1
|
Salo W, Considine JA, Considine MJ. Influence of mixed and single infection of grapevine leafroll-associated viruses and viral load on berry quality. TREE PHYSIOLOGY 2024; 44:tpae035. [PMID: 38501881 PMCID: PMC11070139 DOI: 10.1093/treephys/tpae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Grapevine leafroll disease is a viral disease that affects grapevines (Vitis vinifera L.) and has a severe economic impact on viticulture. In this study, the effect of grapevine leafroll-associated viruses (GLRaV) on berry quality was investigated in clones of cultivar cv. Crimson Seedless table grapes infected with GLRaV. RT-PCR confirmed the identity of the clones: clone 3236, infected only with GLRaV-3 (termed single); clone 3215, infected with GLRaV-3, GLRaV-4 strain 9 and grapevine virus A (termed mixed); and a viral free clone of the same genetic background of the infected clones (termed control). The berry quality indices of size, sugar, acidity and anthocyanin content were measured at harvest maturity. RT-qPCR was used to determine the viral load. The study was repeated over 2 year. A two-way, multivariate analysis of variance was applied with clone and year as independent variables and the measured berry quality parameters as a dependent variable. All dependent variables were significantly affected by viral infection (Wilks, λ, (2,33) = 0.033895, P-value <0.001), while only titratable acidity was affected by year. The average berry dry mass decreased (P-value <0.001). The water content of both infected clones was greater than that of the control (P-value <0.001). Both infected clones displayed reduced sugar content as a fraction of the berry dry mass (P-value <0.001). The anthocyanin and the phenol content of the infected clones were significantly reduced compared with the control clone (P < 0.001, P < 0.05, clone 3236 and clone 3215, respectively). Finally, the viral load was highly variable, and no quantitative relationship between viral load and berry composition was found.
Collapse
Affiliation(s)
- Wisam Salo
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia
- The School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| | - John A Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia
- The School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| | - Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia
- The School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
- Department of Primary Industries and Regional Development, Perth 6009, Australia
| |
Collapse
|
2
|
Girardello RC, Rumbaugh A, Perry A, Heymann H, Brenneman C, Oberholster A. Longer cluster hanging time decreases the impact of grapevine red blotch disease in Vitis vinifera L. Merlot across two seasons. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:860-874. [PMID: 37708393 DOI: 10.1002/jsfa.12983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Grapevine red blotch virus (GRBV) is a recently discovered virus and a major concern for the wine industry. Prior research indicated that GRBV delays grape ripening by reducing °Brix and anthocyanin concentrations in grapes from infected vines, resulting in higher ethanol concentrations in wines made from healthy fruit compared to diseased vines, which have an impact on sensory properties. In this study, infected fruit (Vitis vinifera L. Merlot) was sequentially harvested (in 2016 and 2017) and chaptalized (in 2017) to ameliorate the impact of GRBV on grape and final wine composition. RESULTS Chemical parameters including phenolic and volatile profiles of grapes and their subsequent wines were measured. Sensory properties were determined by descriptive analyses. Results demonstrated that GRBV decreased sugar accumulation and anthocyanin synthesis in grapes. Wines from GRBV grapes harvested at later ripening stage produced wines that were more similar chemically and sensorially to wines made from healthy fruit than to wines made from GRBV fruit harvested earlier. CONCLUSION A longer hang time of GRBV grapes is a potential strategy to mitigate the impacts of GRBV. However, chaptalization of diseased fruit must was inefficient at increasing similarities to wines made from healthy fruit. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Raul C Girardello
- Department of Viticulture and Enology, University of California, Davis, California, USA
| | - Arran Rumbaugh
- United States Department of Agriculture, Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Anji Perry
- J. Lohr Vineyards and Wines, Paso Robles, California, USA
| | - Hildegarde Heymann
- Department of Viticulture and Enology, University of California, Davis, California, USA
| | - Charles Brenneman
- Department of Viticulture and Enology, University of California, Davis, California, USA
| | - Anita Oberholster
- Department of Viticulture and Enology, University of California, Davis, California, USA
| |
Collapse
|
3
|
Mostert I, Bester R, Burger JT, Maree HJ. Investigating Protein-Protein Interactions Between Grapevine Leafroll-Associated Virus 3 and Vitis vinifera. PHYTOPATHOLOGY 2023; 113:1994-2005. [PMID: 37311734 DOI: 10.1094/phyto-03-23-0107-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Grapevine leafroll disease (GLD) is a globally important disease that affects the metabolic composition and biomass of grapes, leading to a reduction in grape yield and quality of wine produced. Grapevine leafroll-associated virus 3 (GLRaV-3) is the main causal agent for GLD. This study aimed to identify protein-protein interactions between GLRaV-3 and its host. A yeast two-hybrid (Y2H) library was constructed from Vitis vinifera mRNA and screened against GLRaV-3 open reading frames encoding structural proteins and those potentially involved in systemic spread and silencing of host defense mechanisms. Five interacting protein pairs were identified, three of which were demonstrated in planta. The minor coat protein of GLRaV-3 was shown to interact with 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase 02, a protein involved in primary carbohydrate metabolism and the biosynthesis of aromatic amino acids. Interactions were also identified between GLRaV-3 p20A and an 18.1-kDa class I small heat shock protein, as well as MAP3K epsilon protein kinase 1. Both proteins are involved in the response of plants to various stressors, including pathogen infections. Two additional proteins, chlorophyll a-b binding protein CP26 and a SMAX1-LIKE 6 protein, were identified as interacting with p20A in yeast but these interactions could not be demonstrated in planta. The findings of this study advance our understanding of the functions of GLRaV-3-encoded proteins and how the interaction between these proteins and those of V. vinifera could lead to GLD.
Collapse
Affiliation(s)
- Ilani Mostert
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Rachelle Bester
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
- Citrus Research International, Stellenbosch 7600, South Africa
| | - Johan T Burger
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Hans J Maree
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
- Citrus Research International, Stellenbosch 7600, South Africa
| |
Collapse
|
4
|
Wang YM, Ostendorf B, Pagay V. Detecting Grapevine Virus Infections in Red and White Winegrape Canopies Using Proximal Hyperspectral Sensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:2851. [PMID: 36905055 PMCID: PMC10007312 DOI: 10.3390/s23052851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Grapevine virus-associated disease such as grapevine leafroll disease (GLD) affects grapevine health worldwide. Current diagnostic methods are either highly costly (laboratory-based diagnostics) or can be unreliable (visual assessments). Hyperspectral sensing technology is capable of measuring leaf reflectance spectra that can be used for the non-destructive and rapid detection of plant diseases. The present study used proximal hyperspectral sensing to detect virus infection in Pinot Noir (red-berried winegrape cultivar) and Chardonnay (white-berried winegrape cultivar) grapevines. Spectral data were collected throughout the grape growing season at six timepoints per cultivar. Partial least squares-discriminant analysis (PLS-DA) was used to build a predictive model of the presence or absence of GLD. The temporal change of canopy spectral reflectance showed that the harvest timepoint had the best prediction result. Prediction accuracies of 96% and 76% were achieved for Pinot Noir and Chardonnay, respectively. Our results provide valuable information on the optimal time for GLD detection. This hyperspectral method can also be deployed on mobile platforms including ground-based vehicles and unmanned aerial vehicles (UAV) for large-scale disease surveillance in vineyards.
Collapse
Affiliation(s)
- Yeniu Mickey Wang
- School of Agriculture, Food & Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
- CSIRO Manufacturing, 13 Kintore Ave, Adelaide, SA 5000, Australia
| | - Bertram Ostendorf
- School of Biological Sciences, The University of Adelaide, Molecular Life Sciences Building, North Terrace Campus, Adelaide, SA 5005, Australia
| | - Vinay Pagay
- School of Agriculture, Food & Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
5
|
Lee J, Rennaker CD, Thompson BD, Dahan J, Karasev AV. Idaho ‘cabernet sauvignon’ grape composition altered by grapevine leafroll-associated virus 3. NFS JOURNAL 2023. [DOI: 10.1016/j.nfs.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
6
|
Rumbaugh AC, Durbin-Johnson B, Padhi E, Lerno L, Cauduro Girardello R, Britton M, Slupsky C, Sudarshana MR, Oberholster A. Investigating Grapevine Red Blotch Virus Infection in Vitis vinifera L. cv. Cabernet Sauvignon Grapes: A Multi-Omics Approach. Int J Mol Sci 2022; 23:ijms232113248. [PMID: 36362035 PMCID: PMC9658657 DOI: 10.3390/ijms232113248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Grapevine red blotch virus (GRBV) is a recently identified virus. Previous research indicates primarily a substantial impact on berry ripening in all varieties studied. The current study analyzed grapes’ primary and secondary metabolism across grapevine genotypes and seasons to reveal both conserved and variable impacts to GRBV infection. Vitis vinifera cv. Cabernet Sauvignon (CS) grapevines grafted on two different rootstocks (110R and 420A) were analyzed in 2016 and 2017. Metabolite profiling revealed a considerable impact on amino acid and malate acid levels, volatile aroma compounds derived from the lipoxygenase pathway, and anthocyanins synthesized in the phenylpropanoid pathway. Conserved transcriptional responses to GRBV showed induction of auxin-mediated pathways and photosynthesis with inhibition of transcription and translation processes mainly at harvest. There was an induction of plant-pathogen interactions at pre-veraison, for all genotypes and seasons, except for CS 110R in 2017. Lastly, differential co-expression analysis revealed a transcriptional shift from metabolic synthesis and energy metabolism to transcription and translation processes associated with a virus-induced gene silencing transcript. This plant-derived defense response transcript was only significantly upregulated at veraison for all genotypes and seasons, suggesting a phenological association with disease expression and plant immune responses.
Collapse
Affiliation(s)
- Arran C. Rumbaugh
- United States Department of Agriculture, Department of Viticulture and Enology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Blythe Durbin-Johnson
- Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Emily Padhi
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Larry Lerno
- Department of Viticulture & Enology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Raul Cauduro Girardello
- Department of Viticulture & Enology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Monica Britton
- Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Carolyn Slupsky
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Mysore R. Sudarshana
- United States Department of Agriculture, Department of Plant Pathology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Anita Oberholster
- Department of Viticulture & Enology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
7
|
Song Y, Hanner RH, Meng B. Transcriptomic Analyses of Grapevine Leafroll-Associated Virus 3 Infection in Leaves and Berries of 'Cabernet Franc'. Viruses 2022; 14:v14081831. [PMID: 36016453 PMCID: PMC9415066 DOI: 10.3390/v14081831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is one of the most important viruses affecting global grape and wine production. GLRaV-3 is the chief agent associated with grapevine leafroll disease (GLRD), the most prevalent and economically destructive grapevine viral disease complex. Response of grapevine to GLRaV-3 infection at the gene expression level is poorly characterized, limiting the understanding of GLRaV-3 pathogenesis and viral-associated symptom development. In this research, we used RNA-Seq to profile the changes in global gene expression of Cabernet franc, a premium red wine grape, analyzing leaf and berry tissues at three key different developmental stages. We have identified 1457 differentially expressed genes (DEGs) in leaves and 1181 DEGs in berries. The expression profiles of a subset of DEGs were validated through RT-qPCR, including those involved in photosynthesis (VvPSBP1), carbohydrate partitioning (VvSUT2, VvHT5, VvGBSS1, and VvSUS), flavonoid biosynthesis (VvUFGT, VvLAR1, and VvFLS), defense response (VvPR-10.3, and VvPR-10.7), and mitochondrial activities (ETFB, TIM13, and NDUFA1). GLRaV-3 infection altered source-sink relationship between leaves and berries. Photosynthesis and photosynthate assimilation were inhibited in mature leaves while increased in young berries. The expression of genes involved in anthocyanin biosynthesis increased in GLRaV-3-infected leaves, correlating with interveinal tissue reddening, a hallmark of GLRD symptoms. Notably, we identified changes in gene expression that suggest a compromised sugar export and increased sugar retrieval in GLRaV-3-infected leaves. Genes associated with mitochondria were down-regulated in both leaves and berries of Cabernet franc infected with GLRaV-3. Results of the present study suggest that GLRaV-3 infection may disrupt mitochondrial function in grapevine leaves, leading to repressed sugar export and accumulation of sugar in mature leaf tissues. The excessive sugar accumulation in GLRaV-3-infected leaves may trigger downstream GLRD symptom development and negatively impact berry quality. We propose a working model to account for the molecular events underlying the pathogenesis of GLRaV-3 and symptom development.
Collapse
Affiliation(s)
- Yashu Song
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Robert H. Hanner
- Department of Integrative Biology and Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 53876)
| |
Collapse
|
8
|
Reynard JS, Brodard J, Zufferey V, Rienth M, Gugerli P, Schumpp O, Blouin AG. Nuances of Responses to Two Sources of Grapevine Leafroll Disease on Pinot Noir Grown in the Field for 17 Years. Viruses 2022; 14:1333. [PMID: 35746804 PMCID: PMC9227476 DOI: 10.3390/v14061333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Grapevine leafroll disease (GLD) is one of the most economically damaging virus diseases in grapevine, with grapevine leafroll-associated virus 1 (GLRaV-1) and grapevine leafroll-associated virus 3 (GLRaV-3) as the main contributors. This study complements a previously published transcriptomic analysis and compared the impact of two different forms of GLD to a symptomless control treatment: a mildly symptomatic form infected with GLRaV-1 and a severe form with exceptionally early leafroll symptoms (up to six weeks before veraison) infected with GLRaV-1 and GLRaV-3. Vine physiology and fruit composition in 17-year-old Pinot noir vines were measured and a gradient of vigor, yield, and berry quality (sugar content and berry weight) was observed between treatments. Virome composition, confirmed by individual RT-PCR, was compared with biological indexing. Three divergent viromes were recovered, containing between four to seven viruses and two viroids. They included the first detection of grapevine asteroid mosaic-associated virus in Switzerland. This virus did not cause obvious symptoms on the indicators used in biological indexing. Moreover, the presence of grapevine virus B (GVB) did not cause the expected corky bark symptoms on the indicators, thus underlining the important limitations of the biological indexing. Transmission of GLRaV-3 alone or in combination with GVB by Planococcus comstocki mealybug did not reproduce the strong symptoms observed on the donor plant infected with a severe form of GLD. This result raises questions about the contribution of each virus to the symptomatology of the plant.
Collapse
Affiliation(s)
| | - Justine Brodard
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland; (J.B.); (P.G.); (O.S.)
| | - Vivian Zufferey
- Groupe Viticulture, Agroscope, 1009 Pully, Switzerland; (J.-S.R.); (V.Z.)
| | - Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, 1260 Nyon, Switzerland;
| | - Paul Gugerli
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland; (J.B.); (P.G.); (O.S.)
| | - Olivier Schumpp
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland; (J.B.); (P.G.); (O.S.)
| | - Arnaud G. Blouin
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland; (J.B.); (P.G.); (O.S.)
| |
Collapse
|
9
|
Miljanić V, Jakše J, Kunej U, Rusjan D, Škvarč A, Štajner N. Virome Status of Preclonal Candidates of Grapevine Varieties ( Vitis vinifera L.) From the Slovenian Wine-Growing Region Primorska as Determined by High-Throughput Sequencing. Front Microbiol 2022; 13:830866. [PMID: 35265062 PMCID: PMC8899541 DOI: 10.3389/fmicb.2022.830866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Diseases caused by viruses and virus-like organisms are one of the major problems in viticulture and grapevine marketing worldwide. Therefore, rapid and accurate diagnosis and identification is crucial. In this study, we used HTS of virus- and viroid-derived small RNAs to determine the virome status of Slovenian preclonal candidates of autochthonous and local grapevine varieties (Vitis vinifera L.). The method applied to the studied vines revealed the presence of nine viruses and two viroids. All viral entities were validated and more than 160 Sanger sequences were generated and deposited in NCBI. In addition, a complete description into the co-infections in each plant studied was obtained. No vine was found to be virus- and viroid-free, and no vine was found to be infected with only one virus or viroid, while the highest number of viral entities in a plant was eight.
Collapse
Affiliation(s)
- Vanja Miljanić
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urban Kunej
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Denis Rusjan
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andreja Škvarč
- Chamber of Agriculture and Forestry of Slovenia, Agriculture and Forestry Institute Nova Gorica, Nova Gorica, Slovenia
| | - Nataša Štajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Rodríguez-Verástegui LL, Ramírez-Zavaleta CY, Capilla-Hernández MF, Gregorio-Jorge J. Viruses Infecting Trees and Herbs That Produce Edible Fleshy Fruits with a Prominent Value in the Global Market: An Evolutionary Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:203. [PMID: 35050091 PMCID: PMC8778216 DOI: 10.3390/plants11020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 05/12/2023]
Abstract
Trees and herbs that produce fruits represent the most valuable agricultural food commodities in the world. However, the yield of these crops is not fully achieved due to biotic factors such as bacteria, fungi, and viruses. Viruses are capable of causing alterations in plant growth and development, thereby impacting the yield of their hosts significantly. In this work, we first compiled the world's most comprehensive list of known edible fruits that fits our definition. Then, plant viruses infecting those trees and herbs that produce fruits with commercial importance in the global market were identified. The identified plant viruses belong to 30 families, most of them containing single-stranded RNA genomes. Importantly, we show the overall picture of the host range for some virus families following an evolutionary approach. Further, the current knowledge about plant-virus interactions, focusing on the main disorders they cause, as well as yield losses, is summarized. Additionally, since accurate diagnosis methods are of pivotal importance for viral diseases control, the current and emerging technologies for the detection of these plant pathogens are described. Finally, the most promising strategies employed to control viral diseases in the field are presented, focusing on solutions that are long-lasting.
Collapse
Affiliation(s)
| | - Candy Yuriria Ramírez-Zavaleta
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - María Fernanda Capilla-Hernández
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología, Universidad Politécnica de Tlaxcala, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Ciudad de Mexico 03940, Mexico
| |
Collapse
|
11
|
Revel JS, Alcázar Magaña A, Morré J, Deluc L, Maier CS. Gas Chromatography Coupled to Atmospheric Pressure Chemical Ionization High-Resolution Mass Spectrometry for Metabolite Fingerprinting of Grape (Vitis vinifera L) Berry. Methods Mol Biol 2022; 2396:85-99. [PMID: 34786678 DOI: 10.1007/978-1-0716-1822-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This chapter describes the application of atmospheric pressure chemical ionization in conjunction with gas chromatography (APGC) coupled to high-resolution mass spectrometry for profiling metabolites in plant and fruit extracts. The APGC technique yields molecular ions and limited fragmentation of volatile or derivatized compounds. The data-independent acquisition mode, MSE, was used for measuring precursor and fragment ions with high resolution using a quadrupole ion mobility time-of-flight mass spectrometry system. We demonstrate the importance of acquiring accurate mass information in conjunction with accurate mass fragment ions for efficient database searching and compound assignments with high confidence. We demonstrate the application of APGC-MSE for obtaining metabolite data for grape berry extracts after derivatization.
Collapse
Affiliation(s)
- Johana S Revel
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | | | - Jeffrey Morré
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Laurent Deluc
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
12
|
Rienth M, Vigneron N, Walker RP, Castellarin SD, Sweetman C, Burbidge CA, Bonghi C, Famiani F, Darriet P. Modifications of Grapevine Berry Composition Induced by Main Viral and Fungal Pathogens in a Climate Change Scenario. FRONTIERS IN PLANT SCIENCE 2021; 12:717223. [PMID: 34956249 PMCID: PMC8693719 DOI: 10.3389/fpls.2021.717223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
The grapevine is subject to high number of fungal and viral diseases, which are responsible for important economic losses in the global wine sector every year. These pathogens deteriorate grapevine berry quality either directly via the modulation of fruit metabolic pathways and the production of endogenous compounds associated with bad taste and/or flavor, or indirectly via their impact on vine physiology. The most common and devastating fungal diseases in viticulture are gray mold, downy mildew (DM), and powdery mildew (PM), caused, respectively by Botrytis cinerea, Plasmopara viticola, and Erysiphe necator. Whereas B. cinerea mainly infects and deteriorates the ripening fruit directly, deteriorations by DM and PM are mostly indirect via a reduction of photosynthetic leaf area. Nevertheless, mildews can also infect berries at certain developmental stages and directly alter fruit quality via the biosynthesis of unpleasant flavor compounds that impair ultimate wine quality. The grapevine is furthermore host of a wide range of viruses that reduce vine longevity, productivity and berry quality in different ways. The most widespread virus-related diseases, that are known nowadays, are Grapevine Leafroll Disease (GLRD), Grapevine Fanleaf Disease (GFLD), and the more recently characterized grapevine red blotch disease (GRBD). Future climatic conditions are creating a more favorable environment for the proliferation of most virus-insect vectors, so the spread of virus-related diseases is expected to increase in most wine-growing regions. However, the impact of climate change on the evolution of fungal disease pressure will be variable and depending on region and pathogen, with mildews remaining certainly the major phytosanitary threat in most regions because their development rate is to a large extent temperature-driven. This paper aims to provide a review of published literature on most important grapevine fungal and viral pathogens and their impact on grape berry physiology and quality. Our overview of the published literature highlights gaps in our understanding of plant-pathogen interactions, which are valuable for conceiving future research programs dealing with the different pathogens and their impacts on grapevine berry quality and metabolism.
Collapse
Affiliation(s)
- Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
| | - Nicolas Vigneron
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
| | - Robert P. Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Simone Diego Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Crista A. Burbidge
- School of Agriculture and Food, Commonwealth Scientific and Industrial Research Organization (CSIRO), Glen Osmond, SA, Australia
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Philippe Darriet
- Univ. Bordeaux, Unité de recherche Œnologie EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
| |
Collapse
|
13
|
Grapevine Red Blotch Disease Etiology and Its Impact on Grapevine Physiology and Berry and Wine Composition. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Grapevine red blotch virus (GRBV) has become widespread in the United States since its identification in 2012. GRBV is the causative agent of grapevine red blotch disease (GRBD), which has caused detrimental economic impacts to the grape and wine industry. Understanding viral function, plant–pathogen interactions, and the effects of GRBV on grapevine performance remains essential to developing potential mitigation strategies. This comprehensive review examines the current body of knowledge regarding GRBV, to highlight gaps in the knowledge and potential mitigation strategies for grape growers and winemakers.
Collapse
|
14
|
Avital A, Muzika NS, Persky Z, Karny A, Bar G, Michaeli Y, Shklover J, Shainsky J, Weissman H, Shoseyov O, Schroeder A. Foliar Delivery of siRNA Particles for Treating Viral Infections in Agricultural Grapevines. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2101003. [PMID: 34744552 PMCID: PMC7611933 DOI: 10.1002/adfm.202101003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 05/05/2023]
Abstract
Grapevine leafroll disease (GLD) is a globally spreading viral infection that causes major economic losses by reducing crop yield, plant longevity and berry quality, with no effective treatment. Grapevine leafroll associated virus-3 (GLRaV-3) is the most severe and prevalent GLD strain. Here, we evaluated the ability of RNA interference (RNAi), a non-GMO gene-silencing pathway, to treat GLRaV-3 in infected Cabernet Sauvignon grapevines. We synthesized lipid-modified polyethylenimine (lmPEI) as a carrier for long double-stranded RNA (dsRNA, 250-bp-long) that targets RNA polymerase and coat protein genes that are conserved in the GLRaV-3 genome. Self-assembled dsRNA-lmPEI particles, 220 nm in diameter, displayed inner ordered domains spaced 7.3±2 nm from one another, correlating to lmPEI wrapping spirally around the dsRNA. The particles effectively protected RNA from degradation by ribonucleases, and Europium-loaded particles applied to grapevine leaves were detected as far as 60-cm from the foliar application point. In three field experiments, a single dose of foliar administration knocked down GLRaV-3 titer, and multiple doses of the treatment kept the viral titer at baseline and triggered recovery of the vine and berries. This study demonstrates RNAi as a promising platform for treating viral diseases in agriculture.
Collapse
Affiliation(s)
- Aviram Avital
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Noy Sadot Muzika
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, Rehovot 76100, Israel
| | - Zohar Persky
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, Rehovot 76100, Israel
| | - Avishai Karny
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Gili Bar
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Yuval Michaeli
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Janna Shainsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Haim Weissman
- The Weizmann Institute of Science, Department of Organic Chemistry, Rehovot 76100, Israel
| | - Oded Shoseyov
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, Rehovot 76100, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
15
|
Vondras AM, Lerno L, Massonnet M, Minio A, Rowhani A, Liang D, Garcia J, Quiroz D, Figueroa‐Balderas R, Golino DA, Ebeler SE, Al Rwahnih M, Cantu D. Rootstock influences the effect of grapevine leafroll-associated viruses on berry development and metabolism via abscisic acid signalling. MOLECULAR PLANT PATHOLOGY 2021; 22:984-1005. [PMID: 34075700 PMCID: PMC8295520 DOI: 10.1111/mpp.13077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 05/14/2023]
Abstract
Grapevine leafroll-associated virus (GLRaV) infections are accompanied by symptoms influenced by host genotype, rootstock, environment, and which individual or combination of GLRaVs is present. Using a dedicated experimental vineyard, we studied the responses to GLRaVs in ripening berries from Cabernet Franc grapevines grafted to different rootstocks and with zero, one, or pairs of leafroll infection(s). RNA sequencing data were mapped to a high-quality Cabernet Franc genome reference assembled to carry out this study and integrated with hormone and metabolite abundance data. This study characterized conserved and condition-dependent responses to GLRaV infection(s). Common responses to GLRaVs were reproduced in two consecutive years and occurred in plants grafted to different rootstocks in more than one infection condition. Though different infections were inconsistently distinguishable from one another, the effects of infections in plants grafted to different rootstocks were distinct at each developmental stage. Conserved responses included the modulation of genes related to pathogen detection, abscisic acid (ABA) signalling, phenylpropanoid biosynthesis, and cytoskeleton remodelling. ABA, ABA glucose ester, ABA and hormone signalling-related gene expression, and the expression of genes in several transcription factor families differentiated the effects of GLRaVs in berries from Cabernet Franc grapevines grafted to different rootstocks. These results support that ABA participates in the shared responses to GLRaV infection and differentiates the responses observed in grapevines grafted to different rootstocks.
Collapse
Affiliation(s)
- Amanda M. Vondras
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Larry Lerno
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Mélanie Massonnet
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Andrea Minio
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Adib Rowhani
- Department of Plant PathologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Dingren Liang
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Jadran Garcia
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Daniela Quiroz
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Deborah A. Golino
- Department of Plant PathologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Susan E. Ebeler
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Maher Al Rwahnih
- Department of Plant PathologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Dario Cantu
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
16
|
Rumbaugh AC, Girardello RC, Cooper ML, Plank C, Kurtural SK, Oberholster A. Impact of Rootstock and Season on Red Blotch Disease Expression in Cabernet Sauvignon ( V. vinifera). PLANTS (BASEL, SWITZERLAND) 2021; 10:1583. [PMID: 34451626 PMCID: PMC8401632 DOI: 10.3390/plants10081583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022]
Abstract
Grapevine red blotch virus (GRBV), the causative agent of grapevine red blotch disease, is widespread across the United States and causes a delay in ripening events in grapes. This study evaluates the effects of GRBV on Cabernet Sauvignon grape berry composition, grafted on two different rootstocks (110R and 420A) in two seasons (2016 and 2017). Total soluble solids, acidity, and anthocyanin concentrations were monitored through ripening and at harvest. Phenolic and volatile compounds were also analyzed at harvest to determine genotypic and environmental influences on disease outcome. Sugar accumulation through ripening was lower in diseased fruit (RB (+)) than healthy fruit across rootstock and season. GRBV impact was larger in 2016 than 2017, indicating a seasonal effect on disease expression. In general, anthocyanin levels and volatile compound accumulation was lower in RB (+) fruit than healthy fruit. Total phenolic composition and tannin content was higher in RB (+) fruit than healthy fruit in only 110R rootstock. Overall, GRBV impacted Cabernet Sauvignon grape composition crafted on rootstock 110R more than those crafted on rootstock 420A.
Collapse
Affiliation(s)
- Arran C. Rumbaugh
- Department of Viticulture and Enology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; (A.C.R.); (R.C.G.); (C.P.); (S.K.K.)
| | - Raul C. Girardello
- Department of Viticulture and Enology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; (A.C.R.); (R.C.G.); (C.P.); (S.K.K.)
| | - Monica L. Cooper
- University of California Cooperative Extension, 1710 Soscol Avenue, Napa, CA 94559, USA;
| | - Cassandra Plank
- Department of Viticulture and Enology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; (A.C.R.); (R.C.G.); (C.P.); (S.K.K.)
| | - S. Kaan Kurtural
- Department of Viticulture and Enology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; (A.C.R.); (R.C.G.); (C.P.); (S.K.K.)
| | - Anita Oberholster
- Department of Viticulture and Enology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; (A.C.R.); (R.C.G.); (C.P.); (S.K.K.)
| |
Collapse
|
17
|
Porotikova E, Terehova U, Volodin V, Yurchenko E, Vinogradova S. Distribution and Genetic Diversity of Grapevine Viruses in Russia. PLANTS 2021; 10:plants10061080. [PMID: 34072229 PMCID: PMC8229536 DOI: 10.3390/plants10061080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/02/2022]
Abstract
Viral diseases can seriously damage the vineyard productivity and the quality of grape and wine products. Therefore, the study of the species composition and range of grapevine viruses is important for the development and implementation of strategies and tactics to limit their spread and increase the economic benefits of viticulture. In 2014–2019, we carried out a large-scale phytosanitary monitoring of Russian commercial vineyards in the Krasnodar region, Stavropol region and Republic of Crimea. A total of 1857 samples were collected and tested for the presence of Grapevine rupestris stem pitting-associated virus (GRSPaV), Grapevine virus A (GVA), Grapevine leafroll-associated virus-1 (GLRaV-1), Grapevine leafroll-associated virus-2 (GLRaV-2), Grapevine leafroll-associated virus-3 (GLRaV-3), Grapevine fanleaf virus (GFLV), and Grapevine fleck virus (GFkV) using RT-PCR. Out of all samples tested, 54.5% were positive for at least one of the viruses (GRSPaV, GVA, GLRaV-1, GLRaV-2, GLRaV-3, GFLV, GFkV) in the Stavropol region, 49.8% in the Krasnodar region and 49.5% in the Republic of Crimea. Some plants were found to be infected with several viruses simultaneously. In the Republic of Crimea, for instance, a number of plants were infected with five viruses. In the Krasnodar region and the Republic of Crimea, 4.7% and 3.3% of the samples were predominantly infected with both GFkV and GRSPaV, whereas in the Stavropol region, 6% of the selected samples had both GLRaV-1 and GVA infections. We carried out a phylogenetic analysis of the coat protein genes of the detected viruses and identified the presence of GVA of groups I and IV, GRSPaV of groups BS and SG1, GLRaV-1 of group III, GLRaV-2 of groups PN and H4, GLRaV-3 of groups I and III. The results obtained make it possible to assess the viral load and the distribution of the main grapevine viruses on plantations in the viticultural zones of Russia, emphasizing the urgent need to develop and implement long-term strategies for the control of viral diseases of grapes.
Collapse
Affiliation(s)
- Elena Porotikova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.P.); (U.T.)
| | - Uliana Terehova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.P.); (U.T.)
| | - Vitalii Volodin
- All-Russian National Scientific Research Institute of Vine and Wine Growing “Magarach” Ras, Str. Kirova 31, 298600 Yalta, Crimea;
| | - Eugeniya Yurchenko
- North Caucasian Regional Research Institute of Horticulture and Viticulture, 40 Years of Victory Street 39, 350072 Krasnodar, Russia;
| | - Svetlana Vinogradova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.P.); (U.T.)
- Correspondence:
| |
Collapse
|
18
|
Song Y, Hanner RH, Meng B. Probing into the Effects of Grapevine Leafroll-Associated Viruses on the Physiology, Fruit Quality and Gene Expression of Grapes. Viruses 2021; 13:v13040593. [PMID: 33807294 PMCID: PMC8066071 DOI: 10.3390/v13040593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Grapevine leafroll is one of the most widespread and highly destructive grapevine diseases that is responsible for great economic losses to the grape and wine industries throughout the world. Six distinct viruses have been implicated in this disease complex. They belong to three genera, all in the family Closteroviridae. For the sake of convenience, these viruses are named as grapevine leafroll-associated viruses (GLRaV-1, -2, -3, -4, -7, and -13). However, their etiological role in the disease has yet to be established. Furthermore, how infections with each GLRaV induce the characteristic disease symptoms remains unresolved. Here, we first provide a brief overview on each of these GLRaVs with a focus on genome structure, expression strategies and gene functions, where available. We then provide a review on the effects of GLRaV infection on the physiology, fruit quality, fruit chemical composition, and gene expression of grapevine based on the limited information so far reported in the literature. We outline key methodologies that have been used to study how GLRaV infections alter gene expression in the grapevine host at the transcriptomic level. Finally, we present a working model as an initial attempt to explain how infections with GLRaVs lead to the characteristic symptoms of grapevine leafroll disease: leaf discoloration and downward rolling. It is our hope that this review will serve as a starting point for grapevine virology and the related research community to tackle this vastly important and yet virtually uncharted territory in virus-host interactions involving woody and perennial fruit crops.
Collapse
Affiliation(s)
- Yashu Song
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Robert H. Hanner
- Department of Integrative Biology and Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 53876)
| |
Collapse
|
19
|
Survey of five major grapevine viruses infecting Blatina and Žilavka cultivars in Bosnia and Herzegovina. PLoS One 2021; 16:e0245959. [PMID: 33481949 PMCID: PMC7822351 DOI: 10.1371/journal.pone.0245959] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/11/2021] [Indexed: 11/23/2022] Open
Abstract
The sanitary status of grapevines has not yet been considered sufficiently in vineyards throughout Bosnia and Herzegovina (BiH). An extensive survey of five major grapevine viruses in the country was carried out in 2019. A total of 630 samples from the two dominant autochthonous cultivars, named Žilavka and Blatina, were tested by DAS-ELISA for the presence of grapevine leafroll-associated viruses (GLRaV-1 and 3), grapevine fleck virus (GFkV), grapevine fanleaf virus (GFLV) and Arabis mosaic virus (ArMV). Eighty-eight % of the samples were positive for at least one virus, and all five viruses were detected, thought with different incidence, i.e. GLRaV-3 (84%), GFLV (43%), GLRaV-1 (14%), GFkV (10%) and ArMV (0.2%). The majority of infected plants (about 75%) were asymptomatic. Specific virus symptoms were observed in the remaining infected plants, together with the reported GLRaV vectors, Planococcus ficus and Parthenolecanium corni, while nematodes of the Xiphinema genus were not found in the GFLV- or ArMV-infected vineyards. The GLRaV-3 CP phylogenetic analyses showed 75–100% nucleotide identity between the BiH and reference isolates, and the BiH isolates clustered into the major group. The dNS/dS ratio indicated a negative selection of the virus population, and the lack of geographical structuring within the population was observed. In addition, putative GLRaV-3 recombinants with breakpoints in the 5’ of the CP gene were detected, while no recombinant strains were identified for the other four viruses. The obtained results indicate a deteriorated sanitary status of the cultivated grapevines, the prevalence and intraspecies genetic diversity of GLRaV-3 throughout the country. The establishment of certified grapevine material and adequate virus vector control is therefore of primary importance to prevent further spread of these viruses. This study presents the results of the first molecular characterisation of grapevine viruses in Bosnia and Herzegovina.
Collapse
|
20
|
A Diverse Virome of Leafroll-Infected Grapevine Unveiled by dsRNA Sequencing. Viruses 2020; 12:v12101142. [PMID: 33050079 PMCID: PMC7599845 DOI: 10.3390/v12101142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Quebec is the third-largest wine grape producing province in Canada, and the industry is constantly expanding. Traditionally, 90% of the grapevine cultivars grown in Quebec were winter hardy and largely dominated by interspecific hybrid Vitis sp. cultivars. Over the years, the winter protection techniques adopted by growers and climate changes have offered an opportunity to establish V. vinifera L. cultivars (e.g., Pinot noir). We characterized the virome of leafroll-infected interspecific hybrid cultivar and compared it to the virome of V. vinifera cultivar to support and facilitate the transition of the industry. A dsRNA sequencing method was used to sequence symptomatic and asymptomatic grapevine leaves of different cultivars. The results suggested a complex virome in terms of composition, abundance, richness, and phylogenetic diversity. Three viruses, grapevine Rupestris stem pitting-associated virus, grapevine leafroll-associated virus (GLRaV) 3 and 2 and hop stunt viroid (HSVd) largely dominated the virome. However, their presence and abundance varied among grapevine cultivars. The symptomless grapevine cultivar Vidal was frequently infected by multiple virus and viroid species and different strains of the same virus, including GLRaV-3 and 2. Our data show that viruses and viroids associated with the highest number of grapevines expressing symptoms included HSVd, GLRaV-3 and GLRaV-2, in gradient order. However, co-occurrence analysis revealed that the presence of GLRaV species was randomly associated with the development of virus-like symptoms. These findings and their implications for grapevine leafroll disease management are discussed.
Collapse
|
21
|
Wu Q, Habili N, Constable F, Al Rwahnih M, Goszczynski DE, Wang Y, Pagay V. Virus Pathogens in Australian Vineyards with an Emphasis on Shiraz Disease. Viruses 2020; 12:v12080818. [PMID: 32731601 PMCID: PMC7472089 DOI: 10.3390/v12080818] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/24/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
Grapevine viruses are found throughout the viticultural world and have detrimental effects on vine productivity and grape and wine quality. This report provides a comprehensive and up-to-date review on grapevine viruses in Australia with a focus on “Shiraz Disease” (SD) and its two major associated viruses, grapevine virus A (GVA) and grapevine leafroll-associated virus 3 (GLRaV-3). Sensitive grapevine cultivars like Shiraz infected with GVA alone or with a co-infection of a leafroll virus, primarily GLRaV-3, show symptoms of SD leading to significant yield and quality reductions in Australia and in South Africa. Symptom descriptors for SD will be outlined and a phylogenetic tree will be presented indicating the SD-associated isolates of GVA in both countries belong to the same clade. Virus transmission, which occurs through infected propagation material, grafting, and naturally vectored by mealybugs and scale insects, will be discussed. Laboratory and field-based indexing will also be discussed along with management strategies including rogueing and replanting certified stock that decrease the incidence and spread of SD. Finally, we present several cases of SD incidence in South Australian vineyards and their effects on vine productivity. We conclude by offering strategies for virus detection and management that can be adopted by viticulturists. Novel technologies such as high throughput sequencing and remote sensing for virus detection will be outlined.
Collapse
Affiliation(s)
- Qi Wu
- School of Agriculture, Food & Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, Adelaide 5064, South Australia, Australia; (Q.W.); (Y.W.)
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide 5064, South Australia, Australia;
| | - Nuredin Habili
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide 5064, South Australia, Australia;
| | - Fiona Constable
- Agriculture Victoria Research, Department of Economic Development, Jobs, Transport and Resources, AgriBio, Bundoora, Melbourne 3083, Victoria, Australia;
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California, Davis, CA 95616, USA;
| | - Darius E. Goszczynski
- Plant Protection Research Institute, Agricultural Research Council, Private Bag X134, Pretoria 0001, South Africa;
| | - Yeniu Wang
- School of Agriculture, Food & Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, Adelaide 5064, South Australia, Australia; (Q.W.); (Y.W.)
| | - Vinay Pagay
- School of Agriculture, Food & Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, Adelaide 5064, South Australia, Australia; (Q.W.); (Y.W.)
- Correspondence:
| |
Collapse
|
22
|
Impact of Grapevine Red Blotch Disease on Cabernet Sauvignon and Merlot Wine Composition and Sensory Attributes. Molecules 2020; 25:molecules25143299. [PMID: 32708105 PMCID: PMC7397323 DOI: 10.3390/molecules25143299] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 11/17/2022] Open
Abstract
Grapevine red blotch disease (GRBD) is a recently identified viral disease that affects grapevines. GRBD has been shown to impact grapevine physiology and grape composition by altering specific ripening events. However, no studies have been reported on the impact of GRBD on wine composition and its sensory attributes. This study evaluated the impact of GRBD on wine primary and secondary metabolites, in addition to its sensory properties, when making wines from Cabernet Sauvignon and Merlot grapes during two seasons. Wines made with GRBD-impacted fruit were lower in ethanol content when compared to wines made with grapes from healthy grapevines. This was attributed to the lower total soluble sugar (TSS) levels of diseased grapes due to delayed ripening at harvest. GRBD impacted wine phenolic composition by decreasing anthocyanin concentrations and increasing flavonol concentrations in some instances. Additionally, proanthocyanidin concentrations were also consistently higher in GRBD wines compared to wines made from healthy fruit. Descriptive analysis demonstrated that GRBD can impact wine style by altering aroma, flavor, and mouthfeel attributes. However, the extent of GRBD impact on wine composition and sensory properties were site and season dependent.
Collapse
|
23
|
Cauduro Girardello R, Rich V, Smith RJ, Brenneman C, Heymann H, Oberholster A. The impact of grapevine red blotch disease on Vitis vinifera L. Chardonnay grape and wine composition and sensory attributes over three seasons. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1436-1447. [PMID: 31742703 DOI: 10.1002/jsfa.10147] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Grapevine red blotch virus (GRBV) is a recently discovered DNA virus, which was demonstrated to be responsible for grapevine red blotch disease (GRBD). Its presence has been confirmed in the United States, Canada, Mexico, and South Korea in white and red Vitis vinifera cultivars, including Chardonnay. It has been shown that the three-cornered alfalfa treehopper (Spissistilus festinus) was able to both acquire the GRBV from a grapevine infected and transmit it to healthy grapevines in glasshouse conditions. Studies found that GRBD impacts fruit price, grapevine physiology, and grape berry composition and metabolism in red cultivars. This study evaluated the impact of GRBD on V. vinifera L. Chardonnay grape and wine composition and sensory properties from one vineyard during the 2014, 2015 and 2016 seasons. RESULTS Grapes from symptomatic red blotch diseased grapevines were lower in total soluble solids, flavan-3-ol, and total phenolic content, and higher in flavonol content when compared to grapes from healthy grapevines. Wines made with grapes from symptomatic grapevines resulted mostly in lower ethanol content and higher pH when compared to wines made from healthy grapevines. Analysis of volatile compounds and descriptive analysis demonstrated that GRBD can impact wine style by altering aroma, flavor, and mouthfeel attributes. CONCLUSIONS The impacts of GRBD on grape composition directly influenced wine chemistry. The decreased ethanol content impacted not only the levels of volatile compounds but the sensory perception during descriptive analysis. The extent of GRBD impact on the grape composition and wine composition and sensory attributes varied between seasons. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Vanessa Rich
- École Supérieure d'Agriculture d'Angers, Vine, Wine and Terroir Managment, Angers, France
| | - Rhonda J Smith
- University of California, Agriculture and Natural Resources, Cooperative Extension, Santa Rosa, CA, USA
| | - Charles Brenneman
- Department of Viticulture and Enology, University of California, Davis, CA, USA
| | - Hildegarde Heymann
- Department of Viticulture and Enology, University of California, Davis, CA, USA
| | - Anita Oberholster
- Department of Viticulture and Enology, University of California, Davis, CA, USA
| |
Collapse
|
24
|
Crupi P, Gasparro M, Caputo AR. Classification of wine grape biotypes according to their variety and sanitary condition by fingerprinting untargeted analysis. Nat Prod Res 2019; 35:659-663. [PMID: 30887845 DOI: 10.1080/14786419.2019.1586703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Grapes secondary metabolites content mainly depends on variety, but also on climate and cultural conditions, including sanitary status. This study aimed to use a metabolomic fingerprinting approach for grouping 72 wine grape biotypes, Negro amaro n. (N), Malvasia nera di Brindisi/Lecce n. (M), and Uva di Troia n. (U), on the basis of their cultivar and virological conditions. The skins were extracted and analysed by flow injection mass spectrometry; a one-way ANOVA/Principal Component Analysis (PCA) allowed to efficiently cluster the samples, recognizing M from N and U biotypes. Conversely, the clusterisation of the biotypes affected by different virus complexes was really more tough and a clear distinction among infected plants was not always observed. However, very interestingly, by applying ANOVA/PCA to the biotypes of each varieties, singularly, healthy biotypes were sharply separated in all the varieties and a relationship between anthocyanin compounds and Grapevine leafroll associated virus (GLRaV3) slightly appeared.
Collapse
Affiliation(s)
- Pasquale Crupi
- CREA-VE - Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Turi (BA), Italy
| | - Marica Gasparro
- CREA-VE - Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Turi (BA), Italy
| | - Angelo Raffaele Caputo
- CREA-VE - Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Turi (BA), Italy
| |
Collapse
|
25
|
Chitarra W, Cuozzo D, Ferrandino A, Secchi F, Palmano S, Perrone I, Boccacci P, Pagliarani C, Gribaudo I, Mannini F, Gambino G. Dissecting interplays between Vitis vinifera L. and grapevine virus B (GVB) under field conditions. MOLECULAR PLANT PATHOLOGY 2018; 19:2651-2666. [PMID: 30055094 PMCID: PMC6638183 DOI: 10.1111/mpp.12735] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant virus infections are often difficult to characterize as they result from a complex molecular and physiological interplay between a pathogen and its host. In this study, the impact of the phloem-limited grapevine virus B (GVB) on the Vitis vinifera L. wine-red cultivar Albarossa was analysed under field conditions. Trials were carried out over two growing seasons by combining agronomic, molecular, biochemical and ecophysiological approaches. The data showed that GVB did not induce macroscopic symptoms on 'Albarossa', but affected the ecophysiological performances of vines in terms of assimilation rates, particularly at the end of the season, without compromising yield and vigour. In GVB-infected plants, the accumulation of soluble carbohydrates in the leaves and transcriptional changes in sugar- and photosynthetic-related genes seemed to trigger defence responses similar to those observed in plants infected by phytoplasmas, although to a lesser extent. In addition, GVB activated berry secondary metabolism. In particular, total anthocyanins and their acetylated forms accumulated at higher levels in GVB-infected than in GVB-free berries, consistent with the expression profiles of the related biosynthetic genes. These results contribute to improve our understanding of the multifaceted grapevine-virus interaction.
Collapse
Affiliation(s)
- Walter Chitarra
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)Via XVIII Aprile 26Conegliano31015Italy
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Danila Cuozzo
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
- Department of Agricultural, Forest, and Food SciencesUniversity of Turin (DISAFA)Largo Paolo Braccini 2Grugliasco10095Italy
| | - Alessandra Ferrandino
- Department of Agricultural, Forest, and Food SciencesUniversity of Turin (DISAFA)Largo Paolo Braccini 2Grugliasco10095Italy
| | - Francesca Secchi
- Department of Agricultural, Forest, and Food SciencesUniversity of Turin (DISAFA)Largo Paolo Braccini 2Grugliasco10095Italy
| | - Sabrina Palmano
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Irene Perrone
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Franco Mannini
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| |
Collapse
|
26
|
Byzova NA, Vinogradova SV, Porotikova EV, Terekhova UD, Zherdev AV, Dzantiev BB. Lateral Flow Immunoassay for Rapid Detection of Grapevine Leafroll-Associated Virus. BIOSENSORS 2018; 8:E111. [PMID: 30445781 PMCID: PMC6315891 DOI: 10.3390/bios8040111] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is one of the main pathogens of grapes, causing a significant loss in yield and decrease in quality for this agricultural plant. For efficient widespread control of this infection, rapid and simple analytical techniques of on-site testing are requested as a complementary addition for the currently applied hybridization (PCR) and immunoenzyme (ELISA) approaches. The given paper presents development and approbation of the immunochromatographic assay (ICA) for rapid detection of GLRaV-3. The ICA realizes a sandwich immunoassay format with the obtaining complexes ((antibody immobilized on immunochromatographic membrane)⁻(virus in the sample)⁻(antibody immobilized on gold nanoparticles (GNP)) during sample flow along the membrane compounds of the test strip. Three preparations of GNPs were compared for detection of GLRaV-3 at different dilutions of virus-containing sample. The GNPs with maximal average diameters of 51.0 ± 7.9 nm provide GLRaV-3 detection for its maximal dilutions, being 4 times more than when using GNPs with a diameter of 28.3 ± 3.3 nm, and 8 times more than when using GNPs with a diameter of 18.5 ± 3.3 nm. Test strips have been manufactured using the largest GNPs conjugated with anti-GLRaV-3 antibodies at a ratio of 1070:1. When testing samples containing other grape wine viruses, the test strips have not demonstrated staining in the test zone, which confirms the ICA specificity. The approbation of the manufactured test strips indicated that when using ELISA as a reference method, the developed ICA is characterized by a sensitivity of 100% and a specificity of 92%. If PCR is considered as a reference method, then the sensitivity of ICA is 93% and the specificity is 92%. The proposed ICA can be implemented in one stage without the use of any additional reactants or devices. The testing results can be obtained in 10 min and detected visually. It provides significant improvement in GLRaV-3 detection, and the presented approach can be transferred for the development of test systems for other grape wine pathogens.
Collapse
Affiliation(s)
- Nadezhda A Byzova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Svetlana V Vinogradova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Elena V Porotikova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Uliana D Terekhova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| |
Collapse
|
27
|
Adiputra J, Kesoju SR, Naidu RA. The Relative Occurrence of Grapevine leafroll-associated virus 3 and Grapevine red blotch virus in Washington State Vineyards. PLANT DISEASE 2018; 102:2129-2135. [PMID: 30226418 DOI: 10.1094/pdis-12-17-1962-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vineyard surveys were conducted for three consecutive seasons in eastern Washington State, the major grapevine-growing region in the state, to document the occurrence of Grapevine leafroll-associated virus 3 (GLRaV-3) and Grapevine red blotch virus (GRBV). The majority of samples were collected from red-berried wine grape (Vitis vinifera) cultivars exhibiting symptoms of or suspected for grapevine leafroll (GLD) and red blotch (GRBD) diseases. A limited number of samples from white-berried cultivars were collected randomly due to the lack of visual symptoms. Samples were collected from a total of 2,063 grapevines from 18 red-berried cultivars and seven white-berried cultivars planted in eight American Viticultural Areas and tested for GLRaV-3 and GRBV using RT-PCR and PCR, respectively. The results showed 67.77% and 6.01% of total samples positive for GLRaV-3 and GRBV, respectively, and 9.06% of samples positive for both viruses. About 17% of samples tested negative for the two viruses, but some of these samples were positive for GLRaV-2 and GLRaV-4. Overall results indicated that GLRaV-3 was more common than GRBV, independent of cultivars and the geographic origin of samples. Due to variability in symptoms in red-berried cultivars, virus-specific diagnostic assays were deemed necessary for reliable identification of GLRaV-3 and GRBV and to differentiate GLD and GRBD symptoms from those induced by biotic and abiotic stresses in vineyards. A multiplex PCR protocol was developed for simultaneous detection of GLRaV-3 and GRBV in grapevine samples. A global phylogenetic analysis of GRBV genome sequences revealed segregation of virus isolates from Washington State vineyards into two distinct clades, with the majority of isolates belonging to clade II.
Collapse
Affiliation(s)
- Jati Adiputra
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350
| | - Sandya R Kesoju
- Department of Agriculture, Columbia Basin College, Pasco, WA 99301
| | - Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350
| |
Collapse
|
28
|
Halldorson MM, Keller M. Grapevine leafroll disease alters leaf physiology but has little effect on plant cold hardiness. PLANTA 2018; 248:1201-1211. [PMID: 30094489 DOI: 10.1007/s00425-018-2967-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/26/2018] [Indexed: 05/26/2023]
Abstract
Foliar sugar accumulation in grapevines with leafroll disease was correlated with lower photosynthesis, likely due to feedback inhibition. However, cold acclimation of dormant tissues remained unaffected by the virus status. Grapevine leafroll-associated viruses (GLRaV) contribute to losses in fruit yield and quality worldwide. Visually, leafroll disease symptoms appear similar to those associated with an imbalance in source/sink relations and a concomitant feedback inhibition of photosynthesis, which is often caused by an impasse in sugar translocation. In order to test this potential relationship and related physiological responses, leaf water status, gas exchange, non-structural carbohydrates, and dormant tissue cold hardiness were examined over 2 years in healthy and GLRaV-3-infected, field-grown Merlot grapevines. Diurnal and seasonal changes in leaf water status and gas exchange were dominated by variations in water availability, temperature, and leaf age, while GLRaV-3 infection contributed less to the overall variation. By contrast, foliar carbohydrates increased markedly in infected plants, with starch accumulating early in the growing season, followed by soluble sugar accumulation, leaf reddening, and declining gas exchange. Photosynthesis correlated negatively with leaf sugar content. However, dormant-season cold hardiness of buds and cane vascular tissues was similar in healthy and infected vines. These findings support the idea that visible symptoms of grapevine leafroll disease are a consequence of carbohydrate accumulation which, in turn, may lead to feedback inhibition of photosynthesis. In addition, this study provided evidence that GLRaV-3 infection is unlikely to alter the susceptibility to moderate water deficit and winter damage in mature Merlot grapevines.
Collapse
Affiliation(s)
- Matthew M Halldorson
- Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Rd, Prosser, WA, 99350, USA
- Ste. Michelle Wine Estates, Prosser, WA, 99350, USA
| | - Markus Keller
- Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Rd, Prosser, WA, 99350, USA.
| |
Collapse
|
29
|
Daane KM, Vincent C, Isaacs R, Ioriatti C. Entomological Opportunities and Challenges for Sustainable Viticulture in a Global Market. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:193-214. [PMID: 29324036 DOI: 10.1146/annurev-ento-010715-023547] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Viticulture has experienced dramatic global growth in acreage and value. As the international exchange of goods has increased, so too has the market demand for sustainably produced products. Both elements redefine the entomological challenges posed to viticulture and have stimulated significant advances in arthropod pest control programs. Vineyard managers on all continents are increasingly combating invasive species, resulting in the adoption of novel insecticides, semiochemicals, and molecular tools to support sustainable viticulture. At the local level, vineyard management practices consider factors such as the surrounding natural ecosystem, risk to fish populations, and air quality. Coordinated multinational responses to pest invasion have been highly effective and have, for example, resulted in eradication of the moth Lobesia botrana from California vineyards, a pest found in 2009 and eradicated by 2016. At the global level, the shared pests and solutions for their suppression will play an increasing role in delivering internationally sensitive pest management programs that respond to invasive pests, climate change, novel vector and pathogen relationships, and pesticide restrictions.
Collapse
Affiliation(s)
- Kent M Daane
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720-3114;
| | - Charles Vincent
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec J3B 3E6, Canada;
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, Michigan 48824;
| | - Claudio Ioriatti
- Technological Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Trento 38010, Italy;
| |
Collapse
|
30
|
Poojari S, Boulé J, DeLury N, Lowery DT, Rott M, Schmidt AM, Úrbez-Torres JR. Epidemiology and Genetic Diversity of Grapevine Leafroll-Associated Viruses in British Columbia. PLANT DISEASE 2017; 101:2088-2097. [PMID: 30677387 DOI: 10.1094/pdis-04-17-0497-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Grapevine leafroll disease (GLD) is a complex associated with one or more virus species belonging to the family Closteroviridae. The majority of viruses in this complex are vectored by one or more species of mealybugs (Pseudococcidae) and/or scale insects (Coccidae). Grape-growing regions of British Columbia (BC), including Okanagan, Similkameen, and Fraser valleys and Kamloops (BC central interior), Vancouver, and Gulf islands, were surveyed during the 2014 and 2015 growing seasons for the presence of four major grapevine leafroll-associated viruses, including Grapevine leafroll-associated virus 1 (GLRaV-1), GLRaV-2, GLRaV-3, and GLRaV-4. In total, 3,056 composite five-vine samples were collected from 153 Vitis vinifera and three interspecific hybrid vineyard blocks. The results showed GLRaV-3 to be the most widespread, occurring in 16.7% of the composite samples, followed by GLRaV-4 (3.9%), GLRaV-1 (3.8%), and GLRaV-2 (3.0%). Mixed infections of two or more GLRaVs were found in 4.1% of the total samples. The relative incidence of GLRaVs differed among regions and vineyard blocks of a different age. Characterization of partial CO1 region from a total of 241 insect specimens revealed the presence of Pseudococcus maritimus, Parthenolecanium corni, and other Pulvinaria sp. in BC vineyards. Spatial patterns of GLRaV-3 infected grapevines in three vineyard blocks from three different regions in the Okanagan Valley showed variable degrees of increase in disease spread ranging from 0 to 19.4% over three growing seasons. Regional differences in the relative incidence and spread of GLD underline the need for region-based management programs for BC vineyards.
Collapse
Affiliation(s)
- S Poojari
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada V0H1Z0
| | - J Boulé
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada V0H1Z0
| | - N DeLury
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada V0H1Z0
| | - D T Lowery
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada V0H1Z0
| | - M Rott
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, Sidney, BC, Canada V8L1H3
| | - A-M Schmidt
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, Sidney, BC, Canada V8L1H3
| | - J R Úrbez-Torres
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada V0H1Z0
| |
Collapse
|
31
|
Al Rwahnih M, Alabi OJ, Westrick NM, Golino D, Rowhani A. Description of a Novel Monopartite Geminivirus and Its Defective Subviral Genome in Grapevine. PHYTOPATHOLOGY 2017; 107:240-251. [PMID: 27670772 DOI: 10.1094/phyto-07-16-0282-r] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel virus was detected in grapevines by Illumina sequencing during the screening of two table grape (Vitis vinifera) accessions, cultivars Black Beet and Nagano Purple, from South Korea. The monopartite circular ssDNA genome sequence was subsequently confirmed by rolling cycle amplification, cloning and Sanger sequencing. The complete viral genomic sequence from both accessions ranged from 2,903 to 2,907 nucleotides in length and contained the conserved nonanucleotide sequence TAATATT↓AC and other sequence features typical of the family Geminiviridae, including two predicted sense and four complementary-sense open reading frames. Phylogenetic analysis placed the novel virus in a unique taxon within the family Geminiviridae. A naturally occurring defective subviral DNA was also discovered. This defective DNA molecule carried a deletion of approximately 46% of the full-length genome. Both the genomic and defective DNA molecules were graft-transmissible although no disease is yet correlated with their occurrence in Vitis spp. The tentative names Grapevine geminivirus A (GGVA) and GGVA defective DNA (GGVA D-DNA) are proposed. PCR assays developed using primers designed in the coat protein gene led to the detection of GGVA in 1.74% of 1,262 vines derived from 15 grapevine cultivars from six countries across three continents.
Collapse
Affiliation(s)
- Maher Al Rwahnih
- First, third, fourth, and fifth authors: Department of Plant Pathology, University of California, Davis, 95616; and second author: Department of Plant Pathology & Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco 78596
| | - Olufemi J Alabi
- First, third, fourth, and fifth authors: Department of Plant Pathology, University of California, Davis, 95616; and second author: Department of Plant Pathology & Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco 78596
| | - Nathaniel M Westrick
- First, third, fourth, and fifth authors: Department of Plant Pathology, University of California, Davis, 95616; and second author: Department of Plant Pathology & Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco 78596
| | - Deborah Golino
- First, third, fourth, and fifth authors: Department of Plant Pathology, University of California, Davis, 95616; and second author: Department of Plant Pathology & Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco 78596
| | - Adib Rowhani
- First, third, fourth, and fifth authors: Department of Plant Pathology, University of California, Davis, 95616; and second author: Department of Plant Pathology & Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco 78596
| |
Collapse
|
32
|
Serrano A, Espinoza C, Armijo G, Inostroza-Blancheteau C, Poblete E, Meyer-Regueiro C, Arce A, Parada F, Santibáñez C, Arce-Johnson P. Omics Approaches for Understanding Grapevine Berry Development: Regulatory Networks Associated with Endogenous Processes and Environmental Responses. FRONTIERS IN PLANT SCIENCE 2017; 8:1486. [PMID: 28936215 PMCID: PMC5594091 DOI: 10.3389/fpls.2017.01486] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/10/2017] [Indexed: 05/21/2023]
Abstract
Grapevine fruit development is a dynamic process that can be divided into three stages: formation (I), lag (II), and ripening (III), in which physiological and biochemical changes occur, leading to cell differentiation and accumulation of different solutes. These stages can be positively or negatively affected by multiple environmental factors. During the last decade, efforts have been made to understand berry development from a global perspective. Special attention has been paid to transcriptional and metabolic networks associated with the control of grape berry development, and how external factors affect the ripening process. In this review, we focus on the integration of global approaches, including proteomics, metabolomics, and especially transcriptomics, to understand grape berry development. Several aspects will be considered, including seed development and the production of seedless fruits; veraison, at which anthocyanin accumulation begins in the berry skin of colored varieties; and hormonal regulation of berry development and signaling throughout ripening, focusing on the transcriptional regulation of hormone receptors, protein kinases, and genes related to secondary messenger sensing. Finally, berry responses to different environmental factors, including abiotic (temperature, water-related stress and UV-B radiation) and biotic (fungi and viruses) stresses, and how they can significantly modify both, development and composition of vine fruit, will be discussed. Until now, advances have been made due to the application of Omics tools at different molecular levels. However, the potential of these technologies should not be limited to the study of single-level questions; instead, data obtained by these platforms should be integrated to unravel the molecular aspects of grapevine development. Therefore, the current challenge is the generation of new tools that integrate large-scale data to assess new questions in this field, and to support agronomical practices.
Collapse
Affiliation(s)
- Alejandra Serrano
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Carmen Espinoza
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Grace Armijo
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Claudio Inostroza-Blancheteau
- Núcleo de Investigación en Producción Alimentaría, Facultad de Recursos Naturales, Escuela de Agronomía, Universidad Católica de TemucoTemuco, Chile
| | - Evelyn Poblete
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Carlos Meyer-Regueiro
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Anibal Arce
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Francisca Parada
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Claudia Santibáñez
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
- Ecophysiology and Functional Genomic of Grapevine, Institut des Sciences de la Vigne et du Vin, Institut National de la Recherche Agronomique, Université de BordeauxBordeaux, France
| | - Patricio Arce-Johnson
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de ChileSantiago, Chile
- *Correspondence: Patricio Arce-Johnson,
| |
Collapse
|