1
|
Mahillon M, Brodard J, Schoen R, Botermans M, Dubuis N, Groux R, Pannell JR, Blouin AG, Schumpp O. Revisiting a pollen-transmitted ilarvirus previously associated with angular mosaic of grapevine. Virus Res 2024; 344:199362. [PMID: 38508402 PMCID: PMC10979282 DOI: 10.1016/j.virusres.2024.199362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
We report the characterization of a novel tri-segmented RNA virus infecting Mercurialis annua, a common crop weed and model species in plant science. The virus, named "Mercurialis latent virus" (MeLaV) was first identified in a mixed infection with the recently described Mercurialis orthotospovirus 1 (MerV1) on symptomatic plants grown in glasshouses in Lausanne (Switzerland). Both viruses were found to be transmitted by Thrips tabaci, which presumably help the inoculation of infected pollen in the case of MeLaV. Complete genome sequencing of the latter revealed a typical ilarviral architecture and close phylogenetic relationship with members of the Ilarvirus subgroup 1. Surprisingly, a short portion of MeLaV replicase was found to be identical to the partial sequence of grapevine angular mosaic virus (GAMV) reported in Greece in the early 1990s. However, we have compiled data that challenge the involvement of GAMV in angular mosaic of grapevine, and we propose alternative causal agents for this disorder. In parallel, three highly-conserved MeLaV isolates were identified in symptomatic leaf samples in The Netherlands, including a herbarium sample collected in 1991. The virus was also traced in diverse RNA sequencing datasets from 2013 to 2020, corresponding to transcriptomic analyses of M. annua and other plant species from five European countries, as well as metaviromics analyses of bees in Belgium. Additional hosts are thus expected for MeLaV, yet we argue that infected pollen grains have likely contaminated several sequencing datasets and may have caused the initial characterization of MeLaV as GAMV.
Collapse
Affiliation(s)
- Mathieu Mahillon
- Research group Virology, Bacteriology and Phytoplasmology, Department of Plant protection, Agroscope, Nyon, Switzerland
| | - Justine Brodard
- Research group Virology, Bacteriology and Phytoplasmology, Department of Plant protection, Agroscope, Nyon, Switzerland
| | - Ruben Schoen
- Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP), Netherlands Food and Consumer Product Safety Authority, Wageningen, The Netherlands
| | - Marleen Botermans
- Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP), Netherlands Food and Consumer Product Safety Authority, Wageningen, The Netherlands
| | - Nathalie Dubuis
- Research group Virology, Bacteriology and Phytoplasmology, Department of Plant protection, Agroscope, Nyon, Switzerland
| | - Raphaël Groux
- Research group Virology, Bacteriology and Phytoplasmology, Department of Plant protection, Agroscope, Nyon, Switzerland
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne (UNIL), Switzerland
| | - Arnaud G Blouin
- Research group Virology, Bacteriology and Phytoplasmology, Department of Plant protection, Agroscope, Nyon, Switzerland
| | - Olivier Schumpp
- Research group Virology, Bacteriology and Phytoplasmology, Department of Plant protection, Agroscope, Nyon, Switzerland.
| |
Collapse
|
2
|
Escalante C, Sanz-Saez A, Jacobson A, Otulak-Kozieł K, Kozieł E, Balkcom KS, Zhao C, Conner K. Plant virus transmission during seed development and implications to plant defense system. FRONTIERS IN PLANT SCIENCE 2024; 15:1385456. [PMID: 38779063 PMCID: PMC11109449 DOI: 10.3389/fpls.2024.1385456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Most plants produce large amounts of seeds to disperse their progeny in the environment. Plant viruses have evolved to avoid plant resistance mechanisms and use seeds for their dispersal. The presence of plant pathogenic viruses in seeds and suppression of plant host defenses is a major worldwide concern for producers and seed companies because undetected viruses in the seed can represent a significant threat to yield in many economically important crops. The vertical transmission of plant viruses occurs directly through the embryo or indirectly by getting in pollen grains or ovules. Infection of plant viruses during the early development of the seed embryo can result in morphological or genetic changes that cause poor seed quality and, more importantly, low yields due to the partial or ubiquitous presence of the virus at the earliest stages of seedling development. Understanding transmission of plant viruses and the ability to avoid plant defense mechanisms during seed embryo development will help identify primary inoculum sources, reduce virus spread, decrease severity of negative effects on plant health and productivity, and facilitate the future of plant disease management during seed development in many crops. In this article, we provide an overview of the current knowledge and understanding of plant virus transmission during seed embryo development, including the context of host-virus interaction.
Collapse
Affiliation(s)
- Cesar Escalante
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Alvaro Sanz-Saez
- Department of Crop Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Alana Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Katarzyna Otulak-Kozieł
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences, Warsaw, Poland
| | - Edmund Kozieł
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences, Warsaw, Poland
| | - Kipling S. Balkcom
- The United States Department of Agriculture - Agricultural Research Service (USDA-ARS) National Soil Dynamics Lab, Auburn, AL, United States
| | - Chaoyang Zhao
- The United States Department of Agriculture - Agricultural Research Service (USDA-ARS) National Soil Dynamics Lab, Auburn, AL, United States
| | - Kassie Conner
- Alabama Cooperative Extension, Auburn University, Auburn, AL, United States
| |
Collapse
|
3
|
Kauffmann CM, Vendramini M, Batista AMV, Mota HBS, Andrade IA, Cárdenas SBS, Queiroz PS, Silva BA, Correa JR, Nagata T. Specific antibody production using recombinant proteins to elucidate seed transmission and nuclear localization of Coguvirus citrulli and Coguvirus henanense in radicles of watermelon crop. J Virol Methods 2024; 325:114886. [PMID: 38246564 DOI: 10.1016/j.jviromet.2024.114886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/23/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Watermelon crinkle leaf-associated virus 1 (WCLaV-1) and WCLaV-2, both belonging to the genus Coguvirus (family Phenuiviridae), have been identified in watermelon plants in Brazil. To study tissue tropism and the potential for seed transmission of these viruses, we initially planned to produce specific antibodies. However, difficulties in isolating and propagating the virus in host plants hindered the purified virus preparations. To overcome this problem, the nucleocapsid (N) proteins of WCLaV-1 and -2 were produced using the pepper ringspot virus vector. The N protein genes and the vector backbone were prepared by (RT-)PCR and ligated by Gibson assembly. The constructs were agro-infiltrated in Nicotiana benthamiana plants. The expressed N proteins were purified and used for polyclonal antibody production. The specificity of both antibodies was confirmed by antigen-coating ELISA, tissue-blot immunobinding assay and Western blot. By antigen-coating ELISA demonstrated that WCLaV-1 showed 93.1% of seed-transmission, while WCLaV-2 showed only 17.8%. The N protein of WCLaV-1 was detected in the cytoplasm of the seed tissues. It was also found in the nuclei of the radicle, as confirmed by confocal microscopy. We concluded that the antibodies exhibited both a high titer and sufficient specificity for use in ELISA-based diagnostics and for subcellular localization study.
Collapse
Affiliation(s)
- Caterynne M Kauffmann
- Departamento de Fitopatologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Marina Vendramini
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Amanda M V Batista
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Helena B S Mota
- Departamento de Fitopatologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Ikaro A Andrade
- Departamento de Biologia Microbiana, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Stephanny B S Cárdenas
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Paloma S Queiroz
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Bruno A Silva
- Departamento de Fitopatologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - José R Correa
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Tatsuya Nagata
- Departamento de Fitopatologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil; Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil; Departamento de Biologia Microbiana, Universidade de Brasília, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
4
|
Hameed A, Rosa C, O’Donnell CA, Rajotte EG. Ecological Interactions among Thrips, Soybean Plants, and Soybean Vein Necrosis Virus in Pennsylvania, USA. Viruses 2023; 15:1766. [PMID: 37632108 PMCID: PMC10458877 DOI: 10.3390/v15081766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Analysis of ecological and evolutionary aspects leading to durability of resistance in soybean cultivars against species Soybean vein necrosis orthotospovirus (SVNV) (Bunyavirales: Tospoviridae) is important for the establishment of integrated pest management (IPM) across the United States, which is a leading exporter of soybeans in the world. SVNV is a seed- and thrips- (vector)-borne plant virus known from the USA and Canada to Egypt. We monitored the resistance of soybean cultivars against SVNV, surveyed thrips species on various crops including soybeans in Pennsylvania, and studied thrips overwintering hibernation behavior under field conditions. Field and lab experiments determined disease incidence and vector abundance in soybean genotypes. The impact of the virus, vector, and their combination on soybean physiology was also evaluated. Seed protein, fiber, oil, and carbohydrate content were analyzed using near infra-red spectroscopy. We found that the variety Channel3917R2x had higher numbers of thrips; hence, it was categorized as preferred, while results showed that no variety was immune to SVNV. We found that thrips infestation alone or in combination with SVNV infection negatively impacted soybean growth and physiological processes.
Collapse
Affiliation(s)
- Asifa Hameed
- Department of Entomology, Pennsylvania State University, State College, PA 16802, USA;
| | - Cristina Rosa
- Plant Pathology and Environmental Microbiology, Pennsylvania State University, State College, PA 16802, USA;
| | - Cheryle A. O’Donnell
- USDA APHIS PPQ National Identification Services National Specialist (Thysanoptera and Psylloidea), Systematic Entomology Laboratory, B-005, Rm 137 BARC-West, 10300 Baltimore Avenue, Beltsville, MD 20705, USA;
| | - Edwin G. Rajotte
- Department of Entomology, Pennsylvania State University, State College, PA 16802, USA;
| |
Collapse
|
5
|
Lin F, Chhapekar SS, Vieira CC, Da Silva MP, Rojas A, Lee D, Liu N, Pardo EM, Lee YC, Dong Z, Pinheiro JB, Ploper LD, Rupe J, Chen P, Wang D, Nguyen HT. Breeding for disease resistance in soybean: a global perspective. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3773-3872. [PMID: 35790543 PMCID: PMC9729162 DOI: 10.1007/s00122-022-04101-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/11/2022] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Sushil Satish Chhapekar
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Caio Canella Vieira
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Marcos Paulo Da Silva
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Alejandro Rojas
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Dongho Lee
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Nianxi Liu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Esteban Mariano Pardo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - Yi-Chen Lee
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Zhimin Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Jose Baldin Pinheiro
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ/USP), PO Box 9, Piracicaba, SP 13418-900 Brazil
| | - Leonardo Daniel Ploper
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - John Rupe
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Pengyin Chen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| |
Collapse
|
6
|
Elmore MG, Groves CL, Hajimorad MR, Stewart TP, Gaskill MA, Wise KA, Sikora E, Kleczewski NM, Smith DL, Mueller DS, Whitham SA. Detection and discovery of plant viruses in soybean by metagenomic sequencing. Virol J 2022; 19:149. [PMID: 36100874 PMCID: PMC9472442 DOI: 10.1186/s12985-022-01872-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viruses negatively impact soybean production by causing diseases that affect yield and seed quality. Newly emerging or re-emerging viruses can also threaten soybean production because current control measures may not be effective against them. Furthermore, detection and characterization of new plant viruses requires major efforts when no sequence or antibody-based resources are available. METHODS In this study, soybean fields were scouted for virus-like disease symptoms during the 2016-2019 growing seasons. Total RNA was extracted from symptomatic soybean parts, cDNA libraries were prepared, and RNA sequencing was performed using high-throughput sequencing (HTS). A custom bioinformatic workflow was used to identify and assemble known and unknown virus genomes. RESULTS Several viruses were identified in single or mixed infections. Full- or nearly full-length genomes were generated for tobacco streak virus (TSV), alfalfa mosaic virus (AMV), tobacco ringspot virus (TRSV), soybean dwarf virus (SbDV), bean pod mottle virus (BPMV), soybean vein necrosis virus (SVNV), clover yellow vein virus (ClYVV), and a novel virus named soybean ilarvirus 1 (SIlV1). Two distinct ClYVV isolates were recovered, and their biological properties were investigated in Nicotiana benthamiana, broad bean, and soybean. In addition to infections by individual viruses, we also found that mixed viral infections in various combinations were quite common. CONCLUSIONS Taken together, the results of this study showed that HTS-based technology is a valuable diagnostic tool for the identification of several viruses in field-grown soybean and can provide rapid information about expected viruses as well as viruses that were previously not detected in soybean.
Collapse
Affiliation(s)
- Manjula G Elmore
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, 2213 Pammel Drive, Ames, IA, 50011-1101, USA.
| | - Carol L Groves
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - M R Hajimorad
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tracey P Stewart
- Roy J. Carver High Resolution Microscopy Facility, Iowa State University, Ames, IA, 50011, USA
| | - Mikaela A Gaskill
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, 2213 Pammel Drive, Ames, IA, 50011-1101, USA
| | - Kiersten A Wise
- Department of Plant Pathology, University of Kentucky, Princeton, KY, 43445, USA
| | - Edward Sikora
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | | | - Damon L Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daren S Mueller
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, 2213 Pammel Drive, Ames, IA, 50011-1101, USA
| | - Steven A Whitham
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, 2213 Pammel Drive, Ames, IA, 50011-1101, USA.
| |
Collapse
|
7
|
Seed Transmission of Tomato Spotted Wilt Orthotospovirus in Peppers. Viruses 2022; 14:v14091873. [PMID: 36146680 PMCID: PMC9504465 DOI: 10.3390/v14091873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Tomato spotted wilt orthotospovirus (TSWV) severely damaged agricultural production in many places around the world. It is generally believed that TSWV transmits among plants via their insect vector. In this study, we provide evidence on the seed-borne transmission of TSWV in pepper (Capsicum annuum L.) plants. RT-PCR, RT-qPCR, and transmission electron microscopy data demonstrate the seed transmission ability of TSWV in peppers. Endosperm, but not the embryo, is the abundant virus-containing seed organ. TSWV can also be detected in the second generation of newly germinated seedlings from virus-containing seed germination experiments. Our data are useful for researchers, certification agencies, the seed industry, and policy makers when considering the importance of TSWV in vegetable production all over the world.
Collapse
|
8
|
The Effect of Species Soybean Vein Necrosis Orthotospovirus (SVNV) on Life Table Parameters of Its Vector, Soybean Thrips (Neohydatothrips variabilis Thysanoptera: Thripidae). INSECTS 2022; 13:insects13070632. [PMID: 35886808 PMCID: PMC9324745 DOI: 10.3390/insects13070632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Soybean vein necrosis, caused by soybean vein necrosis virus (SVNV) is an important viral disease of soybeans that can be seed borne or insect vectored. This plant viral disease affects seed qualitative parameters, including seed oil content. Increased damage is observed in late planted soybeans. The disease is widespread, and almost all soybean-growing states in USA are affected. Globally, SVNV is reported in Canada, the United States, Egypt and Pakistan. In order to manage the disease, it is important to understand the vector’s biology and the effect of SVNV on life table parameters (survival, longevity, mortality, doubling time, generation, rate of intrinsic increase) of vector soybean thrips, which can help to establish pest management predictive models. We used an age-stage two-sex life table estimation model to define the effect of SVNV on the life parameters of male and female soybean thrips. Overall, we found that SVNV infection increased viruliferous thrips survival, longevity, gross reproduction rate, life expectancy and decreased population doubling time. Overall viruliferous thrips benefit from SVNV infection and transmission due to better survival, longevity and increased fitness. Abstract Soybean vein necrosis orthotospovirus (SVNV: Tospoviridae: Orthotospovirus), the causal agent of soybean vein necrosis disease, is vectored by soybean thrips Neohydatothrips variabilis (Beach, 1896), and to a lesser extent by five other thrips species. There is increasing incidence of soybean vein necrosis (SVN) disease in all soybean growing states in the United States, Canada, Egypt and Pakistan, necessitating a study of the system’s ecology and management. We addressed the effect of SVNV on the life table parameters of the vector. We used an ‘age-stage two-sex’ life table approach, which provided detailed life stage durations of each larval instar and adults (both sexes). Our results showed that the intrinsic rate of increase (r), finite rate of increase (λ) and mortality index (qx) were higher in the infected population, while the net reproduction rate (Ro), cumulative probability of survival (lx) and gross reproduction rate (GRR) were lower in the uninfected population. Overall, in both infected and uninfected populations, the number of eggs producing haploid males via arrhenotoky ranged from 9–12 per female. Male to female ratio was female biased in the infected population. Overall, our study provided evidence that virus infection, by decreasing the population doubling time, could enhance the virus and vector populations in soybeans.
Collapse
|
9
|
El-Wahab ASA. Molecular characterization and incidence of new tospovirus: Soybean Vein Necrosis Virus (SVNV) in Egypt. BRAZ J BIOL 2021; 84:e246460. [PMID: 34878000 DOI: 10.1590/1519-6984.246460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/24/2021] [Indexed: 11/22/2022] Open
Abstract
Field survey study was conducted season (2017). Soybeans and weeds were weekly sampled randomly. Thrips adults were identified and counted. Detection of the virus isolate and the natural incidence was determined using; Mechanical transmission, host range, DAS-ELISA, RT-PCR. The natural incidence thrips individuals was detected depending on the SVNV% in thrips individuals and weeds hosts. Ten thrips species were associated with soybean plants in the field. The most abundant species was T. tabaci, average 256.5 average no.of individuals, followed by F. occidentalis (142.5 average no. of individuals), then N. variabilis (86.6/ average no. of individuals). Fourteen thrips species occurred on 5 legumes field crops and 41 weed plant species within soybean field. The highest average number 40.6.of individuals were recorded on Ammi majus. While the lowest one 3.3 average no. of individuals were on Urtica urens. Only 21diagnostic plant species were susceptible to infection with SVNV. G. max and Vigna radiate, were the highest percentage of infection 80% followed by V. unguilata & N. benthamiana, 75%. Egyptian isolate of Soybean vein necrosis virus (SVNV) in this study showed a high degree of similarity and it is closely related to TSWV from Egypt (DQ479968) and TCSV from USA (KY820965) with nucleotide sequence identity of 78%. Four thrips species transmitted SVNV (F. fusca 4.0%, F. schultzei 4.3%, F. tritici 3.3% and N. variabilis 68.0% transmission). Both C. phaseoli and M. sjostedti can acquire the virus but unable to transmit it. The following species; T. tabaci, F. occidentalis, S. dorsallis and T. palmi cannot acquire or transmit SVNV. The incidence of SVNV in the field started by the end of July then increased gradualy from 12.7 to 71.3% by the end of the season. In conclusion, few thrips individuals invaded soybean crops are enough to transmit high rate of SVNV within the crop. Furthermore, several vector species are also abundant on weeds, which are the major sources of soybean viruses transmitted to the crops. This information might be important for control and reduce the incidence of SVNV infection.
Collapse
Affiliation(s)
- A S Abd El-Wahab
- Cairo University, Faculty of Agriculture, Department of Economic Entomology and Pesticides, Cairo, Egypt
| |
Collapse
|
10
|
Zhang Z, Zheng K, Zhao L, Su X, Zheng X, Wang T. Occurrence, Distribution, Evolutionary Relationships, Epidemiology, and Management of Orthotospoviruses in China. Front Microbiol 2021; 12:686025. [PMID: 34421843 PMCID: PMC8371445 DOI: 10.3389/fmicb.2021.686025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Orthotospoviruses are responsible for serious crop losses worldwide. Orthotospoviral diseases have spread rapidly in China over the past 10 years and are now found in 19 provinces. Currently, 17 Orthotospovirus species have been reported in China, including eight newly identified species from this genus. The number of new highly pathogenic Orthotospovirus strains or species has increased, likely because of the virus species diversity, the wide range of available hosts, adaptation of the viruses to different climates, and multiple transmission routes. This review describes the distribution of Orthotospovirus species, host plants, typical symptoms of infection under natural conditions, the systemic infection of host plants, spatial clustering characteristics of virus particles in host cells, and the orthotospoviral infection cycle in the field. The evolutionary relationships of orthotospoviruses isolated from China and epidemiology are also discussed. In order to effectively manage orthotospoviral disease, future research needs to focus on deciphering the underlying mechanisms of systemic infection, studying complex/mixed infections involving the same or different Orthotospovirus species or other viruses, elucidating orthotospovirus adaptative mechanisms to multiple climate types, breeding virus-resistant plants, identifying new strains and species, developing early monitoring and early warning systems for plant infection, and studying infection transmission routes.
Collapse
Affiliation(s)
- Zhongkai Zhang
- Key Lab of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | | | | | | | | | | |
Collapse
|
11
|
Bao W, Yan T, Deng X, Wuriyanghan H. Synthesis of Full-Length cDNA Infectious Clones of Soybean Mosaic Virus and Functional Identification of a Key Amino Acid in the Silencing Suppressor Hc-Pro. Viruses 2020; 12:E886. [PMID: 32823665 PMCID: PMC7472419 DOI: 10.3390/v12080886] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Soybean mosaic virus (SMV), which belongs to the Potyviridae, causes significant reductions in soybean yield and seed quality. In this study, both tag-free and reporter gene green fluorescent protein (GFP)-containing infectious clones for the SMV N1 strain were constructed by Gibson assembly and with the yeast homologous recombination system, respectively. Both infectious clones are suitable for agroinfiltration on the model host N. benthamiana and show strong infectivity for the natural host soybean and several other legume species. Both infectious clones were seed transmitted and caused typical virus symptoms on seeds and progeny plants. We used the SMV-GFP infectious clone to further investigate the role of key amino acids in the silencing suppressor helper component-proteinase (Hc-Pro). Among twelve amino acid substitution mutants, the co-expression of mutant 2-with an Asparagine→Leucine substitution at position 182 of the FRNK (Phe-Arg-Asn-Lys) motif-attenuated viral symptoms and alleviated the host growth retardation caused by SMV. Moreover, the Hc-Prom2 mutant showed stronger oligomerization than wild-type Hc-Pro. Taken together, the SMV infectious clones will be useful for studies of host-SMV interactions and functional gene characterization in soybeans and related legume species, especially in terms of seed transmission properties. Furthermore, the SMV-GFP infectious clone will also facilitate functional studies of both virus and host genes in an N. benthamiana transient expression system.
Collapse
Affiliation(s)
- Wenhua Bao
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Yan
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiaoyi Deng
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hada Wuriyanghan
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
12
|
Díaz-Cruz GA, Smith CM, Wiebe KF, Villanueva SM, Klonowski AR, Cassone BJ. Applications of Next-Generation Sequencing for Large-Scale Pathogen Diagnoses in Soybean. PLANT DISEASE 2019; 103:1075-1083. [PMID: 31009362 DOI: 10.1094/pdis-05-18-0905-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Soybean (Glycine max) has become an important crop in Manitoba, Canada, with a 10-fold increase in dedicated acreage over the past decade. Given the rapid increase in production, scarce information about foliar diseases present in the province has been recorded. In order to describe the foliar pathogens affecting this legume, we harnessed next-generation sequencing (NGS) to carry out a comprehensive survey across Manitoba in 2016. Fields were sampled during the V2/3 (33 fields) and R6 (70 fields) growth stages, with at least three symptomatic leaves per field collected and subjected to RNA sequencing. We successfully detected several bacteria, fungi, and viruses known to infect soybean, including Pseudomonas savastanoi pv. glycinea, Septoria glycines, and Peronospora manshurica, as well as pathogens not previously identified in the province (e.g., Pseudomonas syringae pv. tabaci, Cercospora sojina, and Bean yellow mosaic virus). For some microorganisms, we were able to disentangle the different pathovars present and/or assemble their genome sequence. Since NGS generates data on the entire flora and fauna occupying a leaf sample, we also identified residual pathogens (i.e., pathogens of crops other than soybean) and multiple species of arthropod pests. Finally, the sequence information produced by NGS allowed for the development of polymerase chain reaction-based diagnostics for some of the most widespread and important pathogens. Although there are many benefits of using NGS for large-scale plant pathogen diagnoses, we also discuss some of the limitations of this technology.
Collapse
Affiliation(s)
- Gustavo A Díaz-Cruz
- Department of Biology, Brandon University, Brandon, Manitoba R78 6A9, Canada
| | - Charlotte M Smith
- Department of Biology, Brandon University, Brandon, Manitoba R78 6A9, Canada
| | - Kiana F Wiebe
- Department of Biology, Brandon University, Brandon, Manitoba R78 6A9, Canada
| | - Sachi M Villanueva
- Department of Biology, Brandon University, Brandon, Manitoba R78 6A9, Canada
| | - Adam R Klonowski
- Department of Biology, Brandon University, Brandon, Manitoba R78 6A9, Canada
| | - Bryan J Cassone
- Department of Biology, Brandon University, Brandon, Manitoba R78 6A9, Canada
| |
Collapse
|
13
|
Han J, Nalam VJ, Yu IC, Nachappa P. Vector Competence of Thrips Species to Transmit Soybean Vein Necrosis Virus. Front Microbiol 2019; 10:431. [PMID: 30941106 PMCID: PMC6433834 DOI: 10.3389/fmicb.2019.00431] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/19/2019] [Indexed: 11/16/2022] Open
Abstract
Soybean vein necrosis virus (SVNV) is a newly discovered species of tospovirus infecting soybean plants that is transmitted by the primary vector, soybean thrips (Neohydatothrips variabilis), and two additional secondary vectors, tobacco thrips (Frankliniella fusca) and eastern flower thrips (F. tritici). This study was undertaken to elucidate the association between virus acquisition [6, 12, 24, and 48 h acquisition access period (AAP)] and transmission efficiency [12, 24, and 48 h inoculation access period (IAP)] in the primary vector, N. variabilis, and to examine the mechanisms of vector competence by analyzing the effect of AAP (6, 12, and 24 h) on virus infection in various tissues. In addition, we examined virus infection in tissues of the two secondary vectors. We found a significant effect of virus acquisition on transmission efficiency, transmission rate post 6 and 48 h AAP was significantly lower than 12 and 24 h AAP. Our analysis did not reveal a correlation between virus transmission rate and virus RNA in corresponding N. variabilis adults. On the contrary, N. variabilis adults harboring higher accumulation of the virus (>104) resulted in lower transmission rates. Analysis of SVNV infection in the tissues revealed the presence of the virus in the foregut, midgut (region 1, 2, and 3), tubular salivary glands and principal salivary glands (PSG) of adults of all three vector species, however, the frequency of infected tissues was highest in N. variabilis followed by F. fusca and F. tritici. The frequency of SVNV infection in individual tissues specifically the salivary glands was lowest after 6 h AAP compared to 12 and 24 h AAP. This finding is in agreement with the transmission assays, where significantly lower virus transmission rate was observed post 6 h AAP. In addition, N. variabilis adults with high PSG infection (12 and 24 h AAP) were likely to have high percentage of foregut and midgut region 2 infection. Overall, results from the transmission assays and immunolabeling experiments suggest that shorter AAP results in reduced virus infection in the various tissues especially PSG, which are important determinants of vector competence in SVNV-thrips interaction.
Collapse
Affiliation(s)
- Jinlong Han
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Vamsi J Nalam
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| | - I-Chen Yu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Punya Nachappa
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
14
|
Zhou J, Tzanetakis IE. Soybean vein necrosis virus: an emerging virus in North America. Virus Genes 2019; 55:12-21. [PMID: 30542841 DOI: 10.1007/s11262-018-1618-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Few diseases have emerged in such a short period of time as soybean vein necrosis. The disease is present in all major producing areas in North America, affecting one of the major row field instead of row crops for the United States. Because of the significance of soybean in the agricultural economy and the widespread presence of the disease, the causal agent, soybean vein necrosis virus has been studied by several research groups. Research in the past 10 years has focused on virus epidemiology, management, and effects on yield and seed quality. This communication provides a review of the current knowledge on the virus and the disease.
Collapse
Affiliation(s)
- Jing Zhou
- Division of Agriculture, Department of Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ioannis E Tzanetakis
- Division of Agriculture, Department of Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
15
|
Chitturi A, Conner K, Sikora EJ, Jacobson AL. Monitoring Seasonal Distribution of Thrips Vectors of Soybean Vein Necrosis Virus in Alabama Soybeans. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2562-2569. [PMID: 30124887 PMCID: PMC6294239 DOI: 10.1093/jee/toy237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Indexed: 06/08/2023]
Abstract
Soybean vein necrosis virus (SVNV), a new virus in the genus Orthotospovirus, has been found in all soybean-growing regions in the United States and Ontario, Canada. Soybean thrips, Neohydatothrips variabilis (Beach) (Thysanoptera: Thripidae), tobacco thrips, Frankliniella fusca (Hinds) (Thysanoptera: Thripidae), and eastern flower thrips, Frankliniella tritici (Fitch) (Thysanoptera: Thripidae) are reported vectors of this virus, but there are no reports on their distribution in Alabama. A monitoring study was conducted in 2015 and 2016 to determine thrips species composition and abundance in Alabama soybean agroecosystems. Thrips were monitored weekly by collecting them on yellow sticky traps and soybean plant parts including foliage and reproductive structures. All three reported vectors of SVNV were identified in Alabama, with N. variabilis and F. tritici as the predominant species, while F. fusca was not consistently collected from soybean plants. Four additional thrips species were collected, of which Echinothrips americanus (Morgan) (Thysanoptera: Thripidae) was commonly found on soybean at all three locations. Results presented in this study provide new information about seasonal thrips species abundance in soybean agroecosystems in Alabama, and is an important first step to understanding thrips vector species of epidemiological importance in the Southern United States.
Collapse
Affiliation(s)
- Anitha Chitturi
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - Kassie Conner
- Department of Entomology and Plant Pathology, Alabama Cooperative Extension System, Auburn University, Auburn, AL
| | - Edward J Sikora
- Department of Entomology and Plant Pathology, Alabama Cooperative Extension System, Auburn University, Auburn, AL
| | - Alana L Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| |
Collapse
|
16
|
Golnaraghi A, Shahraeen N, Nguyen HD. Characterization and Genetic Structure of a Tospovirus Causing Chlorotic Ring Spots and Chlorosis Disease on Peanut; Comparison with Iranian and Polish Populations of Tomato yellow fruit ring virus. PLANT DISEASE 2018; 102:1509-1519. [PMID: 30673421 DOI: 10.1094/pdis-09-17-1350-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A Tospovirus species was isolated from peanut plants showing chlorotic ring spots and chlorosis, and identified as Tomato yellow fruit ring virus (TYFRV) on the basis of its biological, serological, and molecular properties. In host range studies, a broad range of indicator plants was infected by the five isolates studied; all the isolates systemically infected Nicotiana tabacum cultivars and, thus, they were classified into the N-host-infecting type isolates of the virus. These isolates strongly reacted with TYFRV antibodies but not with the specific antibodies of other tospoviruses tested. Recombination analyses showed that the nucleoprotein gene of the peanut isolates and other isolates studied were nonrecombinant. In phylogenetic trees, the virus isolates were clustered in three genogroups: IRN-1, IRN-2, and a new group, POL; the peanut isolates fell into IRN-2 group. Multiple sequence alignments showed some genogroup-specific amino acid substitutions among the virus isolates studied. The results revealed the presence of negative selection in TYFRV populations. Also, the Iranian populations had higher nucleotide diversity compared with the Polish population. Genetic differentiation and gene flow analyses indicated that the populations from Iran and Poland and those belonging to different genogroups were partially differentiated populations. Our findings seem to suggest that there has been frequent gene flow between some populations of the virus in the mid-Eurasian region of Iran.
Collapse
Affiliation(s)
- A Golnaraghi
- Department of Plant Protection, Faculty of Agricultural Sciences and Food Industries, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran, Iran
| | - N Shahraeen
- Department of Plant Virus Research, Iranian Research Institute of Plant Protection, Agricultural Research, Education & Extension Organization, P.O. Box 19395-1454, Tehran, Iran
| | - H D Nguyen
- Department of Plant Pathology, Faculty of Agronomy, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| |
Collapse
|
17
|
Keough S, Danielson J, Marshall JM, Lagos-Kutz D, Voegtlin DJ, Srinivasan R, Nachappa P. Factors Affecting Population Dynamics of Thrips Vectors of Soybean vein necrosis virus. ENVIRONMENTAL ENTOMOLOGY 2018; 47:734-740. [PMID: 29506040 DOI: 10.1093/ee/nvy021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Thrips-infesting soybeans were considered of minor economic importance, but recent evidence of their ability to transmit a newly identified soybean virus, Soybean vein necrosis virus (SVNV), has raised their profile as pests. Season-long surveys were conducted using suction traps to determine the effects of temperature and precipitation on the spatiotemporal patterns of three vector species of SVNV, Neohydatothrips variabilis (Beach) (Thysanoptera: Thripidae) (soybean thrips), Frankliniella tritici (Fitch) (Thysanoptera: Thripidae) (eastern flower thrips), and Frankliniella fusca (Hinds) (Thysanoptera: Thripidae) (tobacco thrips) in soybean fields in Indiana in 2013 and 2014. In addition, soybean fields were surveyed for presence of SVNV in both years. We found that the magnitude and timing of thrips activity varied greatly for the three species. N. variabilis activity peaked in mid-August each year. The peak activity for F. tritici occurred between late-June, and a second peak in activity was observed in early-August, while F. fusca activity remained more or less the same with no peak. There was no gradient in thrips populations from southern to northern locations. This suggests that these insects are not migratory and may overwinter in soil or perennial noncrop host plants and other weed hosts in Indiana. The capture rates of N. variabilis and F. tritici were only related to temperature, and capture rates of F. fusca were not related to either variable. SVNV was first detected in mid-late August, which coincided with the peak of the primary vector, N. variabilis. The virus was not detected earlier in the season despite peaks in F. tritici activity. Our results may be used in weather-based models to predict both thrips dynamics as well as SVNV outbreaks.
Collapse
Affiliation(s)
- Stacy Keough
- Indiana University-Purdue University Fort Wayne, Fort Wayne, IN
| | | | | | - Doris Lagos-Kutz
- United States Department of Agriculture-Agricultural Research Service, Urbana, IL
| | - David J Voegtlin
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL
| | | | - Punya Nachappa
- Indiana University-Purdue University Fort Wayne, Fort Wayne, IN
| |
Collapse
|
18
|
Ali A. Rapid detection of fifteen known soybean viruses by dot-immunobinding assay. J Virol Methods 2017; 249:126-129. [PMID: 28887190 DOI: 10.1016/j.jviromet.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/16/2017] [Accepted: 09/05/2017] [Indexed: 11/20/2022]
Abstract
A dot-immunobinding assay (DIBA) was optimized and used successfully for the rapid detection of 15 known viruses [Alfalfa mosaic virus (AMV), Bean pod mottle virus (BPMV), Bean yellow mosaic virus (BYMV), Cowpea mild mottle virus (CPMMV), Cowpea severe mosaic virus (CPSMV), Cucumber mosaic virus (CMV), Peanut mottle virus (PeMoV), Peanut stunt virus (PSV), Southern bean mosaic virus (SBMV), Soybean dwarf virus (SbDV), Soybean mosaic virus (SMV), Soybean vein necrosis virus (SVNV), Tobacco ringspot virus (TRSV), Tomato ringspot virus (ToRSV), and Tobacco streak virus (TSV)] infecting soybean plants in Oklahoma. More than 1000 leaf samples were collected in approximately 100 commercial soybean fields in 24 counties of Oklahoma, during the 2012-2013 growing seasons. All samples were tested by DIBA using polyclonal antibodies of the above 15 plant viruses. Thirteen viruses were detected, and 8 of them were reported for the first time in soybean crops of Oklahoma. The highest average incidence was recorded for PeMoV (13.5%) followed by SVNV (6.9%), TSV (6.4%), BYMV, (4.5%), and TRSV (3.9%), while the remaining seven viruses were detected in less than 2% of the samples tested. The DIBA was quick, and economical to screen more than 1000 samples against 15 known plant viruses in a very short time.
Collapse
Affiliation(s)
- Akhtar Ali
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, 74104, USA.
| |
Collapse
|
19
|
Kil EJ, Park J, Choi HS, Kim CS, Lee S. Seed Transmission of Tomato yellow leaf curl virus in White Soybean ( Glycine max). THE PLANT PATHOLOGY JOURNAL 2017; 33:424-428. [PMID: 28811759 PMCID: PMC5538446 DOI: 10.5423/ppj.nt.02.2017.0043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/25/2017] [Indexed: 05/26/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) infection of the common bean (Phaseolus vulgaris) has been reported, but soybean (Glycine max) has not previously been identified as a TYLCV host. Five cultivars of white soybean were agro-inoculated using an infectious TYLCV clone. At 30 days post-inoculation, they showed infection rates of 25% to 100%. Typical TYLCV symptoms were not observed in any inoculated plants. To examine whether TYLCV was transmitted in soybean seeds, DNA was isolated from bundles of five randomly selected seeds from TYLCV-inoculated soybean plants and amplified with a TYLCV-specific primer set. With the exception of one bundle, all bundles of seeds were verified to be TYLCV-infected. Virus dissemination was also confirmed in three of the 14 bunches. Viral replication was also identified in seeds and seedlings. This is the first report demonstrating that soybean is a TYLCV host, and that TYLCV is a seed-transmissible virus in white soybean.
Collapse
Affiliation(s)
- Eui-Joon Kil
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419,
Korea
| | - Jungho Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419,
Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365,
Korea
| | - Chang-Seok Kim
- Highland Agricultural Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342,
Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419,
Korea
| |
Collapse
|
20
|
López M, Muñoz N, Lascano HR, Izaguirre-Mayoral ML. The seed-borne Southern bean mosaic virus hinders the early events of nodulation and growth in Rhizobium-inoculated Phaseolus vulgaris L. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:208-218. [PMID: 32480558 DOI: 10.1071/fp16180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/06/2016] [Indexed: 06/11/2023]
Abstract
To simulate seed-borne virus transmission, a noninvasive protocol was designed to infect the radicle of germinating seeds, with 100% effectiveness. Preinfection of 24-h-old black bean (Phaseolus vulgaris L.) radicles by Southern bean mosaic virus (SBMV) followed by Rhizobium inoculation 48h later caused a drastic reduction in root nodulation. Results were attributed to active virus replication within the elongating zone of the radicle at least 32h before Rhizobium inoculation, which elicited severe anatomical malformations; an abnormal accumulation of apoplastic reactive oxygen species in the rhizodermis, cortex, inner cortical and endodermic root cells; the formation of atypical root hair tips and the collapse of 94% of the root hairs in the SBMV-preinfected radicles. Adult SBMV-preinfected plants showed exacerbated virus symptoms and 80% growth reduction ascribed to major virus-induced ultrastructural alterations in the nodules. The accumulation of ureides, α-amino acids and total reducing sugars in the leaves and nodules of SBMV-preinfected plants are indicators of the hindering effects of SBMV infection on N2 fixation and ureide catabolism, causing N starvation. The exogenous addition of 1 or 4μM naringenin, genistein or daidzein did not counteract the deleterious effects of SBMV preinfection on nodulation.
Collapse
Affiliation(s)
- Mariadaniela López
- Universidad Centroccidental Lisandro Alvarado, Postgrado de Agronomia, Laboratorio de Virologia, Barquisimeto 03023, Venezuela
| | - Nacira Muñoz
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria, 5119 Córdoba, Argentina
| | - Hernan Ramiro Lascano
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria, 5119 Córdoba, Argentina
| | - María Luisa Izaguirre-Mayoral
- Instituto Venezolano de Investigaciones Científicas, Centro de Microbiología y Biología Celular, apartado postal 21827 Caracas 1020-A, Venezuela
| |
Collapse
|
21
|
Abstract
The genus Tospovirus is unique within the family Bunyaviridae in that it is made up of viruses that infect plants. Initially documented over 100 years ago, tospoviruses have become increasingly important worldwide since the 1980s due to the spread of the important insect vector Frankliniella occidentalis and the discovery of new viruses. As a result, tospoviruses are now recognized globally as emerging agricultural diseases. Tospoviruses and their vectors, thrips species in the order Thysanoptera, represent a major problem for agricultural and ornamental crops that must be managed to avoid devastating losses. In recent years, the number of recognized species in the genus has increased rapidly, and our knowledge of the molecular interactions of tospoviruses with their host plants and vectors has expanded. In this review, we present an overview of the genus Tospovirus with particular emphasis on new understandings of the molecular plant-virus and vector-virus interactions as well as relationships among genus members.
Collapse
Affiliation(s)
- J E Oliver
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506;
| | - A E Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506;
| |
Collapse
|