1
|
Godse S, Zhou L, Sinha N, Kodidela S, Kumar A, Singh UP, Kumar S. Curcumin enhances elvitegravir concentration and alleviates oxidative stress and inflammatory response. Sci Rep 2023; 13:19864. [PMID: 37964023 PMCID: PMC10645974 DOI: 10.1038/s41598-023-47226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023] Open
Abstract
In this study, we investigated the potential of using curcumin (CUR) as an adjuvant to enhance the delivery of antiretroviral drug elvitegravir (EVG) across the BBB, and alleviate oxidative stress and inflammatory response, which are the major hallmark of HIV neuropathogenesis. In a mouse model, we compared the biodistribution of EVG alone and in combination with CUR using intraperitoneal (IP) and intranasal (IN) routes. IN administration showed a significantly higher accumulation of EVG in the brain, while both IP and IN routes led to increased EVG levels in the lungs and liver. The addition of CUR further enhanced EVG brain delivery, especially when administered via the IN route. The expression of neural marker proteins, synaptophysin, L1CAM, NeuN, and GFAP was not significantly altered by EVG or CUR alone or their combination, indicating preserved neural homeostasis. After establishing improved brain concentration and safety of CUR-adjuvanted EVG in mice in acute treatment, we studied the effect of this treatment in HIV-infected U1 macrophages. In U1 macrophages, we also observed that the addition of CUR enhanced the intracellular concentration of EVG. The total area under the curve (AUCtot) for EVG was significantly higher in the presence of CUR. We also evaluated the effects of CUR on oxidative stress and antioxidant capacity in EVG-treated U1 macrophages. CUR reduced oxidative stress, as evidenced by decreased reactive oxygen species (ROS) levels and elevated antioxidant enzyme expression. Furthermore, the combination of CUR and EVG exhibited a significant reduction in proinflammatory cytokines (TNFα, IL-1β, IL-18) and chemokines (RANTES, MCP-1) in U1 macrophages. Additionally, western blot analysis confirmed the decreased expression of IL-1β and TNF-α in EVG + CUR-treated cells. These findings suggest the potential of CUR to enhance EVG permeability to the brain and subsequent efficacy of EVG, including HIV neuropathogenesis.
Collapse
Affiliation(s)
- Sandip Godse
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Lina Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Namita Sinha
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Asit Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
2
|
Godse S, Zhou L, Sinha N, Kodidela S, Kumar A, Singh UP, Kumar S. Curcumin enhances elvitegravir concentration and alleviates oxidative stress and inflammatory response. RESEARCH SQUARE 2023:rs.3.rs-3225072. [PMID: 37609211 PMCID: PMC10441462 DOI: 10.21203/rs.3.rs-3225072/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In this study, we investigated the potential of using curcumin (CUR) as an adjuvant to enhance the delivery of antiretroviral drug elvitegravir (EVG) across the BBB, and alleviate oxidative stress and inflammatory response, which are the major hallmark of HIV neuropathogenesis. In a mouse model, we compared the biodistribution of EVG alone and in combination with CUR using intraperitoneal (IP) and intranasal (IN) routes. IN administration showed a significantly higher accumulation of EVG in the brain, while both IP and IN routes led to increased EVG levels in the lungs and liver. The addition of CUR further enhanced EVG brain delivery, especially when administered via the IN route. The expression of neural marker proteins, synaptophysin, L1CAM, NeuN, and GFAP was not significantly altered by EVG or CUR alone or their combination, indicating preserved neural homeostasis. After establishing improved brain concentration and safety of CUR-adjuvanted EVG in mice in acute treatment, we studied the effect of this treatment in HIV-infected U1 macrophages. In U1 macrophages, we also observed that the addition of CUR enhanced the intracellular concentration of EVG. The total area under the curve (AUCtot) for EVG was significantly higher in the presence of CUR. We also evaluated the effects of CUR on oxidative stress and antioxidant capacity in EVG-treated U1 macrophages. CUR reduced oxidative stress, as evidenced by decreased reactive oxygen species (ROS) levels and elevated antioxidant enzyme expression. Furthermore, the combination of CUR and EVG exhibited a significant reduction in proinflammatory cytokines (TNFα, IL-1β, IL-18) and chemokines (RANTES, MCP-1) in U1 macrophages. Additionally, western blot analysis confirmed the decreased expression of IL-1β and TNF-α in EVG + CUR-treated cells. These findings suggest the potential of CUR to enhance EVG permeability to the brain and subsequent efficacy of EVG, including HIV neuropathogenesis.
Collapse
Affiliation(s)
- Sandip Godse
- The University of Tennessee Health Science Center
| | - Lina Zhou
- The University of Tennessee Health Science Center
| | - Namita Sinha
- The University of Tennessee Health Science Center
| | | | - Asit Kumar
- The University of Tennessee Health Science Center
| | - Udai P Singh
- The University of Tennessee Health Science Center
| | | |
Collapse
|
3
|
Kumar A, Zhou L, Godse S, Sinha N, Ma D, Parmar K, Kumar S. Intranasal delivery of darunavir improves brain drug concentrations in mice for effective HIV treatment. Biochem Biophys Rep 2023; 33:101408. [DOI: 10.1016/j.bbrep.2022.101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
|
4
|
Jain P, Thota A, Saini PK, Raghuvanshi RS. Comprehensive Review on Different Analytical Techniques for HIV 1- Integrase Inhibitors: Raltegravir, Dolutegravir, Elvitegravir and Bictegravir. Crit Rev Anal Chem 2022; 54:401-415. [PMID: 35617468 DOI: 10.1080/10408347.2022.2080493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The advent of HIV-Integrase inhibitors (IN) has marked a significant impact on the lives of HIV patients. Since the launch of the first anti retro-viral drug "Azidothymidine" to the recent advances of IN inhibitors, about 27.4 million people benefit by antiretroviral therapy (ART). The path had been challenging due to many crossroads, leading to the discovery of newer targets. One such recent ART target is Integrase. Use of Integrase inhibitors has surpassed the usage of all other ART owing to a strong barrier to resistance and have been reported to be the first-line therapy. Raltegravir, Elvitegravir, Dolutegravir and Bictegravir are US FDA approved IN inhibitors. The high usage of ART created an opportunity to study various analytical techniques for IN inhibitors. Hitherto, no review encompassing all IN inhibitors is presented. Herein, this review describes the analytical techniques employed for IN inhibitors estimation and quantification reported in the literature and official compendia. Literature suggests that most studies focus on LC-MS/MS and HPLC methods for drug estimation, and few reports suggest spectrophotometric, spectrofluorimetric and electrochemical methods. Furthermore, the review presents the techniques that describe the quantification of integrase drugs in various matrices. Although, antiretroviral drugs are extensively used but data suggests that limited studies have been conducted for determination of impurity profile and stability. This therefore, presents a scope to detect and validate impurities in order to meet ICH guidelines for their limits and further to improve the quality and safety of antiretroviral drugs.
Collapse
Affiliation(s)
- Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Anusha Thota
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Pawan K Saini
- Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Ghaziabad, UP, India
| | | |
Collapse
|
5
|
Gray JC, Murphy M, Leggio L. Leveraging genetic data to investigate molecular targets and drug repurposing candidates for treating alcohol use disorder and hepatotoxicity. Drug Alcohol Depend 2020; 214:108155. [PMID: 32652377 PMCID: PMC7423741 DOI: 10.1016/j.drugalcdep.2020.108155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/03/2020] [Accepted: 06/24/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Novel treatments for alcohol use disorder (AUD) and alcohol-related liver disease (ALD) are greatly needed. Genetic information can improve drug discovery rates by facilitating the identification of novel biological targets and potential drugs for repurposing. METHODS The present study utilized a recently developed Bayesian approach, Integrative Risk Gene Selector (iRIGS), to identify additional risk genes for alcohol consumption using SNPs from the largest alcohol consumption GWAS to date (N = 941,280). iRIGS incorporates several genomic features and closeness of these genes in network space to compute a posterior probability for protein coding genes near each SNP. We subsequently used the Target Central Resource Database to search for drug-protein interactions for these newly identified genes and previously identified risk genes for alcohol consumption. RESULTS We identified several genes that are novel contributions to the previously published alcohol consumption GWAS. Namely, ACVR2A, which is critical for liver function and linked to anxiety and cocaine self-administration, and PRKCE, which has been linked to alcohol self-administration. Notably, only a minority of the SNPs (18.4 %) were linked to genes with confidence (>0.75), underscoring the need to apply multiple methods to assign function to loci. Finally, some previously identified risk genes for alcohol consumption code for proteins that are implicated in liver function and are targeted by drugs, some of which are candidates for managing hepatotoxicity. CONCLUSIONS This study demonstrates the value of incorporating regulatory information and drug-protein interaction data to highlight additional molecular targets and drug repurposing candidates for treating AUD and ALD.
Collapse
Affiliation(s)
- Joshua C. Gray
- Department of Medical and Clinical Psychology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814,Correspondence to Joshua Charles Gray, PhD; (410) 707-1180, , 4301 Jones Bridge Rd, Bethesda, MD 20814
| | - Mikela Murphy
- Department of Medical and Clinical Psychology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD; Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI
| |
Collapse
|
6
|
Whyte-Allman SK, Bendayan R. HIV-1 Sanctuary Sites-the Role of Membrane-Associated Drug Transporters and Drug Metabolic Enzymes. AAPS JOURNAL 2020; 22:118. [PMID: 32875457 DOI: 10.1208/s12248-020-00498-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Despite significant advances in the treatment of human immunodeficiency virus-1 (HIV) infection with highly active antiretroviral drug therapy, the persistence of the virus in cellular and anatomic reservoirs is a major obstacle preventing total HIV eradication. Viral persistence could result from a variety of contributing factors including, but not limited to, non-adherence to treatment and adverse drug reactions, latently infected cells carrying replication-competent virus, drug-drug interactions, and inadequate antiretroviral drug (ARV) concentrations reached in several anatomic sites such as the brain, testis, and gut-associated lymphoid tissues. The distribution of ARVs at specific sites of infection is primarily dependent on drug physicochemical properties and drug plasma protein binding, as well as drug efflux, influx, and metabolic processes. A thorough understanding of the functional roles of drug transporters and metabolic enzymes in the disposition of ARVs in immune cell types and tissues that are characterized as HIV reservoirs and sanctuaries is critical to overcome the challenge of suboptimal drug distribution at sites of persistent HIV infection. This review summarizes the current knowledge related to the expression and function of drug transporters and metabolic enzymes in HIV cellular and anatomic reservoirs, and their potential contribution to drug-drug interactions and insufficient drug concentration at these sites.
Collapse
Affiliation(s)
- Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.
| |
Collapse
|
7
|
Desai N, Burns L, Gong Y, Zhi K, Kumar A, Summers N, Kumar S, Cory TJ. An update on drug-drug interactions between antiretroviral therapies and drugs of abuse in HIV systems. Expert Opin Drug Metab Toxicol 2020; 16:1005-1018. [PMID: 32842791 DOI: 10.1080/17425255.2020.1814737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION While considerable progress has been made in the fight against HIV/AIDS, to date there has not been a cure, and millions of people around the world are currently living with HIV/AIDS. People living with HIV/AIDS have substance abuse disorders at higher rates than non-infected individuals, which puts them at an increased risk of drug-drug interactions. AREAS COVERED Potential drug-drug interactions are reviewed for a variety of potential drugs of abuse, both licit and illicit. These drugs include alcohol, cigarettes or other nicotine delivery systems, methamphetamine, cocaine, opioids, and marijuana. Potential interactions include decreased adherence, modulation of drug transporters, or modulation of metabolic enzymes. We also review the relative incidence of the use of these drugs of abuse in People living with HIV/AIDS. EXPERT OPINION Despite considerable improvements in outcomes, disparities in outcomes between PLWHA who use drugs of abuse, vs those who do not still exist. It is of critical necessity to improve outcomes in these patients and to work with them to stop abusing drugs of abuse.
Collapse
Affiliation(s)
- Nuti Desai
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy , Memphis, TN, USA
| | - Leah Burns
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy , Memphis, TN, USA
| | - Yuqing Gong
- Department of Pharmacy Science, University of Tennessee Health Science Center College of Pharmacy , Memphis, TN, USA
| | - Kaining Zhi
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center , Memphis, TN, USA
| | - Asit Kumar
- Department of Pharmacy Science, University of Tennessee Health Science Center College of Pharmacy , Memphis, TN, USA
| | - Nathan Summers
- Division of Infectious Diseases, University of Tennessee Health Science Center College of Medicine , Memphis, TN, USA
| | - Santosh Kumar
- Department of Pharmacy Science, University of Tennessee Health Science Center College of Pharmacy , Memphis, TN, USA
| | - Theodore J Cory
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy , Memphis, TN, USA
| |
Collapse
|
8
|
An Elvitegravir Nanoformulation Crosses the Blood-Brain Barrier and Suppresses HIV-1 Replication in Microglia. Viruses 2020; 12:v12050564. [PMID: 32443728 PMCID: PMC7290679 DOI: 10.3390/v12050564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Even with an efficient combination of antiretroviral therapy (ART), which significantly decreases viral load in human immunodeficiency virus type 1 (HIV-1)-positive individuals, the occurrence of HIV-1-associated neurocognitive disorders (HAND) still exists. Microglia have been shown to have a significant role in HIV-1 replication in the brain and in subsequent HAND pathogenesis. However, due to the limited ability of ART drugs to cross the blood-brain barrier (BBB) after systemic administration, in addition to efflux transporter expression on microglia, the efficacy of ART drugs for viral suppression in microglia is suboptimal. Previously, we developed novel poly (lactic-co-glycolic acid) (PLGA)-based elvitegravir nanoparticles (PLGA-EVG NPs), which showed improved BBB penetration in vitro and improved viral suppression in HIV-1-infected primary macrophages, after crossing an in vitro BBB model. Our objective in the current study was to evaluate the efficacy of our PLGA-EVG NPs in an important central nervous system (CNS) HIV-1 reservoir, i.e., microglia. In this study, we evaluated the cyto-compatibility of the PLGA-EVG NPs in microglia, using an XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) assay and cellular morphology observation. We also studied the endocytosis pathway and the subcellular localization of PLGA NPs in microglia, using various endocytosis inhibitors and subcellular localization markers. We determined the ability of PLGA-EVG NPs to suppress HIV-1 replication in microglia, after crossing an in vitro BBB model. We also studied the drug levels in mouse plasma and brain tissue, using immunodeficient NOD scid gamma (NSG) mice, and performed a pilot study, to evaluate the efficacy of PLGA-EVG NPs on viral suppression in the CNS, using an HIV-1 encephalitic (HIVE) mouse model. From our results, the PLGA-EVG NPs showed ~100% biocompatibility with microglia, as compared to control cells. The internalization of PLGA NPs in microglia occurred through caveolae-/clathrin-mediated endocytosis. PLGA NPs can also escape from endo-lysosomal compartments and deliver the therapeutics to cells efficiently. More importantly, the PLGA-EVG NPs were able to show ~25% more viral suppression in HIV-1-infected human-monocyte-derived microglia-like cells after crossing the in vitro BBB compared to the EVG native drug, without altering BBB integrity. PLGA-EVG NPs also showed a ~two-fold higher level in mouse brain and a trend of decreasing CNS HIV-1 viral load in HIV-1-infected mice. Overall, these results help us to create a safe and efficient drug delivery method to target HIV-1 reservoirs in the CNS, for potential clinical use.
Collapse
|
9
|
Gong Y, Chowdhury P, Nagesh PKB, Rahman MA, Zhi K, Yallapu MM, Kumar S. Novel elvitegravir nanoformulation for drug delivery across the blood-brain barrier to achieve HIV-1 suppression in the CNS macrophages. Sci Rep 2020; 10:3835. [PMID: 32123217 PMCID: PMC7052245 DOI: 10.1038/s41598-020-60684-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/11/2020] [Indexed: 01/04/2023] Open
Abstract
The use of antiretroviral therapy (ART) has remarkably decreased the morbidity associated with HIV-1 infection, however, the prevalence of HIV-1-associated neurocognitive disorders (HAND) is still increasing. The blood-brain barrier (BBB) is the major impediment for penetration of antiretroviral drugs, causing therapeutics to reach only suboptimal level to the brain. Conventional antiretroviral drug regimens are not sufficient to improve the treatment outcomes of HAND. In our recent report, we have developed a poloxamer-PLGA nanoformulation loaded with elvitegravir (EVG), a commonly used antiretroviral drug. The nanoformulated EVG is capable of elevating intracellular drug uptake and simultaneously enhance viral suppression in HIV-1-infected macrophages. In this work, we identified the clinical parameters including stability, biocompatibility, protein corona, cellular internalization pathway of EVG nanoformulation for its potential clinical translation. We further assessed the ability of this EVG nanoformulation to cross the in vitro BBB model and suppress the HIV-1 in macrophage cells. Compared with EVG native drug, our EVG nanoformulation demonstrated an improved BBB model penetration cross the in vitro BBB model and an enhanced HIV-1 suppression in HIV-1-infected human monocyte-derived macrophages after crossing the BBB model without altering the BBB model integrity. Overall, this is an innovative and optimized treatment strategy that has a potential for therapeutic interventions in reducing HAND.
Collapse
Affiliation(s)
- Yuqing Gong
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Prashanth K B Nagesh
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mohammad A Rahman
- National Institute of Environmental Health Sciences, Durham, NC, 27703, USA
| | - Kaining Zhi
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Department of Microbiology and Immunology, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
10
|
Coyle RP, Schneck CD, Morrow M, Coleman SS, Gardner EM, Zheng JH, Ellison L, Bushman LR, Kiser JJ, Mawhinney S, Anderson PL, Castillo-Mancilla JR. Engagement in Mental Health Care is Associated with Higher Cumulative Drug Exposure and Adherence to Antiretroviral Therapy. AIDS Behav 2019; 23:3493-3502. [PMID: 30798457 DOI: 10.1007/s10461-019-02441-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mental health (MH) disorders are more prevalent among persons living with HIV compared to the general population, and may contribute to suboptimal adherence to antiretroviral therapy (ART). Tenofovir-diphosphate (TFV-DP), the phosphorylated anabolite of tenofovir (TFV), is a biomarker with a 17-day half-life in red blood cells. TFV-DP can be measured in dried blood spots (DBS) using liquid chromatography/tandem mass spectrometry (LC-MS/MS) to assess adherence and cumulative drug exposure to tenofovir disoproxil fumarate (TDF)-based ART. From a larger clinical cohort (N = 807), TFV-DP concentrations and a paired HIV viral load were available from 521 participants at their enrollment visit. We used multivariable linear regression to evaluate the association between TFV-DP in DBS and engagement in MH care. After adjusting for clinical covariates, participants with MH disorders who were engaged in MH care had 40% higher TFV-DP compared to participants with MH disorders who were not engaged in MH care (p < 0.001), and similar TFV-DP to participants without MH disorders (p = 0.219). Further research is needed to identify the mechanism(s) for these findings, with the goal of optimizing engagement and retention in MH care strategies to improve ART adherence and clinical outcomes in PLWH with MH disorders.
Collapse
Affiliation(s)
- Ryan P Coyle
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado-Anschutz Medical Campus, 12700 E. 19th Ave., B168, Aurora, CO, 80045, USA
| | - Christopher D Schneck
- Department of Psychiatry, School of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Mary Morrow
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | | | - Edward M Gardner
- Division of Infectious Diseases, Denver Health Medical Center, Denver, CO, USA
| | - Jia-Hua Zheng
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Lucas Ellison
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Lane R Bushman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer J Kiser
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Samantha Mawhinney
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Peter L Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Jose R Castillo-Mancilla
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado-Anschutz Medical Campus, 12700 E. 19th Ave., B168, Aurora, CO, 80045, USA.
| |
Collapse
|
11
|
Cattaneo D, Cossu MV, Rizzardini G. Pharmacokinetic drug evaluation of ritonavir (versus cobicistat) as adjunctive therapy in the treatment of HIV. Expert Opin Drug Metab Toxicol 2019; 15:927-935. [PMID: 31668105 DOI: 10.1080/17425255.2019.1685495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Ritonavir and cobicistat are pharmacoenhancers used to improve the disposition of other HIV antiretrovirals. These drugs are, however, characterized by important pharmacokinetic differences.Areas covered: Here, the authors firstly update the available information on the pharmacokinetics of ritonavir and cobicistat. Subsequently, the review focuses on the description of drug-drug interactions (DDIs) involving cobicistat and comedications that might beneficiate from a shift-back to ritonavir. A MEDLINE Pubmed search for articles published from January 1995 to April 2019 was completed matching the term ritonavir or cobicistat with pharmacokinetics, DDIs, and pharmacology. Moreover, additional studies were identified from the reference list of retrieved articles.Expert opinion: Despite more than 20 years after its introduction on the market, ritonavir still represents a valid option for the treatment of selected HIV-infected patients. The large-scale switch to cobicistat may result in some unexpected DDIs not previously reported for ritonavir. Besides the issue of DDIs, additional advantage of ritonavir over cobicistat is its use in pregnancy, and its availability as single component of pharmaceutical formulations allowing the fine-tuning of antiretroviral regimens in patients with heavy polypharmacy when other unboosted-based therapeutic options cannot be used.
Collapse
Affiliation(s)
- Dario Cattaneo
- Unit of Clinical Pharmacology, Department of Laboratory Medicine, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Maria Vittoria Cossu
- Department of Infectious Diseases, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Giuliano Rizzardini
- Department of Infectious Diseases, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy.,School of Clinical Medicine, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Rahman MA, Kodidela S, Sinha N, Haque S, Shukla PK, Rao R, Kumar S. Plasma exosomes exacerbate alcohol- and acetaminophen-induced toxicity via CYP2E1 pathway. Sci Rep 2019; 9:6571. [PMID: 31024054 PMCID: PMC6484097 DOI: 10.1038/s41598-019-43064-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023] Open
Abstract
Cellular CYP2E1 is well-known to mediate alcohol- (ALC) and acetaminophen- (APAP) induced toxicity in hepatic and extra-hepatic cells. Although exosomes have been gaining importance in understanding mechanism of intra- and inter-cellular communication, the functional role of drug metabolizing cytochrome P450 (CYP) enzymes in human plasma exosomes are yet to be explored. In our previous study, we reported that human plasma-derived exosomes contain substantial level of functional CYP2E1. In the current project, we investigated the potential role of plasma exosomal CYP2E1 in mediating ALC- and APAP-induced toxicity. We treated hepatic and extra-hepatic (monocytic) cells with exosomes ± ALC/APAP. We observed that the plasma exosomes containing CYP2E1 cargo further exacerbate ALC- and APAP-induced toxicity in both hepatic and monocytic cells. Further, both exosomes- and ALC/APAP-induced toxicity was reduced/abolished by a selective inhibitor of CYP2E1 enzyme activity (diallyl ether). However, only ALC-, but not exosome-induced toxicity was reduced/abolished by CYP2E1 siRNA. These findings suggest that ALC/APAP-induced toxicity in the presence of exosomes are mediated, at least in part, by CYP2E1 enzyme. To validate these in vitro findings, we characterized plasma exosomal contents in a binge-drinking animal model and their effect on ALC/APAP-induced toxicity in monocytic cells. Our results showed that ALC exposure caused a significant induction of the plasma exosomal CYP2E1 level in a binge drinking murine model. These exosomes containing increased levels of CYP2E1 caused significant toxicity in monocytic cells compared to exosomes derived from control mice. Overall, our results showed an important role of exosomal CYP2E1 in exacerbating ALC- and APAP-induced toxicity. The study is significant in terms of understanding the role of exosomal CYP2E1 in cell-cell interactions, and their effects on drug-induced toxicity.
Collapse
Affiliation(s)
- Mohammad A Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Namita Sinha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sanjana Haque
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Pradeep K Shukla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Radhakrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
13
|
Extracellular Vesicles: Intercellular Mediators in Alcohol-Induced Pathologies. J Neuroimmune Pharmacol 2019; 15:409-421. [PMID: 30955131 DOI: 10.1007/s11481-019-09848-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/25/2019] [Indexed: 12/12/2022]
Abstract
Though alcoholic liver injury plays the primary role in direct alcohol-related morbidity, alcohol consumption is also interlinked with many other diseases in extra-hepatic tissues/organs. The mechanism of alcoholic tissue injury is well documented, however the mechanisms that affect extra-hepatic tissues have not yet been well defined. Extracellular vesicles (EVs) such as exosomes and microvesicles, have been identified as key components of alcohol-induced extra-hepatic effects. We have reviewed the recent findings on the potential impact of alcohol-modified EVs/exosomes production and their downstream effects on extra-hepatic tissues. In this review, we discuss the available information on the cross-talk between hepatocytes and immune cells via EV/exosomal cargos (miRNA, mRNA, protein, etc.) in alcoholic liver diseases. We also discuss the effects of alcohol exposure on the contents of EVs/exosomes derived from various extra-hepatic tissues and their associated pathological consequences on recipient cells. Finally, we speculate on other potential EV/exosomal agents that may mediate alcohol-induced tissue damage. Graphical Abstract Alcohol can alter contents of extracellular vesicles (EVs) (e.g. exosomes) such as miRNAs, protein, cytokines, etc. in hepatic and extra-hepatic cells. The transfer of these alcohol modified EVs to nearby or distant cells can play vital role in inflammatory pathways in alcohol induced pathogenesis/comorbidities.
Collapse
|
14
|
The role of cytochrome P450 2E1 on ethanol-mediated oxidative stress and HIV replication in human monocyte-derived macrophages. Biochem Biophys Rep 2018; 17:65-70. [PMID: 30582009 PMCID: PMC6295597 DOI: 10.1016/j.bbrep.2018.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/15/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023] Open
Abstract
Background Alcohol consumption is considered to be a major health problem among people living with HIV/AIDS. Our previous reports have shown that ethanol reduced intracellular concentrations of antiretroviral drugs elvitegravir and darunavir in the HIV-1-infected U1 cell line. Ethanol also increased HIV-1 replication despite the presence of elvitegravir. Our previous finding has also shown that the levels of cytochrome P450 enzyme 2E1 (CYP2E1) and oxidative stress in blood monocytes were induced, while the concentration of alcohol in the plasma was reduced in HIV-1-infected alcohol users compared to uninfected alcohol users. However, the role of CYP2E1 in ethanol-enhanced oxidative stress and HIV-1 replication is still unclear. Methods This study examined the chronic effects (14 days) of ethanol on HIV viral load, oxidative DNA damage, expression of CYP2E1, expression of antioxidant enzymes (AOEs), expression of reactive oxygen species (ROS) in human monocyte-derived macrophages (MDM). Further, to evaluate the role of CYP2E1 in mediating ethanol-induced viral replication, CYP2E1 siRNA and CYP2E1 selective inhibitor were used in the HIV-1-infected U1 cell line following ethanol treatment. Results Chronic ethanol exposure demonstrated an increase in oxidative DNA damage and CYP2E1 expression in both non-infected and HIV-1-infected MDM. Our results showed that ethanol chronic exposure increased HIV-1 replication by ~3-fold in HIV-1-infected MDM. This ethanol-enhanced HIV-1 replication was associated with an increased oxidative DNA damage, an increased expression of CYP2E1, and a decreased expression of antioxidant enzyme PRDX6. In HIV-1-infected U1 cell line, we observed a decreased viral replication (~30%) and a decreased DNA damage (~100%) after repression of CYP2E1 by siRNA, upon ethanol exposure. We also observed a decreased viral replication (~25%) after inhibition of CYP2E1 by using selective CYP2E1 inhibitor. Conclusions The data suggest that chronic ethanol exposure increases HIV-1 replication in MDM, at least in part, through CYP2E1-mediated oxidative stress. These results are clinically relevant to potentially find effective treatment strategies for HIV-1-infected alcohol users. Chronic EtOH exposure increased HIV-1 replication and oxidative DNA damage in MDM. Chronic EtOH exposure increased CYP2E1 expression in MDM. EtOH-enhanced HIV replication and DNA damage were prevented by CYP2E1 siRNA. Selective CYP2E1 inhibitor decreased HIV-1 replication upon ethanol exposure.
Collapse
|
15
|
Ocque AJ, Hagler CE, Lapham J, Morse GD, Letendre S, Ma Q. Development and validation of a UHPLC-MS/MS assay for elvitegravir measurement in human plasma and cerebrospinal fluid. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrew Jacob Ocque
- Translational Pharmacology Research Core, Center for Integrated Global Biomedical Sciences; New York State Center of Excellence in Bioinformatics and Life Sciences, Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences; University at Buffalo; Buffalo NY USA
| | - Colleen E. Hagler
- Translational Pharmacology Research Core, Center for Integrated Global Biomedical Sciences; New York State Center of Excellence in Bioinformatics and Life Sciences, Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences; University at Buffalo; Buffalo NY USA
| | - Jill Lapham
- Translational Pharmacology Research Core, Center for Integrated Global Biomedical Sciences; New York State Center of Excellence in Bioinformatics and Life Sciences, Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences; University at Buffalo; Buffalo NY USA
| | - Gene D. Morse
- Translational Pharmacology Research Core, Center for Integrated Global Biomedical Sciences; New York State Center of Excellence in Bioinformatics and Life Sciences, Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences; University at Buffalo; Buffalo NY USA
| | - Scott Letendre
- Department of Medicine; University of California; San Diego CA
| | - Qing Ma
- Translational Pharmacology Research Core, Center for Integrated Global Biomedical Sciences; New York State Center of Excellence in Bioinformatics and Life Sciences, Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences; University at Buffalo; Buffalo NY USA
| |
Collapse
|
16
|
Rahman MA, Gong Y, Kumar S. In vitro evaluation of structural analogs of diallyl sulfide as novel CYP2E1 inhibitors for their protective effect against xenobiotic-induced toxicity and HIV replication. Toxicol Lett 2018; 292:31-38. [PMID: 29694836 DOI: 10.1016/j.toxlet.2018.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/13/2022]
Abstract
Diallyl sulfide (DAS) has been shown to prevent xenobiotic (e.g. ethanol, acetaminophen) induced toxicity and disease (e.g. HIV-1) pathogenesis. DAS imparts its beneficial effect by inhibiting CYP2E1-mediated metabolism of xenobiotics, especially at high concentration. However, DAS also causes toxicity at relatively high dosages and with long exposure times. Therefore, the goal of the current study was to investigate the structural analogs of DAS for their improved toxicity profiles and their effectiveness in reducing xenobiotic-induced toxicity and HIV-1 replication. Previously, we identified commercially available analogs that possessed CYP2E1 inhibitory capacity greater than or equal to that of DAS. In this study, we evaluated the toxicity and efficacy of these analogs using hepatocytes, monocytes, and astrocytes where CYP2E1 plays an important role in xenobiotic-mediated toxicity. Our results showed that thiophene, allyl methyl sulfide, diallyl ether, and 2-prop-2-enoxyacetamide are significantly less cytotoxic than DAS in these cells. Moreover, these analogs reduced ethanol- and acetaminophen-induced toxicity in hepatocytes and HIV-1 replication in monocytes more effectively than DAS. Overall, our findings are significant in terms of using these DAS analogs as a tool in vitro and in vivo, especially to examine chronic xenobiotic-induced toxicity and disease pathogenesis that occurs through the CYP2E1 pathway.
Collapse
Affiliation(s)
- Mohammad A Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Yuqing Gong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163 USA.
| |
Collapse
|
17
|
Archibald TL, Murrell DE, Brown SD. Chromatographic methods in HIV medicine: Application to therapeutic drug monitoring. Biomed Chromatogr 2018; 32. [PMID: 29240228 DOI: 10.1002/bmc.4170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 01/11/2023]
Abstract
HIV antiretroviral therapy spans several different drug classes, meant to combat various aspects of viral infection and replication. Many authors have argued the benefits of therapeutic drug monitoring (TDM) for the HIV patient including compliance assurance and assessment of appropriate drug concentrations; however, the array of drug chemistries and combinations makes TDM an arduous task. HPLC-UV and LC-MS/MS are both frequent instruments for the quantification of HIV drugs in biological matrices with investigators striving to balance sensitivity and affordability. Plasma, the dominant matrix for these analyses, is prepared using protein precipitation, liquid-liquid extraction or solid-phase extraction depending on the specific complement of analytes. Despite the range of polarities found in drug classes relevant to HIV therapeutics, most chromatographic separations utilize a hydrophobic column (C18 ). Additionally, as the clinically relevant samples for these assays are infected with HIV, along with possible co-infections, another important aspect of sample preparation concerns viral inactivation. Although not routine in clinical practice, many published analytical methods from the previous two decades have demonstrated the ability to conduct TDM in HIV patients receiving various medicinal combinations. This review summarizes the analytical methods relevant to TDM of HIV drugs, while highlighting respective challenges.
Collapse
Affiliation(s)
- Timothy L Archibald
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - Derek E Murrell
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - Stacy D Brown
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
18
|
Hernandez D, Kalichman SC, Katner HP, Burnham K, Kalichman MO, Hill M. Psychosocial complications of HIV/AIDS-metabolic disorder comorbidities among patients in a rural area of southeastern United States. J Behav Med 2018; 41:441-449. [PMID: 29383534 DOI: 10.1007/s10865-018-9912-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 01/13/2018] [Indexed: 02/05/2023]
Abstract
As people living with HIV experience longer life-expectancies resulting from antiretroviral therapy, comorbid conditions are increasing, particularly metabolic disorders. There is potential for psychosocial factors such as stigma experiences, depression, and alcohol use to complicate both HIV infection and metabolic disorders, including diabetes mellitus and hyperlipidemia. While the impact of these psychosocial factors on HIV infection alone are widely studied, their role in potentially complicating HIV co-morbid metabolic conditions has received little attention. This study examined the association between HIV-related stigma and depression, and the potential role of alcohol use as a mediating factor in a clinical sample of patients with comorbid HIV infection and metabolic conditions. Results demonstrated that HIV stigma is associated with depression and this relationship is in part accounted for by alcohol use. Our results indicate that interventions aiming to improve the health of people living with HIV and co-morbid metabolic disorders should prioritize addressing alcohol use as it is related to sources of stress, such as stigma, and depression.
Collapse
Affiliation(s)
- Dominica Hernandez
- University of Connecticut, 2006 Hillside Road, Unit 1248, Storrs, CT, 06269, USA.
| | - Seth C Kalichman
- University of Connecticut, 2006 Hillside Road, Unit 1248, Storrs, CT, 06269, USA
| | | | - Kaylee Burnham
- University of Connecticut, 2006 Hillside Road, Unit 1248, Storrs, CT, 06269, USA
| | - Moira O Kalichman
- University of Connecticut, 2006 Hillside Road, Unit 1248, Storrs, CT, 06269, USA
| | - Marnie Hill
- Mercer University Medical School, Macon, GA, USA
| |
Collapse
|
19
|
Gong Y, Chowdhury P, Midde NM, Rahman MA, Yallapu MM, Kumar S. Novel elvitegravir nanoformulation approach to suppress the viral load in HIV-infected macrophages. Biochem Biophys Rep 2017; 12:214-219. [PMID: 29214223 PMCID: PMC5704044 DOI: 10.1016/j.bbrep.2017.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022] Open
Abstract
Purpose Monocytes serve as sanctuary sites for HIV-1 from which virus is difficult to be eliminated. Therefore, an effective viral suppression in monocytes is critical for effective antiretroviral therapy (ART). This study focuses on a new strategy using nanoformulation to optimize the efficacy of ART drugs in HIV-infected monocytes. Methods Poly(lactic-co-glycolic acid) (PLGA)-based elvitegravir nanoparticles (PLGA-EVG) were prepared by nano-precipitation technique. The physicochemical properties of PLGA-EVG were characterized using transmission electron microscopy, dynamic light scattering, and Fourier-transform infrared spectroscopy. Cellular uptake study was performed by fluorescence microscopy and flow cytometry. All in vitro experiments were performed by using HIV-infected monocytic cell lines U1 and HIV-infected primary macrophages. Elvitegravir quantification was performed using LC-MS/MS. HIV viral replication was assessed by using p24 ELISA. Results We developed a PLGA-EVG nanoparticle formulation with particle size of ~ 47 nm from transmission electron microscopy and zeta potential of ~ 6.74 mV from dynamic light scattering. These nanoparticles demonstrated a time- and concentration-dependent uptakes in monocytes. PLGA-EVG formulation showed a ~ 2 times higher intracellular internalization of EVG than control group (EVG alone). PLGA-EVG nanoparticles also demonstrated superior viral suppression over control for a prolonged period of time. Conclusions PLGA-based EVG nanoformulation increased the intracellular uptake of EVG, as well as enhanced viral suppression in HIV-infected macrophages, suggesting its potential for improved HIV treatment in monocytic cells.
Collapse
Affiliation(s)
- Yuqing Gong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Narasimha M Midde
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mohammad A Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
20
|
Kumar S, Sinha N, Gerth KA, Rahman MA, Yallapu MM, Midde NM. Specific packaging and circulation of cytochromes P450, especially 2E1 isozyme, in human plasma exosomes and their implications in cellular communications. Biochem Biophys Res Commun 2017; 491:675-680. [PMID: 28756226 PMCID: PMC5901973 DOI: 10.1016/j.bbrc.2017.07.145] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 11/15/2022]
Abstract
Cytochrome P450 (CYP) enzymes metabolize the majority of xenobiotics and are mainly found in hepatic and some extra-hepatic cells. However, their presence and functional role in exosomes, small extracellular vesicles that are secreted from various cells into extracellular fluids including plasma, is unknown. In this study, we analyzed the expression and biological activity of CYP enzymes in human plasma exosomes. First, we optimized isolation of plasma exosomes and characterized them for their physical properties and quality. The results showed that the purity of exosomes (<200 nm) improved upon prior filtration of plasma using a 0.22 micron filter. We then analyzed the relative level of exosomal CYP mRNAs, proteins, and enzyme activity. The results showed that the relative level of CYP enzymes in exosomes is higher than in plasma, suggesting their specific packaging in exosomes. Of the seven CYP enzymes tested, the mRNA of CYP1B1, CYP2A6, CYP2E1, and CYP3A4 were detectable in exosomes. Interestingly, the relative level of CYP2E1 mRNA was >500-fold higher than the other CYPs. The results from the Western blot showed detectable levels of CYP1A1, CYP1B1, CYP2A6, CYP2E1, and CYP3A4. Our results also demonstrated that exosomal CYP2E1 and CYP3A4 show appreciable activity relative to their respective positive controls (CYP-induced baculosomes). Our results also showed that CYP2E1 is expressed relatively higher in plasma exosomes than hepatic and monocytic cells and exosomes derived from these cells. In conclusion, this is the first evidence of the specific packaging and circulation of CYP enzymes, especially CYP2E1, in human plasma exosomes. The findings have biological and clinical significance in terms of their implications in cellular communications and potential use of plasma exosomal CYPs as biomarkers.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Namita Sinha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kelli A Gerth
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mohammad A Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Narasimha M Midde
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
21
|
Midde NM, Gong Y, Cory TJ, Li J, Meibohm B, Li W, Kumar S. Influence of Ethanol on Darunavir Hepatic Clearance and Intracellular PK/PD in HIV-Infected Monocytes, and CYP3A4-Darunavir Interactions Using Inhibition and in Silico Binding Studies. Pharm Res 2017; 34:1925-1933. [PMID: 28616684 DOI: 10.1007/s11095-017-2203-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/05/2017] [Indexed: 02/08/2023]
Abstract
PURPOSE Although the prevalence of alcohol consumption is higher in HIV+ people than general public, limited information is available on how alcohol affects the metabolism and bioavailability of darunavir (DRV). METHODS DRV was quantified by using LC-MS/MS method. All in vitro experiments were performed using human liver microsomes and HIV-infected monocytic cells. CYP3A4 and DRV/Ritonavir (RTV) docking was performed using GOLD suite 5.8. RESULTS Ethanol (20 mM) significantly decreased apparent half-life and increased degradation rate constant of RTV-boosted DRV but not for DRV alone. Similarly, ethanol exposure increased hepatic intrinsic clearance for RTV-boosted DRV with no significant influence on DRV alone. Ethanol showed a limited influence on intracellular total DRV exposure in the presence of RTV without altering maximum concentration (Cmax) values in HIV-infected monocytic cells. Ethanol alone elevated HIV replication but this effect was nullified with the addition of DRV or DRV + RTV. Additionally, inhibitory potency of DRV was significantly reduced in the presence of ethanol. Our docking results projected that ethanol increases the average distance between DRV and CYP3A4 heme, and alter the orientation of DRV-CYP3A4 binding. CONCLUSIONS Collectively these findings suggest that DRV metabolism is primarily influenced by ethanol in the liver, but has minor effect in HIV-residing monocytes.
Collapse
Affiliation(s)
- Narasimha M Midde
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Rm 456, Memphis, TN, 38163, USA.
| | - Yuqing Gong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Rm 456, Memphis, TN, 38163, USA
| | - Theodore J Cory
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center,, Memphis, TN, 38163, USA
| | - Junhao Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,, Shanghai, 200237, China
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Rm 456, Memphis, TN, 38163, USA
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,, Shanghai, 200237, China
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Rm 456, Memphis, TN, 38163, USA.
| |
Collapse
|
22
|
Du H, Li J, Cai Y, Zhang H, Liu G, Tang Y, Li W. Computational Investigation of Ligand Binding to the Peripheral Site in CYP3A4: Conformational Dynamics and Inhibitor Discovery. J Chem Inf Model 2017; 57:616-626. [DOI: 10.1021/acs.jcim.7b00012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hanwen Du
- Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Junhao Li
- Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yingchun Cai
- Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongxiao Zhang
- Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
23
|
Midde NM, Sinha N, Lukka PB, Meibohm B, Kumar S. Alterations in cellular pharmacokinetics and pharmacodynamics of elvitegravir in response to ethanol exposure in HIV-1 infected monocytic (U1) cells. PLoS One 2017; 12:e0172628. [PMID: 28231276 PMCID: PMC5322882 DOI: 10.1371/journal.pone.0172628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/07/2017] [Indexed: 11/18/2022] Open
Abstract
Ethanol consumption is negatively associated with antiretroviral therapy (ART) adherence and general health in HIV positive individuals. Previously, we demonstrated ethanol-mediated alterations to metabolism of elvitegravir (EVG) in human liver microsomes. In the current study, we investigated ethanol influence on the pharmacokinetic and pharmacodynamic interactions of EVG in HIV infected monocytic (U1) cells. U1 cells were treated with 5 μM EVG, 2 μM Cobicistat (COBI), a booster drug, and 20 mM ethanol for up to 24 hours. EVG, HIV p24 levels, alterations in cytochrome P450 (CYP) 3A4, MRP1, and MDR1 protein expressions were measured. Presence of ethanol demonstrated a significant effect on the total exposures of both EVG and EVG in combination with COBI. Ethanol also increased the HIV replication despite the presence of drugs and this elevated HIV replication was reduced in the presence of MRP1 and MDR1 inhibitors. Consequently, a slight increase in EVG concentration was observed in the presence of MRP1 inhibitor but not with MDR1 inhibitor. Furthermore, CYP3A4, MRP1 and MDR1 protein levels were significantly induced in treatment groups which included ethanol compared to those with no treatment. In summary, these findings suggest that Ethanol reduces intra cellular EVG exposure by modifying drug metabolism and transporter protein expression. This study provides valuable evidence for further investigation of ethanol effects on the intracellular concentration of EVG in ex vivo or in vivo studies.
Collapse
Affiliation(s)
- Narasimha M. Midde
- Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis TN, United States of America
| | - Namita Sinha
- Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis TN, United States of America
| | - Pradeep B. Lukka
- Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis TN, United States of America
| | - Bernd Meibohm
- Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis TN, United States of America
| | - Santosh Kumar
- Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis TN, United States of America
- * E-mail:
| |
Collapse
|