limit it.
Collapse
Affiliation(s)
- Peter Neumann
- Institute of Bee HealthVetsuisse FacultyUniversity of BernBernSwitzerland
| | - Tjeerd Blacquière
- Bees@wurBio‐interactions and Plant HealthWageningen URWageningenThe Netherlands
| |
Collapse
|
45
|
Assessing the health status of managed honeybee colonies (HEALTHY-B): a toolbox to facilitate harmonised data collection. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4578] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
46
|
Amiri E, Meixner MD, Kryger P. Deformed wing virus can be transmitted during natural mating in honey bees and infect the queens. Sci Rep 2016; 6:33065. [PMID: 27608961 PMCID: PMC5016801 DOI: 10.1038/srep33065] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 08/19/2016] [Indexed: 11/18/2022] Open
Abstract
Deformed wing virus is an important contributor to honey bee colony losses. Frequently queen failure is reported as a cause for colony loss. Here we examine whether sexual transmission during multiple matings of queens is a possible way of virus infection in queens. In an environment with high prevalence of deformed wing virus, queens (n = 30) were trapped upon their return from natural mating flights. The last drone's endophallus (n = 29), if present, was removed from the mated queens for deformed wing virus quantification, leading to the detection of high-level infection in 3 endophalli. After oviposition, viral quantification revealed that seven of the 30 queens had high-level deformed wing virus infections, in all tissues, including the semen stored in the spermathecae. Two groups of either unmated queens (n = 8) with induced egg laying, or queens (n = 12) mated in isolation with drones showing comparatively low deformed wing virus infections served as control. None of the control queens exhibited high-level viral infections. Our results demonstrate that deformed wing virus infected drones are competitive to mate and able to transmit the virus along with semen, which occasionally leads to queen infections. Virus transmission to queens during mating may be common and can contribute noticeably to queen failure.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Agroecology, Aarhus University, Slagelse, 4200, Denmark
- Department of Biology, University of North Carolina, Greensboro, NC, 27403, USA
| | | | - Per Kryger
- Department of Agroecology, Aarhus University, Slagelse, 4200, Denmark
| |
Collapse
|
47
|
Straub L, Villamar-Bouza L, Bruckner S, Chantawannakul P, Gauthier L, Khongphinitbunjong K, Retschnig G, Troxler A, Vidondo B, Neumann P, Williams GR. Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proc Biol Sci 2016; 283:20160506. [PMID: 27466446 PMCID: PMC4971197 DOI: 10.1098/rspb.2016.0506] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/29/2016] [Indexed: 01/14/2023] Open
Abstract
There is clear evidence for sublethal effects of neonicotinoid insecticides on non-target ecosystem service-providing insects. However, their possible impact on male insect reproduction is currently unknown, despite the key role of sex. Here, we show that two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) significantly reduce the reproductive capacity of male honeybees (drones), Apis mellifera Drones were obtained from colonies exposed to the neonicotinoid insecticides or controls, and subsequently maintained in laboratory cages until they reached sexual maturity. While no significant effects were observed for male teneral (newly emerged adult) body mass and sperm quantity, the data clearly showed reduced drone lifespan, as well as reduced sperm viability (percentage living versus dead) and living sperm quantity by 39%. Our results demonstrate for the first time that neonicotinoid insecticides can negatively affect male insect reproductive capacity, and provide a possible mechanistic explanation for managed honeybee queen failure and wild insect pollinator decline. The widespread prophylactic use of neonicotinoids may have previously overlooked inadvertent contraceptive effects on non-target insects, thereby limiting conservation efforts.
Collapse
Affiliation(s)
- Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Laura Villamar-Bouza
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland Environmental Science Department, University of Koblenz-Landau, Landau, Germany
| | - Selina Bruckner
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Panuwan Chantawannakul
- Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Kitiphong Khongphinitbunjong
- Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Gina Retschnig
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Aline Troxler
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Beatriz Vidondo
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand Agroscope, Swiss Bee Research Centre, Bern, Switzerland Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Geoffrey R Williams
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| |
Collapse
|
48
|
Mogren CL, Lundgren JG. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status. Sci Rep 2016; 6:29608. [PMID: 27412495 PMCID: PMC4944152 DOI: 10.1038/srep29608] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/15/2016] [Indexed: 11/21/2022] Open
Abstract
Worldwide pollinator declines are attributed to a number of factors, including pesticide exposures. Neonicotinoid insecticides specifically have been detected in surface waters, non-target vegetation, and bee products, but the risks posed by environmental exposures are still not well understood. Pollinator strips were tested for clothianidin contamination in plant tissues, and the risks to honey bees assessed. An enzyme-linked immunosorbent assay (ELISA) quantified clothianidin in leaf, nectar, honey, and bee bread at organic and seed-treated farms. Total glycogen, lipids, and protein from honey bee workers were quantified. The proportion of plants testing positive for clothianidin were the same between treatments. Leaf tissue and honey had similar concentrations of clothianidin between organic and seed-treated farms. Honey (mean±SE: 6.61 ± 0.88 ppb clothianidin per hive) had seven times greater concentrations than nectar collected by bees (0.94 ± 0.09 ppb). Bee bread collected from organic sites (25.8 ± 3.0 ppb) had significantly less clothianidin than those at seed treated locations (41.6 ± 2.9 ppb). Increasing concentrations of clothianidin in bee bread were correlated with decreased glycogen, lipid, and protein in workers. This study shows that small, isolated areas set aside for conservation do not provide spatial or temporal relief from neonicotinoid exposures in agricultural regions where their use is largely prophylactic.
Collapse
|
49
|
Pettis JS, Rice N, Joselow K, vanEngelsdorp D, Chaimanee V. Correction: Colony Failure Linked to Low Sperm Viability in Honey Bee (Apis mellifera) Queens and an Exploration of Potential Causative Factors. PLoS One 2016; 11:e0155833. [PMID: 27171003 PMCID: PMC4865089 DOI: 10.1371/journal.pone.0155833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
50
|
Smart M, Pettis J, Rice N, Browning Z, Spivak M. Linking Measures of Colony and Individual Honey Bee Health to Survival among Apiaries Exposed to Varying Agricultural Land Use. PLoS One 2016; 11:e0152685. [PMID: 27027871 PMCID: PMC4814072 DOI: 10.1371/journal.pone.0152685] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/17/2016] [Indexed: 11/19/2022] Open
Abstract
We previously characterized and quantified the influence of land use on survival and productivity of colonies positioned in six apiaries and found that colonies in apiaries surrounded by more land in uncultivated forage experienced greater annual survival, and generally more honey production. Here, detailed metrics of honey bee health were assessed over three years in colonies positioned in the same six apiaries. The colonies were located in North Dakota during the summer months and were transported to California for almond pollination every winter. Our aim was to identify relationships among measures of colony and individual bee health that impacted and predicted overwintering survival of colonies. We tested the hypothesis that colonies in apiaries surrounded by more favorable land use conditions would experience improved health. We modeled colony and individual bee health indices at a critical time point (autumn, prior to overwintering) and related them to eventual spring survival for California almond pollination. Colony measures that predicted overwintering apiary survival included the amount of pollen collected, brood production, and Varroa destructor mite levels. At the individual bee level, expression of vitellogenin, defensin1, and lysozyme2 were important markers of overwinter survival. This study is a novel first step toward identifying pertinent physiological responses in honey bees that result from their positioning near varying landscape features in intensive agricultural environments.
Collapse
Affiliation(s)
- Matthew Smart
- University of Minnesota, Department of Entomology, St. Paul, MN, United States of America
- * E-mail:
| | - Jeff Pettis
- USDA-ARS-Bee Research Lab, Beltsville, MD, United States of America
| | - Nathan Rice
- USDA-ARS-Bee Research Lab, Beltsville, MD, United States of America
| | - Zac Browning
- Browning’s Honey Company, Jamestown, ND, United States of America
| | - Marla Spivak
- University of Minnesota, Department of Entomology, St. Paul, MN, United States of America
| |
Collapse
|