1
|
Sugrue JA, Duffy D. Systems vaccinology studies - achievements and future potential. Microbes Infect 2024; 26:105318. [PMID: 38460935 DOI: 10.1016/j.micinf.2024.105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Human immune responses to vaccination are variable both within and between populations. Systems vaccinology, which is the application of multi-omics technologies to vaccine studies, seeks to understand such variation and predict responses to optimise vaccine strategies. Here, we outline new approaches to systems vaccinology, focusing on the incorporation of additional cohorts, endpoints and technologies.
Collapse
Affiliation(s)
- Jamie A Sugrue
- Translational Immunology Unit, Institut Pasteur, Université de Paris Cité, F75015, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université de Paris Cité, F75015, Paris, France.
| |
Collapse
|
2
|
Tchalla EYI, Betadpur A, Khalil AY, Bhalla M, Bou Ghanem EN. Sex-based difference in immune responses and efficacy of the pneumococcal conjugate vaccine. J Leukoc Biol 2024:qiae177. [PMID: 39141715 DOI: 10.1093/jleuko/qiae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024] Open
Abstract
Vaccine-mediated protection and susceptibility to Streptococcus pneumoniae (pneumococcus) infections are influenced by biological sex. The incidence of invasive pneumococcal disease remains higher in males compared to females even after the introduction of the pneumococcal conjugate vaccine (PCV). However, sex-based differences in the immune response to this conjugate vaccine remain unexplored. To investigate those differences, we vaccinated adult male and female mice with PCV and assessed cellular and humoral immune responses. Compared to females, male mice displayed lower levels of T follicular helper cells, germinal center B cells and plasmablasts, which are all required for antibody production following vaccination. This was linked to lower IgG and IgM levels against pneumococci and lower isotype switching to IgG3 in vaccinated males. Due to lower antibody levels, sera of vaccinated male mice had lower efficacy in several anti-pneumococcal functions including neutralization of bacterial binding to pulmonary epithelial cells as well as direct cytotoxicity against S. pneumoniae. Importantly, while the vaccine was highly protective in females, vaccinated males succumbed to infection more readily and were more susceptible to both lung-localized infection and systemic spread following S. pneumoniae challenge. These findings identify sex-based differences in immune responses to PCV that can inform future vaccine strategies.
Collapse
Affiliation(s)
- Essi Y I Tchalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, USA
| | - Anagha Betadpur
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, USA
| | - Andrew Y Khalil
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, USA
| | - Manmeet Bhalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, USA
| | - Elsa N Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, USA
| |
Collapse
|
3
|
Zhang Y, Tan X, Tang C. Estrogen-immuno-neuromodulation disorders in menopausal depression. J Neuroinflammation 2024; 21:159. [PMID: 38898454 PMCID: PMC11188190 DOI: 10.1186/s12974-024-03152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
A significant decrease in estrogen levels puts menopausal women at high risk for major depression, which remains difficult to cure despite its relatively clear etiology. With the discovery of abnormally elevated inflammation in menopausal depressed women, immune imbalance has become a novel focus in the study of menopausal depression. In this paper, we examined the characteristics and possible mechanisms of immune imbalance caused by decreased estrogen levels during menopause and found that estrogen deficiency disrupted immune homeostasis, especially the levels of inflammatory cytokines through the ERα/ERβ/GPER-associated NLRP3/NF-κB signaling pathways. We also analyzed the destruction of the blood-brain barrier, dysfunction of neurotransmitters, blockade of BDNF synthesis, and attenuation of neuroplasticity caused by inflammatory cytokine activity, and investigated estrogen-immuno-neuromodulation disorders in menopausal depression. Current research suggests that drugs targeting inflammatory cytokines and NLRP3/NF-κB signaling molecules are promising for restoring homeostasis of the estrogen-immuno-neuromodulation system and may play a positive role in the intervention and treatment of menopausal depression.
Collapse
Affiliation(s)
- Yuling Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xiying Tan
- Department of Neurology, Xinxiang City First People's Hospital, Xinxiang, 453000, Henan, China
| | - Chaozhi Tang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
4
|
Shapiro JR, Seddu K, Park HS, Lee JS, Creisher PS, Yin A, Shea P, Kuo H, Li H, Abrams E, Leng SX, Morgan R, Klein SL. The intersection of biological sex and gender in adverse events following seasonal influenza vaccination in older adults. Immun Ageing 2023; 20:43. [PMID: 37644610 PMCID: PMC10463383 DOI: 10.1186/s12979-023-00367-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/22/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Women/females report more adverse events (AE) following immunization than men/males for many vaccines, including the influenza and COVID-19 vaccines. This discrepancy is often dismissed as a reporting bias, yet the relative contributions of biological sex and gender are poorly understood. We investigated the roles of sex and gender in the rate of AE following administration of the high-dose seasonal influenza vaccine to older adults (≥ 75 years) using an AE questionnaire administered 5-8 days post-vaccination. Participant sex (male or female) was determined by self-report and a gender score questionnaire was used to assign participants to one of four gender categories (feminine, masculine, androgynous, or undifferentiated). Sex steroid hormones and inflammatory cytokines were measured in plasma samples collected prior to vaccination to generate hypotheses as to the biological mechanism underpinning the AE reported. RESULTS A total of 423 vaccines were administered to 173 participants over four influenza seasons (2019-22) and gender data were available for 339 of these vaccinations (2020-22). At least one AE was reported following 105 vaccinations (25%), by 23 males and 82 females. The majority of AE occurred at the site of injection, were mild, and transient. The odds of experiencing an AE were 3-fold greater in females than males and decreased with age to a greater extent in females than males. The effects of gender, however, were not statistically significant, supporting a central role of biological sex in the occurrence of AE. In males, estradiol was significantly associated with IL-6 and with the probability of experiencing an AE. Both associations were absent in females, suggesting a sex-specific effect of estradiol on the occurrence of AE that supports the finding of a biological sex difference. CONCLUSIONS These data support a larger role for biological sex than for gender in the occurrence of AE following influenza vaccination in older adults and provide an initial investigation of hormonal mechanisms that may mediate this sex difference. This study highlights the complexities of measuring gender and the importance of assessing AE separately for males and females to better understand how vaccination strategies can be tailored to different subsets of the population.
Collapse
Affiliation(s)
- Janna R Shapiro
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - John S Lee
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Patrick S Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Anna Yin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Patrick Shea
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Helen Kuo
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Huifen Li
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Engle Abrams
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sean X Leng
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rosemary Morgan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
5
|
Pasin C, Consiglio CR, Huisman J, de Lange AMG, Peckham H, Vallejo-Yagüe E, Abela IA, Islander U, Neuner-Jehle N, Pujantell M, Roth O, Schirmer M, Tepekule B, Zeeb M, Hachfeld A, Aebi-Popp K, Kouyos RD, Bonhoeffer S. Sex and gender in infection and immunity: addressing the bottlenecks from basic science to public health and clinical applications. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221628. [PMID: 37416827 PMCID: PMC10320357 DOI: 10.1098/rsos.221628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/14/2023] [Indexed: 07/08/2023]
Abstract
Although sex and gender are recognized as major determinants of health and immunity, their role is rarely considered in clinical practice and public health. We identified six bottlenecks preventing the inclusion of sex and gender considerations from basic science to clinical practice, precision medicine and public health policies. (i) A terminology-related bottleneck, linked to the definitions of sex and gender themselves, and the lack of consensus on how to evaluate gender. (ii) A data-related bottleneck, due to gaps in sex-disaggregated data, data on trans/non-binary people and gender identity. (iii) A translational bottleneck, limited by animal models and the underrepresentation of gender minorities in biomedical studies. (iv) A statistical bottleneck, with inappropriate statistical analyses and results interpretation. (v) An ethical bottleneck posed by the underrepresentation of pregnant people and gender minorities in clinical studies. (vi) A structural bottleneck, as systemic bias and discriminations affect not only academic research but also decision makers. We specify guidelines for researchers, scientific journals, funding agencies and academic institutions to address these bottlenecks. Following such guidelines will support the development of more efficient and equitable care strategies for all.
Collapse
Affiliation(s)
- Chloé Pasin
- Collegium Helveticum, 8092 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Camila R. Consiglio
- Department of Women's and Children's Health, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Jana S. Huisman
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
- Physics of Living Systems, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ann-Marie G. de Lange
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland
- Department of Psychology, University of Oslo, 0373 Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London WC1E 6JF, UK
| | | | - Irene A. Abela
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Ulrika Islander
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 40530 Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Nadia Neuner-Jehle
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Maria Pujantell
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Olivia Roth
- Marine Evolutionary Biology, Zoological Institute, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Melanie Schirmer
- Emmy Noether Group for Computational Microbiome Research, ZIEL – Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany
| | - Burcu Tepekule
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Marius Zeeb
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Anna Hachfeld
- Department of Infectious Diseases, University Hospital and University of Bern, 3012 Bern, Switzerland
| | - Karoline Aebi-Popp
- Department of Infectious Diseases, University Hospital and University of Bern, 3012 Bern, Switzerland
- Department of Obstetrics and Gynecology, Lindenhofspital, 3012 Bern, Switzerland
| | - Roger D. Kouyos
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Sebastian Bonhoeffer
- Collegium Helveticum, 8092 Zurich, Switzerland
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
6
|
Shapiro JR, Seddu K, Park HS, Lee JS, Creisher PS, Yin A, Shea P, Kuo H, Li H, Abrams E, Leng SX, Morgan R, Klein SL. The intersection of biological sex and gender in adverse events following seasonal influenza vaccination in older adults. RESEARCH SQUARE 2023:rs.3.rs-2557775. [PMID: 36798418 PMCID: PMC9934749 DOI: 10.21203/rs.3.rs-2557775/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Background Women/females report more adverse events (AE) following immunization than men/males for many vaccines, including the influenza and COVID-19 vaccines. This discrepancy is often dismissed as a reporting bias, yet the relative contributions of biological sex and gender are poorly understood. We investigated the roles of sex and gender in the rate of AE following administration of the high-dose seasonal influenza vaccine to older adults (≥ 75 years) using an AE questionnaire administered 5-8 days post-vaccination. Participant sex (male or female) was determined by self-report and a gender score questionnaire was used to assign participants to one of four gender categories (feminine, masculine, androgynous, or undifferentiated). Sex steroid hormones and inflammatory cytokines were measured in plasma samples collected prior to vaccination to elucidate a possible biological mechanism for the AE reported. Results A total of 423 vaccines were administered to 173 participants over four influenza seasons (2019-22) and gender data were available for 339 of these vaccinations (2020-22). At least one AE was reported following 105 vaccinations (25%), by 23 males and 82 females. The majority of AE occurred at the site of injection, were mild, and transient. The odds of experiencing an AE were 3-fold greater in females than males and decreased with age to a greater extent in females than males. The effects of gender, however, were not statistically significant, supporting a central role of biological sex in the occurrence of AE. In males, estradiol was significantly associated with IL-6 and with the probability of experiencing an AE. Both associations were absent in females, suggesting a sex-specific effect of estradiol on the occurrence of AE that supports the finding of a biological sex difference. Conclusions These data support a larger role for biological sex than for gender in the occurrence of AE following influenza vaccination in older adults and provide an initial investigation of hormonal mechanisms that may mediate this sex difference. This study highlights the complexities of measuring gender and the importance of assessing AE separately for males and females to better understand how vaccination strategies can be tailored to different subsets of the population.
Collapse
Affiliation(s)
| | - Kumba Seddu
- Johns Hopkins Bloomberg School of Public Health
| | | | - John S Lee
- Johns Hopkins Bloomberg School of Public Health
| | | | - Anna Yin
- Johns Hopkins Bloomberg School of Public Health
| | | | - Helen Kuo
- Johns Hopkins Bloomberg School of Public Health
| | - Huifen Li
- Johns Hopkins University School of Medicine
| | | | | | | | | |
Collapse
|
7
|
Stamou MI, Colling C, Dichtel LE. Adrenal aging and its effects on the stress response and immunosenescence. Maturitas 2023; 168:13-19. [PMID: 36370489 PMCID: PMC10426230 DOI: 10.1016/j.maturitas.2022.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Normal aging is linked to various endocrine gland changes, including changes in the adrenal glands. Aging is linked to alterations of the hypothalamic-pituitary-adrenal (HPA) axis, including an increase in cortisol levels, a disruption of the negative cortisol feedback, and attenuation of cortisol's diurnal pattern. In addition, secretion of aldosterone and adrenal androgens [dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS)] from the adrenal cortex decreases with aging. In this review, we describe normal adrenal function, the adrenal response to stress and immunomodulation in aging individuals as well as the effects of adrenal aging on body composition, metabolic profile, bone health and cognition.
Collapse
Affiliation(s)
- Maria I Stamou
- Endocrine Division, Massachusetts General Hospital, Boston, MA, USA.
| | - Caitlin Colling
- Endocrine Division, Massachusetts General Hospital, Boston, MA, USA
| | - Laura E Dichtel
- Endocrine Division, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Creisher PS, Seddu K, Mueller AL, Klein SL. Biological Sex and Pregnancy Affect Influenza Pathogenesis and Vaccination. Curr Top Microbiol Immunol 2023; 441:111-137. [PMID: 37695427 DOI: 10.1007/978-3-031-35139-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Males and females differ in the outcome of influenza A virus (IAV) infections, which depends significantly on age. During seasonal influenza epidemics, young children (< 5 years of age) and aged adults (65+ years of age) are at greatest risk for severe disease, and among these age groups, males tend to suffer a worse outcome from IAV infection than females. Following infection with pandemic strains of IAVs, females of reproductive ages (i.e., 15-49 years of age) experience a worse outcome than their male counterparts. Although females of reproductive ages experience worse outcomes from IAV infection, females typically have greater immune responses to influenza vaccination as compared with males. Among females of reproductive ages, pregnancy is one factor linked to an increased risk of severe outcome of influenza. Small animal models of influenza virus infection and vaccination illustrate that immune responses and repair of damaged tissue following IAV infection also differ between the sexes and impact the outcome of infection. There is growing evidence that sex steroid hormones, including estrogens, progesterone, and testosterone, directly impact immune responses during IAV infection and vaccination. Greater consideration of the combined effects of sex and age as biological variables in epidemiological, clinical, and animal studies of influenza pathogenesis is needed.
Collapse
Affiliation(s)
- Patrick S Creisher
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States
| | - Kumba Seddu
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States
| | - Alice L Mueller
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States.
| |
Collapse
|
9
|
Tsourdi E, Hofbauer LC, Rauner M. The Impact of COVID-19 in Bone Metabolism: Basic and Clinical Aspects. Horm Metab Res 2022; 54:540-548. [PMID: 35419776 DOI: 10.1055/a-1825-9641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of standard procedures for the diagnosis of osteoporosis and assessment of fracture risk significantly decreased during the COVID-19 pandemic, while the incidence of fragility fractures was mostly unaltered. Both COVID-19 per se and its treatments are associated with a negative impact on bone health. Preclinical models show that mice infected with SARS-CoV2 even without symptoms display loss of trabecular bone mass two weeks post infection, due to increased numbers of osteoclasts. Osteoporosis medications do not aggravate the clinical course of COVID-19, while preclinical data suggests possible beneficial effects of some therapies. While vitamin D deficiency is clearly associated with a worse clinical course of COVID-19, evidence of improved patient outcome with vitamin D supplementation is lacking. Osteoporosis treatment should not be generally discontinued, and recommendations for substituting therapies are available. Osteoporosis therapies do not interfere with the efficacy or side-effect profiles of COVID-19 vaccines and should not be stopped or indefinitely delayed because of vaccination.
Collapse
Affiliation(s)
- Elena Tsourdi
- Department of Medicine III, University Clinic Dresden Medical Center, Dresden, Germany
- Center for Healthy Aging, University Clinic Dresden Medical Center, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, University Clinic Dresden Medical Center, Dresden, Germany
- Center for Healthy Aging, University Clinic Dresden Medical Center, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, University Clinic Dresden Medical Center, Dresden, Germany
- Center for Healthy Aging, University Clinic Dresden Medical Center, Dresden, Germany
| |
Collapse
|
10
|
Functional associations between polymorphic regions of the human 3'IgH locus and COVID-19 disease. Gene X 2022; 838:146698. [PMID: 35772651 PMCID: PMC9241982 DOI: 10.1016/j.gene.2022.146698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose The pandemic diffusion of Coronavirus Disease 2019 (COVID-19) has highlighted significant gender-related differences in disease severity. Despite several hypotheses being proposed, how the genetic background of COVID-19 patients might impact clinical outcomes remains largely unknown. Methods We collected blood samples from 192 COVID-19 patients (115 men, 77 women, mean age 67 ± 19 years) admitted between March and June 2020 at two different hospital centers in Italy, and determined the allelic distribution of nine Single Nucleotide Polymorphisms (SNPs), located at the 3’Regulatory Region (3’RR)-1 in the immunoglobulin (Ig) heavy chain locus, including *1 and *2 alleles of polymorphic hs1.2 enhancer region. Results In COVID-19 patients, the genotyped SNPs exhibited strong Linkage Disequilibrium and produced 7 specific haplotypes, associated to different degrees of disease severity, including the occurrence of pneumonia. Additionally, the allele *2, which comprises a DNA binding site for the Estrogen receptor alpha (ERα) in the polymorphic enhancer hs1.2 of 3’RR-1, was significantly enriched in women with a less severe disease. Conclusions These findings document genetic variants associated to individual clinical severity of COVID-19 disease. Most specifically, a novel genetic protective factor was identified that might explain the sex-related differences in immune response to Sars-COV-2 infection in humans.
Collapse
|
11
|
Engler-Chiurazzi EB, Chastain WH, Citron KK, Lambert LE, Kikkeri DN, Shrestha SS. Estrogen, the Peripheral Immune System and Major Depression – A Reproductive Lifespan Perspective. Front Behav Neurosci 2022; 16:850623. [PMID: 35493954 PMCID: PMC9051447 DOI: 10.3389/fnbeh.2022.850623] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/17/2022] [Indexed: 12/01/2022] Open
Abstract
Major depression is a significant medical issue impacting millions of individuals worldwide. Identifying factors contributing to its manifestation has been a subject of intense investigation for decades and several targets have emerged including sex hormones and the immune system. Indeed, an extensive body of literature has demonstrated that sex hormones play a critical role in modulating brain function and impacting mental health, especially among female organisms. Emerging findings also indicate an inflammatory etiology of major depression, revealing new opportunities to supplement, or even supersede, currently available pharmacological interventions in some patient populations. Given the established sex differences in immunity and the profound impact of fluctuations of sex hormone levels on the immune system within the female, interrogating how the endocrine, nervous, and immune systems converge to impact women’s mental health is warranted. Here, we review the impacts of endogenous estrogens as well as exogenously administered estrogen-containing therapies on affect and immunity and discuss these observations in the context of distinct reproductive milestones across the female lifespan. A theoretical framework and important considerations for additional study in regards to mental health and major depression are provided.
Collapse
Affiliation(s)
- Elizabeth B. Engler-Chiurazzi
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
- *Correspondence: Elizabeth B. Engler-Chiurazzi,
| | - Wesley H. Chastain
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| | - Kailen K. Citron
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| | - Lillian E. Lambert
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| | - Divya N. Kikkeri
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| | - Sharhana S. Shrestha
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
12
|
Cromer SJ, Yu EW. Challenges and Opportunities for Osteoporosis Care During the COVID-19 Pandemic. J Clin Endocrinol Metab 2021; 106:e4795-e4808. [PMID: 34343287 PMCID: PMC8385842 DOI: 10.1210/clinem/dgab570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE The coronavirus disease 2019 (COVID-19) has both directly and indirectly affected osteoporosis diagnosis and treatment throughout the world. METHODS This mini-review summarizes the available evidence regarding the effects of COVID-19, its treatment, and the consequences of the pandemic itself on bone health. Additionally, we review evidence and expert recommendations regarding putative effects of osteoporosis medications on COVID-19 outcomes and vaccine efficacy and summarize recommendations for continuation of osteoporosis treatment during the pandemic. RESULTS The use of standard screening procedures to assess for osteoporosis and fracture risk declined dramatically early in the pandemic, while rates of fragility fractures were largely unchanged. COVID-19, its treatments, and public health measures to prevent viral spread are each likely to negatively affect bone health. Osteoporosis treatments are not known to increase risk of adverse events from COVID-19, and preclinical data suggest possible beneficial effects of some therapies. Vitamin D deficiency is clearly associated with adverse outcomes from COVID-19, but it remains unclear whether vitamin D supplementation may improve outcomes. Osteoporosis treatment should be continued whenever possible, and recommendations for substituting therapies, if required, are available. CONCLUSION The COVID-19 pandemic has decreased screening and disrupted treatment for osteoporosis. Osteoporosis medications are safe and effective during the pandemic and should be continued whenever possible. Further studies are needed to fully understand the impact of the COVID-19 pandemic on long-term bone health.
Collapse
Affiliation(s)
- Sara J Cromer
- Division of Endocrinology, Diabetes, and Metabolism; Massachusetts General Hospital; Boston, MA
- Harvard Medical School;Boston, MA
| | - Elaine W Yu
- Division of Endocrinology, Diabetes, and Metabolism; Massachusetts General Hospital; Boston, MA
- Harvard Medical School;Boston, MA
- Corresponding Author: Elaine W. Yu, MD, MGH Endocrine Unit, 50 Blossom Street, Thier 1051, Boston, MA 02114,
| |
Collapse
|
13
|
Effects of Hormone Therapy and Flavonoids Capable on Reversal of Menopausal Immune Senescence. Nutrients 2021; 13:nu13072363. [PMID: 34371873 PMCID: PMC8308838 DOI: 10.3390/nu13072363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/19/2021] [Accepted: 07/07/2021] [Indexed: 01/15/2023] Open
Abstract
Menopause, probably the most important natural change in a woman’s life and a major component of female senescence, is characterized, inter alia, by cessation of ovarian estrogen and progesterone production, resulting in a gradual deterioration of the female immune system. Hormone replacement therapy (HRT) is used in postmenopausal women to relieve some of the peri- and postmenopausal symptoms, while there is also evidence that the therapy may additionally partially reverse menopausal immune senescence. Flavonoids, and especially isoflavones, are widely used for the treatment of menopausal symptoms, although it is not at present clear whether they can reverse or alleviate other menopausal changes. HRT reverses the menopausal CD4/CD8 ratio and also limits the general peri- and postmenopausal inflammatory state. Moreover, the increased levels of interleukins (IL)-1β, IL-6, and IL-8, as well as of tumor necrosis factor-α (TNF-α) are decreased after the initiation of HRT. However, some reports show no effect of HRT on IL-4, IL-10, and IL-12. It is thus evident that the molecular pathways connecting HRT and female immune senescence need to be clarified. Interestingly, recent studies have suggested that the anti-inflammatory properties of isoflavones possibly interact with inflammatory cytokines when applied in menopause treatments, thereby potentially reversing immune senescence. This narrative review presents the latest data on the effect of menopausal therapies, including administration of flavonoid-rich products, on age-associated immune senescence reversal with the aim of revealing possible directions for future research and treatment development.
Collapse
|
14
|
Nejatbakhsh Samimi L, Fallahpour M, Khoshmirsafa M, Moosavi SAJ, Bayati P, Baharlou R, Falak R. The impact of 17β-estradiol and progesterone therapy on peripheral blood mononuclear cells of asthmatic patients. Mol Biol Rep 2020; 48:297-306. [PMID: 33315175 DOI: 10.1007/s11033-020-06046-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022]
Abstract
There is a significant fluctuation in clinical symptoms of asthmatic females during their life course, suggesting that the reproductive status and the level of sex hormones may affect the development of asthma and its exacerbation. In this study, we aimed to assess the biological effects of 17β-estradiol (E2) and progesterone (P4), alone or in combination form, on the transcription factors and production of cytokines in peripheral blood mononuclear cells (PBMCs). PBMCs of the mild-to-moderate asthmatic patients and healthy controls (HCs) were treated with equivalent serum levels of E2 or P4 maintained during hormone replacement therapy (HRT). The expression levels of T-bet, GATA-3, RORγt, PU.1, and Foxp3 were assessed by quantitative PCR. We also measured the concentration of IL-4, IL-9, IL-10, IFN-γ, and TGF-β in cell culture supernatants using ELISA. IL-4 production and GATA-3 expression levels slightly increased when asthmatic PBMCs were treated with E2 (p < 0.01), P4 (p < 0.01), or E2 + P4 (p < 0.001) compared to the untreated cells. IL-9 secretion (p < 0.001) and PU.1 gene expression levels (p < 0.05) were slightly higher in asthmatic patients' PBMCs before treatment but hormone therapy did not affect the level of them. Although the untreated asthmatic PBMCs produced a lower amount of IFN-γ compared to HCs (p < 0.01), hormone treatment did not affect the levels of IFN-γ secretion in patient groups. Moreover, we did not observe any significant changes in IL-10 and TGF-β secretion in the supernatant of hormone treated cells. We found that the common applied HRT may faintly increase GATA-3 expression and IL-4 production levels in PBMCs of asthmatic patients and can slightly increase asthma severity.
Collapse
Affiliation(s)
- Leila Nejatbakhsh Samimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Fallahpour
- Department of Allergy and Clinical Immunology, Rasul-E-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | | | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Baharlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Biological and societal influences are different for men and women leading to different HIV outcomes and related infectious and non-infectious complications. This review evaluates sex differences in the epidemiology and immunological response to HIV and looks at major complications and coinfections, as well as care delivery systems focusing on low- and middle-income countries (LMICs) where most people with HIV live. RECENT FINDINGS More women than men access testing and treatment services in LMIC; women are more likely to be virologically suppressed in that environment. There is a growing recognition that the enhanced immunological response to several pathogens including HIV may result in improved outcomes for infectious comorbidities but may result in a greater burden of non-communicable diseases. Men and women have different requirements for HIV care. Attention to these differences may improve outcomes for all.
Collapse
|
16
|
Pirhadi R, Sinai Talaulikar V, Onwude J, Manyonda I. Could Estrogen Protect Women From COVID-19? J Clin Med Res 2020; 12:634-639. [PMID: 33029269 PMCID: PMC7524561 DOI: 10.14740/jocmr4303] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
The apparent gender differences in favor of women in the risk of contracting and dying from coronavirus disease 2019 (COVID-19), and the fact that such trends have also been observed in recent epidemics including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), have prompted the obvious question: Are the reasons life-style or biological? True, women generally make healthier lifestyle choices as compared to men. Women do not smoke or drink as much as men, and they have a lower burden of those diseases (heart disease, diabetes or chronic lung conditions) that are known to be significant factors in the higher death rates among men with COVID-19. But there is compelling evidence for a role for biological factors. Genes are likely to play an important role. The X chromosome, of which women possess two, contains the largest number of immune-related genes of the whole human genome, theoretically giving women double the advantage over men in mounting an efficient and rapid immune response. A fundamental difference between women and men is their hormonal milieu, and it is not unreasonable to suppose that the dominant female hormone estrogen could influence the response to infection. In this paper we evaluate the evidence and mechanisms by which estrogen could provide protection to women from a variety of viruses, perhaps including the coronavirus that causes COVID-19.
Collapse
Affiliation(s)
- Roxanna Pirhadi
- Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Second Floor William Harvey Building, Bishop Hall Lane, Chelmsford CM1 1SQ, UK
| | - Vikram Sinai Talaulikar
- Reproductive Medicine Unit, EGA Wing, University College London Hospital, 235 Euston Road, London NW1 2BU, UK
| | - Joseph Onwude
- The Chelmsford Private Day Surgery Hospital, Fenton House, 85-89 New London Road, Chelmsford CM2 0PP, UK
| | - Isaac Manyonda
- Department of Obstetrics and Gynaecology, St George's University Hospitals NHS Foundation Trust/St George's, University of London, London, UK
| |
Collapse
|
17
|
Jones BG, Penkert RR, Surman SL, Sealy RE, Hurwitz JL. Nuclear Receptors, Ligands and the Mammalian B Cell. Int J Mol Sci 2020; 21:E4997. [PMID: 32679815 PMCID: PMC7404052 DOI: 10.3390/ijms21144997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
Questions concerning the influences of nuclear receptors and their ligands on mammalian B cells are vast in number. Here, we briefly review the effects of nuclear receptor ligands, including estrogen and vitamins, on immunoglobulin production and protection from infectious diseases. We describe nuclear receptor interactions with the B cell genome and the potential mechanisms of gene regulation. Attention to the nuclear receptor/ligand regulation of B cell function may help optimize B cell responses, improve pathogen clearance, and prevent damaging responses toward inert- and self-antigens.
Collapse
Affiliation(s)
- Bart G. Jones
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.G.J.); (R.R.P.); (S.L.S.); (R.E.S.)
| | - Rhiannon R. Penkert
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.G.J.); (R.R.P.); (S.L.S.); (R.E.S.)
| | - Sherri L. Surman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.G.J.); (R.R.P.); (S.L.S.); (R.E.S.)
| | - Robert E. Sealy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.G.J.); (R.R.P.); (S.L.S.); (R.E.S.)
| | - Julia L. Hurwitz
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.G.J.); (R.R.P.); (S.L.S.); (R.E.S.)
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
18
|
Dhakal S, Klein SL. Host Factors Impact Vaccine Efficacy: Implications for Seasonal and Universal Influenza Vaccine Programs. J Virol 2019; 93:e00797-19. [PMID: 31391269 PMCID: PMC6803252 DOI: 10.1128/jvi.00797-19] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Influenza is a global public health problem. Current seasonal influenza vaccines have highly variable efficacy, and thus attempts to develop broadly protective universal influenza vaccines with durable protection are under way. While much attention is given to the virus-related factors contributing to inconsistent vaccine responses, host-associated factors are often neglected. Growing evidences suggest that host factors including age, biological sex, pregnancy, and immune history play important roles as modifiers of influenza virus vaccine efficacy. We hypothesize that host genetics, the hormonal milieu, and gut microbiota contribute to host-related differences in influenza virus vaccine efficacy. This review highlights the current insights and future perspectives into host-specific factors that impact influenza vaccine-induced immunity and protection. Consideration of the host factors that affect influenza vaccine-induced immunity might improve influenza vaccines by providing empirical evidence for optimizing or even personalizing vaccine type, dose, and use of adjuvants for current seasonal and future universal influenza vaccines.
Collapse
Affiliation(s)
- Santosh Dhakal
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Host Factors Impact Vaccine Efficacy: Implications for Seasonal and Universal Influenza Vaccine Programs. J Virol 2019. [PMID: 31391269 DOI: 10.1128/jvi.00797‐19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Influenza is a global public health problem. Current seasonal influenza vaccines have highly variable efficacy, and thus attempts to develop broadly protective universal influenza vaccines with durable protection are under way. While much attention is given to the virus-related factors contributing to inconsistent vaccine responses, host-associated factors are often neglected. Growing evidences suggest that host factors including age, biological sex, pregnancy, and immune history play important roles as modifiers of influenza virus vaccine efficacy. We hypothesize that host genetics, the hormonal milieu, and gut microbiota contribute to host-related differences in influenza virus vaccine efficacy. This review highlights the current insights and future perspectives into host-specific factors that impact influenza vaccine-induced immunity and protection. Consideration of the host factors that affect influenza vaccine-induced immunity might improve influenza vaccines by providing empirical evidence for optimizing or even personalizing vaccine type, dose, and use of adjuvants for current seasonal and future universal influenza vaccines.
Collapse
|
20
|
Jones BG, Penkert RR, Surman SL, Sealy RE, Pelletier S, Xu B, Neale G, Maul RW, Gearhart PJ, Hurwitz JL. Matters of life and death: How estrogen and estrogen receptor binding to the immunoglobulin heavy chain locus may influence outcomes of infection, allergy, and autoimmune disease. Cell Immunol 2019; 346:103996. [PMID: 31703914 DOI: 10.1016/j.cellimm.2019.103996] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022]
Abstract
Sex hormones are best known for their influences on reproduction, but they also have profound influences on the immune response. Examples of sex-specific differences include: (i) the relatively poor control of influenza virus infections in males compared to females, (ii) allergic asthma, an IgE-associated hypersensitivity reaction that is exacerbated in adolescent females compared to males, and (iii) systemic lupus erythematosus, a life-threatening autoimmune disease with a 9:1 female:male bias. Here we consider how estrogen and estrogen receptor α (ERα) may influence the immune response by modifying class switch recombination (CSR) and immunoglobulin expression patterns. We focus on ERα binding to enhancers (Eμ and the 3' regulatory region) and switch sites (Sµ and Sε) in the immunoglobulin heavy chain locus. Our preliminary data from ChIP-seq analyses of purified, activated B cells show estrogen-mediated changes in the positioning of ERα binding within and near Sµ and Sε. In the presence of estrogen, ERα is bound not only to estrogen response elements (ERE), but also to adenosine-cytidine (AC)-repeats and poly adenosine (poly A) sequences, in some cases within constant region gene introns. We propose that by binding these sites, estrogen and ERα directly participate in the DNA loop formation required for CSR. We further suggest that estrogen regulates immunoglobulin expression patterns and can thereby influence life-and-death outcomes of infection, hypersensitivity, and autoimmune disease.
Collapse
Affiliation(s)
- Bart G Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rhiannon R Penkert
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sherri L Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert E Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephane Pelletier
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Geoff Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert W Maul
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Patricia J Gearhart
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - J L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
21
|
Age-associated changes in the impact of sex steroids on influenza vaccine responses in males and females. NPJ Vaccines 2019; 4:29. [PMID: 31312529 PMCID: PMC6626024 DOI: 10.1038/s41541-019-0124-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Vaccine-induced immunity declines with age, which may differ between males and females. Using human sera collected before and 21 days after receipt of the monovalent A/Cal/09 H1N1 vaccine, we evaluated cytokine and antibody responses in adult (18-45 years) and aged (65+ years) individuals. After vaccination, adult females developed greater IL-6 and antibody responses than either adult males or aged females, with female antibody responses being positively associated with concentrations of estradiol. To test whether protection against influenza virus challenge was greater in females than males, we primed and boosted adult (8-10 weeks) and aged (68-70 weeks) male and female mice with an inactivated A/Cal/09 H1N1 vaccine or no vaccine and challenged with a drift variant A/Cal/09 virus. As compared with unvaccinated mice, vaccinated adult, but not aged, mice experienced less morbidity and better pulmonary viral clearance following challenge, regardless of sex. Vaccinated adult female mice developed antibody responses that were of greater quantity and quality and more protective than vaccinated adult males. Sex differences in vaccine efficacy diminished with age in mice. To determine the role of sex steroids in vaccine-induced immune responses, adult mice were gonadectomized and hormones (estradiol in females and testosterone in males) were replaced in subsets of animals before vaccination. Vaccine-induced antibody responses were increased in females by estradiol and decreased in males by testosterone. The benefit of elevated estradiol on antibody responses and protection against influenza in females is diminished with age in both mice and humans.
Collapse
|
22
|
Voigt EA, Ovsyannikova IG, Kennedy RB, Grill DE, Goergen KM, Schaid DJ, Poland GA. Sex Differences in Older Adults' Immune Responses to Seasonal Influenza Vaccination. Front Immunol 2019; 10:180. [PMID: 30873150 PMCID: PMC6400991 DOI: 10.3389/fimmu.2019.00180] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Sex differences in immune responses to influenza vaccine may impact efficacy across populations. Methods: In a cohort of 138 older adults (50-74 years old), we measured influenza A/H1N1 antibody titers, B-cell ELISPOT response, PBMC transcriptomics, and PBMC cell compositions at 0, 3, and 28 days post-immunization with the 2010/11 seasonal inactivated influenza vaccine. Results: We identified higher B-cell ELISPOT responses in females than males. Potential mechanisms for sex effects were identified in four gene clusters related to T, NK, and B cells. Mediation analysis indicated that sex-dependent expression in T and NK cell genes can be partially attributed to higher CD4+ T cell and lower NK cell fractions in females. We identified strong sex effects in 135 B cell genes whose expression correlates with ELISPOT measures, and found that cell subset differences did not explain the effect of sex on these genes' expression. Post-vaccination expression of these genes, however, mediated 41% of the sex effect on ELISPOT responses. Conclusions: These results improve our understanding of sexual dimorphism in immunity and influenza vaccine response.
Collapse
Affiliation(s)
- Emily A. Voigt
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | | | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Diane E. Grill
- Division of Biostatistics, Mayo Clinic, Rochester, MN, United States
| | - Krista M. Goergen
- Division of Biostatistics, Mayo Clinic, Rochester, MN, United States
| | - Daniel J. Schaid
- Division of Biostatistics, Mayo Clinic, Rochester, MN, United States
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
23
|
Fulop T, Franceschi C, Hirokawa K, Pawelec G. Nonhuman Primate Models of Immunosenescence. HANDBOOK OF IMMUNOSENESCENCE 2019. [PMCID: PMC7121907 DOI: 10.1007/978-3-319-99375-1_80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Due to a dramatic increase in life expectancy, the number of individuals aged 65 and older is rapidly rising. This presents considerable challenges to our health care system since advanced age is associated with a higher susceptibility to infectious diseases due to immune senescence. However, the mechanisms underlying age-associated dysregulated immunity are still incompletely understood. Advancement in our comprehension of mechanisms of immune senescence and development of interventions to improve health span requires animal models that closely recapitulate the physiological changes that occur with aging in humans. Nonhuman primates (NHPs) are invaluable preclinical models to study the underlying causal mechanism of pathogenesis due to their outbred nature, high degree of genetic and physiological similarity to humans, and their susceptibility to human pathogens. In this chapter, we review NHP models available for biogerontology research, advantages and challenges they present, and advances they facilitated. Furthermore, we emphasize the utility of NHPs in characterizing immune senescence, evaluating interventions to reverse aging of the immune system, and development of vaccine strategies that are better suited for this vulnerable population.
Collapse
Affiliation(s)
- Tamas Fulop
- Division of Geriatrics Research Center on Aging, University of Sherbrooke Department of Medicine, Sherbrooke, QC Canada
| | - Claudio Franceschi
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | - Graham Pawelec
- Center for Medical Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Kriegova E, Manukyan G, Mikulkova Z, Gabcova G, Kudelka M, Gajdos P, Gallo J. Gender-related differences observed among immune cells in synovial fluid in knee osteoarthritis. Osteoarthritis Cartilage 2018; 26:1247-1256. [PMID: 29753948 DOI: 10.1016/j.joca.2018.04.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/15/2018] [Accepted: 04/09/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE There is no existing comprehensive report on the cellular composition of synovial fluids (SFs) from knee osteoarthritis (OA). We therefore aimed to characterise the immune cell composition in SFs from knee OA (KOA) and in subgroups according to gender. DESIGN The immunophenotyping of monocyte/macrophage lineage cells, T and B cells, NK cells, neutrophils, dendritic and mast cells (MC) present in SFs from 53 patients (24 males/29 females) with KOA was performed using 6-colour flow cytometry. RESULTS SFs from patients with OA contained 90% hematopoietic cells. Lymphocytes were the predominant cell population (44.8%) in the SFs of OA patients, with CD4+ T lymphocytes being more prevalent than CD8+ T cells (CD4+/CD8+ ratio = 1.3). Within the monocyte/macrophage lineage gating, monocytes accounted for 33.9%, macrophages 14.8%, myeloid dendritic cells 16.4%. The rest of the hematopoietic cells were comprised of neutrophils (8%), NK cells (3.8%), T regulatory cells (1.2%), plasmacytoid dendritic cells (1.1%), mast cells (0.3%). In OA females, a higher percentage of CD4+ T cells (P = 0.023), macrophages (P = 0.012), and a lower percentage of monocytes (P = 0.008) and CD8+ T cells (P = 0.002) were detected in comparison to OA males. CONCLUSIONS Based on the immune cell composition of SFs, data mining analysis revealed distinct phenotypes (monocyte- and lymphocyte-predominant) within each gender group. This first study on the cellular complexity of SFs in KOA showed marked differences between male and female patients. The findings give a rational starting point for patient stratification according to their phenotypes, as is required for phenotype-specific treatment strategies.
Collapse
Affiliation(s)
- E Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University & University Hospital, Olomouc, Czech Republic.
| | - G Manukyan
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University & University Hospital, Olomouc, Czech Republic; Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, Yerevan, Armenia.
| | - Z Mikulkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University & University Hospital, Olomouc, Czech Republic.
| | - G Gabcova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University & University Hospital, Olomouc, Czech Republic.
| | - M Kudelka
- Dept. of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Czech Republic.
| | - P Gajdos
- Dept. of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Czech Republic.
| | - J Gallo
- Dept. of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University & University Hospital, Olomouc, Czech Republic.
| |
Collapse
|
25
|
Effect of sex on vaccination outcomes: important but frequently overlooked. Curr Opin Pharmacol 2018; 41:122-127. [PMID: 29883854 DOI: 10.1016/j.coph.2018.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/18/2018] [Indexed: 01/02/2023]
Abstract
It is well established that vaccination does not affect males and females equally. For example, females generally mount greater antibody responses to vaccination than males, but also suffer more adverse events following vaccination, probably as a result of more robust immunity. Despite this, most researchers in the field of vaccinology do not take biological sex into account when conducting their studies. This omission is likely to lead to a loss of important information in terms of both reactogenicity and immunogenicity following vaccination as well as those suffering adverse events. It also suggests that the vaccine dose in males and females may need to be different in order to achieve the same outcome of protective immunity while minimising reactogenicity.
Collapse
|
26
|
Gubbels Bupp MR, Potluri T, Fink AL, Klein SL. The Confluence of Sex Hormones and Aging on Immunity. Front Immunol 2018; 9:1269. [PMID: 29915601 PMCID: PMC5994698 DOI: 10.3389/fimmu.2018.01269] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
The immune systems of post-pubescent males and females differ significantly with profound consequences to health and disease. In many cases, sex-specific differences in the immune responses of young adults are also apparent in aged men and women. Moreover, as in young adults, aged women develop several late-adult onset autoimmune conditions more frequently than do men, while aged men continue to develop many cancers to a greater extent than aged women. However, sex differences in the immune systems of aged individuals have not been extensively investigated and data addressing the effectiveness of vaccinations and immunotherapies in aged men and women are scarce. In this review, we evaluate age- and sex hormone-related changes to innate and adaptive immunity, with consideration about how this impacts age- and sex-associated changes in the incidence and pathogenesis of autoimmunity and cancer as well as the efficacy of vaccination and cancer immunotherapy. We conclude that future preclinical and clinical studies should consider age and sex to better understand the ways in which these characteristics intersect with immune function and the resulting consequences for autoimmunity, cancer, and therapeutic interventions.
Collapse
Affiliation(s)
| | - Tanvi Potluri
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Ashley L Fink
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
27
|
Habib P, Dreymueller D, Rösing B, Botung H, Slowik A, Zendedel A, Habib S, Hoffmann S, Beyer C. Estrogen serum concentration affects blood immune cell composition and polarization in human females under controlled ovarian stimulation. J Steroid Biochem Mol Biol 2018; 178:340-347. [PMID: 29448043 DOI: 10.1016/j.jsbmb.2018.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 12/24/2022]
Abstract
Estrogens modulate the immune system and possess anti-inflammatory properties. In line, immune cells express a variety of estrogen receptors (ER) including ER-alpha and -beta. In the present study, we examined the influence of 17beta-estradiol (E2) serum concentrations on blood leukocyte composition and their ex vivo polarization/activation status by FACS analysis in sub-fertile human females under controlled ovarian stimulation (COS). Using a set of cell-type and polarization-specific markers, we demonstrate that increased 17ß-estradiol (E2) serum concentrations yield an overall increase in leukocytes, neutrophils and monocytes but decreased lymphocytes. There was a clear ratio shift towards an increase in M2 monocytes with a protective quality and an increase in T-helper cells compared to a decrease in cytotoxic T-cells. These data support experimental findings and clinical trials, i.e. related to multiple sclerosis and other autoimmune-related diseases, that have shown a down-regulation of CD8(+) T cells and up-regulation of T-regulatory cells. Further studies have to pinpoint to which extent the immune system/-responsiveness of otherwise healthy female patients is affected by medium-term systemic E2 variations.
Collapse
Affiliation(s)
- Pardes Habib
- Department of Neurology, Institute of Neuroanatomy, Medical Clinic, RWTH Aachen University, 52074 Aachen, Germany
| | - Daniela Dreymueller
- Institute of Pharmacology and Toxicology, Medical Clinic, RWTH Aachen University, 52074 Aachen, Germany
| | - Benjamin Rösing
- Clinic for Gynecological Endocrinology and Reproductive Medicine, RWTH Aachen University Clinics, 52074 Aachen, Germany
| | - Hannes Botung
- Institute of Neuroanatomy, Medical Clinic, RWTH Aachen University, 52074 Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, Medical Clinic, RWTH Aachen University, 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, Medical Clinic, RWTH Aachen University, 52074 Aachen, Germany
| | - Shahin Habib
- Medical Biochemistry, Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Stefanie Hoffmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Clinic, RWTH Aachen University, 52074 Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Medical Clinic, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
28
|
Coleman K, Robertson ND, Maier A, Bethea CL. Effects of Immediate or Delayed Estradiol on Behavior in Old Menopausal Macaques on Obesogenic Diet. J Obes 2018; 2018:1810275. [PMID: 30363801 PMCID: PMC6181005 DOI: 10.1155/2018/1810275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/12/2018] [Accepted: 07/22/2018] [Indexed: 01/05/2023] Open
Abstract
Macaques have served as effective models of human disease, including pathological processes associated with obesity and the metabolic syndrome. This study approached several questions: (1) does a western-style diet (WSD) contribute to sedentary behavior or is sedentary behavior a consequence of obesity and (2) does estradiol (E) hormone therapy offset WSD or ameliorate sedentary behavior? We further questioned whether the timing of E administration (immediately following hysterectomy, ImE; or after a 2-year delay, DE) would impact behavior. Focal observations were taken on the animals in social housing over a period of 2.5 years before and after initiation of the WSD and hysterectomy. In addition, anxiety was assessed through the Human Intruder and Novel Object Tests. All animals gained weight, but ImE delayed the time to maximum weight achieved at 18 months. Over the course of the study, ImE-treated monkeys spent more time "alone" and less time in "close social" contact than placebo-controls. The DE-treated monkeys were not different from placebo-controls in these 2 outcomes. The placebo-control group exhibited more "self-groom" behavior, an indicator of anxiety, than did the ImE-treated group, and DE-treated animals approached levels observed in the ImE-treated animals. All animals exhibited an increase in "consume" behavior over time with no statistical difference between the groups. By the end of the protocol, the placebo-control group exhibited less activity compared to ImE + DE-treated animals combined. Animals also showed increased anxiety after starting on the WSD in the Human Intruder Test and the Novel Object Test. In summary, the data indicated that WSD per se promoted increased consummatory behavior, sedentary behavior, and anxiety-type behaviors, whereas ImE promoted activity. Thus, WSD may precipitate the behaviors observed in humans who then become obese, sedentary, anxious, and socially isolated. ImE replacement ameliorates some of these behaviors, but not all.
Collapse
Affiliation(s)
- Kristine Coleman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Division of Comparative Medicine, Behavioral Sciences Unit, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Nicola D. Robertson
- Division of Comparative Medicine, Behavioral Sciences Unit, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Adriane Maier
- Division of Comparative Medicine, Behavioral Sciences Unit, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Cynthia L. Bethea
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97201, USA
| |
Collapse
|
29
|
Horváthová M, Ilavská S, Štefíková K, Szabová M, Krivošíková Z, Jahnová E, Tulinská J, Spustová V, Gajdoš M. The Cell Surface Markers Expression in Postmenopausal Women and Relation to Obesity and Bone Status. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14070751. [PMID: 28696349 PMCID: PMC5551189 DOI: 10.3390/ijerph14070751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022]
Abstract
The age-related changes and hormonal deprivation in postmenopausal women are associated with the immune response alteration. The excessive fat accumulation, local and systemic inflammation may lead to dysregulation in immune function and relevant health problems, including obesity and osteoporosis. We analyzed the expression of cell surface markers in the venous blood specimens, stained with fluorophores-conjugated monoclonal antibodies and analysed by multicolour flow cytometry. The significant changes of cytotoxic, naive, and memory T-lymphocytes, plasmacytoid dendritic cells (DCs) were in postmenopausal women versus fertile women. Body mass index (BMI) affected markedly the cell surface expression of CD265/RANK. Osteoporosis is linked to reduced percentage of plasmacytoid DCs, and elevated natural Treg cells (p < 0.05). The confounding factors such as women age, BMI, bone mineral density (BMD), waist size and tissue fat affect the expression of RANK on myeloid DCs and CD40L on T-lymphocytes that might be the immunophenotypic modulators after menopause.
Collapse
Affiliation(s)
- Mira Horváthová
- Department of Immunology and Immunotoxicology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia.
| | - Silvia Ilavská
- Department of Immunology and Immunotoxicology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia.
| | - Kornélia Štefíková
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 83303 Bratislava, Slovakia.
| | - Michaela Szabová
- Department of Immunology and Immunotoxicology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia.
| | - Zora Krivošíková
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 83303 Bratislava, Slovakia.
| | - Eva Jahnová
- Department of Immunology and Immunotoxicology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia.
| | - Jana Tulinská
- Department of Immunology and Immunotoxicology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia.
| | - Viera Spustová
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 83303 Bratislava, Slovakia.
| | - Martin Gajdoš
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 83303 Bratislava, Slovakia.
| |
Collapse
|
30
|
Bravo-Alegria J, McCullough LD, Liu F. Sex differences in stroke across the lifespan: The role of T lymphocytes. Neurochem Int 2017; 107:127-137. [PMID: 28131898 PMCID: PMC5461203 DOI: 10.1016/j.neuint.2017.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/13/2017] [Accepted: 01/20/2017] [Indexed: 12/22/2022]
Abstract
Stroke is a sexually dimorphic disease. Ischemic sensitivity changes throughout the lifespan and outcomes depend largely on variables like age, sex, hormonal status, inflammation, and other existing risk factors. Immune responses after stroke play a central role in how these factors interact. Although the post-stroke immune response has been extensively studied, the contribution of lymphocytes to stroke is still not well understood. T cells participate in both innate and adaptive immune responses at both acute and chronic stages of stroke. T cell responses also change at different ages and are modulated by hormones and sex chromosome complement. T cells have also been implicated in the development of hypertension, one of the most important risk factors for vascular disease. In this review, we highlight recent literature on the lymphocytic responses to stroke in the context of age and sex, with a focus on T cell response and the interaction with important stroke risk factors.
Collapse
Affiliation(s)
- Javiera Bravo-Alegria
- Department of Neurology, Univeristy of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - Louise D McCullough
- Department of Neurology, Univeristy of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - Fudong Liu
- Department of Neurology, Univeristy of Texas Health Science Center at Houston, Houston, TX, 77030, United States.
| |
Collapse
|
31
|
Bethea CL, Mueller K, Reddy AP, Kohama SG, Urbanski HF. Effects of obesogenic diet and estradiol on dorsal raphe gene expression in old female macaques. PLoS One 2017; 12:e0178788. [PMID: 28628658 PMCID: PMC5476244 DOI: 10.1371/journal.pone.0178788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/18/2017] [Indexed: 12/19/2022] Open
Abstract
The beneficial effects of bioidentical ovarian steroid hormone therapy (HT) during the perimenopause are gaining recognition. However, the positive effects of estrogen (E) plus or minus progesterone (P) administration to ovariectomized (Ovx) lab animals were recognized in multiple systems for years before clinical trials could adequately duplicate the results. Moreover, very large numbers of women are often needed to find statistically significant results in clinical trials of HT; and there are still opposing results being published, especially in neural and cardiovascular systems. One of the obvious differences between human and animal studies is diet. Laboratory animals are fed a diet that is low in fat and refined sugar, but high in micronutrients. In the US, a large portion of the population eats what is known as a "western style diet" or WSD that provides calories from 36% fat, 44% carbohydrates (includes 18.5% sugars) and 18% protein. Unfortunately, obesity and diabetes have reached epidemic proportions and the percentage of obese women in clinical trials may be overlooked. We questioned whether WSD and obesity could decrease the positive neural effects of estradiol (E) in the serotonin system of old macaques that were surgically menopausal. Old ovo-hysterectomized female monkeys were fed WSD for 2.5 years, and treated with placebo, Immediate E (ImE) or Delayed E (DE). Compared to old Ovx macaques on primate chow and treated with placebo or E, the WSD-fed monkeys exhibited greater individual variance and blunted responses to E-treatment in the expression of genes related to serotonin neurotransmission, CRH components in the midbrain, synapse assembly, DNA repair, protein folding, ubiquitylation, transport and neurodegeneration. For many of the genes examined, transcript abundance was lower in WSD-fed than chow-fed monkeys. In summary, an obesogenic diet for 2.5 years in old surgically menopausal macaques blunted or increased variability in E-induced gene expression in the dorsal raphe. These results suggest that with regard to function and viability in the dorsal raphe, HT may not be as beneficial for obese women as normal weight women.
Collapse
Affiliation(s)
- Cynthia L. Bethea
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, OR, United States of America
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States of America
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, United States of America
| | - Kevin Mueller
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Arubala P. Reddy
- Department of Internal Medicine, Texas Technical University Health Sciences Center School of Medicine, Lubbock, TX, United States of America
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States of America
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States of America
| |
Collapse
|