1
|
Kesaraju S, Li Y, Xing J, Tracy M, Wannemo K, Holder A, Zhao P, Khan MA, Kainov J, Rana N, Sidahmed M, Hyoju S, Smith L, Matthews J, Tay S, Khalili-Araghi F, Rana M, Oakes SA, Shen L, Weber CR. Inflammation-Induced Claudin-2 Upregulation Limits Pancreatitis Progression by Enhancing Tight Junction-Controlled Pancreatic Ductal Transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.01.555960. [PMID: 39605652 PMCID: PMC11601259 DOI: 10.1101/2023.09.01.555960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Pancreatitis is an inflammatory disease of the pancreas that can arise due to various factors, including environmental risks such as diet, alcohol, and smoking, as well as genetic predispositions. In some cases, pancreatitis may progress and become chronic, leading to irreversible damage and impaired pancreatic function. Genome-wide association studies (GWAS) have identified polymorphisms at the X-linked CLDN2 locus as risk factors for both sporadic and alcohol-related chronic pancreatitis. CLDN2 encodes claudin-2 (CLDN2), a paracellular cation-selective channel localized at tight junctions and expressed in the pancreas and other secretory organs. However, whether and how CLDN2 may modify pancreatitis susceptibility remains poorly understood. We aimed to clarify the potential role of CLDN2 in the onset and progression of pancreatitis. We employed multiple methodologies to examine the role of CLDN2 in human pancreatic tissue, caerulein-induced experimental pancreatitis mouse model, and pancreatic ductal epithelial organoids. In both human chronic pancreatitis tissues and caerulein-induced experimental pancreatitis, CLDN2 protein was significantly upregulated in pancreatic ductal epithelial cells. Our studies using pancreatic ductal epithelial organoids and mice demonstrated the inflammatory cytokine IFNγ upregulates claudin-2 expression at both RNA and protein levels. Following caerulein treatment, Ifng KO mice had diminished upregulation of CLDN2 relative to WT mice, indicating that caerulein-induced claudin-2 expression is partially driven by IFNγ. Functionally, Cldn2 knockout mice developed more severe caerulein-induced experimental pancreatitis, indicating CLDN2 plays a protective role in pancreatitis development. Pancreatic ductal epithelial organoid-based studies demonstrated that CLDN2 is critical for sodium-dependent water transport and necessary for cAMP-driven, CFTR-dependent fluid secretion. These findings suggest that functional crosstalk between CLDN2 and CFTR is essential for fluid transport in pancreatic ductal epithelium, which may protect against pancreatitis by adjusting pancreatic ductal secretion to prevent worsening autodigestion and inflammation. In conclusion, our studies suggest CLDN2 upregulation during pancreatitis may play a protective role in limiting disease development, and decreased CLDN2 function may increase pancreatitis severity. These results point to the possibility of modulating pancreatic ductal CLDN2 function as an approach for therapeutic intervention of pancreatitis.
Collapse
|
2
|
Furukawa R, Kuwatani M, Jiang JJ, Tanaka Y, Hasebe R, Murakami K, Tanaka K, Hirata N, Ohki I, Takahashi I, Yamasaki T, Shinohara Y, Nozawa S, Hojyo S, Kubota SI, Hashimoto S, Hirano S, Sakamoto N, Murakami M. GGT1 is a SNP eQTL gene involved in STAT3 activation and associated with the development of Post-ERCP pancreatitis. Sci Rep 2024; 14:12224. [PMID: 38806529 PMCID: PMC11133343 DOI: 10.1038/s41598-024-60312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
Post-ERCP pancreatitis (PEP) is an acute pancreatitis caused by endoscopic-retrograde-cholangiopancreatography (ERCP). About 10% of patients develop PEP after ERCP. Here we show that gamma-glutamyltransferase 1 (GGT1)-SNP rs5751901 is an eQTL in pancreatic cells associated with PEP and a positive regulator of the IL-6 amplifier. More PEP patients had the GGT1 SNP rs5751901 risk allele (C) than that of non-PEP patients at Hokkaido University Hospital. Additionally, GGT1 expression and IL-6 amplifier activation were increased in PEP pancreas samples with the risk allele. A mechanistic analysis showed that IL-6-mediated STAT3 nuclear translocation and STAT3 phosphorylation were suppressed in GGT1-deficient cells. Furthermore, GGT1 directly associated with gp130, the signal-transducer of IL-6. Importantly, GGT1-deficiency suppressed inflammation development in a STAT3/NF-κB-dependent disease model. Thus, the risk allele of GGT1-SNP rs5751901 is involved in the pathogenesis of PEP via IL-6 amplifier activation. Therefore, the GGT1-STAT3 axis in pancreas may be a prognosis marker and therapeutic target for PEP.
Collapse
Affiliation(s)
- Ryutaro Furukawa
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Masaki Kuwatani
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, China
| | - Yuki Tanaka
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Rie Hasebe
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Kumiko Tanaka
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Noriyuki Hirata
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Izuru Ohki
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Ikuko Takahashi
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Takeshi Yamasaki
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Yuta Shinohara
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Shunichiro Nozawa
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Shintaro Hojyo
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Shimpei I Kubota
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan.
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
3
|
Lu H, Zhao Z, Yu H, Iqbal A, Jiang P. The serine protease 2 gene regulates lipid metabolism through the LEP/ampkα1/SREBP1 pathway in bovine mammary epithelial cells. Biochem Biophys Res Commun 2024; 698:149558. [PMID: 38271832 DOI: 10.1016/j.bbrc.2024.149558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
Molecular breeding has brought about significant transformations in the milk market and production system during the twenty-first century. The primary economic characteristic of dairy production pertains to milk fat content. Our previous transcriptome analyses revealed that serine protease 2 (PRSS2) is a candidate gene that could impact milk fat synthesis in bovine mammary epithelial cells (BMECs) of Chinese Holstein dairy cows. To elucidate the function of the PRSS2 gene in milk fat synthesis, we constructed vectors for PRSS2 overexpression and interference and assessed intracellular triglycerides (TGs), cholesterol (CHOL), and nonesterified fatty acid (NEFA) contents in BMECs. Fatty acid varieties and components were also quantified using gas chromatography‒mass spectrometry (GC‒MS) technology. The regulatory pathway mediated by PRSS2 was validated through qPCR, ELISA, and WB techniques. Based on our research findings, PRSS2 emerges as a pivotal gene that regulates the expression of associated genes, thereby making a substantial contribution to lipid metabolism via the leptin (LEP)/Adenylate-activated protein kinase, alpha 1 catalytic subunit (AMPKα1)/sterol regulatory element binding protein 1(SREBP1) pathway by inhibiting TGs and CHOL accumulation while potentially promoting NEFA synthesis in BMECs. Furthermore, the PRSS2 gene enhances intracellular medium- and long-chain fatty acid metabolism by modulating genes related to the LEP/AMPKα1/SREBP1 pathway, leading to increased contents of unsaturated fatty acids C17:1N7 and C22:4N6. This study provides a robust theoretical framework for further investigation into the underlying molecular mechanisms through which PRSS2 influences lipid metabolism in dairy cows.
Collapse
Affiliation(s)
- Huixian Lu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang, China
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang, China
| | - Haibin Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang, China
| | - Ambreen Iqbal
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang, China
| | - Ping Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
4
|
Weiler M, Stieger KC, Shroff K, Klein JP, Wood WH, Zhang Y, Chandrasekaran P, Lehrmann E, Camandola S, Long JM, Mattson MP, Becker KG, Rapp PR. Transcriptional changes in the rat brain induced by repetitive transcranial magnetic stimulation. Front Hum Neurosci 2023; 17:1215291. [PMID: 38021223 PMCID: PMC10679736 DOI: 10.3389/fnhum.2023.1215291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Transcranial Magnetic Stimulation (TMS) is a noninvasive technique that uses pulsed magnetic fields to affect the physiology of the brain and central nervous system. Repetitive TMS (rTMS) has been used to study and treat several neurological conditions, but its complex molecular basis is largely unexplored. Methods Utilizing three experimental rat models (in vitro, ex vivo, and in vivo) and employing genome-wide microarray analysis, our study reveals the extensive impact of rTMS treatment on gene expression patterns. Results These effects are observed across various stimulation protocols, in diverse tissues, and are influenced by time and age. Notably, rTMS-induced alterations in gene expression span a wide range of biological pathways, such as glutamatergic, GABAergic, and anti-inflammatory pathways, ion channels, myelination, mitochondrial energetics, multiple neuron-and synapse-specific genes. Discussion This comprehensive transcriptional analysis induced by rTMS stimulation serves as a foundational characterization for subsequent experimental investigations and the exploration of potential clinical applications.
Collapse
Affiliation(s)
- Marina Weiler
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kevin C. Stieger
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kavisha Shroff
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jessie P. Klein
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - William H. Wood
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Prabha Chandrasekaran
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jeffrey M. Long
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kevin G. Becker
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
5
|
Lou H, Xie B, Wang Y, Gao Y, Xu S. Improved NGS variant calling tool for the PRSS1-PRSS2 locus. Gut 2023; 72:210-212. [PMID: 35288441 DOI: 10.1136/gutjnl-2022-327203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Haiyi Lou
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Bo Xie
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yimin Wang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yang Gao
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China .,Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Zheng M, Gao R. Vitamin D: A Potential Star for Treating Chronic Pancreatitis. Front Pharmacol 2022; 13:902639. [PMID: 35734414 PMCID: PMC9207250 DOI: 10.3389/fphar.2022.902639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pancreatitis (CP) is a chronic inflammatory and fibrotic disease of the pancreas. The incidence of CP is increasing worldwide but the effective therapies are lacking. Hence, it is necessary to identify economical and effective agents for the treatment of CP patients. Vitamin D (VD) and its analogues have been confirmed as pleiotropic regulators of cell proliferation, apoptosis, differentiation and autophagy. Clinical studies show that VD deficiency is prevalent in CP patients. However, the correlation between VD level and the risk of CP remains controversial. VD and its analogues have been demonstrated to inhibit pancreatic fibrosis by suppressing the activation of pancreatic stellate cells and the production of extracellular matrix. Limited clinical trials have shown that the supplement of VD can improve VD deficiency in patients with CP, suggesting a potential therapeutic value of VD in CP. However, the mechanisms by which VD and its analogues inhibit pancreatic fibrosis have not been fully elucidated. We are reviewing the current literature concerning the risk factors for developing CP, prevalence of VD deficiency in CP, mechanisms of VD action in PSC-mediated fibrogenesis during the development of CP and potential therapeutic applications of VD and its analogues in the treatment of CP.
Collapse
|
7
|
Chutani N, Singh AK, Kadumuri RV, Pakala SB, Chavali S. Structural and Functional Attributes of Microrchidia Family of Chromatin Remodelers. J Mol Biol 2022; 434:167664. [PMID: 35659506 DOI: 10.1016/j.jmb.2022.167664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Chromatin remodelers affect the spatio-temporal dynamics of global gene-expression by structurally modulating and/or reorganizing the chromatin. Microrchidia (MORC) family is a relatively new addition to the four well studied families of chromatin remodeling proteins. In this review, we discuss the current understanding of the structural aspects of human MORCs as well as their epigenetic functions. From a molecular and systems-level perspective, we explore their participation in phase-separated structures, possible influence on various biological processes through protein-protein interactions, and potential extra-nuclear roles. We describe how dysregulation/dysfunction of MORCs can lead to various pathological conditions. We conclude by emphasizing the importance of undertaking integrated efforts to obtain a holistic understanding of the various biological roles of MORCs.
Collapse
Affiliation(s)
- Namita Chutani
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India. https://twitter.com/ChutaniNamita
| | - Anjali Kumari Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India. https://twitter.com/anjali_k_s
| | - Rajashekar Varma Kadumuri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India
| | - Suresh B Pakala
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India.
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India.
| |
Collapse
|
8
|
Colocalization analysis of pancreas eQTLs with risk loci from alcoholic and novel non-alcoholic chronic pancreatitis GWAS suggests potential disease causing mechanisms. Pancreatology 2022; 22:449-456. [PMID: 35331647 DOI: 10.1016/j.pan.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Previous genome-wide association studies (GWAS) identified genome-wide significant risk loci in chronic pancreatitis and investigated underlying disease causing mechanisms by simple overlaps with expression quantitative trait loci (eQTLs), a procedure which may often result in false positive conclusions. METHODS We conducted a GWAS in 584 non-alcoholic chronic pancreatitis (NACP) patients and 6040 healthy controls. Next, we applied Bayesian colocalization analysis of identified genome-wide significant risk loci from both, our recently published alcoholic chronic pancreatitis (ACP) and the novel NACP dataset, with pancreas eQTLs from the GTEx V8 European cohort to prioritize candidate causal genes and extracted credible sets of shared causal variants. RESULTS Variants at the CTRC (p = 1.22 × 10-21) and SPINK1 (p = 6.59 × 10-47) risk loci reached genome-wide significance in NACP. CTRC risk variants colocalized with CTRC eQTLs in ACP (PP4 = 0.99, PP4/PP3 = 95.51) and NACP (PP4 = 0.99, PP4/PP3 = 95.46). For both diseases, the 95% credible set of shared causal variants consisted of rs497078 and rs545634. CLDN2-MORC4 risk variants colocalized with CLDN2 eQTLs in ACP (PP4 = 0.98, PP4/PP3 = 42.20) and NACP (PP4 = 0.67, PP4/PP3 = 7.18), probably driven by the shared causal variant rs12688220. CONCLUSIONS A shared causal CTRC risk variant might unfold its pathogenic effect in ACP and NACP by reducing CTRC expression, while the CLDN2-MORC4 shared causal variant rs12688220 may modify ACP and NACP risk by increasing CLDN2 expression.
Collapse
|
9
|
Beyer G, Hoffmeister A, Michl P, Gress TM, Huber W, Algül H, Neesse A, Meining A, Seufferlein TW, Rosendahl J, Kahl S, Keller J, Werner J, Friess H, Bufler P, Löhr MJ, Schneider A, Lynen Jansen P, Esposito I, Grenacher L, Mössner J, Lerch MM, Mayerle J. S3-Leitlinie Pankreatitis – Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) – September 2021 – AWMF Registernummer 021-003. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:419-521. [PMID: 35263785 DOI: 10.1055/a-1735-3864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Georg Beyer
- Medizinische Klinik und Poliklinik II, LMU Klinikum, Ludwig-Maximilians-Universität München, Deutschland
| | - Albrecht Hoffmeister
- Bereich Gastroenterologie, Klinik und Poliklinik für Onkologie, Gastroenterologie, Hepatologie Pneumologie und Infektiologie, Universitätsklinikum Leipzig, Deutschland
| | - Patrick Michl
- Universitätsklinik u. Poliklinik Innere Medizin I mit Schwerpunkt Gastroenterologie, Universitätsklinikum Halle, Deutschland
| | - Thomas Mathias Gress
- Klinik für Gastroenterologie und Endokrinologie, Universitätsklinikum Gießen und Marburg, Deutschland
| | - Wolfgang Huber
- Comprehensive Cancer Center München TUM, II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - Hana Algül
- Comprehensive Cancer Center München TUM, II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - Albrecht Neesse
- Klinik für Gastroenterologie, gastrointestinale Onkologie und Endokrinologie, Universitätsmedizin Göttingen, Deutschland
| | - Alexander Meining
- Medizinische Klinik und Poliklinik II Gastroenterologie und Hepatologie, Universitätsklinikum Würzburg, Deutschland
| | | | - Jonas Rosendahl
- Universitätsklinik u. Poliklinik Innere Medizin I mit Schwerpunkt Gastroenterologie, Universitätsklinikum Halle, Deutschland
| | - Stefan Kahl
- Klinik für Innere Medizin m. Schwerpkt. Gastro./Hämat./Onko./Nephro., DRK Kliniken Berlin Köpenick, Deutschland
| | - Jutta Keller
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - Jens Werner
- Klinik für Allgemeine, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Universitätsklinikum München, Deutschland
| | - Helmut Friess
- Klinik und Poliklinik für Chirurgie, Klinikum rechts der Isar, München, Deutschland
| | - Philip Bufler
- Klinik für Pädiatrie m. S. Gastroenterologie, Nephrologie und Stoffwechselmedizin, Charité Campus Virchow-Klinikum - Universitätsmedizin Berlin, Deutschland
| | - Matthias J Löhr
- Department of Gastroenterology, Karolinska, Universitetssjukhuset, Stockholm, Schweden
| | - Alexander Schneider
- Klinik für Gastroenterologie und Hepatologie, Klinikum Bad Hersfeld, Deutschland
| | - Petra Lynen Jansen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS), Berlin, Deutschland
| | - Irene Esposito
- Pathologisches Institut, Heinrich-Heine-Universität und Universitätsklinikum Duesseldorf, Duesseldorf, Deutschland
| | - Lars Grenacher
- Conradia Radiologie München Schwabing, München, Deutschland
| | - Joachim Mössner
- Bereich Gastroenterologie, Klinik und Poliklinik für Onkologie, Gastroenterologie, Hepatologie Pneumologie und Infektiologie, Universitätsklinikum Leipzig, Deutschland
| | - Markus M Lerch
- Klinik für Innere Medizin A, Universitätsmedizin Greifswald, Deutschland.,Klinikum der Ludwig-Maximilians-Universität (LMU) München, Deutschland
| | - Julia Mayerle
- Medizinische Klinik und Poliklinik II, LMU Klinikum, Ludwig-Maximilians-Universität München, Deutschland
| | | |
Collapse
|
10
|
Abstract
Hereditary pancreatitis (HP) is a rare inherited chronic pancreatitis (CP) with strong genetic associations, with estimated prevalence ranging from 0.3 to 0.57 per 100,000 across Europe, North America, and East Asia. Apart from the most well-described genetic variants are PRSS1, SPINK1, and CFTR, many other genes, such as CTRC, CPA1, and CLDN2 and CEL have been found to associate with HP, typically in one of the 3 main mechanisms such as altered trypsin activity, pancreatic ductal cell secretion, and calcium channel regulation. The current mainstay of management for patients with HP comprises genetic testing for eligible individuals and families, alcohol and tobacco cessation avoidance, pain control, and judicious screening for complications, including exocrine and endocrine insufficiency and pancreatic cancer.
Collapse
Affiliation(s)
- Yichun Fu
- Henry D. Janowitz Division of Gastroenterology, One Gustave L. Levy Place, Box 1069, New York, NY 10029, USA; Samuel Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Aimee L Lucas
- Henry D. Janowitz Division of Gastroenterology, One Gustave L. Levy Place, Box 1069, New York, NY 10029, USA; Samuel Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
11
|
MORC protein family-related signature within human disease and cancer. Cell Death Dis 2021; 12:1112. [PMID: 34839357 PMCID: PMC8627505 DOI: 10.1038/s41419-021-04393-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
The microrchidia (MORC) family of proteins is a highly conserved nuclear protein superfamily, whose members contain common domain structures (GHKL-ATPase, CW-type zinc finger and coiled-coil domain) yet exhibit diverse biological functions. Despite the advancing research in previous decades, much of which focuses on their role as epigenetic regulators and in chromatin remodeling, relatively little is known about the role of MORCs in tumorigenesis and pathogenesis. MORCs were first identified as epigenetic regulators and chromatin remodelers in germ cell development. Currently, MORCs are regarded as disease genes that are involved in various human disorders and oncogenes in cancer progression and are expected to be the important biomarkers for diagnosis and treatment. A new paradigm of expanded MORC family function has raised questions regarding the regulation of MORCs and their biological role at the subcellular level. Here, we systematically review the progress of researching MORC members with respect to their domain architectures, diverse biological functions, and distribution characteristics and discuss the emerging roles of the aberrant expression or mutation of MORC family members in human disorders and cancer development. Furthermore, the illustration of related mechanisms of the MORC family has made MORCs promising targets for developing diagnostic tools and therapeutic treatments for human diseases, including cancers.
Collapse
|
12
|
Denoyelle L, de Villemereuil P, Boyer F, Khelifi M, Gaffet C, Alberto F, Benjelloun B, Pompanon F. Genetic Variations and Differential DNA Methylation to Face Contrasted Climates in Small Ruminants: An Analysis on Traditionally-Managed Sheep and Goats. Front Genet 2021; 12:745284. [PMID: 34650601 PMCID: PMC8508783 DOI: 10.3389/fgene.2021.745284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The way in which living organisms mobilize a combination of long-term adaptive mechanisms and short-term phenotypic plasticity to face environmental variations is still largely unknown. In the context of climate change, understanding the genetic and epigenetic bases for adaptation and plasticity is a major stake for preserving genomic resources and the resilience capacity of livestock populations. We characterized both epigenetic and genetic variations by contrasting 22 sheep and 21 goats from both sides of a climate gradient, focusing on free-ranging populations from Morocco. We produced for each individual Whole-Genome Sequence at 12X coverage and MeDIP-Seq data, to identify regions under selection and those differentially methylated. For both species, the analysis of genetic differences (FST) along the genome between animals from localities with high vs. low temperature annual variations detected candidate genes under selection in relation to environmental perception (5 genes), immunity (4 genes), reproduction (8 genes) and production (11 genes). Moreover, we found for each species one differentially methylated gene, namely AGPTA4 in goat and SLIT3 in sheep, which were both related, among other functions, to milk production and muscle development. In both sheep and goats, the comparison between genomic regions impacted by genetic and epigenetic variations suggests that climatic variations impacted similar biological pathways but different genes.
Collapse
Affiliation(s)
- Laure Denoyelle
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France.,GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études
- PSL, MNHN, CNRS, SU, UA, Paris, France
| | - Frédéric Boyer
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Meidhi Khelifi
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Clément Gaffet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Florian Alberto
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Badr Benjelloun
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France.,Institut National de la Recherche Agronomique Maroc (INRA-Maroc), Centre Régional de Beni Mellal, Beni Mellal, Morocco
| | - François Pompanon
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
13
|
Xu Y, Zuo W, Wang X, Zhang Q, Gan X, Tan N, Jia W, Liu J, Li Z, Zhou B, Zhao D, Xie Z, Tan Y, Zheng S, Liu C, Li H, Chen Z, Yang X, Huang Z. Deciphering the effects of PYCR1 on cell function and its associated mechanism in hepatocellular carcinoma. Int J Biol Sci 2021; 17:2223-2239. [PMID: 34239351 PMCID: PMC8241733 DOI: 10.7150/ijbs.58026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/16/2021] [Indexed: 12/28/2022] Open
Abstract
Overexpression of pyrroline-5-carboxylate reductase 1 (PYCR1) has been associated with the development of certain cancers; however, no studies have specifically examined the role of PYCR1 in hepatocellular carcinoma (HCC). Based on The Cancer Genome Atlas expression array and meta-analysis conducted using the Gene Expression Omnibus database, we determined that PYCR1 was upregulated in HCC compared to adjacent nontumor tissues (P < 0.05). These data were verified using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry analysis. Additionally, patients with low PYCR1 expression showed a higher overall survival rate than patients with high PYCR1 expression. Furthermore, PYCR1 overexpression was associated with the female sex, higher levels of alpha-fetoprotein, advanced clinical stages (III and IV), and a younger age (< 45 years old). Silencing of PYCR1 inhibited cell proliferation, invasive migration, epithelial-mesenchymal transition, and metastatic properties in HCC in vitro and in vivo. Using RNA sequencing and bioinformatics tools for data-dependent network analysis, we found binary relationships among PYCR1 and its interacting proteins in defined pathway modules. These findings indicated that PYCR1 played a multifunctional role in coordinating a variety of biological pathways involved in cell communication, cell proliferation and growth, cell migration, a mitogen-activated protein kinase cascade, ion binding, etc. The structural characteristics of key pathway components and PYCR1-interacting proteins were evaluated by molecular docking, and hotspot analysis showed that better affinities between PYCR1 and its interacting molecules were associated with the presence of arginine in the binding site. Finally, a candidate regulatory microRNA, miR-2355-5p, for PYCR1 mRNA was discovered in HCC. Overall, our study suggests that PYCR1 plays a vital role in HCC pathogenesis and may potentially serve as a molecular target for HCC treatment.
Collapse
Affiliation(s)
- Yanzhen Xu
- Department of pathology, Affiliated hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Department of Pathology, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, 310000, Hangzhou, China
| | - Wenpu Zuo
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Medical Scientific Research Center, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Xiao Wang
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Qinle Zhang
- Genetic and metabolic central laboratory, the maternal and children's health hospital of Guangxi, Nanning, 530000, Guangxi, China
| | - Xiang Gan
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Ning Tan
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Wenxian Jia
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Jiayi Liu
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhouquan Li
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Bo Zhou
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Dong Zhao
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhibin Xie
- Department of Urology, the Five Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Yanjun Tan
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Shengfeng Zheng
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Chengwu Liu
- Department of Pathophysiology, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Hongtao Li
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhijian Chen
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Xiaoli Yang
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhaoquan Huang
- Department of pathology, Affiliated hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| |
Collapse
|
14
|
Seltsam K, Pentner C, Weigl F, Sutedjo S, Zimmer C, Beer S, Bugert P, Ewers M, Ruffert C, Michl P, Laumen H, Witt H, Rosendahl J. Sequencing of the complex CTRB1-CTRB2 locus in chronic pancreatitis. Pancreatology 2020; 20:1598-1603. [PMID: 33036922 DOI: 10.1016/j.pan.2020.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND /Objectives: A recent Genome-wide Association Study (GWAS) in alcoholic chronic pancreatitis (ACP) identified a novel association with the CTRB1-CTRB2 (chymotrypsinogen B1, B2) locus, linked to a 16.6 kb inversion that was confirmed in non-alcoholic chronic pancreatitis (NACP). Moreover, recent findings on the function of CTRB1 and CTRB2 suggest a protective role in pancreatitis development. The aim of the present study was to investigate the CTRB1-CTRB2 locus for rare genetic variants associated with chronic pancreatitis (CP). METHODS We analyzed 134 patients with ACP and 203 patients with NACP and compared them to up to 258 healthy controls. Genotyping was performed with polymerase chain reaction, followed by Sanger sequencing of all exons and the exon-intron-boundaries of CTRB1 and CTRB2. Finally, in silico analyses of the identified variants were conducted. RESULTS None of the seven rare missense variants or the single 5'-UTR variant in CTRB1 and CTRB2 was associated with ACP or NACP. In silico analysis predicted that variant p. Trp5Leu in CTRB1 and variant c.-4C > T in CTRB2 might alter protein expression and variants p. Asp222His in CTRB1 and p. Ala247Thr in CTRB2 might affect protein function. However, all of these variants were also described in public databases. CONCLUSIONS The present study did not reveal an association of rare variants in CTRB1 and CTRB2 with ACP or NACP. Although rare missense variants were almost exclusively found in patients, only four variants were predicted to affect protein expression or function. Thus, a major influence of rare variants in the CTRB1-CTRB2 locus on CP development is unlikely.
Collapse
Affiliation(s)
- Katharina Seltsam
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Carola Pentner
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Franziska Weigl
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Stella Sutedjo
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Constantin Zimmer
- Division of Gastroenterology, Medical Department II - Oncology, Gastroenterology, Hepatology, Pulmonology, Infectious Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Sebastian Beer
- Division of Gastroenterology, Medical Department II - Oncology, Gastroenterology, Hepatology, Pulmonology, Infectious Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service of Baden-Württemberg, Mannheim, Germany
| | - Maren Ewers
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Claudia Ruffert
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Patrick Michl
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Helmut Laumen
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Heiko Witt
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Jonas Rosendahl
- Department of Internal Medicine I, Martin Luther University, Halle, Germany.
| |
Collapse
|
15
|
Role of the Common PRSS1-PRSS2 Haplotype in Alcoholic and Non-Alcoholic Chronic Pancreatitis: Meta- and Re-Analyses. Genes (Basel) 2020; 11:genes11111349. [PMID: 33202925 PMCID: PMC7697183 DOI: 10.3390/genes11111349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
The association between a common PRSS1-PRSS2 haplotype and alcoholic chronic pancreatitis (ACP), which was revealed by the first genome-wide association study of chronic pancreatitis (CP), has been consistently replicated. However, the association with non-ACP (NACP) has been controversial. Herein, we sought to clarify this basic issue by means of an allele-based meta-analysis of currently available studies. We then used studies informative for genotype distribution to explore the biological mechanisms underlying the association data and to test for gene-environment interaction between the risk haplotype and alcohol consumption by means of a re-analysis. A literature search was conducted to identify eligible studies. A meta-analysis was performed using the Review Manager software. The association between the risk genotypes and NACP or ACP was tested for the best-fitting genetic model. Gene-environment interaction was estimated by both case-only and multinomial approaches. Five and eight studies were employed for the meta-analysis of ACP and NACP findings, respectively. The risk allele was significantly associated with both ACP (pooled odds ratio (OR) 1.67, 95% confidence interval (CI) 1.56–1.78; p < 0.00001) and NACP (pooled OR 1.28, 95% CI 1.17–1.40; p < 0.00001). Consistent with a dosage effect of the risk allele on PRSS1/PRSS2 mRNA expression in human pancreatic tissue, both ACP and NACP association data were best explained by an additive genetic model. Finally, the risk haplotype was found to interact synergistically with alcohol consumption.
Collapse
|
16
|
Abstract
The Toxic-metabolic, Idiopathic, Genetic, Autoimmune, Recurrent and severe acute pancreatitis and Obstructive (TIGAR-O) Pancreatitis Risk/Etiology Checklist (TIGAR-O_V1) is a broad classification system that lists the major risk factors and etiologies of recurrent acute pancreatitis, chronic pancreatitis, and overlapping pancreatic disorders with or without genetic, immunologic, metabolic, nutritional, neurologic, metaplastic, or other features. New discoveries and progressive concepts since the 2001 TIGAR-O list relevant to understanding and managing complex pancreatic disorders require an update to TIGAR-O_V2 with both a short (S) and long (L) form. The revised system is designed as a hierarchical checklist for health care workers to quickly document and track specific factors that, alone or in combinations, may contribute to progressive pancreatic disease in individual patients or groups of patients and to assist in treatment selection. The rationale and key clinical considerations are summarized for each updated classification item. Familiarity with the structured format speeds up the completion process and supports thoroughness and consideration of complex or alternative diagnoses during evaluation and serves as a framework for communication. The structured approach also facilitates the new health information technologies that required high-quality data for accurate precision medicine. A use primer accompanies the TIGAR-O_V2 checklist with rationale and comments for health care workers and industries caring for patients with pancreatic diseases.
Collapse
|
17
|
Bandesh K, Bharadwaj D. Genetic variants entail type 2 diabetes as an innate immune disorder. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140458. [DOI: 10.1016/j.bbapap.2020.140458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/28/2020] [Accepted: 05/21/2020] [Indexed: 02/09/2023]
|
18
|
Abstract
IMPORTANCE Chronic pancreatitis (CP) is a chronic inflammatory and fibrotic disease of the pancreas with a prevalence of 42 to 73 per 100 000 adults in the United States. OBSERVATIONS Both genetic and environmental factors are thought to contribute to the pathogenesis of CP. Environmental factors associated with CP include alcohol abuse (odds ratio [OR], 3.1; 95% CI, 1.87-5.14) for 5 or more drinks per day vs abstainers and light drinkers as well as smoking (OR, 4.59; 95% CI, 2.91-7.25) for more than 35 pack-years in a case-control study involving 971 participants. Between 28% to 80% of patients are classified as having "idiopathic CP." Up to 50% of these individuals have mutations of the trypsin inhibitor gene (SPINK1) or the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Approximately 1% of people diagnosed with CP may have hereditary pancreatitis, associated with cationic trypsinogen (PRSS1) gene mutations. Approximately 80% of people with CP present with recurrent or chronic upper abdominal pain. Long-term sequelae include diabetes in 38% to 40% and exocrine insufficiency in 30% to 48%. The diagnosis is based on pancreatic calcifications, ductal dilatation, and atrophy visualized by imaging with computed tomography, magnetic resonance imaging, or both. Endoscopic ultrasound can assist in making the diagnosis in patients with a high index of suspicion such as recurrent episodes of acute pancreatitis when imaging is normal or equivocal. The first line of therapy consists of advice to discontinue use of alcohol and smoking and taking analgesic agents (nonsteroidal anti-inflammatory drugs and weak opioids such as tramadol). A trial of pancreatic enzymes and antioxidants (a combination of multivitamins, selenium, and methionine) can control symptoms in up to 50% of patients. Patients with pancreatic ductal obstruction due to stones, stricture, or both may benefit from ductal drainage via endoscopic retrograde cholangiopancreatography (ERCP) or surgical drainage procedures, such as pancreaticojejunostomy with or without pancreatic head resection, which may provide better pain relief among people who do not respond to endoscopic therapy. CONCLUSIONS AND RELEVANCE Chronic pancreatitis often results in chronic abdominal pain and is most commonly caused by excessive alcohol use, smoking, or genetic mutations. Treatment consists primarily of alcohol and smoking cessation, pain control, replacement of pancreatic insufficiency, or mechanical drainage of obstructed pancreatic ducts for some patients.
Collapse
Affiliation(s)
- Vikesh K Singh
- Division of Gastroenterology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Dhiraj Yadav
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Pramod K Garg
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
19
|
Rosendahl J, Kirsten H, Hegyi E, Kovacs P, Weiss FU, Laumen H, Lichtner P, Ruffert C, Chen JM, Masson E, Beer S, Zimmer C, Seltsam K, Algül H, Bühler F, Bruno MJ, Bugert P, Burkhardt R, Cavestro GM, Cichoz-Lach H, Farré A, Frank J, Gambaro G, Gimpfl S, Grallert H, Griesmann H, Grützmann R, Hellerbrand C, Hegyi P, Hollenbach M, Iordache S, Jurkowska G, Keim V, Kiefer F, Krug S, Landt O, Leo MD, Lerch MM, Lévy P, Löffler M, Löhr M, Ludwig M, Macek M, Malats N, Malecka-Panas E, Malerba G, Mann K, Mayerle J, Mohr S, te Morsche RHM, Motyka M, Mueller S, Müller T, Nöthen MM, Pedrazzoli S, Pereira SP, Peters A, Pfützer R, Real FX, Rebours V, Ridinger M, Rietschel M, Rösmann E, Saftoiu A, Schneider A, Schulz HU, Soranzo N, Soyka M, Simon P, Skipworth J, Stickel F, Strauch K, Stumvoll M, Testoni PA, Tönjes A, Werner L, Werner J, Wodarz N, Ziegler M, Masamune A, Mössner J, Férec C, Michl P, P H Drenth J, Witt H, Scholz M, Sahin-Tóth M. Genome-wide association study identifies inversion in the CTRB1-CTRB2 locus to modify risk for alcoholic and non-alcoholic chronic pancreatitis. Gut 2018; 67:1855-1863. [PMID: 28754779 PMCID: PMC6145291 DOI: 10.1136/gutjnl-2017-314454] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/16/2017] [Accepted: 06/24/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Alcohol-related pancreatitis is associated with a disproportionately large number of hospitalisations among GI disorders. Despite its clinical importance, genetic susceptibility to alcoholic chronic pancreatitis (CP) is poorly characterised. To identify risk genes for alcoholic CP and to evaluate their relevance in non-alcoholic CP, we performed a genome-wide association study and functional characterisation of a new pancreatitis locus. DESIGN 1959 European alcoholic CP patients and population-based controls from the KORA, LIFE and INCIPE studies (n=4708) as well as chronic alcoholics from the GESGA consortium (n=1332) were screened with Illumina technology. For replication, three European cohorts comprising 1650 patients with non-alcoholic CP and 6695 controls originating from the same countries were used. RESULTS We replicated previously reported risk loci CLDN2-MORC4, CTRC, PRSS1-PRSS2 and SPINK1 in alcoholic CP patients. We identified CTRB1-CTRB2 (chymotrypsin B1 and B2) as a new risk locus with lead single-nucleotide polymorphism (SNP) rs8055167 (OR 1.35, 95% CI 1.23 to 1.6). We found that a 16.6 kb inversion in the CTRB1-CTRB2 locus was in linkage disequilibrium with the CP-associated SNPs and was best tagged by rs8048956. The association was replicated in three independent European non-alcoholic CP cohorts of 1650 patients and 6695 controls (OR 1.62, 95% CI 1.42 to 1.86). The inversion changes the expression ratio of the CTRB1 and CTRB2 isoforms and thereby affects protective trypsinogen degradation and ultimately pancreatitis risk. CONCLUSION An inversion in the CTRB1-CTRB2 locus modifies risk for alcoholic and non-alcoholic CP indicating that common pathomechanisms are involved in these inflammatory disorders.
Collapse
Affiliation(s)
- Jonas Rosendahl
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE- Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Eszter Hegyi
- Department of Molecular and Cell Biology, Center for Exocrine Disorders, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, USA
| | - Peter Kovacs
- Leipzig University Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Frank Ulrich Weiss
- Department of Internal Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Helmut Laumen
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Claudia Ruffert
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1078; Etablissement Français du Sang (EFS) – Bretagne; Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale; Laboratoire de Génétique Moléculaire et d’Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU) Brest, Hôpital Morvan, Brest, France
| | - Emmanuelle Masson
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1078; Etablissement Français du Sang (EFS) – Bretagne; Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale; Laboratoire de Génétique Moléculaire et d’Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU) Brest, Hôpital Morvan, Brest, France
| | - Sebastian Beer
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany
| | - Constantin Zimmer
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany
| | - Katharina Seltsam
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany
| | - Hana Algül
- Department of Gastroenterology, Technische Universität München (TUM), Munich, Germany
| | - Florence Bühler
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Marco J Bruno
- Department of Gastroenterology & Hepatology, Erasmus Medical Centre, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service of Baden-Württemberg, Mannheim, Germany
| | - Ralph Burkhardt
- LIFE- Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Giulia Martina Cavestro
- Division of Gastroenterology and Gastrointestinal Endoscopy, Vita Salute San Raffaele University - San Raffaele Scientific Institute, Milan, Italy
| | - Halina Cichoz-Lach
- Department of Gastroenterology, Medical University of Lublin, Lublin, Poland
| | - Antoni Farré
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Giovanni Gambaro
- Division of Nephrology and Dialysis, Institute of Internal Medicine, Renal Program, Columbus-Gemelli University Hospital, Catholic University, Rome, Italy
| | - Sebastian Gimpfl
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Heidi Griesmann
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Robert Grützmann
- Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Chirurgische Klinik, Erlangen, Germany
| | - Claus Hellerbrand
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Péter Hegyi
- Institute for Translational Medicine and First Department of Internal Medicine, University of Pécs, Pécs, Hungary
- HAS-SZTE, Momentum Gastroenterology Multidisciplinary Research Group, Szeged, Hungary
| | - Marcus Hollenbach
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Sevastitia Iordache
- Department of Internal Medicine and Gastroenterology, University of Medicine and Pharmacy, Craiova, Romania
| | - Grazyna Jurkowska
- Department of Gastroenterology and Internal Medicine, Medical University Bialystok, Bialystok, Poland
| | - Volker Keim
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Sebastian Krug
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | | | - Milena Di Leo
- Division of Gastroenterology and Gastrointestinal Endoscopy, Vita Salute San Raffaele University - San Raffaele Scientific Institute, Milan, Italy
| | - Markus M Lerch
- Department of Internal Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Philippe Lévy
- Pôle des Maladies de l’Appareil Digestif, Service de Gastroentérologie-Pancréatologie, Hôpital Beaujon, AP-HP, Clichy, France
| | - Markus Löffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE- Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Matthias Löhr
- Gastrocentrum, Karolinska Institutet CLINTEC, Stockholm, Sweden
| | - Maren Ludwig
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Milan Macek
- Department of Biology and Medical Genetics, University Hospital Motol and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nuria Malats
- Grupo de Epidemiología Genética y Molecular Programa de Genética del Cáncer Humano Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- CIBERONC, Spain
| | - Ewa Malecka-Panas
- Department of Digestive Tract Diseases, Medical University of Łódź, Łódź, Poland
| | - Giovanni Malerba
- Biology and Genetics, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Karl Mann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sonja Mohr
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Rene H M te Morsche
- Department of Gastroenterology and Hepatology, Radboud umc, Nijmegen, The Netherlands
| | - Marie Motyka
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Sebastian Mueller
- Department of Internal Medicine, Salem Medical Centre and Centre for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Thomas Müller
- Department of Pediatrics I, Medical University, Innsbruck, Austria
| | - Markus M Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Sergio Pedrazzoli
- Department of Medical and Surgical Sciences, IV Surgical Clinic, University of Padua, Padua, Italy
| | - Stephen P Pereira
- Division of Medicine, UCL Institute for Liver and Digestive Health, University College London, London, UK
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Roland Pfützer
- Clinic for Internal Medicine, Hospital Döbeln, Döbeln, Germany
| | - Francisco X Real
- CIBERONC, Spain
- Epithelial Carcinogenesis Group, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vinciane Rebours
- Pôle des Maladies de l’Appareil Digestif, Service de Gastroentérologie-Pancréatologie, Hôpital Beaujon, AP-HP, Clichy, France
| | - Monika Ridinger
- Department of Psychiatry, University of Regensburg, Regensburg, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Eva Rösmann
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Adrian Saftoiu
- Department of Internal Medicine and Gastroenterology, University of Medicine and Pharmacy, Craiova, Romania
| | - Alexander Schneider
- Department of Gastroenterology, Hepatology, Infectious Diseases, Medical Faculty of Mannheim University of Heidelberg, Mannheim, Germany
| | - Hans-Ulrich Schulz
- Department of Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nicole Soranzo
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Michael Soyka
- Psychiatric Hospital, University of Munich, Munich, Germany
| | - Peter Simon
- Department of Internal Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - James Skipworth
- Department of Surgery and Interventional Science, University College London, London, UK
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zürich, Zürich, Switzerland
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Michael Stumvoll
- Leipzig University Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Internal Medicine, Neurology and Dermatology, Division of Endocrinology, University of Leipzig, Leipzig, Germany
| | - Pier Alberto Testoni
- Division of Gastroenterology and Gastrointestinal Endoscopy, Vita Salute San Raffaele University - San Raffaele Scientific Institute, Milan, Italy
| | - Anke Tönjes
- Department of Internal Medicine, Neurology and Dermatology, Division of Endocrinology, University of Leipzig, Leipzig, Germany
| | - Lena Werner
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig Maximilian University, Munich, Germany
| | - Norbert Wodarz
- Department of Psychiatry, University of Regensburg, Regensburg, Germany
| | - Martin Ziegler
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, SendaiMiyagi, Japan
| | - Joachim Mössner
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1078; Etablissement Français du Sang (EFS) – Bretagne; Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale; Laboratoire de Génétique Moléculaire et d’Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU) Brest, Hôpital Morvan, Brest, France
| | - Patrick Michl
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud umc, Nijmegen, The Netherlands
| | - Heiko Witt
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE- Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Center for Exocrine Disorders, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Genetic mutations in genes within and outside of the trypsin-dependent pathologic pathway have been found to be associated with chronic pancreatitis. This review highlights recent developments. RECENT FINDINGS CTRB1-CTRB2 has been identified as a new risk locus for chronic pancreatitis and the disease mechanism may involve trypsin degradation. Misfolding mutations in PRSS1, CPA1, and CEL, as well as environmental stress factors like tobacco and alcohol can trigger endoplasmic reticulum stress (ER-Stress). SUMMARY Protein misfolding as well as enzyme activity changes due to altered autoactivation, intracellular degradation, or enzyme inhibition represent the most important pathological mechanisms of chronic pancreatitis to date. Analysis of composite risk patterns by next-generation sequencing will help elucidate complex gene interactions and identify new potential therapeutic targets.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Alcohol and smoking play an important role in pancreatitis. The present review will address the myths and evidences about alcohol and smoking with pancreatitis to help improve the approach of healthcare professionals when managing of these patients. RECENT FINDINGS There is a growing recognition that chronic pancreatitis is a multifactorial disease. Eliciting an accurate history of alcohol consumption and smoking from patients, and if necessary, family members, can help determine their contribution to the patient's disease. In the absence of a convincing history, physicians should be open to consideration of other etiologies. The amount and duration of alcohol consumption is the most important determinant in increasing pancreatitis risk. Alcohol sensitizes the pancreas to other insults or injury and promotes disease progression. Smoking is an independent risk factor or chronic pancreatitis and has synergistic pathogenic effects with alcohol. The natural history of chronic pancreatitis is highly variable. A patient with alcoholic pancreatitis can have symptoms, recurrences or exacerbations from disease-related complications or nonpancreatic causes. Novel strategies are needed to enable patients quit smoking. SUMMARY Obtaining accurate history, appropriate evaluation and management can help to achieve meaningful improvement in symptoms in patients with chronic pancreatitis. Abstinence from alcohol and smoking cessation, when applicable, should be recommended in all patients to prevent disease recurrences and progression.
Collapse
|
22
|
Campa D, Pastore M, Capurso G, Hackert T, Di Leo M, Izbicki JR, Khaw KT, Gioffreda D, Kupcinskas J, Pasquali C, Macinga P, Kaaks R, Stigliano S, Peeters PH, Key TJ, Talar-Wojnarowska R, Vodicka P, Valente R, Vashist YK, Salvia R, Papaconstantinou I, Shimizu Y, Valsuani C, Zambon CF, Gazouli M, Valantiene I, Niesen W, Mohelnikova-Duchonova B, Hara K, Soucek P, Malecka-Panas E, Bueno-de-Mesquita HBA, Johnson T, Brenner H, Tavano F, Fogar P, Ito H, Sperti C, Butterbach K, Latiano A, Andriulli A, Cavestro GM, Busch ORC, Dijk F, Greenhalf W, Matsuo K, Lombardo C, Strobel O, König AK, Cuk K, Strothmann H, Katzke V, Cantore M, Mambrini A, Oliverius M, Pezzilli R, Landi S, Canzian F. Do pancreatic cancer and chronic pancreatitis share the same genetic risk factors? A PANcreatic Disease ReseArch (PANDoRA) consortium investigation. Int J Cancer 2018; 142:290-296. [PMID: 28913878 DOI: 10.1002/ijc.31047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/29/2017] [Accepted: 07/17/2017] [Indexed: 02/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a five-year survival of less than 6%. Chronic pancreatitis (CP), an inflammatory process in of the pancreas, is a strong risk factor for PDAC. Several genetic polymorphisms have been discovered as susceptibility loci for both CP and PDAC. Since CP and PDAC share a consistent number of epidemiologic risk factors, the aim of this study was to investigate whether specific CP risk loci also contribute to PDAC susceptibility. We selected five common SNPs (rs11988997, rs379742, rs10273639, rs2995271 and rs12688220) that were identified as susceptibility markers for CP and analyzed them in 2,914 PDAC cases, 356 CP cases and 5,596 controls retrospectively collected in the context of the international PANDoRA consortium. We found a weak association between the minor allele of the PRSS1-PRSS2-rs10273639 and an increased risk of developing PDAC (ORhomozygous = 1.19, 95% CI 1.02-1.38, p = 0.023). Additionally all the SNPs confirmed statistically significant associations with risk of developing CP, the strongest being PRSS1-PRSS2-rs10273639 (ORheterozygous = 0.51, 95% CI 0.39-0.67, p = 1.10 × 10-6 ) and MORC4-rs 12837024 (ORhomozygous = 2.07 (1.55-2.77, ptrend = 0.7 × 10-11 ). Taken together, the results from our study do not support variants rs11988997, rs379742, rs10273639, rs2995271 and rs12688220 as strong predictors of PDAC risk, but further support the role of these SNPs in CP susceptibility. Our study suggests that CP and PDAC probably do not share genetic susceptibility, at least in terms of high frequency variants.
Collapse
Affiliation(s)
- Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Manuela Pastore
- Department of Biology, University of Pisa, Pisa, Italy
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, S. Andrea Hospital 'Sapienza' University of Rome, Rome, Italy
| | - Thilo Hackert
- Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Milena Di Leo
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan, Italy
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kay-Tee Khaw
- Clinical Gerontology Unit, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Domenica Gioffreda
- Division of Gastroenterology and Research Laboratory, Department of Surgery, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Claudio Pasquali
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Peter Macinga
- Institute of Experimental Medicine, Czech Academy of Sciences and Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Serena Stigliano
- Digestive and Liver Disease Unit, S. Andrea Hospital 'Sapienza' University of Rome, Rome, Italy
| | - Petra H Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | | | - Pavel Vodicka
- Institute of Experimental Medicine, Czech Academy of Sciences and Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - Roberto Valente
- Digestive and Liver Disease Unit, S. Andrea Hospital 'Sapienza' University of Rome, Rome, Italy
| | - Yogesh K Vashist
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Visceral Surgery, Kantonsspital Aarau AG, Aarau, Switzerland
| | - Roberto Salvia
- Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Ioannis Papaconstantinou
- Second Department of Surgery, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Yasuhiro Shimizu
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Chiara Valsuani
- Oncological Department, Azienda USL Toscana Nord Ovest, Oncological Unit of Massa Carrara, Carrara, Massa and Carrara, Italy
| | | | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Irena Valantiene
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Willem Niesen
- Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Kazuo Hara
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Ewa Malecka-Panas
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - H B As Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, St Mary's Campus, London, United Kingdom
- Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Herman Brenner
- Division of Clinical Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Department of Surgery, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Paola Fogar
- Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Hidemi Ito
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Cosimo Sperti
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Katja Butterbach
- Division of Clinical Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Latiano
- Division of Gastroenterology and Research Laboratory, Department of Surgery, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Angelo Andriulli
- Division of Gastroenterology and Research Laboratory, Department of Surgery, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan, Italy
| | - Olivier R C Busch
- Department of Surgery, Academic Medical Centre, Amsterdam, the Netherlands
| | - Frederike Dijk
- Department of Pathology, Academic Medical Centre, Amsterdam, the Netherlands
| | - William Greenhalf
- Institute for Health Research, Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, United Kingdom
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Carlo Lombardo
- Division of General and Transplant Surgery, University of Pisa, Pisa, Italy
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, University of Pisa, Pisa, Italy
| | - Oliver Strobel
- Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna-Katharina König
- Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Katarina Cuk
- Division of Clinical Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hendrik Strothmann
- Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maurizio Cantore
- Oncological Department, Azienda USL Toscana Nord Ovest, Oncological Unit of Massa Carrara, Carrara, Massa and Carrara, Italy
| | - Andrea Mambrini
- Oncological Department, Azienda USL Toscana Nord Ovest, Oncological Unit of Massa Carrara, Carrara, Massa and Carrara, Italy
| | - Martin Oliverius
- Transplant Surgery Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Raffaele Pezzilli
- Pancreas Unit, Department of Digestive Diseases and Internal Medicine Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
23
|
Zhao D, Xu Y, Li J, Fu S, Xiao F, Song X, Xie Z, Jiang M, He Y, Liu C, Wen Q, Yang X. Association between F508 deletion in CFTR and chronic pancreatitis risk. Dig Liver Dis 2017; 49:967-972. [PMID: 28780053 DOI: 10.1016/j.dld.2017.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND The cystic fibrosis transmembrane conductance regulator (CFTR) has been reported to influence individual susceptibility to chronic pancreatitis (CP), but the results of previous studies are controversial. AIMS We performed a study to demonstrate the relationship between CFTR and CP. METHODS We searched PubMed, Scopus, and Embase for studies of patients with CP. Seven studies from 1995 to 2016 were identified, and included 64,832 patients. Pooled prevalence and 95% confidence intervals (CIs) were calculated. RESULTS F508 deletion in CFTR was significantly positively associated with CP risk in the overall analysis (odds ratio [OR]=3.20, 95% CI: 2.30-4.44, I2=31.7%). In subgroup analysis stratified by ethnicity, F508 deletion was significantly associated with CP risk in Indian populations, using a fixed effects model (ORs=5.45, 95% CI: 2.52-11.79, I2=0.0%), and in non-Indian populations, using a random effects model (ORs=3.59, 95% CI: 1.73-7.48, I2=60.9%). At the same time, we found that Indians with F508 deletion had much higher CP prevalence than non-Indians. Interestingly, F508 deletion was also associated with CP and idiopathic CP risk in subgroup analysis stratified by aeitiology, using the fixed effects model. CONCLUSIONS Based on current evidence, F508 deletion is a risk factor for CP, and Indians with F508 deletion have much higher CP morbidity.
Collapse
Affiliation(s)
- Dong Zhao
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanzhen Xu
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China; Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiatong Li
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China; Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi, China
| | - Shien Fu
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Feifan Xiao
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaowei Song
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China; Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhibin Xie
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China; Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Min Jiang
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Yan He
- Department of Geriatric Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chengwu Liu
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiongxian Wen
- School of Nursing, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiaoli Yang
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
24
|
Zator Z, Whitcomb DC. Insights into the genetic risk factors for the development of pancreatic disease. Therap Adv Gastroenterol 2017; 10:323-336. [PMID: 28246549 PMCID: PMC5305020 DOI: 10.1177/1756283x16684687] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 09/28/2016] [Indexed: 02/04/2023] Open
Abstract
Diseases of the exocrine pancreas such as recurrent acute pancreatitis (RAP), chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC) represent syndromes defined according to traditional clinicopathologic criteria. The failure of traditional approaches to identify primary mechanisms underlying these progressive disorders illustrates a greater problem of failure of the germ theory of disease for complex disorders. Multiple genetic discoveries and new complex disease models force consideration of a new paradigm of 'precision medicine', requiring a new mechanistic definition of CP. Recognizing the advances in understanding complex gene and environment interactions, as well as the development of new strategies that limit or prevent the development of devastating end-stage diseases of the pancreas may lead to substantial improvements in patient care.
Collapse
Affiliation(s)
- Zachary Zator
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
25
|
Shalimar, Midha S, Hasan A, Dhingra R, Garg PK. Long-term pain relief with optimized medical treatment including antioxidants and step-up interventional therapy in patients with chronic pancreatitis. J Gastroenterol Hepatol 2017; 32:270-277. [PMID: 27061119 DOI: 10.1111/jgh.13410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/26/2016] [Accepted: 03/31/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Abdominal pain is difficult to treat in patients with chronic pancreatitis (CP). Medical therapy including antioxidants has been shown to relieve pain of CP in the short-term. Our aim was to study the long-term results of optimized medical and interventional therapy for pain relief in patients with CP with a step-up approach. METHODS All consecutive patients with CP were included prospectively in the study. They were treated medically with a well-balanced diet, pancreatic enzymes, and antioxidants (9000 IU beta-carotene, 0.54 g vitamin C, 270 IU vitamin E, 600 µg organic selenium, and 2 g methionine). Endoscopic therapy and/or surgery were offered if medical therapy failed. Pain relief was the primary outcome measure. RESULTS A total of 313 patients (mean age 26.16 ± 12.17; 244 males) with CP were included; 288 (92%) patients had abdominal pain. The etiology of CP was idiopathic in 224 (71.6%) and alcohol in 82 (26.2%). At 1-year follow-up, significant pain relief was achieved in 84.7% of patients: 52.1% with medical therapy, 16.7% with endoscopic therapy, 7.6% with surgery, and 8.3% spontaneously. The mean pain score decreased from 6.36 ± 1.92 to 1.62 ± 2.10 (P < 0.001). Of the 288 patients, 261, 218, 112, and 51 patients were followed up for 3, 5, 10, and 15 years, respectively; 54.0%, 57.3%, 60.7%, and 68.8% of them became pain free at those follow-up periods. CONCLUSION Significant pain relief is achieved in the majority of patients with optimized medical and interventional treatment.
Collapse
Affiliation(s)
- Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Shallu Midha
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Ajmal Hasan
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Rajan Dhingra
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Pramod Kumar Garg
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
26
|
Koch A, Kang HG, Steinbrenner J, Dempsey DA, Klessig DF, Kogel KH. MORC Proteins: Novel Players in Plant and Animal Health. FRONTIERS IN PLANT SCIENCE 2017; 8:1720. [PMID: 29093720 PMCID: PMC5651269 DOI: 10.3389/fpls.2017.01720] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/20/2017] [Indexed: 05/02/2023]
Abstract
Microrchidia (MORC) proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5 fold. MORC proteins in plants were first discovered via a genetic screen for Arabidopsis mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and transposable element repression. Emerging data suggest that MORC proteins also participate in pathogen-induced chromatin remodeling and epigenetic gene regulation. In addition, biochemical analyses recently demonstrated that plant MORCs have topoisomerase II (topo II)-like DNA modifying activities that may be important for their function. Interestingly, animal MORC proteins exhibit many parallels with their plant counterparts, as they have been implicated in disease development and gene silencing. In addition, human MORCs, like plant MORCs, bind salicylic acid and this inhibits some of their topo II-like activities. In this review, we will focus primarily on plant MORCs, although relevant comparisons with animal MORCs will be provided.
Collapse
Affiliation(s)
- Aline Koch
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Hong-Gu Kang
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Jens Steinbrenner
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
- *Correspondence: Daniel F. Klessig
| | - Karl-Heinz Kogel
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
- Karl-Heinz Kogel
| |
Collapse
|
27
|
Hong G, Qiu H, Wang C, Jadhav G, Wang H, Tickner J, He W, Xu J. The Emerging Role of MORC Family Proteins in Cancer Development and Bone Homeostasis. J Cell Physiol 2016; 232:928-934. [PMID: 27791268 DOI: 10.1002/jcp.25665] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 01/13/2023]
Abstract
Microrchidia (MORC or MORC family CW-type zinc finger protein), a highly conserved nuclear protein superfamily, is an interesting new player in signaling-dependent chromatin remodeling and epigenetic regulation. MORC family proteins consist of MORC1, MORC2, MORC3, and MORC4 which display common structural determinants such as CW-type zinc finger and coiled-coil domains. They also exhibit unique structural motifs and tissue-specific expression profiles. MORC1 was first discovered as a key regulator for male meiosis and spermatogenesis. Accumulating biochemical and functional analyses unveil MORC proteins as key regulators for cancer development. More recently, using an ENU mutagenesis mouse model, MORC3 was found to play a role in regulating bone and calcium homeostasis. Here we discuss recent research progress on the emerging role of MORC proteins in cancer development and bone metabolism. Unravelling the cellular and molecular mechanisms by which MORC proteins carry out their functions in a tissue specific manner are important subjects for future investigation. J. Cell. Physiol. 232: 928-934, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guoju Hong
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,School of Pathology Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Heng Qiu
- School of Pathology Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Chao Wang
- School of Pathology Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Gaurav Jadhav
- School of Pathology Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Haibin Wang
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Jennifer Tickner
- School of Pathology Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Wei He
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Jiake Xu
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,School of Pathology Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
28
|
Garg PK, Narayana D. Changing phenotype and disease behaviour of chronic pancreatitis in India: evidence for gene-environment interactions. Glob Health Epidemiol Genom 2016; 1:e17. [PMID: 29868209 PMCID: PMC5870434 DOI: 10.1017/gheg.2016.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The idiopathic variety of chronic pancreatitis (CP) in India particularly in Kerala state was earlier called 'tropical pancreatitis' with peculiar features: early age of onset, severe malnutrition, diabetes and poor prognosis. A change in disease phenotype and behaviour has been observed recently. OBJECTIVE To review the changing profile of CP in India and examine its relationship with environmental influences and socio-economic development. METHODS Relevant studies on CP in India were reviewed along with social and economic parameters in Kerala over the past 4 decades. RESULTS There has been a definite change in the phenotype of CP in India with onset in mid twenties, better nutritional status, and a much better prognosis compared with the reports in 1970s. Genetic susceptibility due to genetic mutations particularly in SPINK1, CFTR, CTRC, and CLDN2/MORC4 genes is the most important factor and not malnutrition or dietary toxins for idiopathic CP suggesting the term 'tropical pancreatitis' is a misnomer. We observed a close relationship between socio-economic development and rising income in Kerala with late onset of disease, nutritional status, and better prognosis of CP. CONCLUSION Changing profile of CP in India and better understanding of risk factors provide evidence for gene-environmental interactions in its pathobiology.
Collapse
Affiliation(s)
- P. K. Garg
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - D. Narayana
- State Planning Board, Government of Kerala, India
| |
Collapse
|