1
|
Hu C, Wang Y, Wang W, Cui W, Jia X, Mayo KH, Zhou Y, Su J, Yuan Y. A trapped covalent intermediate as a key catalytic element in the hydrolysis of a GH3 β-glucosidase: An X-ray crystallographic and biochemical study. Int J Biol Macromol 2024; 265:131131. [PMID: 38527679 DOI: 10.1016/j.ijbiomac.2024.131131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Glycoside hydrolases (GHs) are industrially important enzymes that hydrolyze glycosidic bonds in glycoconjugates. In this study, we found a GH3 β-glucosidase (CcBgl3B) from Cellulosimicrobium cellulans sp. 21 was able to selectively hydrolyze the β-1,6-glucosidic bond linked glucose of ginsenosides. X-ray crystallographic studies of the ligand complex ginsenoside-specific β-glucosidase provided a novel finding that support the catalytic mechanism of GH3. The substrate was clearly identified within the catalytic center of wild-type CcBgl3B, revealing that the C1 atom of the glucose was covalently bound to the Oδ1 group of the conserved catalytic nucleophile Asp264 as an enzyme-glycosyl intermediate. The glycosylated Asp264 could be identified by mass spectrometry. Through site-directed mutagenesis studies with Asp264, it was found that the covalent intermediate state formed by Asp264 and the substrate was critical for catalysis. In addition, Glu525 variants (E525A, E525Q and E525D) showed no or marginal activity against pNPβGlc; thus, this residue could supply a proton for the reaction. Overall, our study provides an insight into the catalytic mechanism of the GH3 enzyme CcBgl3B.
Collapse
Affiliation(s)
- Chenxing Hu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yibing Wang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Weiyang Wang
- College of Life Science and Technology, Changchun University of Science & Technology, Changchun, Jilin 130022, China
| | - Wanli Cui
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xinyue Jia
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jiyong Su
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Ye Yuan
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
2
|
Tanaka N, Saito R, Kobayashi K, Nakai H, Kamo S, Kuramochi K, Taguchi H, Nakajima M, Masaike T. Functional and structural analysis of a cyclization domain in a cyclic β-1,2-glucan synthase. Appl Microbiol Biotechnol 2024; 108:187. [PMID: 38300345 PMCID: PMC10834661 DOI: 10.1007/s00253-024-13013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
Cyclic β-1,2-glucan synthase (CGS) is a key enzyme in production of cyclic β-1,2-glucans (CβGs) which are involved in bacterial infection or symbiosis to host organisms. Nevertheless, a mechanism of cyclization, the final step in the CGS reaction, has not been fully understood. Here we performed functional and structural analyses of the cyclization domain of CGS alone from Thermoanaerobacter italicus (TiCGSCy). We first found that β-glucosidase-resistant compounds are produced by TiCGSCy with linear β-1,2-glucans as substrates. The 1H-NMR analysis revealed that these products are CβGs. Next, action pattern analyses using β-1,2-glucooligosaccharides revealed a unique reaction pattern: exclusive transglycosylation without hydrolysis and a hexasaccharide being the minimum length of the substrate. These analyses also showed that longer substrate β-1,2-glucooligosaccharides are preferred, being consistent with the fact that CGSs generally produce CβGs with degrees of polymerization of around 20. Finally, the overall structure of the cyclization domain of TiCGSCy was found to be similar to those of β-1,2-glucanases in phylogenetically different groups. Meanwhile, the identified catalytic residues indicated clear differences in the reaction pathways between these enzymes. Overall, we propose a novel reaction mechanism of TiCGSCy. Thus, the present group of CGSs defines a new glycoside hydrolase family, GH189. KEY POINTS: • It was clearly evidenced that cyclization domain alone produces cyclic β-1,2-glucans. • The domain exclusively catalyzes transglycosylation without hydrolysis. • The present catalytic domain defines as a new glycoside hydrolase family 189.
Collapse
Affiliation(s)
- Nobukiyo Tanaka
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Ryotaro Saito
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kaito Kobayashi
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-Ku, Tokyo, 135-0064, Japan
| | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Shogo Kamo
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hayao Taguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Tomoko Masaike
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
3
|
Yanai T, Takahashi Y, Katsumura E, Sakai N, Takeshita K, Imaizumi R, Matsuura H, Hongo S, Waki T, Takahashi S, Yamamoto M, Kataoka K, Nakayama T, Yamashita S. Structural insights into a bacterial β-glucosidase capable of degrading sesaminol triglucoside to produce sesaminol: toward the understanding of the aglycone recognition mechanism by the C-terminal lid domain. J Biochem 2023; 174:335-344. [PMID: 37384427 DOI: 10.1093/jb/mvad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023] Open
Abstract
The sesaminol triglucoside (STG)-hydrolyzing β-glucosidase from Paenibacillus sp. (PSTG1), which belongs to glycoside hydrolase family 3 (GH3), is a promising catalyst for the industrial production of sesaminol. We determined the X-ray crystal structure of PSTG1 with bound glycerol molecule in the putative active site. PSTG1 monomer contained typical three domains of GH3 with the active site in domain 1 (TIM barrel). In addition, PSTG1 contained an additional domain (domain 4) at the C-terminus that interacts with the active site of the other protomer as a lid in the dimer unit. Interestingly, the interface of domain 4 and the active site forms a hydrophobic cavity probably for recognizing the hydrophobic aglycone moiety of substrate. The short flexible loop region of TIM barrel was found to be approaching the interface of domain 4 and the active site. We found that n-heptyl-β-D-thioglucopyranoside detergent acts as an inhibitor for PSTG1. Thus, we propose that the recognition of hydrophobic aglycone moiety is important for PSTG1-catalyzed reactions. Domain 4 might be a potential target for elucidating the aglycone recognition mechanism of PSTG1 as well as for engineering PSTG1 to create a further excellent enzyme to degrade STG more efficiently to produce sesaminol.
Collapse
Key Words
- glycoside hydrolase family 3
- sesaminol triglucoside
- β-glucosidase.Abbreviations: STG, sesaminol triglucoside; PSTG1, STG-hydrolyzing β-glucosidase from Paenibacillus sp; GH3, Glycoside Hydrolase Family 3; TIM, Triosephosphate isomerase, Fn-III, Fibronectin type III; 2-SDG, 2-O-(β-D-glucopyranosyl)-β-D-glucopyranosylsesaminol; 6-SDG, 6-O-(β-D-glucopyranosyl)-β-D-glucopyranosylsesaminol; SMG, β-D-glucopyranosylsesaminol; HTG, n-Heptyl-beta-D-thioglucopyranoside; OTG, n-Octyl-β-D-glucoside; pNP-β-Glc, p-Nitrophenyl-β-D-glucopyranoside
Collapse
Affiliation(s)
- Taro Yanai
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Yukino Takahashi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Eri Katsumura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Naoki Sakai
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kohei Takeshita
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Riki Imaizumi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Hiroaki Matsuura
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shuntaro Hongo
- Graduate School of Engineering, Tohoku University, Aoba 6-6-11, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Toshiyuki Waki
- Graduate School of Engineering, Tohoku University, Aoba 6-6-11, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Seiji Takahashi
- Graduate School of Engineering, Tohoku University, Aoba 6-6-11, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kunishige Kataoka
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Toru Nakayama
- Graduate School of Engineering, Tohoku University, Aoba 6-6-11, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Satoshi Yamashita
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| |
Collapse
|
4
|
Motouchi S, Kobayashi K, Nakai H, Nakajima M. Identification of enzymatic functions of osmo-regulated periplasmic glucan biosynthesis proteins from Escherichia coli reveals a novel glycoside hydrolase family. Commun Biol 2023; 6:961. [PMID: 37735577 PMCID: PMC10514313 DOI: 10.1038/s42003-023-05336-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Most Gram-negative bacteria synthesize osmo-regulated periplasmic glucans (OPG) in the periplasm or extracellular space. Pathogenicity of many pathogens is lost by knocking out opgG, an OPG-related gene indispensable for OPG synthesis. However, the biochemical functions of OpgG and OpgD, a paralog of OpgG, have not been elucidated. In this study, structural and functional analyses of OpgG and OpgD from Escherichia coli revealed that these proteins are β-1,2-glucanases with remarkably different activity from each other, establishing a new glycoside hydrolase family, GH186. Furthermore, a reaction mechanism with an unprecedentedly long proton transfer pathway among glycoside hydrolase families is proposed for OpgD. The conformation of the region that forms the reaction pathway differs noticeably between OpgG and OpgD, which explains the observed low activity of OpgG. The findings enhance our understanding of OPG biosynthesis and provide insights into functional diversity for this novel enzyme family.
Collapse
Affiliation(s)
- Sei Motouchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda Chiba, 278-8510, Japan
| | - Kaito Kobayashi
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan
| | - Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda Chiba, 278-8510, Japan.
| |
Collapse
|
5
|
Long C, Qi XL, Venema K. Chemical and nutritional characteristics, and microbial degradation of rapeseed meal recalcitrant carbohydrates: A review. Front Nutr 2022; 9:948302. [PMID: 36245487 PMCID: PMC9554435 DOI: 10.3389/fnut.2022.948302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Approximately 35% of rapeseed meal (RSM) dry matter (DM) are carbohydrates, half of which are water-soluble carbohydrates. The cell wall of rapeseed meal contains arabinan, galactomannan, homogalacturonan, rhamnogalacturonan I, type II arabinogalactan, glucuronoxylan, XXGG-type and XXXG-type xyloglucan, and cellulose. Glycoside hydrolases including in the degradation of RSM carbohydrates are α-L-Arabinofuranosidases (EC 3.2.1.55), endo-α-1,5-L-arabinanases (EC 3.2.1.99), Endo-1,4-β-mannanase (EC 3.2.1.78), β-mannosidase (EC 3.2.1.25), α-galactosidase (EC 3.2.1.22), reducing-end-disaccharide-lyase (pectate disaccharide-lyase) (EC 4.2.2.9), (1 → 4)-6-O-methyl-α-D-galacturonan lyase (pectin lyase) (EC 4.2.2.10), (1 → 4)-α-D-galacturonan reducing-end-trisaccharide-lyase (pectate trisaccharide-lyase) (EC 4.2.2.22), α-1,4-D-galacturonan lyase (pectate lyase) (EC 4.2.2.2), (1 → 4)-α-D-galacturonan glycanohydrolase (endo-polygalacturonase) (EC 3.2.1.15), Rhamnogalacturonan hydrolase, Rhamnogalacturonan lyase (EC 4.2.2.23), Exo-β-1,3-galactanase (EC 3.2.1.145), endo-β-1,6-galactanase (EC 3.2.1.164), Endo-β-1,4-glucanase (EC 3.2.1.4), α-xylosidase (EC 3.2.1.177), β-glucosidase (EC 3.2.1.21) endo-β-1,4-glucanase (EC 3.2.1.4), exo-β-1,4-glucanase (EC 3.2.1.91), and β-glucosidase (EC 3.2.1.21). In conclusion, this review summarizes the chemical and nutritional compositions of RSM, and the microbial degradation of RSM cell wall carbohydrates which are important to allow to develop strategies to improve recalcitrant RSM carbohydrate degradation by the gut microbiota, and eventually to improve animal feed digestibility, feed efficiency, and animal performance.
Collapse
Affiliation(s)
- Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
- Faculty of Science and Engineering, Centre for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, Venlo, Netherlands
| | - Xiao-Long Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Koen Venema
- Faculty of Science and Engineering, Centre for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, Venlo, Netherlands
- *Correspondence: Koen Venema
| |
Collapse
|
6
|
Matsuzawa T, Watanabe M, Nakamichi Y, Akita H, Yaoi K. Structural basis for the catalytic mechanism of the glycoside hydrolase family 3 isoprimeverose-producing oligoxyloglucan hydrolase from Aspergillus oryzae. FEBS Lett 2022; 596:1944-1954. [PMID: 35717558 DOI: 10.1002/1873-3468.14427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/07/2022]
Abstract
Aspergillus oryzae isoprimeverose-producing oligoxyloglucan hydrolase (IpeA) releases isoprimeverose units (α-d-xylopyranosyl-(1→6)-d-glucose) from the non-reducing end of xyloglucan oligosaccharides and belongs to glycoside hydrolase family 3. In this paper, we report the X-ray crystal structure of the IpeA complexed with a xyloglucan oligosaccharide, (XXXG: Glc4 Xyl3 ). Trp515 of IpeA plays a critical role in XXXG recognition at positive subsites. In addition, docking simulation of IpeA-XXXG suggested that two Tyr residues (Tyr268 and Tyr445) are involved in the catalytic reaction mechanism of IpeA. Tyr268 plays an important role in product turnover, whereas Tyr445 stabilizes the acid/base Glu524 residue, which serves as a proton donor. Our findings indicate that the substrate recognition machinery of IpeA is specifically adapted to xyloglucan oligosaccharides.
Collapse
Affiliation(s)
- Tomohiko Matsuzawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Japan
| | - Masahiro Watanabe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, Japan
| | - Yusuke Nakamichi
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, Japan
| | - Hironaga Akita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
7
|
Hu Y, Zhai L, Hong H, Shi Z, Zhao J, Liu D. Study on the Biochemical Characterization and Selectivity of Three β-Glucosidases From Bifidobacterium adolescentis ATCC15703. Front Microbiol 2022; 13:860014. [PMID: 35464910 PMCID: PMC9024363 DOI: 10.3389/fmicb.2022.860014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
Three β-glucosidases from Bifidobacterium adolescentis ATCC15703, namely, BaBgl1A, BaBgl3A, and BaBgl3B, were overexpressed in Escherichia coli. The recombinant β-glucosidases were sufficiently purified using Ni2+ affinity chromatography, and BaBgl1A exhibited the best purification efficiency with a purification factor of 2.3-fold and specific activity of 71.2 U/mg. Three recombinant β-glucosidases acted on p-nitrophenyl-β-glucopyranoside (pNPβGlc) at around pH 7.0 and 30–50°C. The results of the substrate specificity assay suggested that BaBgl1A acted exclusively as β-1,2-glucosidase, while BaBgl3A and BaBgl3B acted mostly as β-1,3-glucosidase and β-1,4-glucosidase, respectively. The substrate specificity of the three recombinant enzymes was further studied using the ginsenosides Rb1 and Rd as substrates. The results of thin-layer chromatography and high-performance liquid chromatography analyses showed that BaBgl1A exhibited the highest bioconversion ability on Rb1 and Rd, where it hydrolyzed the outer C-3 glucose moieties of Rb1 and Rd into the rare ginsenosides Gypenoside XVII and F2; BaBgl3A exhibited medium bioconversion ability on Rb1, where it hydrolyzed both the outer C-3 and C-20 glucose moieties of Rb1 into Gyp XVII and Rd; and BaBgl3B was not active on Rb1 and Rd. These β-glucosidases will act as new biocatalytic tools for transforming ginsenosides and preparing active glycosides and aglycone.
Collapse
Affiliation(s)
- Yanbo Hu
- School of Food Science and Engineering, Changchun University, Changchun, China
| | - Liyuan Zhai
- School of Food Science and Engineering, Changchun University, Changchun, China
| | - Huili Hong
- School of Food Science and Engineering, Changchun University, Changchun, China
| | - Zenghui Shi
- School of Food Science and Engineering, Changchun University, Changchun, China
| | - Jun Zhao
- School of Food Science and Engineering, Changchun University, Changchun, China
- *Correspondence: Jun Zhao,
| | - Duo Liu
- School of Food Science and Engineering, Changchun University, Changchun, China
- School of Life Sciences, Changchun Normal University, Changchun, China
- Duo Liu,
| |
Collapse
|
8
|
Kojima K, Sunagawa N, Mikkelsen NE, Hansson H, Karkehabadi S, Samejima M, Sandgren M, Igarashi K. Comparison of Glycoside Hydrolase family 3 β-xylosidases from basidiomycetes and ascomycetes reveals evolutionarily distinct xylan degradation systems. J Biol Chem 2022; 298:101670. [PMID: 35120929 PMCID: PMC8913315 DOI: 10.1016/j.jbc.2022.101670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/28/2022] Open
Abstract
Xylan is the most common hemicellulose in plant cell walls, though the structure of xylan polymers differs between plant species. Here, to gain a better understanding of fungal xylan degradation systems, which can enhance enzymatic saccharification of plant cell walls in industrial processes, we conducted a comparative study of two glycoside hydrolase family 3 (GH3) β-xylosidases (Bxls), one from the basidiomycete Phanerochaete chrysosporium (PcBxl3), and the other from the ascomycete Trichoderma reesei (TrXyl3A). A comparison of the crystal structures of the two enzymes, both with saccharide bound at the catalytic center, provided insight into the basis of substrate binding at each subsite. PcBxl3 has a substrate-binding pocket at subsite -1, while TrXyl3A has an extra loop that contains additional binding subsites. Furthermore, kinetic experiments revealed that PcBxl3 degraded xylooligosaccharides faster than TrXyl3A, while the KM values of TrXyl3A were lower than those of PcBxl3. The relationship between substrate specificity and degree of polymerization of substrates suggested that PcBxl3 preferentially degrades xylobiose (X2), while TrXyl3A degrades longer xylooligosaccharides. Moreover, docking simulation supported the existence of extended positive subsites of TrXyl3A in the extra loop located at the N-terminus of the protein. Finally, phylogenetic analysis suggests that wood-decaying basidiomycetes use Bxls such as PcBxl3 that act efficiently on xylan structures from woody plants, whereas molds use instead Bxls that efficiently degrade xylan from grass. Our results provide added insights into fungal efficient xylan degradation systems.
Collapse
Affiliation(s)
- Keisuke Kojima
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nils Egil Mikkelsen
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - Henrik Hansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - Saeid Karkehabadi
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - Masahiro Samejima
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Faculty of Engineering, Shinshu University, 4-17-1, Wakasato, Nagano 380-8533, Japan
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; VTT Technical Research Centre of Finland, PO Box 1000, Tietotie 2, Espoo FI-02044 VTT, Finland.
| |
Collapse
|
9
|
Kobayashi K, Shimizu H, Tanaka N, Kuramochi K, Nakai H, Nakajima M, Taguchi H. Characterization and structural analyses of a novel glycosyltransferase acting on the β-1,2-glucosidic linkages. J Biol Chem 2022; 298:101606. [PMID: 35065074 PMCID: PMC8861115 DOI: 10.1016/j.jbc.2022.101606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 10/26/2022] Open
|
10
|
Yan Z, Cao X, Yang X, Yang S, Xu L, Jiang X, Xiao M. A Novel β-Glucosidase From Chryseobacterium scophthalmum 1433 for Efficient Rubusoside Production From Stevioside. Front Microbiol 2021; 12:744914. [PMID: 34712213 PMCID: PMC8546341 DOI: 10.3389/fmicb.2021.744914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
As a natural sweetening and solubilizing agent, rubusoside has great potential in the application of healthy beverages and pharmaceuticals. However, the direct extraction and purification of rubusoside from raw materials is inefficient. In this work, a novel β-glucosidase (CsBGL) was obtained from Chryseobacterium scophthalmum 1433 through screening of the environmental microorganisms. CsBGL markedly hydrolyzed sophorese (Glcβ1-2Glc) and laminaribiose (Glcβ1-3Glc), but for steviol glycosides, it only hydrolyzed the C-13/C-19-linked sophorese, instead of the C-13/C-19-linked Glcβ1-2[Glcβ1-3]Glc trisaccharide and Glcβ1-monosaccharide. It efficiently hydrolyzed stevioside (240 g/L) to produce rubusoside (99% yield) at 47.5°C for 70 min. Even when using a crude steviol glycosides extract (500 g/L) containing ∼226 g/L stevioside as the substrate, CsBGL could also convert stevioside to rubusoside (99% yield) at 47.5°C for 2 h, in which the rubusoside concentration increased from the initial 42 g/L to the final 222 g/L. These results reveal that CsBGL would be a promising biocatalyst for the industry-scale production of rubusoside from stevioside or/and the crude steviol glycosides extract.
Collapse
Affiliation(s)
- Zhenxin Yan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xueting Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiao Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shida Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Li Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
| | - Min Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
| |
Collapse
|
11
|
Chandravanshi M, Samanta R, Kanaujia SP. Conformational Trapping of a β-Glucosides-Binding Protein Unveils the Selective Two-Step Ligand-Binding Mechanism of ABC Importers. J Mol Biol 2020; 432:5711-5734. [PMID: 32866452 DOI: 10.1016/j.jmb.2020.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022]
Abstract
Substrate-binding proteins (SBPs), selectively capture ligand(s) and ensure their translocation via its cognate ATP-binding cassette (ABC) import system. SBPs bind their cognate ligand(s) via an induced-fit mechanism known as the "Venus Fly-trap"; however, this mechanism lacks the atomic details of all conformational landscape as the confirmatory evidence(s) in its support. In this study, we delineate the atomic details of an SBP, β-glucosides-binding protein (βGlyBP) from Thermus thermophilus HB8. The protein βGlyBP is multi-specific and binds to different types of β-glucosides varying in their glycosidic linkages viz. β-1,2; β-1,3; β-1,4 and β-1,6 with a degree of polymerization of 2-5 glucosyl units. Structurally, the protein βGlyBP possesses four subdomains (N1, N2, C1 and C2). The unliganded protein βGlyBP remains in an open state, which closes upon binding to sophorose (SOP2), laminari-oligosaccharides (LAMn), cello-oligosaccharides (CELn), and gentiobiose (GEN2). This study reports, for the first time, four different structural states (open-unliganded, partial-open-unliganded, open-liganded and closed-liganded) of the protein βGlyBP, revealing its conformational changes upon ligand binding and suggesting a two-step induced-fit mechanism. Further, results suggest that the conformational changes of N1 and C1 subdomains drive the ligand binding, unlike that of the whole N- and C-terminal domains (NTD and CTD) as known in the "Venus Fly-trap" mechanism. Additionally, profiling of stereo-selection mechanism for α- and β-glucosides reveals that in the ligand-binding site four secondary structural elements (L1, H1, H2 and H3) drive the ligand selection. In summary, results demonstrate that the details of conformational changes and ligand selection are pre-encoded in the SBPs.
Collapse
Affiliation(s)
- Monika Chandravanshi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Reshama Samanta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
12
|
Méndez-Líter JA, Nieto-Domínguez M, Fernández de Toro B, González Santana A, Prieto A, Asensio JL, Cañada FJ, de Eugenio LI, Martínez MJ. A glucotolerant β-glucosidase from the fungus Talaromyces amestolkiae and its conversion into a glycosynthase for glycosylation of phenolic compounds. Microb Cell Fact 2020; 19:127. [PMID: 32522206 PMCID: PMC7288487 DOI: 10.1186/s12934-020-01386-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 06/04/2020] [Indexed: 12/23/2022] Open
Abstract
Background The interest for finding novel β-glucosidases that can improve the yields to produce second-generation (2G) biofuels is still very high. One of the most desired features for these enzymes is glucose tolerance, which enables their optimal activity under high-glucose concentrations. Besides, there is an additional focus of attention on finding novel enzymatic alternatives for glycoside synthesis, for which a mutated version of glycosidases, named glycosynthases, has gained much interest in recent years. Results In this work, a glucotolerant β-glucosidase (BGL-1) from the ascomycete fungus Talaromyces amestolkiae has been heterologously expressed in Pichia pastoris, purified, and characterized. The enzyme showed good efficiency on p-nitrophenyl glucopyranoside (pNPG) (Km= 3.36 ± 0.7 mM, kcat= 898.31 s−1), but its activity on cellooligosaccharides, the natural substrates of these enzymes, was much lower, which could limit its exploitation in lignocellulose degradation applications. Interestingly, when examining the substrate specificity of BGL-1, it showed to be more active on sophorose, the β-1,2 disaccharide of glucose, than on cellobiose. Besides, the transglycosylation profile of BGL-1 was examined, and, for expanding its synthetic capacities, it was converted into a glycosynthase. The mutant enzyme, named BGL-1-E521G, was able to use α-d-glucosyl-fluoride as donor in glycosylation reactions, and synthesized glucosylated derivatives of different pNP-sugars in a regioselective manner, as well as of some phenolic compounds of industrial interest, such as epigallocatechin gallate (EGCG). Conclusions In this work, we report the characterization of a novel glucotolerant 1,2-β-glucosidase, which also has a considerable activity on 1,4-β-glucosyl bonds, that has been cloned in P. pastoris, produced, purified and characterized. In addition, the enzyme was converted into an efficient glycosynthase, able to transfer glucose molecules to a diversity of acceptors for obtaining compounds of interest. The remarkable capacities of BGL-1 and its glycosynthase mutant, both in hydrolysis and synthesis, suggest that it could be an interesting tool for biotechnological applications.
Collapse
Affiliation(s)
- Juan Antonio Méndez-Líter
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Manuel Nieto-Domínguez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Fernández de Toro
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Andrés González Santana
- Glycochemistry and Molecular Recognition Group, Instituto de Química Orgánica General (IQOG-CSIC), Calle Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Alicia Prieto
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan Luis Asensio
- Glycochemistry and Molecular Recognition Group, Instituto de Química Orgánica General (IQOG-CSIC), Calle Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Francisco Javier Cañada
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Laura Isabel de Eugenio
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María Jesús Martínez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
13
|
Characterization and diversity of the complete set of GH family 3 enzymes from Rhodothermus marinus DSM 4253. Sci Rep 2020; 10:1329. [PMID: 31992772 PMCID: PMC6987092 DOI: 10.1038/s41598-020-58015-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/07/2020] [Indexed: 11/08/2022] Open
Abstract
The genome of Rhodothermus marinus DSM 4253 encodes six glycoside hydrolases (GH) classified under GH family 3 (GH3): RmBgl3A, RmBgl3B, RmBgl3C, RmXyl3A, RmXyl3B and RmNag3. The biochemical function, modelled 3D-structure, gene cluster and evolutionary relationships of each of these enzymes were studied. The six enzymes were clustered into three major evolutionary lineages of GH3: β-N-acetyl-glucosaminidases, β-1,4-glucosidases/β-xylosidases and macrolide β-glucosidases. The RmNag3 with additional β-lactamase domain clustered with the deepest rooted GH3-lineage of β-N-acetyl-glucosaminidases and was active on acetyl-chitooligosaccharides. RmBgl3B displayed β-1,4-glucosidase activity and was the only representative of the lineage clustered with macrolide β-glucosidases from Actinomycetes. The β-xylosidases, RmXyl3A and RmXyl3B, and the β-glucosidases RmBgl3A and RmBgl3C clustered within the major β-glucosidases/β-xylosidases evolutionary lineage. RmXyl3A and RmXyl3B showed β-xylosidase activity with different specificities for para-nitrophenyl (pNP)-linked substrates and xylooligosaccharides. RmBgl3A displayed β-1,4-glucosidase/β-xylosidase activity while RmBgl3C was active on pNP-β-Glc and β-1,3-1,4-linked glucosyl disaccharides. Putative polysaccharide utilization gene clusters were also investigated for both R. marinus DSM 4253 and DSM 4252T (homolog strain). The analysis showed that in the homolog strain DSM 4252TRmar_1080 (RmXyl3A) and Rmar_1081 (RmXyl3B) are parts of a putative polysaccharide utilization locus (PUL) for xylan utilization.
Collapse
|
14
|
Mahasenan KV, Batuecas MT, De Benedetti S, Kim C, Rana N, Lee M, Hesek D, Fisher JF, Sanz-Aparicio J, Hermoso JA, Mobashery S. Catalytic Cycle of Glycoside Hydrolase BglX from Pseudomonas aeruginosa and Its Implications for Biofilm Formation. ACS Chem Biol 2020; 15:189-196. [PMID: 31877028 PMCID: PMC7995829 DOI: 10.1021/acschembio.9b00754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BglX is a heretofore uncharacterized periplasmic glycoside hydrolase (GH) of the human pathogen Pseudomonas aeruginosa. X-ray analysis identifies it as a protein homodimer. The two active sites of the homodimer comprise catalytic residues provided by each monomer. This arrangement is seen in <2% of the hydrolases of known structure. In vitro substrate profiling shows BglX is a catalyst for β-(1→2) and β-(1→3) saccharide hydrolysis. Saccharides with β-(1→4) or β-(1→6) bonds, and the β-(1→4) muropeptides from the cell-wall peptidoglycan, are not substrates. Additional structural insights from X-ray analysis (including structures of a mutant enzyme-derived Michaelis complex, two transition-state mimetics, and two enzyme-product complexes) enabled the comprehensive description of BglX catalysis. The half-chair (4H3) conformation of the transition-state oxocarbenium species, the approach of the hydrolytic water molecule to the oxocarbenium species, and the stepwise release of the two reaction products were also visualized. The substrate pattern for BglX aligns with the [β-(1→2)-Glc]x and [β-(1→3)-Glc]x periplasmic osmoregulated periplasmic glucans, and possibly with the Psl exopolysaccharides, of P. aeruginosa. Both polysaccharides are implicated in biofilm formation. Accordingly, we show that inactivation of the bglX gene of P. aeruginosa PAO1 attenuates biofilm formation.
Collapse
Affiliation(s)
- Kiran V Mahasenan
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - María T Batuecas
- Department of Crystallography and Structural Biology , Institute of Physical Chemistry "Rocasolano", CSIC , 28006 Madrid , Spain
| | - Stefania De Benedetti
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Choon Kim
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Neha Rana
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Mijoon Lee
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Dusan Hesek
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Jed F Fisher
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Julia Sanz-Aparicio
- Department of Crystallography and Structural Biology , Institute of Physical Chemistry "Rocasolano", CSIC , 28006 Madrid , Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology , Institute of Physical Chemistry "Rocasolano", CSIC , 28006 Madrid , Spain
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
15
|
Itoh T, Araki T, Nishiyama T, Hibi T, Kimoto H. Structural and functional characterization of a glycoside hydrolase family 3 β-N-acetylglucosaminidase from Paenibacillus sp. str. FPU-7. J Biochem 2019; 166:503-515. [DOI: 10.1093/jb/mvz072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/11/2019] [Indexed: 11/14/2022] Open
Abstract
AbstractChitin, a β-1,4-linked homopolysaccharide of N-acetyl-d-glucosamine (GlcNAc), is one of the most abundant biopolymers on Earth. Paenibacillus sp. str. FPU-7 produces several different chitinases and converts chitin into N,N′-diacetylchitobiose ((GlcNAc)2) in the culture medium. However, the mechanism by which the Paenibacillus species imports (GlcNAc)2 into the cytoplasm and divides it into the monomer GlcNAc remains unclear. The gene encoding Paenibacillus β-N-acetyl-d-glucosaminidase (PsNagA) was identified in the Paenibacillus sp. str. FPU-7 genome using an expression cloning system. The deduced amino acid sequence of PsNagA suggests that the enzyme is a part of the glycoside hydrolase family 3 (GH3). Recombinant PsNagA was successfully overexpressed in Escherichia coli and purified to homogeneity. As assessed by gel permeation chromatography, the enzyme exists as a 57-kDa monomer. PsNagA specifically hydrolyses chitin oligosaccharides, (GlcNAc)2–4, 4-nitrophenyl N-acetyl β-d-glucosamine (pNP-GlcNAc) and pNP-(GlcNAc)2–6, but has no detectable activity against 4-nitrophenyl β-d-glucose, 4-nitrophenyl β-d-galactosamine and colloidal chitin. In this study, we present a 1.9 Å crystal structure of PsNagA bound to GlcNAc. The crystal structure reveals structural features related to substrate recognition and the catalytic mechanism of PsNagA. This is the first study on the structural and functional characterization of a GH3 β-N-acetyl-d-glucosaminidase from Paenibacillus sp.
Collapse
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Tomomitsu Araki
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Tomohiro Nishiyama
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Takao Hibi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Hisashi Kimoto
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| |
Collapse
|
16
|
Kobayashi K, Nakajima M, Aramasa H, Kimura S, Iwata T, Nakai H, Taguchi H. Large-scale preparation of β-1,2-glucan using quite a small amount of sophorose. Biosci Biotechnol Biochem 2019; 83:1867-1874. [PMID: 31189457 DOI: 10.1080/09168451.2019.1630257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A large amount of β-1,2-glucan was produced enzymatically from quite a small amount of sophorose as an acceptor material through three synthesis steps using a sucrose phosphorylase and a 1,2-β-oligoglucan phosphorylase. The first synthesis step was performed in a 200 μL of a reaction solution containing 5 mM sophorose and 1.0 M sucrose. β-1,2-Glucan in a part of the resultant solution was hydrolyzed to β-1,2-glucooligosaccharides by a β-1,2-glucanase. The second synthesis was performed in 25 times the volume for the first synthesis. The hydrolysate solution (1% volume of the reaction solution) was used as an acceptor. After treatment with the β-1,2-glucanase again, the third synthesis was performed 200 times the volume for the second synthesis (1 L). The reaction yield of β-1,2-glucan at each synthesis was 93%, 76% and 91%. Finally, more than 140 g of β-1,2-glucan was synthesized using approximately 20 μg of sophorose as the starting acceptor material. Abbreviations: DPs: degrees of polymerization; SOGP: 1,2-β-oligoglucan phosphorylase; Sopns: β-1,2-glucooligosaccharides with DP of n; Glc1P: α-glucose 1-phosphate; SucP: sucrose phosphorylase from Bifidobacterium longum subsp. longum; SGL: β-1,2-glucanase; CaSGL: Chy400_4174 protein; TLC: thin layer chromatography; GOPOD: glucose oxidase/peroxidase; PGM: phosphoglucomutase; G6PDH: glucose 6-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Kaito Kobayashi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science , Chiba , Japan
| | - Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science , Chiba , Japan
| | - Hiroki Aramasa
- Faculty of Agriculture, Niigata University , Niigata , Japan
| | - Satoshi Kimura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo , Japan.,Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University , Gyeonggi-do , Republic of Korea
| | - Tadahisa Iwata
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo , Japan
| | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University , Niigata , Japan
| | - Hayao Taguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science , Chiba , Japan
| |
Collapse
|
17
|
Fang W, Sanz AB, Bartual SG, Wang B, Ferenbach AT, Farkaš V, Hurtado-Guerrero R, Arroyo J, van Aalten DMF. Mechanisms of redundancy and specificity of the Aspergillus fumigatus Crh transglycosylases. Nat Commun 2019; 10:1669. [PMID: 30971696 PMCID: PMC6458159 DOI: 10.1038/s41467-019-09674-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/20/2019] [Indexed: 11/13/2022] Open
Abstract
Fungal cell wall synthesis is achieved by a balance of glycosyltransferase, hydrolase and transglycosylase activities. Transglycosylases strengthen the cell wall by forming a rigid network of crosslinks through mechanisms that remain to be explored. Here we study the function of the Aspergillus fumigatus family of five Crh transglycosylases. Although crh genes are dispensable for cell viability, simultaneous deletion of all genes renders cells sensitive to cell wall interfering compounds. In vitro biochemical assays and localisation studies demonstrate that this family of enzymes functions redundantly as transglycosylases for both chitin-glucan and chitin-chitin cell wall crosslinks. To understand the molecular basis of this acceptor promiscuity, we solved the crystal structure of A. fumigatus Crh5 (AfCrh5) in complex with a chitooligosaccharide at the resolution of 2.8 Å, revealing an extensive elongated binding cleft for the donor (−4 to −1) substrate and a short acceptor (+1 to +2) binding site. Together with mutagenesis, the structure suggests a “hydrolysis product assisted” molecular mechanism favouring transglycosylation over hydrolysis. Transglycosylases strengthen the fungal cell wall by forming a rigid network of crosslinks. Here, Fang et al. show that the five Crh transglycosylases of Aspergillus fumigatus are dispensable for cell wall integrity in vitro, and solve the crystal structure of Crh5 in complex with chitooligosaccharides.
Collapse
Affiliation(s)
- Wenxia Fang
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, 530007, Nanning, China
| | - Ana Belén Sanz
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain
| | | | - Bin Wang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, 530007, Nanning, China
| | | | - Vladimír Farkaš
- Department of Glycobiology, Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, 84538, Bratislava, Slovakia
| | - Ramon Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC), 50018, Zaragoza, Spain.,Fundación ARAID, Av. de Ranillas, 50018, Zaragoza, Spain
| | - Javier Arroyo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| | | |
Collapse
|
18
|
Tanaka N, Nakajima M, Narukawa-Nara M, Matsunaga H, Kamisuki S, Aramasa H, Takahashi Y, Sugimoto N, Abe K, Terada T, Miyanaga A, Yamashita T, Sugawara F, Kamakura T, Komba S, Nakai H, Taguchi H. Identification, characterization, and structural analyses of a fungal endo-β-1,2-glucanase reveal a new glycoside hydrolase family. J Biol Chem 2019; 294:7942-7965. [PMID: 30926603 DOI: 10.1074/jbc.ra118.007087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/20/2019] [Indexed: 11/06/2022] Open
Abstract
endo-β-1,2-Glucanase (SGL) is an enzyme that hydrolyzes β-1,2-glucans, which play important physiological roles in some bacteria as a cyclic form. To date, no eukaryotic SGL has been identified. We purified an SGL from Talaromyces funiculosus (TfSGL), a soil fungus, to homogeneity and then cloned the complementary DNA encoding the enzyme. TfSGL shows no significant sequence similarity to any known glycoside hydrolase (GH) families, but shows significant similarity to certain eukaryotic proteins with unknown functions. The recombinant TfSGL (TfSGLr) specifically hydrolyzed linear and cyclic β-1,2-glucans to sophorose (Glc-β-1,2-Glc) as a main product. TfSGLr hydrolyzed reducing-end-modified β-1,2-gluco-oligosaccharides to release a sophoroside with the modified moiety. These results indicate that TfSGL is an endo-type enzyme that preferably releases sophorose from the reducing end of substrates. Stereochemical analysis demonstrated that TfSGL is an inverting enzyme. The overall structure of TfSGLr includes an (α/α)6 toroid fold. The substrate-binding mode was revealed by the structure of a Michaelis complex of an inactive TfSGLr mutant with a β-1,2-glucoheptasaccharide. Mutational analysis and action pattern analysis of β-1,2-gluco-oligosaccharide derivatives revealed an unprecedented catalytic mechanism for substrate hydrolysis. Glu-262 (general acid) indirectly protonates the anomeric oxygen at subsite -1 via the 3-hydroxy group of the Glc moiety at subsite +2, and Asp-446 (general base) activates the nucleophilic water via another water. TfSGLr is apparently different from a GH144 SGL in the reaction and substrate recognition mechanism based on structural comparison. Overall, we propose that TfSGL and closely-related enzymes can be classified into a new family, GH162.
Collapse
Affiliation(s)
- Nobukiyo Tanaka
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Masahiro Nakajima
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510,
| | - Megumi Narukawa-Nara
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Hiroki Matsunaga
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Shinji Kamisuki
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510.,the School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201
| | - Hiroki Aramasa
- the Faculty of Agriculture, Niigata University, Niigata 950-2181
| | - Yuta Takahashi
- the Faculty of Agriculture, Niigata University, Niigata 950-2181
| | - Naohisa Sugimoto
- the Faculty of Agriculture, Niigata University, Niigata 950-2181
| | - Koichi Abe
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510.,the Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657
| | - Tohru Terada
- the Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657
| | - Akimasa Miyanaga
- the Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551
| | | | - Fumio Sugawara
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Takashi Kamakura
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Shiro Komba
- the Food Component Analysis Unit, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Hiroyuki Nakai
- the Faculty of Agriculture, Niigata University, Niigata 950-2181
| | - Hayao Taguchi
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| |
Collapse
|
19
|
Matsuzawa T, Watanabe M, Nakamichi Y, Fujimoto Z, Yaoi K. Crystal structure and substrate recognition mechanism of Aspergillus oryzae isoprimeverose-producing enzyme. J Struct Biol 2018; 205:84-90. [PMID: 30445155 DOI: 10.1016/j.jsb.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/30/2018] [Accepted: 11/12/2018] [Indexed: 11/26/2022]
Abstract
Isoprimeverose-producing enzymes (IPases) release isoprimeverose (α-d-xylopyranosyl-(1 → 6)-d-glucopyranose) from the non-reducing end of xyloglucan oligosaccharides. Aspergillus oryzae IPase (IpeA) is classified as a member of the glycoside hydrolase family 3 (GH3); however, it has unusual substrate specificity compared with other GH3 enzymes. Xylopyranosyl branching at the non-reducing ends of xyloglucan oligosaccharides is vital for IpeA activity. We solved the crystal structure of IpeA with isoprimeverose at 2.4 Å resolution, showing that the structure of IpeA formed a dimer and was composed of three domains: an N-terminal (β/α)8 TIM-barrel domain, α/β/α sandwich fold domain, and a C-terminal fibronectin-like domain. The catalytic TIM-barrel domain possessed a catalytic nucleophile (Asp300) and acid/base (Glu524) residues. Interestingly, we found that the cavity of the active site of IpeA was larger than that of other GH3 enzymes, and subsite -1' played an important role in its activity. The glucopyranosyl and xylopyranosyl residues of isoprimeverose were located at subsites -1 and -1', respectively. Gln58 and Tyr89 contributed to the interaction with the xylopyranosyl residue of isoprimeverose through hydrogen bonding and stacking effects, respectively. Our findings provide new insights into the substrate recognition of GH3 enzymes.
Collapse
Affiliation(s)
- Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Masahiro Watanabe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32, Kagamiyama, HigashiHiroshima, Hiroshima 739-0046, Japan
| | - Yusuke Nakamichi
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32, Kagamiyama, HigashiHiroshima, Hiroshima 739-0046, Japan
| | - Zui Fujimoto
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
20
|
Kobayashi K, Aramasa H, Nakai H, Nakajima M, Taguchi H. Colorimetric determination of β-1,2-glucooligosaccharides for an enzymatic assay using 3-methyl-2-benzothiazolinonehydrazone. Anal Biochem 2018; 560:1-6. [DOI: 10.1016/j.ab.2018.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/06/2018] [Accepted: 08/23/2018] [Indexed: 11/26/2022]
|
21
|
Sakurai A, Hongo S, Nair A, Waki T, Oikawa D, Nishio T, Shimoyama T, Takahashi S, Yamashita S, Nakayama T. Identification and characterization of a novel bacterial β-glucosidase that is highly specific for the β-1,2-glucosidic linkage of sesaminol triglucoside. Biosci Biotechnol Biochem 2018; 82:1518-1521. [PMID: 29804519 DOI: 10.1080/09168451.2018.1476123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A gene (PSTG2) coding for a novel β-glucosidase belonging to glycoside hydrolase family 3 was identified in the vicinity of the previously identified β-glucosidase gene [sesaminol triglucoside (STG)-hydrolyzing β-glucosidase, PSTG1] in the genome of Paenibacillus sp. strain KB0549. Compared with PSTG1, recombinant PSTG2 more specifically acted on the β-1,2-glucosidic linkage of the STG molecule to transiently accumulate a larger amount of 6-O-(β-D-glucopyranosyl)-β-D-glucopyranosylsesaminol.
Collapse
Affiliation(s)
- Akinori Sakurai
- a Graduate School of Engineering , Tohoku University , Sendai , Japan
| | - Shuntaro Hongo
- a Graduate School of Engineering , Tohoku University , Sendai , Japan
| | - Arun Nair
- b Kiyomoto Co. Ltd , Nobeoka , Japan
| | - Toshiyuki Waki
- a Graduate School of Engineering , Tohoku University , Sendai , Japan
| | - Daiki Oikawa
- a Graduate School of Engineering , Tohoku University , Sendai , Japan
| | - Takuma Nishio
- c Graduate School of Natural Science and Technology , Kanazawa University , Kakuma , Japan
| | | | - Seiji Takahashi
- a Graduate School of Engineering , Tohoku University , Sendai , Japan
| | - Satoshi Yamashita
- c Graduate School of Natural Science and Technology , Kanazawa University , Kakuma , Japan
| | - Toru Nakayama
- a Graduate School of Engineering , Tohoku University , Sendai , Japan
| |
Collapse
|
22
|
Shimizu H, Nakajima M, Miyanaga A, Takahashi Y, Tanaka N, Kobayashi K, Sugimoto N, Nakai H, Taguchi H. Characterization and Structural Analysis of a Novel exo-Type Enzyme Acting on β-1,2-Glucooligosaccharides from Parabacteroides distasonis. Biochemistry 2018; 57:3849-3860. [PMID: 29763309 DOI: 10.1021/acs.biochem.8b00385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
β-1,2-Glucan is a polysaccharide produced mainly by some Gram-negative bacteria as a symbiosis and infectious factor. We recently identified endo-β-1,2-glucanase from Chitinophaga pinensis ( CpSGL) as an enzyme comprising a new family. Here, we report the characteristics and crystal structure of a CpSGL homologue from Parabacteroides distasonis, an intestinal bacterium (BDI_3064 protein), which exhibits distinctive properties of known β-1,2-glucan-degrading enzymes. BDI_3064 hydrolyzed linear β-1,2-glucan and β-1,2-glucooligosaccharides with degrees of polymerization (DPs) of ≥4 to produce sophorose specifically but did not hydrolyze cyclic β-1,2-glucan. This result indicates that BDI_3064 is a new exo-type enzyme. BDI_3064 also produced sophorose from β-1,2-glucooligosaccharide analogues that have a modified reducing end, indicating that BDI_3064 acts on its substrates from the nonreducing end. The crystal structure showed that BDI_3064 possesses additional N-terminal domains 1 and 2, unlike CpSGL. Superimposition of BDI_3064 and CpSGL complexed with ligands showed that R93 in domain 1 overlapped subsite -3 in CpSGL. Docking analysis involving a β-1,2-glucooligosaccharide with DP4 showed that R93 completely blocks the nonreducing end of the docked β-1,2-glucooligosaccharide. This indicates that BDI_3064 employs a distinct mechanism of recognition at the nonreducing end of substrates to act as an exo-type enzyme. Thus, we propose 2-β-d-glucooligosaccharide sophorohydrolase (nonreducing end) as a systematic name for BDI_3064.
Collapse
Affiliation(s)
- Hisaka Shimizu
- Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , 2641 Yamazaki , Noda , Chiba 278-8510 , Japan
| | - Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , 2641 Yamazaki , Noda , Chiba 278-8510 , Japan
| | - Akimasa Miyanaga
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1, O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Yuta Takahashi
- Faculty of Agriculture , Niigata University , Niigata 950-2181 , Japan
| | - Nobukiyo Tanaka
- Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , 2641 Yamazaki , Noda , Chiba 278-8510 , Japan
| | - Kaito Kobayashi
- Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , 2641 Yamazaki , Noda , Chiba 278-8510 , Japan
| | - Naohisa Sugimoto
- Faculty of Agriculture , Niigata University , Niigata 950-2181 , Japan
| | - Hiroyuki Nakai
- Faculty of Agriculture , Niigata University , Niigata 950-2181 , Japan
| | - Hayao Taguchi
- Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , 2641 Yamazaki , Noda , Chiba 278-8510 , Japan
| |
Collapse
|
23
|
Structural and biochemical characterization of a GH3 β-glucosidase from the probiotic bacteria Bifidobacterium adolescentis. Biochimie 2018; 148:107-115. [DOI: 10.1016/j.biochi.2018.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/13/2018] [Indexed: 11/20/2022]
|
24
|
Abe K, Sunagawa N, Terada T, Takahashi Y, Arakawa T, Igarashi K, Samejima M, Nakai H, Taguchi H, Nakajima M, Fushinobu S. Structural and thermodynamic insights into β-1,2-glucooligosaccharide capture by a solute-binding protein in Listeria innocua. J Biol Chem 2018; 293:8812-8828. [PMID: 29678880 DOI: 10.1074/jbc.ra117.001536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
β-1,2-Glucans are bacterial carbohydrates that exist in cyclic or linear forms and play an important role in infections and symbioses involving Gram-negative bacteria. Although several β-1,2-glucan-associated enzymes have been characterized, little is known about how β-1,2-glucan and its shorter oligosaccharides (Sop n s) are captured and imported into the bacterial cell. Here, we report the biochemical and structural characteristics of the Sop n -binding protein (SO-BP, Lin1841) associated with the ATP-binding cassette (ABC) transporter from the Gram-positive bacterium Listeria innocua Calorimetric analysis revealed that SO-BP specifically binds to Sop n s with a degree of polymerization of 3 or more, with Kd values in the micromolar range. The crystal structures of SO-BP in an unliganded open form and in closed complexes with tri-, tetra-, and pentaoligosaccharides (Sop3-5) were determined to a maximum resolution of 1.6 Å. The binding site displayed shape complementarity to Sop n , which adopted a zigzag conformation. We noted that water-mediated hydrogen bonds and stacking interactions play a pivotal role in the recognition of Sop3-5 by SO-BP, consistent with its binding thermodynamics. Computational free-energy calculations and a mutational analysis confirmed that interactions with the third glucose moiety of Sop n s are significantly responsible for ligand binding. A reduction in unfavorable changes in binding entropy that were in proportion to the lengths of the Sop n s was explained by conformational entropy changes. Phylogenetic and sequence analyses indicated that SO-BP ABC transporter homologs, glycoside hydrolases, and other related proteins are co-localized in the genomes of several bacteria. This study may improve our understanding of bacterial β-1,2-glucan metabolism and promote the discovery of unidentified β-1,2-glucan-associated proteins.
Collapse
Affiliation(s)
- Koichi Abe
- From the Department of Biotechnology.,Agricultural Bioinformatics Research Unit, and
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Yuta Takahashi
- the Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | | | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,the VTT Technical Research Centre of Finland, Espoo FI-02044 VTT, Finland, and
| | - Masahiro Samejima
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Nakai
- the Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Hayao Taguchi
- the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masahiro Nakajima
- the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | |
Collapse
|
25
|
Yan S, Wei PC, Chen Q, Chen X, Wang SC, Li JR, Gao C. Functional and structural characterization of a β-glucosidase involved in saponin metabolism from intestinal bacteria. Biochem Biophys Res Commun 2018; 496:1349-1356. [DOI: 10.1016/j.bbrc.2018.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/30/2022]
|
26
|
Ishiguro R, Tanaka N, Abe K, Nakajima M, Maeda T, Miyanaga A, Takahashi Y, Sugimoto N, Nakai H, Taguchi H. Function and structure relationships of a β-1,2-glucooligosaccharide-degrading β-glucosidase. FEBS Lett 2017; 591:3926-3936. [PMID: 29131329 DOI: 10.1002/1873-3468.12911] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/04/2017] [Accepted: 11/08/2017] [Indexed: 11/08/2022]
Abstract
BT_3567 protein, a putative β-glucosidase from Bacteroides thetaiotaomicron, exhibits higher activity toward Sop3-5 (Sopn , n: degree of polymerization of β-1,2-glucooligosaccharides) than toward Sop2 , unlike a known β-glucosidase from Listeria innocua which predominantly prefers Sop2 . In the complex structure determined by soaking of a D286N mutant crystal with Sop4 , a Sop3 moiety was observed at subsites -1 to +2. The glucose moiety at subsite +2 forms a hydrogen bond with Asn81, which is replaced with Gly in the L. innocua β-glucosidase. The Km values of the N81G mutant for Sop3-5 are much higher than those of the wild-type, suggesting that Asn81 contributes to the binding to substrates longer than Sop3 .
Collapse
Affiliation(s)
- Rikuto Ishiguro
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Nobukiyo Tanaka
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Koichi Abe
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Takuma Maeda
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | | | | | | | | | - Hayao Taguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
27
|
Yuan Y, Xu F, Yao J, Hu Y, Wang J, Zhao T, Zhou Y, Gao J. Cloning, expression and biochemical characterization of a GH1 β-glucosidase from Cellulosimicrobium cellulans. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1395415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ye Yuan
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Fenghua Xu
- Department of Pharmaceutics, PLA General Hospital, Beijing, PR China
| | - Jianzhuang Yao
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Yanho Hu
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Jiao Wang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Tianjiao Zhao
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Yifa Zhou
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| |
Collapse
|
28
|
Abe K, Nakajima M, Yamashita T, Matsunaga H, Kamisuki S, Nihira T, Takahashi Y, Sugimoto N, Miyanaga A, Nakai H, Arakawa T, Fushinobu S, Taguchi H. Biochemical and structural analyses of a bacterial endo-β-1,2-glucanase reveal a new glycoside hydrolase family. J Biol Chem 2017; 292:7487-7506. [PMID: 28270506 DOI: 10.1074/jbc.m116.762724] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/04/2017] [Indexed: 11/06/2022] Open
Abstract
β-1,2-Glucan is an extracellular cyclic or linear polysaccharide from Gram-negative bacteria, with important roles in infection and symbiosis. Despite β-1,2-glucan's importance in bacterial persistence and pathogenesis, only a few reports exist on enzymes acting on both cyclic and linear β-1,2-glucan. To this end, we purified an endo-β-1,2-glucanase to homogeneity from cell extracts of the environmental species Chitinophaga arvensicola, and an endo-β-1,2-glucanase candidate gene (Cpin_6279) was cloned from the related species Chitinophaga pinensis The Cpin_6279 protein specifically hydrolyzed linear β-1,2-glucan with polymerization degrees of ≥5 and a cyclic counterpart, indicating that Cpin_6279 is an endo-β-1,2-glucananase. Stereochemical analysis demonstrated that the Cpin_6279-catalyzed reaction proceeds via an inverting mechanism. Cpin_6279 exhibited no significant sequence similarity with known glycoside hydrolases (GHs), and thus the enzyme defines a novel GH family, GH144. The crystal structures of the ligand-free and complex forms of Cpin_6279 with glucose (Glc) and sophorotriose (Glc-β-1,2-Glc-β-1,2-Glc) determined up to 1.7 Å revealed that it has a large cavity appropriate for polysaccharide degradation and adopts an (α/α)6-fold slightly similar to that of GH family 15 and 8 enzymes. Mutational analysis indicated that some of the highly conserved acidic residues in the active site are important for catalysis, and the Cpin_6279 active-site architecture provided insights into the substrate recognition by the enzyme. The biochemical characterization and crystal structure of this novel GH may enable discovery of other β-1,2-glucanases and represent a critical advance toward elucidating structure-function relationships of GH enzymes.
Collapse
Affiliation(s)
- Koichi Abe
- From the Department of Biotechnology, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657.,the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Masahiro Nakajima
- the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510,
| | | | - Hiroki Matsunaga
- the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Shinji Kamisuki
- the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510.,the School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuoh-ku, Sagamihara 229-8501
| | - Takanori Nihira
- the Faculty of Agriculture, Niigata University, Niigata 950-2181, and
| | - Yuta Takahashi
- the Faculty of Agriculture, Niigata University, Niigata 950-2181, and
| | - Naohisa Sugimoto
- the Faculty of Agriculture, Niigata University, Niigata 950-2181, and
| | - Akimasa Miyanaga
- the Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Hiroyuki Nakai
- the Faculty of Agriculture, Niigata University, Niigata 950-2181, and
| | - Takatoshi Arakawa
- From the Department of Biotechnology, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657
| | - Shinya Fushinobu
- From the Department of Biotechnology, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657
| | - Hayao Taguchi
- the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| |
Collapse
|
29
|
Nakajima M, Tanaka N, Furukawa N, Nihira T, Kodutsumi Y, Takahashi Y, Sugimoto N, Miyanaga A, Fushinobu S, Taguchi H, Nakai H. Mechanistic insight into the substrate specificity of 1,2-β-oligoglucan phosphorylase from Lachnoclostridium phytofermentans. Sci Rep 2017; 7:42671. [PMID: 28198470 PMCID: PMC5309861 DOI: 10.1038/srep42671] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/11/2017] [Indexed: 11/25/2022] Open
Abstract
Glycoside phosphorylases catalyze the phosphorolysis of oligosaccharides into sugar phosphates. Recently, we found a novel phosphorylase acting on β-1,2-glucooligosaccharides with degrees of polymerization of 3 or more (1,2-β-oligoglucan phosphorylase, SOGP) in glycoside hydrolase family (GH) 94. Here, we characterized SOGP from Lachnoclostridium phytofermentans (LpSOGP) and determined its crystal structure. LpSOGP is a monomeric enzyme that contains a unique β-sandwich domain (Ndom1) at its N-terminus. Unlike the dimeric GH94 enzymes possessing catalytic pockets at their dimer interface, LpSOGP has a catalytic pocket between Ndom1 and the catalytic domain. In the complex structure of LpSOGP with sophorose, sophorose binds at subsites +1 to +2. Notably, the Glc moiety at subsite +1 is flipped compared with the corresponding ligands in other GH94 enzymes. This inversion suggests the great distortion of the glycosidic bond between subsites −1 and +1, which is likely unfavorable for substrate binding. Compensation for this disadvantage at subsite +2 can be accounted for by the small distortion of the glycosidic bond in the sophorose molecule. Therefore, the binding mode at subsites +1 and +2 defines the substrate specificity of LpSOGP, which provides mechanistic insights into the substrate specificity of a phosphorylase acting on β-1,2-glucooligosaccharides.
Collapse
Affiliation(s)
- Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Nobukiyo Tanaka
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Nayuta Furukawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan.,Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Takanori Nihira
- Graduate School of Science &Technology, Niigata University, Niigata, Japan
| | - Yuki Kodutsumi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Yuta Takahashi
- Graduate School of Science &Technology, Niigata University, Niigata, Japan
| | - Naohisa Sugimoto
- Graduate School of Science &Technology, Niigata University, Niigata, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Hayao Taguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Hiroyuki Nakai
- Graduate School of Science &Technology, Niigata University, Niigata, Japan
| |
Collapse
|
30
|
Ramírez-Escudero M, Del Pozo MV, Marín-Navarro J, González B, Golyshin PN, Polaina J, Ferrer M, Sanz-Aparicio J. Structural and Functional Characterization of a Ruminal β-Glycosidase Defines a Novel Subfamily of Glycoside Hydrolase Family 3 with Permuted Domain Topology. J Biol Chem 2016; 291:24200-24214. [PMID: 27679487 PMCID: PMC5104943 DOI: 10.1074/jbc.m116.747527] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/16/2016] [Indexed: 01/01/2023] Open
Abstract
Metagenomics has opened up a vast pool of genes for putative, yet uncharacterized, enzymes. It widens our knowledge on the enzyme diversity world and discloses new families for which a clear classification is still needed, as is exemplified by glycoside hydrolase family-3 (GH3) proteins. Herein, we describe a GH3 enzyme (GlyA1) from resident microbial communities in strained ruminal fluid. The enzyme is a β-glucosidase/β-xylosidase that also shows β-galactosidase, β-fucosidase, α-arabinofuranosidase, and α-arabinopyranosidase activities. Short cello- and xylo-oligosaccharides, sophorose and gentibiose, are among the preferred substrates, with the large polysaccharide lichenan also being hydrolyzed by GlyA1. The determination of the crystal structure of the enzyme in combination with deletion and site-directed mutagenesis allowed identification of its unusual domain composition and the active site architecture. Complexes of GlyA1 with glucose, galactose, and xylose allowed picturing the catalytic pocket and illustrated the molecular basis of the substrate specificity. A hydrophobic platform defined by residues Trp-711 and Trp-106, located in a highly mobile loop, appears able to allocate differently β-linked bioses. GlyA1 includes an additional C-terminal domain previously unobserved in GH3 members, but crystallization of the full-length enzyme was unsuccessful. Therefore, small angle x-ray experiments have been performed to investigate the molecular flexibility and overall putative shape. This study provided evidence that GlyA1 defines a new subfamily of GH3 proteins with a novel permuted domain topology. Phylogenetic analysis indicates that this topology is associated with microbes inhabiting the digestive tracts of ruminants and other animals, feeding on chemically diverse plant polymeric materials.
Collapse
Affiliation(s)
- Mercedes Ramírez-Escudero
- From the Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain
| | - Mercedes V Del Pozo
- the Institute of Catalysis and Petrochemistry, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Cantoblanco, 28049 Madrid, Spain
| | - Julia Marín-Navarro
- the Institute of Agrochemistry and Food Technology, Consejo Superior de Investigaciones Científicas, Carrer Catedràtic Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain
| | - Beatriz González
- From the Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain
| | - Peter N Golyshin
- the School of Biological Sciences, Bangor University, LL57 2UW Gwynedd, United Kingdom, and.,the Immanuel Kant Baltic Federal University, 236040 Kaliningrad, Russia
| | - Julio Polaina
- the Institute of Agrochemistry and Food Technology, Consejo Superior de Investigaciones Científicas, Carrer Catedràtic Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain
| | - Manuel Ferrer
- the Institute of Catalysis and Petrochemistry, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Cantoblanco, 28049 Madrid, Spain,
| | - Julia Sanz-Aparicio
- From the Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain,
| |
Collapse
|