1
|
Chitolina Schetinger L, de Jesus LSB, Bottari NB, Viana AR, Nauderer JN, Silveira MV, Castro M, Nass P, Caetano PA, Morsch V, Jacob-Lopes E, Queiroz Zepka L, Chitolina Schetinger MR. Microalgae-Derived Carotenoid Extract and Biomass Reduce Viability, Induce Oxidative Stress, and Modulate the Purinergic System in Two Melanoma Cell Lines. Life (Basel) 2025; 15:199. [PMID: 40003608 DOI: 10.3390/life15020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Cutaneous melanoma (CM) is an aggressive and metastatic tumor, resulting in high mortality rates. Despite significant advances in therapeutics, the available treatments still require improvements. Thus, purinergic signaling emerged as a potential pathway to cancer therapy due to its involvement in cell communication, proliferation, differentiation, and apoptosis. In addition, due to safety and acceptable clinical tolerability, carotenoids from microalgae have been investigated as adjuvants in anti-melanoma therapy. Then, this work aimed to investigate the in vitro anti-melanogenic effect of carotenoid extract (CA) and total biomass (BM) of the Scenedesmus obliquus microalgae on two cutaneous melanoma cell lines (A375 and B16F10). Cells were cultivated under ideal conditions and treated with 10, 25, 50, and 100 μM of CA or BM for 24 h. The effects of the compounds on viability, oxidant status, and purinergic signaling were verified. The IC50 cell viability results showed that CA and BM decreased B16F10 viability at 24.29 μM and 74.85 μM, respectively and decreased A375 viability at 73.93 μM and 127.80 μM, respectively. Carotenoid treatment for 24 h in B16F10 and A375 cells increased the release of reactive oxygen species compared to the control. In addition, CA and BM isolated or combined with cisplatin chemotherapy (CIS) modulated the purinergic system in B16F10 and A375 cell lines through P2X7, A2AR, CD39, and 5'-nucleotidase. They led to cell apoptosis and immunoregulation by activating A2A receptors and CD73 inhibition. The results disclose that CA and BM from Scenedesmus obliquus exhibit an anti-melanogenic effect, inhibiting melanoma cell growth.
Collapse
Affiliation(s)
- Luisa Chitolina Schetinger
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil
| | - Loren S B de Jesus
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil
| | - Nathieli B Bottari
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil
- Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas (UFPEL), Pelotas 96010-610, Brazil
| | - Altevir R Viana
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil
| | - Jelson N Nauderer
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil
| | - Marcylene V Silveira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil
| | - Milagros Castro
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil
| | - Pricila Nass
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil
| | - Patrícia Acosta Caetano
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil
| | - Vera Morsch
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil
| | - Eduardo Jacob-Lopes
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil
| | - Leila Queiroz Zepka
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil
| | | |
Collapse
|
2
|
Iser IC, Bertoni APS, Beckenkamp LR, Consolaro MEL, Maria-Engler SS, Wink MR. Adenosinergic Signalling in Cervical Cancer Microenvironment. Expert Rev Mol Med 2025; 27:e5. [PMID: 39762204 PMCID: PMC11707834 DOI: 10.1017/erm.2024.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2023] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 01/11/2025]
Abstract
Despite the emergence of the first human papillomavirus vaccine, the incidence of cervical cancer is still responsible for more than 350,000 deaths yearly. Over the past decade, ecto-5'-nucleotidase (CD73/5'-NT) and extracellular adenosine (ADO) signalling has been the subject of many investigations to target cancer progression. In general, the adenosinergic axis has been linked to tumourigenic effects. However, CD73 can play contradictory effects, probably dependent on the tumour type, tumour microenvironment and tumour stage, thus being in some circumstances, inversely related to tumour progression. We herein reviewed the pathophysiological function of CD73 in cervical cancer and performed in silico analysis of the main components of the adenosinergic signalling in human tissues of cervical cancer compared to non-tumour cervix tissue. Our data showed that the NT5E gene, that encoded CD73, is hypermethylated, leading to a decreased CD73 expression in cervical cancer cells compared to normal cells. Consequently, the high availability of ADO cytoplasmatic/extracellular leads to its conversion to AMP by ADK, culminating in global hypermethylation. Therefore, epigenetic modulation may reveal a new role for CD73 in cervical cancer.
Collapse
Affiliation(s)
- Isabele Cristiana Iser
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Ana Paula Santin Bertoni
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Liziane Raquel Beckenkamp
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Marcia Edilaine Lopes Consolaro
- Department of Clinical Analysis and Biomedicine, Division of Clinical Cytology, State University of Maringá, Maringá, PR, Brazil
| | - Silvya Stuchi Maria-Engler
- Department of Clinical Chemistry and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcia Rosângela Wink
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Venugopala KN, Buccioni M. Current Understanding of the Role of Adenosine Receptors in Cancer. Molecules 2024; 29:3501. [PMID: 39124905 PMCID: PMC11313767 DOI: 10.3390/molecules29153501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer, a complex array of diseases, involves the unbridled proliferation and dissemination of aberrant cells in the body, forming tumors that can infiltrate neighboring tissues and metastasize to distant sites. With over 200 types, each cancer has unique attributes, risks, and treatment avenues. Therapeutic options encompass surgery, chemotherapy, radiation therapy, hormone therapy, immunotherapy, targeted therapy, or a blend of these methods. Yet, these treatments face challenges like late-stage diagnoses, tumor diversity, severe side effects, drug resistance, targeted drug delivery hurdles, and cost barriers. Despite these hurdles, advancements in cancer research, encompassing biology, genetics, and treatment, have enhanced early detection methods, treatment options, and survival rates. Adenosine receptors (ARs), including A1, A2A, A2B, and A3 subtypes, exhibit diverse roles in cancer progression, sometimes promoting or inhibiting tumor growth depending on the receptor subtype, cancer type, and tumor microenvironment. Research on AR ligands has revealed promising anticancer effects in lab studies and animal models, hinting at their potential as cancer therapeutics. Understanding the intricate signaling pathways and interactions of adenosine receptors in cancer is pivotal for crafting targeted therapies that optimize benefits while mitigating drawbacks. This review delves into each adenosine receptor subtype's distinct roles and signaling pathways in cancer, shedding light on their potential as targets for improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Katharigatta Narayanaswamy Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, ChIP, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy;
| |
Collapse
|
4
|
Yang H, Zhang Z, Zhao K, Zhang Y, Yin X, Zhu G, Wang Z, Yan X, Li X, He T, Wang K. Targeting the adenosine signaling pathway in macrophages for cancer immunotherapy. Hum Immunol 2024; 85:110774. [PMID: 38521664 DOI: 10.1016/j.humimm.2024.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
One of the ways in which macrophages support tumorigenic growth is by producing adenosine, which acts to dampen antitumor immune responses and is generated by both tumor and immune cells in the tumor microenvironment (TME). Two cell surface expressed molecules, CD73 and CD39, boost catalytic adenosine triphosphate, leading to further increased adenosine synthesis, under hypoxic circumstances in the TME. There are four receptors (A1, A2A, A2B, and A3) expressed on macrophages that allow adenosine to perform its immunomodulatory effect. Researchers have shown that adenosine signaling is a key factor in tumor progression and an attractive therapeutic target for treating cancer. Several antagonistic adenosine-targeting biological therapies that decrease the suppressive action of tumor-associated macrophages have been produced and explored to transform this result from basic research into a therapeutic advantage. Here, we'll review the newest findings from studies of pharmacological compounds that target adenosine receptors, and their potential therapeutic value based on blocking the suppressive action of macrophages in tumors.
Collapse
Affiliation(s)
- Han Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Zongliang Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Kai Zhao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Yulian Zhang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Xinbao Yin
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Guanqun Zhu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Zhenlin Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Xuechuan Yan
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Xueyu Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Tianzhen He
- Nantong University, Institute of Special Environmental Medicine, Nantong, China.
| | - Ke Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China.
| |
Collapse
|
5
|
Ai Y, Wang H, Liu L, Qi Y, Tang S, Tang J, Chen N. Purine and purinergic receptors in health and disease. MedComm (Beijing) 2023; 4:e359. [PMID: 37692109 PMCID: PMC10484181 DOI: 10.1002/mco2.359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Purines and purinergic receptors are widely distributed throughout the human body. Purine molecules within cells play crucial roles in regulating energy metabolism and other cellular processes, while extracellular purines transmit signals through specific purinergic receptors. The ubiquitous purinergic signaling maintains normal neural excitability, digestion and absorption, respiratory movement, and other complex physiological activities, and participates in cell proliferation, differentiation, migration, and death. Pathological dysregulation of purinergic signaling can result in the development of various diseases, including neurodegeneration, inflammatory reactions, and malignant tumors. The dysregulation or dysfunction of purines and purinergic receptors has been demonstrated to be closely associated with tumor progression. Compared with other subtypes of purinergic receptors, the P2X7 receptor (P2X7R) exhibits distinct characteristics (i.e., a low affinity for ATP, dual functionality upon activation, the mediation of ion channels, and nonselective pores formation) and is considered a promising target for antitumor therapy, particularly in patients with poor response to immunotherapy This review summarizes the physiological and pathological significance of purinergic signaling and purinergic receptors, analyzes their complex relationship with tumors, and proposes potential antitumor immunotherapy strategies from tumor P2X7R inhibition, tumor P2X7R overactivation, and host P2X7R activation. This review provides a reference for clinical immunotherapy and mechanism investigation.
Collapse
Affiliation(s)
- Yanling Ai
- Department of OncologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Hengyi Wang
- Department of Infectious DiseasesHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Lu Liu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yulin Qi
- Department of OphthalmologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
- Postdoctoral Research Station of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan ProvinceHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and EngineeringCollege of Biomedical EngineeringChongqing Medical UniversityChongqingChina
| |
Collapse
|
6
|
Tamer TM, Zhou H, Hassan MA, Abu-Serie MM, Shityakov S, Elbayomi SM, Mohy-Eldin MS, Zhang Y, Cheang T. Synthesis and physicochemical properties of an aromatic chitosan derivative: In vitro antibacterial, antioxidant, and anticancer evaluations, and in silico studies. Int J Biol Macromol 2023; 240:124339. [PMID: 37028626 DOI: 10.1016/j.ijbiomac.2023.124339] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
This study was designed to synthesize a functionalized chitosan by coupling the amine groups of chitosan with 2,4,6-Trimethoxybenzaldehyde, producing a chitosan Schiff base (Cs-TMB). The development of Cs-TMB was verified employing FT-IR, 1H NMR, the electronic spectrum, and elemental analysis. Antioxidant assays exhibited significant ameliorations of Cs-TMB, reporting scavenging activities of 69.67 ± 3.48 % and 39.65 ± 1.98 % for ABTS•+ and DPPH, respectively, while native chitosan showed scavenging ratios of 22.69 ± 1.13 % and 8.24 ± 0.4.1 % toward ABTS•+ and DPPH, respectively. Besides, Cs-TMB exerted significant antibacterial activity up to 90 % with remarkable bactericidal capacity against virulent gram-negative and gram-positive bacteria compared to the original chitosan. Furthermore, Cs-TMB exhibited a safe profile against normal fibroblast cells (HFB4). Interestingly, flow cytometric analysis showed that Cs-TMB demonstrated prominent anticancer properties of 52.35 ± 2.99 % against human skin cancer cells (A375), compared to 10.66 ± 0.55 % for Cs-treated cells. Moreover, Python and PyMOL in-house scripts were used to predict the interaction of Cs-TMB with the adenosine A1 receptor and visualized as a protein-ligand system submerged in a lipid membrane. Overall, these findings accentuate that Cs-TMB could be a favorable representative for wound dressing formulations and skin cancer treatment.
Collapse
Affiliation(s)
- Tamer M Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt.
| | - Hongyan Zhou
- Department of Neurology, Hospital of Sun Yat-sen University, Guangdong 510080, China.
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Sergey Shityakov
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia
| | - Smaher M Elbayomi
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta City, Damietta 34517, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Yongcheng Zhang
- Department of Breast Care Surgery, Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong 510080, China.
| | - Tuckyun Cheang
- Department of Neurosurgery, Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong 510080, China.
| |
Collapse
|
7
|
Hamoud AR, Bach K, Kakrecha O, Henkel N, Wu X, McCullumsmith RE, O’Donovan SM. Adenosine, Schizophrenia and Cancer: Does the Purinergic System Offer a Pathway to Treatment? Int J Mol Sci 2022; 23:ijms231911835. [PMID: 36233136 PMCID: PMC9570456 DOI: 10.3390/ijms231911835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
For over a century, a complex relationship between schizophrenia diagnosis and development of many cancers has been observed. Findings from epidemiological studies are mixed, with reports of increased, reduced, or no difference in cancer incidence in schizophrenia patients. However, as risk factors for cancer, including elevated smoking rates and substance abuse, are commonly associated with this patient population, it is surprising that cancer incidence is not higher. Various factors may account for the proposed reduction in cancer incidence rates including pathophysiological changes associated with disease. Perturbations of the adenosine system are hypothesized to contribute to the neurobiology of schizophrenia. Conversely, hyperfunction of the adenosine system is found in the tumor microenvironment in cancer and targeting the adenosine system therapeutically is a promising area of research in this disease. We outline the current biochemical and pharmacological evidence for hypofunction of the adenosine system in schizophrenia, and the role of increased adenosine metabolism in the tumor microenvironment. In the context of the relatively limited literature on this patient population, we discuss whether hypofunction of this system in schizophrenia, may counteract the immunosuppressive role of adenosine in the tumor microenvironment. We also highlight the importance of studies examining the adenosine system in this subset of patients for the potential insight they may offer into these complex disorders.
Collapse
Affiliation(s)
- Abdul-Rizaq Hamoud
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Karen Bach
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Ojal Kakrecha
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Nicholas Henkel
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Xiaojun Wu
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43606, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Correspondence:
| |
Collapse
|
8
|
The role of adenosine A 1 receptor on immune cells. Inflamm Res 2022; 71:1203-1212. [PMID: 36064866 DOI: 10.1007/s00011-022-01607-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Adenosine, acting as a regulator by mediating the activation of G protein-coupled adenosine receptor families (A1, A2A, A2B, and A3), plays an important role under physiological and pathological conditions. As the receptor with the highest affinity for adenosine, the role of adenosine A1 receptor (A1R)-mediated adenosine signaling pathway in the central nervous system has been well addressed. However, functions of A1R on immune cells are less summarized. Considering that some immune cells express multiple types of adenosine receptors with distinct effects and varied density, exogenous adenosine of different concentrations may induce divergent immune cell functions. MATERIALS AND METHODS The literatures about the expression of A1R and its regulation on immune cells and how it regulates the function of immune cells were searched on PubMed and Google Scholar. CONCLUSION In this review, we discussed the effects of A1R on immune cells, including monocytes, macrophages, neutrophils, dendritic cells, and microglia, and focused on the role of A1R in regulating immune cells in diseases, which may facilitate our understanding of the mechanisms by which adenosine affects immune cells through A1R.
Collapse
|
9
|
Mauro AN, Turgeon PJ, Gupta S, Brand-Arzamendi K, Chen H, Malone JH, Ng R, Ho K, Dubinsky M, Di Ciano-Oliveira C, Spring C, Plant P, Leong-Poi H, Marshall JC, Marsden PA, Connelly KA, Singh KK. Automated in vivo compound screening with zebrafish and the discovery and validation of PD 81,723 as a novel angiogenesis inhibitor. Sci Rep 2022; 12:14537. [PMID: 36008455 PMCID: PMC9411172 DOI: 10.1038/s41598-022-18230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Angiogenesis is a critical process in tumor progression. Inhibition of angiogenesis by blocking VEGF signaling can impair existing tumor vessels and halt tumor progression. However, the benefits are transient, and most patients who initially respond to these therapies develop resistance. Accordingly, there is a need for new anti-angiogenesis therapeutics to delay the processes of resistance or eliminate the resistive effects entirely. This manuscript presents the results of a screen of the National Institutes of Health Clinical Collections Libraries I & II (NIHCCLI&II) for novel angiogenesis inhibitors. The 727 compounds of the NIHCCLI&II library were screened with a high-throughput drug discovery platform (HTP) developed previously with angiogenesis-specific protocols utilizing zebrafish. The screen resulted in 14 hit compounds that were subsequently narrowed down to one, with PD 81,723 chosen as the lead compound. PD 81,723 was validated as an inhibitor of angiogenesis in vivo in zebrafish and in vitro in human umbilical vein endothelial cells (HUVECs). Zebrafish exposed to PD 81,723 exhibited several signs of a diminished endothelial network due to the inhibition of angiogenesis. Immunochemical analysis did not reveal any significant apoptotic or mitotic activity in the zebrafish. Assays with cultured HUVECs elucidated the ability of PD 81,723 to inhibit capillary tube formation, migration, and proliferation of endothelial cells. In addition, PD 81,723 did not induce apoptosis while significantly down regulating p21, AKT, VEGFR-2, p-VEGFR-2, eNOS, and p-eNOS, with no notable change in endogenous VEGF-A in cultured HUVECs.
Collapse
Affiliation(s)
- Antonio N Mauro
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada.
- Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, M5T 1W7, Canada.
| | - Paul J Turgeon
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Sahil Gupta
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Faculty of Medicine, School of Medicine, The University of Queensland, Herston, QLD, 4006, Australia
| | - Koroboshka Brand-Arzamendi
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Hao Chen
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, M5T 1W7, Canada
| | - Jeanie H Malone
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Robin Ng
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Kevin Ho
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Michelle Dubinsky
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
| | - Caterina Di Ciano-Oliveira
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Christopher Spring
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Pamela Plant
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Howard Leong-Poi
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, M5T 1W7, Canada
| | - John C Marshall
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Departments of Surgery and Critical Care Medicine, St. Michael's Hospital, University of Toronto, Toronto, M5B 1W8, Canada
| | - Philip A Marsden
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, M5T 1W7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 1L7, Canada
- Department of Medicine, University of Toronto, Toronto, M5S 3H2, Canada
| | - Kim A Connelly
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada.
- Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, M5T 1W7, Canada.
| | - Krishna K Singh
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Surgery, University of Toronto, Toronto, M5T 1P5, Canada.
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, N6A 5C1, Canada.
| |
Collapse
|
10
|
Iser IC, Vedovatto S, Oliveira FD, Beckenkamp LR, Lenz G, Wink MR. The crossroads of adenosinergic pathway and epithelial-mesenchymal plasticity in cancer. Semin Cancer Biol 2022; 86:202-213. [PMID: 35779713 DOI: 10.1016/j.semcancer.2022.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 10/31/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a key mechanism related to tumor progression, invasion, metastasis, resistance to therapy and poor prognosis in several types of cancer. However, targeting EMT or partial-EMT, as well as the molecules involved in this process, has remained a challenge. Recently, the CD73 enzyme, which hydrolyzes AMP to produce adenosine (ADO), has been linked to the EMT process. This relationship is not only due to the production of the immunosuppressant ADO but also to its role as a receptor for extracellular matrix proteins, being involved in cell adhesion and migration. This article reviews the crosstalk between the adenosinergic pathway and the EMT program and the impact of this interrelation on cancer development and progression. An in silico analysis of RNAseq datasets showed that several tumor types have a significant correlation between an EMT score and NT5E (CD73) and ENTPD1 (CD39) expressions, with the strongest correlations in prostate adenocarcinoma. Furthermore, it is evident that the cooperation between EMT and adenosinergic pathway in tumor progression is context and tumor-dependent. The increased knowledge about this topic will help broaden the view to explore new treatments and therapies for different types of cancer.
Collapse
Affiliation(s)
- Isabele Cristiana Iser
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Samlai Vedovatto
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Dittrich Oliveira
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Liziane Raquel Beckenkamp
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guido Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
De Marchi E, Pegoraro A, Turiello R, Di Virgilio F, Morello S, Adinolfi E. A2A Receptor Contributes to Tumor Progression in P2X7 Null Mice. Front Cell Dev Biol 2022; 10:876510. [PMID: 35663396 PMCID: PMC9159855 DOI: 10.3389/fcell.2022.876510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 12/30/2022] Open
Abstract
ATP and adenosine are key constituents of the tumor niche where they exert opposite and complementary roles. ATP can be released in response to cell damage or actively released by tumor cells and subsequently degraded into adenosine, which accumulates within the tumor microenvironment. Notably, while ATP promotes immune eradicating responses mainly via the P2X7 receptor (P2X7R), extracellular adenosine acts as a potent immune suppressor and facilitates neovascularization thanks to the A2A receptor (A2AR). To date, studies exploring the interplay between P2X7R and A2AR in the tumor microenvironment are as yet missing. Here, we show that, in C57/bl6 P2X7 null mice inoculated with B16-F10 melanoma cells, several pro-inflammatory cytokines, including interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 12 (IL-12), interleukin 17 (IL-17), interferon gamma (IFN-γ) were significantly decreased, while the immune suppressant transforming growth factor beta (TGF-β) was almost three-fold increased. Interestingly, tumors growing in P2X7-null mice upregulated tumor-associated and splenic A2AR, suggesting that immunosuppression linked to lack of the P2X7R might depend upon A2AR overexpression. Immunohistochemical analysis showed that tumor cells’ A2AR expression was increased, especially around necrotic areas, and that vascular endothelial growth factor (VEGF) and the endothelial marker CD31 were upregulated. A2AR antagonist SCH58261 treatment reduced tumor growth similarly in the P2X7 wild type or null mice strain. However, SCH58261 reduced VEGF only in the P2X7 knock out mice, thus supporting the hypothesis of an A2AR-mediated increase in vascularization observed in the P2X7-null host. SCH58261 administration also significantly reduced intratumor TGF-β levels, thus supporting a key immune suppressive role of A2AR in our model. Altogether, these results indicate that in the absence of host P2X7R, the A2AR favors tumor growth via immune suppression and neovascularization. This study shows a novel direct correlation between P2X7R and A2AR in oncogenesis and paves the way for new combined therapies promoting anti-cancer immune responses and reducing tumor vascularization.
Collapse
Affiliation(s)
- Elena De Marchi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Pegoraro
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | | | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- *Correspondence: Elena Adinolfi,
| |
Collapse
|
12
|
da Silva GB, Yamauchi MA, Zanini D, Bagatini MD. Novel possibility for cutaneous melanoma treatment by means of rosmarinic acid action on purinergic signaling. Purinergic Signal 2022; 18:61-81. [PMID: 34741236 PMCID: PMC8570242 DOI: 10.1007/s11302-021-09821-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer cases have increased significantly in Brazil and worldwide, with cutaneous melanoma (CM) being responsible for nearly 57,000 deaths in the world. Thus, this review article aims at exploring and proposed hypotheses with respect to the possibility that RA can be a promising and alternative compound to be used as an adjuvant in melanoma treatment, acting on purinergic signaling. The scarcity of articles evidencing the action of this compound in this signaling pathway requires further studies. Considering diverse evidence found in the literature, we hypothesize that RA can be an effective candidate for the treatment of CM acting as a modulating molecule of purinergic cellular pathway through P2X7 blocking, mitigating the Warburg effect, and as antagonic molecule of the P2Y12 receptor, reducing the formation of adhesive molecules that prevent adherence in tumor cells. In this way, our proposals for CM treatment based on targeting purinergic signaling permeate the integral practice, going from intracell to extracell. Undoubtedly, much is still to be discovered and elucidated about this promising compound, this paper being an interesting work baseline to support more research studies.
Collapse
Affiliation(s)
- Gilnei Bruno da Silva
- Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Milena Ayumi Yamauchi
- Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Daniela Zanini
- Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
13
|
Dai QX, Li S, Ren M, Wu X, Yao XY, Lin FH, Ni XQ, Mo YC, Wang JL. Analgesia with 5' extracellular nucleotidase-mediated electroacupuncture for neuropathic pain. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:289-295. [DOI: 10.1590/0004-282x-anp-2021-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/16/2021] [Accepted: 06/03/2021] [Indexed: 11/21/2022]
Abstract
ABSTRACT Background: Acupuncture is a treatment for neuropathic pain, but its mechanism remains unclear. Previous studies showed that analgesia was induced in rats with neuropathic pain when their spinal cord adenosine content increased after electroacupuncture (EA); however, the mechanism behind this electroacupuncture-induced increase has not been clarified. Objective: This study aimed to determine the role that ecto-5’-nucleotidase plays in EA-induced analgesia for neuropathic pain. Methods: We performed electroacupuncture at the Zusanli acupoint on the seventh day after establishing a rat model of neuropathic pain induced through chronic constriction injuries. We observed the mechanical withdrawal threshold and thermal pain threshold and detected the expression of ecto-5’-nucleotidase in the spinal cord using Western blot. Chronic constriction injury rat models were intraperitoneally injected with α,β-methyleneadenosine 5'-diphosphate, an ecto-5’-nucleotidase inhibitor, 30 min before electroacupuncture. The adenosine content of the spinal cord was detected using high-performance liquid chromatography. Lastly, the adenosine A1 receptor agonist N6-cyclopentyladenosine was intrathecally injected into the lumbar swelling of the rats, and the mechanical withdrawal and thermal pain thresholds were reevaluated. Results: Analgesia and increased ecto-5’-nucleotidase expression and adenosine content in the spinal cord were observed 1 h after electroacupuncture. α,β-methyleneadenosine 5'-diphosphate was able to inhibit upregulation of adenosine content and electroacupuncture-induced analgesia. After administration of N6-cyclopentyladenosine, electroacupuncture-induced analgesia was restored. Conclusions: Our results suggest that electroacupuncture at Zusanli can produce analgesia in chronic constriction injury rat models, possibly via the increased ecto-5’-nucleotidase expression induced through electroacupuncture, thus leading to increased adenosine expression in the spinal cord.
Collapse
Affiliation(s)
| | - Shan Li
- Wen Zhou Medical University, China
| | - Miao Ren
- Wen Zhou Medical University, China
| | - Xinlu Wu
- Wen Zhou Medical University, China
| | | | | | | | | | | |
Collapse
|
14
|
Scortichini M, Idris RM, Moschütz S, Keim A, Salmaso V, Dobelmann C, Oliva P, Losenkova K, Irjala H, Vaittinen S, Sandholm J, Yegutkin GG, Sträter N, Junker A, Müller CE, Jacobson KA. Structure-Activity Relationship of 3-Methylcytidine-5'-α,β-methylenediphosphates as CD73 Inhibitors. J Med Chem 2022; 65:2409-2433. [PMID: 35080883 PMCID: PMC8865918 DOI: 10.1021/acs.jmedchem.1c01852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
We recently reported N4-substituted 3-methylcytidine-5'-α,β-methylenediphosphates as CD73 inhibitors, potentially useful in cancer immunotherapy. We now expand the structure-activity relationship of pyrimidine nucleotides as human CD73 inhibitors. 4-Chloro (MRS4598 16; Ki = 0.673 nM) and 4-iodo (MRS4620 18; Ki = 0.436 nM) substitution of the N4-benzyloxy group decreased Ki by ∼20-fold. Primary alkylamine derivatives coupled through a p-amido group with a varying methylene chain length (24 and 25) were functionalized congeners, for subsequent conjugation to carrier or reporter moieties. X-ray structures of hCD73 with two inhibitors indicated a ribose ring conformational adaptation, and the benzyloxyimino group (E configuration) binds to the same region (between the C-terminal and N-terminal domains) as N4-benzyl groups in adenine inhibitors. Molecular dynamics identified stabilizing interactions and predicted conformational diversity. Thus, by N4-benzyloxy substitution, we have greatly enhanced the inhibitory potency and added functionality enabling molecular probes. Their potential as anticancer drugs was confirmed by blocking CD73 activity in tumor tissues in situ.
Collapse
Affiliation(s)
- Mirko Scortichini
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Riham Mohammed Idris
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Susanne Moschütz
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Antje Keim
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Clemens Dobelmann
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | - Paola Oliva
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | - Heikki Irjala
- Department of Otorhinolaryngology-Head and Neck Surgery, Turku University Hospital and Turku University, 20520 Turku, Finland
| | - Samuli Vaittinen
- Department of Pathology, Turku University Hospital and Turku University, 20520 Turku, Finland
| | - Jouko Sandholm
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | | | - Norbert Sträter
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Anna Junker
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
15
|
Mazziotta C, Rotondo JC, Lanzillotti C, Campione G, Martini F, Tognon M. Cancer biology and molecular genetics of A 3 adenosine receptor. Oncogene 2022; 41:301-308. [PMID: 34750517 PMCID: PMC8755539 DOI: 10.1038/s41388-021-02090-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2021] [Revised: 09/01/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022]
Abstract
A3 adenosine receptor (A3AR) is a cell membrane protein, which has been found to be overexpressed in a large number of cancer types. This receptor plays an important role in cancer by interacting with adenosine. Specifically, A3AR has a dual nature in different pathophysiological conditions, as it is expressed according to tissue type and stimulated by an adenosine dose-dependent manner. A3AR activation leads to tumor growth, cell proliferation and survival in some cases, while triggering cytostatic and apoptotic pathways in others. This review aims to describe the most relevant aspects of A3AR activation and its ligands whereas it summarizes A3AR activities in cancer. Progress in the field of A3AR modulators, with a potential therapeutic role in cancer treatment are reported, as well.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine-Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - John Charles Rotondo
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine-Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Carmen Lanzillotti
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine-Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Giulia Campione
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy.
| | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
| |
Collapse
|
16
|
Angelicola S, Ruzzi F, Landuzzi L, Scalambra L, Gelsomino F, Ardizzoni A, Nanni P, Lollini PL, Palladini A. IFN-γ and CD38 in Hyperprogressive Cancer Development. Cancers (Basel) 2021; 13:309. [PMID: 33467713 PMCID: PMC7830527 DOI: 10.3390/cancers13020309] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) improve the survival of patients with multiple types of cancer. However, low response rates and atypical responses limit their success in clinical applications. The paradoxical acceleration of tumor growth after treatment, defined as hyperprogressive disease (HPD), is the most difficult problem facing clinicians and patients alike. The mechanisms that underlie hyperprogression (HP) are still unclear and controversial, although different factors are associated with the phenomenon. In this review, we propose two factors that have not yet been demonstrated to be directly associated with HP, but upon which it is important to focus attention. IFN-γ is a key cytokine in antitumor response and its levels increase during ICI therapy, whereas CD38 is an alternative immune checkpoint that is involved in immunosuppressive responses. As both factors are associated with resistance to ICI therapy, we have discussed their possible involvement in HPD with the conclusion that IFN-γ may contribute to HP onset through the activation of the inflammasome pathway, immunosuppressive enzyme IDO1 and activation-induced cell death (AICD) in effector T cells, while the role of CD38 in HP may be associated with the activation of adenosine receptors, hypoxia pathways and AICD-dependent T-cell depletion.
Collapse
Affiliation(s)
- Stefania Angelicola
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (S.A.); (F.R.); (L.S.); (A.P.)
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (S.A.); (F.R.); (L.S.); (A.P.)
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Laura Scalambra
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (S.A.); (F.R.); (L.S.); (A.P.)
| | - Francesco Gelsomino
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.G.); (A.A.)
| | - Andrea Ardizzoni
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.G.); (A.A.)
| | - Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (S.A.); (F.R.); (L.S.); (A.P.)
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (S.A.); (F.R.); (L.S.); (A.P.)
| | - Arianna Palladini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (S.A.); (F.R.); (L.S.); (A.P.)
| |
Collapse
|
17
|
Hyper-Progressive Disease: The Potential Role and Consequences of T-Regulatory Cells Foiling Anti-PD-1 Cancer Immunotherapy. Cancers (Basel) 2020. [PMID: 33375291 DOI: 10.3390/cancers13010048.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
Antibody-mediated disruption of the programmed cell death protein 1 (PD-1) pathway has brought much success to the fight against cancer. Nevertheless, a significant proportion of patients respond poorly to anti-PD-1 treatment. Cases of accelerated and more aggressive forms of cancer following therapy have also been reported. Termed hyper-progressive disease (HPD), this phenomenon often results in fatality, thus requires urgent attention. Among possible causes of HPD, regulatory T-cells (Tregs) are of suspect due to their high expression of PD-1, which modulates Treg activity. Tregs are a subset of CD4+ T-cells that play a non-redundant role in the prevention of autoimmunity and is functionally dependent on the X chromosome-linked transcription factor FoxP3. In cancer, CD4+FoxP3+ Tregs migrate to tumors to suppress anti-tumor immune responses, allowing cancer cells to persist. Hence, Treg accumulation in tumors is associated with poor prognosis. In mice, the anti-tumor efficacy of anti-PD-1 can be enhanced by depleting Tregs. This suggests Tregs pose resistance to anti-PD-1 therapy. In this article, we review the relevant Treg functions that suppress tumor immunity and the potential effects anti-PD-1 could have on Tregs which are counter-productive to the treatment of cancer, occasionally causing HPD.
Collapse
|
18
|
Tay C, Qian Y, Sakaguchi S. Hyper-Progressive Disease: The Potential Role and Consequences of T-Regulatory Cells Foiling Anti-PD-1 Cancer Immunotherapy. Cancers (Basel) 2020; 13:E48. [PMID: 33375291 PMCID: PMC7796137 DOI: 10.3390/cancers13010048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Antibody-mediated disruption of the programmed cell death protein 1 (PD-1) pathway has brought much success to the fight against cancer. Nevertheless, a significant proportion of patients respond poorly to anti-PD-1 treatment. Cases of accelerated and more aggressive forms of cancer following therapy have also been reported. Termed hyper-progressive disease (HPD), this phenomenon often results in fatality, thus requires urgent attention. Among possible causes of HPD, regulatory T-cells (Tregs) are of suspect due to their high expression of PD-1, which modulates Treg activity. Tregs are a subset of CD4+ T-cells that play a non-redundant role in the prevention of autoimmunity and is functionally dependent on the X chromosome-linked transcription factor FoxP3. In cancer, CD4+FoxP3+ Tregs migrate to tumors to suppress anti-tumor immune responses, allowing cancer cells to persist. Hence, Treg accumulation in tumors is associated with poor prognosis. In mice, the anti-tumor efficacy of anti-PD-1 can be enhanced by depleting Tregs. This suggests Tregs pose resistance to anti-PD-1 therapy. In this article, we review the relevant Treg functions that suppress tumor immunity and the potential effects anti-PD-1 could have on Tregs which are counter-productive to the treatment of cancer, occasionally causing HPD.
Collapse
Affiliation(s)
- Christopher Tay
- Immunology Frontier Research Center, Department of Experimental Immunology, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; (C.T.); (Y.Q.)
| | - Yamin Qian
- Immunology Frontier Research Center, Department of Experimental Immunology, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; (C.T.); (Y.Q.)
| | - Shimon Sakaguchi
- Immunology Frontier Research Center, Department of Experimental Immunology, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; (C.T.); (Y.Q.)
- Laboratory of Experimental Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
19
|
Ni S, Wei Q, Yang L. ADORA1 Promotes Hepatocellular Carcinoma Progression via PI3K/AKT Pathway. Onco Targets Ther 2020; 13:12409-12419. [PMID: 33293832 PMCID: PMC7719345 DOI: 10.2147/ott.s272621] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is a common malignancy worldwide. Although the contradictory role of ADORA1 has been explored in certain types of cancers, its clinical significance and function in hepatocellular carcinoma cells are largely unknown. MATERIALS AND METHODS The level of ADORA1 in HCC tissues and cells was evaluated by RT-PCR. The function of ADORA1 overexpression on HCC cell proliferation and invasion was assessed by MTS, transwell analysis, and colony formation assay. In addition, a mouse subcutaneous xenograft model was used to study in vivo effects. The efficacy of knockdown of ADORA1 sensitizes to chemotherapy was assessed by staining with Annexin V/propidium iodide followed with flow cytometry and nuclei fragmentation. RESULTS In this study, ADORA1 was identified to be up-regulated in HCC tissues compared with adjacent normal tissue. High ADORA1 mRNA expression predicted poor survival in hepatocellular carcinoma patients. Ectopic expression of ADORA1 increased hepatocellular carcinoma cell proliferation and invasion. ADORA1 knockdown inhibited HCC cell growth and sensitized to chemotherapy. Furthermore, ADORA1 activated PI3K/AKT oncogenic signaling pathways. Treatment with PI3K inhibitor LY294002 blocked the effects of ADORA1 on tumor growth in either ADORA1-overexpressing or -deficiency cells. Finally, overexpression of ADORA1 stimulates HCC tumor growth in vivo. Treatment of ADORA1 antagonist oppositely suppressed HCC xenograft tumor growth. CONCLUSION ADORA1 serves as an important oncoprotein and a promoter of cell proliferation through PI3K/AKT signaling pathway in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sheng Ni
- Department of Occupational Health and Occupational Medicine, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region530021, People’s Republic of China
| | - Qian Wei
- Behavioral Style Construction Office, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region530021, People’s Republic of China
| | - Li Yang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region530021, People’s Republic of China
| |
Collapse
|
20
|
Tumor-derived exosomes promote angiogenesis via adenosine A 2B receptor signaling. Angiogenesis 2020; 23:599-610. [PMID: 32419057 PMCID: PMC7529853 DOI: 10.1007/s10456-020-09728-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2020] [Accepted: 05/11/2020] [Indexed: 02/02/2023]
Abstract
RATIONALE One hallmark of tumor-derived exosomes (TEX) is the promotion of cancer progression by stimulating angiogenesis. This study was performed to evaluate the role of adenosine receptors in TEX-induced angiogenesis. METHODS TEX produced by UMSCC47 head and neck cancer cell line were isolated by mini size exclusion chromatography (mini-SEC). Enzymatic activity of ectonucleotidases CD39/CD73 carried by TEX was measured by HPLC. Adenosine content of TEX was measured by UPLC-MS/MS. Primary human macrophages were co-incubated with TEX or exosomes derived from the plasma of head and neck cancer patients and their marker expression profile was analyzed by flow cytometry. The macrophage secretome was analyzed by angiogenesis arrays. The in vitro angiogenic potential of TEX was evaluated in endothelial growth studies. Results were validated in vivo using basement membrane extract plug assays in A1R-/-, A2AR-/- and A2BR-/- rats. Vascularization was analyzed by hemoglobin quantification and immunohistology with vessel and macrophage markers. RESULTS TEX carried enzymatically active CD39/CD73 and adenosine. TEX promoted A2BR-mediated polarization of macrophages toward an M2-like phenotype (p < 0.05) and enhanced their secretion of angiogenic factors. Growth of endothelial cells was stimulated directly by TEX and indirectly via macrophage-reprogramming dependent on A2BR signaling (p < 0.01). In vivo, TEX stimulated the formation of defined vascular structures and macrophage infiltration. This response was absent in A2BR-/- rats (p < 0.05). CONCLUSION This report provides the first evidence for adenosine production by TEX to promote angiogenesis via A2BR. A2BR antagonism emerges as a potential strategy to block TEX-induced angiogenesis.
Collapse
|
21
|
Arnaud-Sampaio VF, Rabelo ILA, Bento CA, Glaser T, Bezerra J, Coutinho-Silva R, Ulrich H, Lameu C. Using Cytometry for Investigation of Purinergic Signaling in Tumor-Associated Macrophages. Cytometry A 2020; 97:1109-1126. [PMID: 32633884 DOI: 10.1002/cyto.a.24035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2020] [Revised: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Tumor-associated macrophages are widely recognized for their importance in guiding pro-tumoral or antitumoral responses. Mediating inflammation or immunosuppression, these cells support many key events in cancer progression: cell growth, chemotaxis, invasiveness, angiogenesis and cell death. The communication between cells in the tumor microenvironment strongly relies on the secretion and recognition of several molecules, including damage-associated molecular patterns (DAMPs), such as adenosine triphosphate (ATP). Extracellular ATP (eATP) and its degradation products act as signaling molecules and have extensively described roles in immune response and inflammation, as well as in cancer biology. These multiple functions highlight the purinergic system as a promising target to investigate the interplay between macrophages and cancer cells. Here, we reviewed purinergic signaling pathways connecting cancer cells and macrophages, a yet poorly investigated field. Finally, we present a new tool for the characterization of macrophage phenotype within the tumor. Image cytometry emerges as a cutting-edge tool, capable of providing a broad set of information on cell morphology, expression of specific markers, and its cellular or subcellular localization, preserving cell-cell interactions within the tumor section and providing high statistical strength in small-sized experiments. Thus, image cytometry allows deeper investigation of tumor heterogeneity and interactions between these cells. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
| | - Izadora L A Rabelo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Carolina A Bento
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jean Bezerra
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Soleimani A, Farshchi HK, Mirzavi F, Zamani P, Ghaderi A, Amini Y, Khorrami S, Mashayekhi K, Jaafari MR. The therapeutic potential of targeting CD73 and CD73-derived adenosine in melanoma. Biochimie 2020; 176:21-30. [PMID: 32585229 DOI: 10.1016/j.biochi.2020.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2020] [Revised: 04/12/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022]
Abstract
The hypoxic environment of melanoma results in CD73 upregulation on the surface of various tumor microenvironment (TME) cells including tumor cells, stromal cells and infiltrated immune cells. Consequently, CD73 through both enzymatic and none enzymatic functions affect melanoma progression. Overaccumulation of CD73-derived adenosine through interaction with its four G coupled receptors (A1AR, A2AAR, A2BAR, and A3AR) mediate tumor growth, immune suppression, angiogenesis, and metastasis. This paper aims to comprehensively review the therapeutic potential of CD73 ectonucleotidase targeting in melanoma. To reach this goal, firstly, we summarize the structure, function, regulation, and clinical outcome of CD73 ectonucleotidase. Then, we depict the metabolism and signaling of CD73-derived adenosine along with its progressive role in development of melanoma. Furthermore, the therapeutic potentials of CD73 -adenosine axis targeting is assessed in both preclinical and clinical studies. Targeting CD73-derived adenosine via small molecule inhibitor or monoclonal antibodies studies especially in combination with immune checkpoint blockers including PD-1 and CTLA-4 have shown desirable results for management of melanoma in preclinical studies and several clinical trials have recently been started to evaluate the therapeutic potential of CD73-derived adenosine targeting in solid tumors. Indeed, targeting of CD73-derived adenosine signaling could be considered as a new therapeutic target in melanoma.
Collapse
Affiliation(s)
- Anvar Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Helale Kaboli Farshchi
- Department of Horticulture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farshad Mirzavi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Yousef Amini
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shadi Khorrami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kazem Mashayekhi
- Immuno-Biochemistry Lab, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Feng LL, Cai YQ, Zhu MC, Xing LJ, Wang X. The yin and yang functions of extracellular ATP and adenosine in tumor immunity. Cancer Cell Int 2020; 20:110. [PMID: 32280302 PMCID: PMC7137337 DOI: 10.1186/s12935-020-01195-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular adenosine triphosphate (eATP) and its main metabolite adenosine (ADO) constitute an intrinsic part of immunological network in tumor immunity. The concentrations of eATP and ADO in tumor microenvironment (TME) are controlled by ectonucleotidases, such as CD39 and CD73, the major ecto-enzymes expressed on immune cells, endothelial cells and cancer cells. Once accumulated in TME, eATP boosts antitumor immune responses, while ADO attenuates immunity against tumors. eATP and ADO, like yin and yang, represent two opposite aspects from immune-activating to immune-suppressive signals. Here we reviewed the functions of eATP and ADO in tumor immunity and attempt to block eATP hydrolysis, ADO formation and their contradictory effects in tumor models, allowing the induction of effective anti-tumor immune responses in TME. These attempts documented that therapeutic approaches targeting eATP/ADO metabolism and function may be effective methods in cancer therapy.
Collapse
Affiliation(s)
- Li-Li Feng
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China
| | - Yi-Qing Cai
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China
| | - Ming-Chen Zhu
- 5Department of Clinical Laboratory, Nanjing Medical University Cancer Hospital & Jiangsu Cancer Hospital, Nanjing, 210009 Jiangsu China
| | - Li-Jie Xing
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China
| | - Xin Wang
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China.,2School of Medicine, Shandong University, Jinan, 250012 Shandong China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China.,National clinical research center for hematologic diseases, Jinan, 250021 Shandong China
| |
Collapse
|
24
|
Inhibition of the Adenosinergic Pathway in Cancer Rejuvenates Innate and Adaptive Immunity. Int J Mol Sci 2019; 20:ijms20225698. [PMID: 31739402 PMCID: PMC6888217 DOI: 10.3390/ijms20225698] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
The adenosine pathway plays a key role in modulating immune responses in physiological and pathological conditions. Physiologically, anti-inflammatory effects of adenosine balance pro-inflammatory adenosine 5'-triphosphate (ATP), protecting tissues from damage caused by activated immune cells. Pathologically, increased adenosine monophosphatase (AMPase) activity in tumors leads to increased adenosine production, generating a deeply immunosuppressed microenvironment and promoting cancer progression. Adenosine emerges as a promising target for cancer therapy. It mediates protumor activities by inducing tumor cell proliferation, angiogenesis, chemoresistance, and migration/invasion by tumor cells. It also inhibits the functions of immune cells, promoting the formation of a tumor-permissive immune microenvironment and favoriting tumor escape from the host immune system. Pharmacologic inhibitors, siRNA or antibodies specific for the components of the adenosine pathway, or antagonists of adenosine receptors have shown efficacy in pre-clinical studies in various in vitro and in vivo tumor models and are entering the clinical arena. Inhibition of the adenosine pathway alone or in combination with classic immunotherapies offers a potentially effective therapeutic strategy in cancer.
Collapse
|
25
|
Abstract
There are four subtypes of adenosine receptors (ARs), named A1, A2A, A2B and A3, all of which are G protein-coupled receptors (GPCRs). Locally produced adenosine is a suppressant in anti-tumor immune surveillance. The A2BAR, coupled to both Gαs and Gαi G proteins, is one of the several GPCRs that are expressed in a significantly higher level in certain cancer tissues, in comparison to adjacent normal tissues. There is growing evidence that the A2BAR plays an important role in tumor cell proliferation, angiogenesis, metastasis, and immune suppression. Thus, A2BAR antagonists are novel, potentially attractive anticancer agents. Several antagonists targeting A2BAR are currently in clinical trials for various types of cancers. In this review, we first describe the signaling, agonists, and antagonists of the A2BAR. We further discuss the role of the A2BAR in the progression of various cancers, and the rationale of using A2BAR antagonists in cancer therapy.
Collapse
|
26
|
Gorain B, Choudhury H, Yee GS, Bhattamisra SK. Adenosine Receptors as Novel Targets for the Treatment of Various Cancers. Curr Pharm Des 2019; 25:2828-2841. [DOI: 10.2174/1381612825666190716102037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2019] [Accepted: 07/01/2019] [Indexed: 01/28/2023]
Abstract
Adenosine is a ubiquitous signaling nucleoside molecule, released from different cells within the body
to act on vasculature and immunoescape. The physiological action on the proliferation of tumour cell has been
reported by the presence of high concentration of adenosine within the tumour microenvironment, which results
in the progression of the tumour, even leading to metastases. The activity of adenosine exclusively depends upon
the interaction with four subtypes of heterodimeric G-protein-coupled adenosine receptors (AR), A1, A2A, A2B,
and A3-ARs on the cell surface. Research evidence supports that the activation of those receptors via specific
agonist or antagonist can modulate the proliferation of tumour cells. The first category of AR, A1 is known to play
an antitumour activity via tumour-associated microglial cells to prevent the development of glioblastomas.
A2AAR are found in melanoma, lung, and breast cancer cells, where tumour proliferation is stimulated due to
inhibition of the immune response via inhibition of natural killer cells cytotoxicity, T cell activity, and tumourspecific
CD4+/CD8+ activity. Alternatively, A2BAR helps in the development of tumour upon activation via
upregulation of angiogenin factor in the microvascular endothelial cells, inhibition of MAPK and ERK 1/2 phosphorylation
activity. Lastly, A3AR is expressed in low levels in normal cells whereas the expression is upregulated
in tumour cells, however, agonists to this receptor inhibit tumour proliferation through modulation of Wnt
and NF-κB signaling pathways. Several researchers are in search for potential agents to modulate the overexpressed
ARs to control cancer. Active components of A2AAR antagonists and A3AR agonists have already entered
in Phase-I clinical research to prove their safety in human. This review focused on novel research targets towards
the prevention of cancer progression through stimulation of the overexpressed ARs with the hope to protect lives
and advance human health.
Collapse
Affiliation(s)
- Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Science, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Gan Sook Yee
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Arab S, Hadjati J. Adenosine Blockage in Tumor Microenvironment and Improvement of Cancer Immunotherapy. Immune Netw 2019; 19:e23. [PMID: 31501711 PMCID: PMC6722273 DOI: 10.4110/in.2019.19.e23] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2019] [Revised: 06/30/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has been introduced into cancer treatment methods, but different problems have restricted the efficacy of these protocols in clinical trials such as the presence of various immunomodulatory factors in the tumor microenvironment. Adenosine is an immunosuppressive metabolite produced by the tumor to promote growth, invasion, metastasis, and immune evasion. Many studies about adenosine and its metabolism in cancer have heightened interest in pursuing this treatment approach. It seems that targeting the adenosine pathway in combination with immunotherapy may lead to efficient antitumor response. In this review, we provide information on the roles of both adenosine and CD73 in the immune system and tumor development. We also describe recent studies about combination therapy with both purinergic inhibitors and other immunotherapeutic methods.
Collapse
Affiliation(s)
- Samaneh Arab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Zanini D, Manfredi LH, Pelinson LP, Pimentel VC, Cardoso AM, Carmo Araújo Gonçalves VD, Santos CBD, Gutierres JM, Morsch VM, Leal DBR, Schetinger MRC. ADA activity is decreased in lymphocytes from patients with advanced stage of lung cancer. Med Oncol 2019; 36:78. [PMID: 31375946 DOI: 10.1007/s12032-019-1301-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023]
Abstract
Cigarette smoking is directly associated with lung cancer. Non-small cell lung carcinoma (NSCLC) represents approximately 80% from all types of lung cancer. This latter is hard to diagnose and to treat due to the lack of symptoms in early stages of the disease. The aim of this study was to evaluate ADA activity and the expression of P2X7, A1, and A2A receptors and in lymphocytes. In addition, the profile of pro-inflammatory and anti-inflammatory cytokines serum levels of patients with lung cancer in advanced stage was evaluated. Patients (n = 13) previously treated for lung cancer at stage IV (UICC) with chemotherapy had their blood collected. Cancer patients showed a decrease in ADA activity and an increase in A1 receptor expression in lymphocytes when compared to the control group. Moreover, patients exhibited an increase in IL-6 and TNF-α, while IL-17 and INF-ϒ serum levels were lower in patients with lung cancer. The decreased ADA activity and the increase in A1 receptor expression may contribute to adenosine pro-tumor effects by increasing IL-6 and TNF-α and decreasing IL-17 and INF-γ serum levels. Our data show an indirect evidence that purinergic signaling may have a role in promoting a profile of cytokines levels that favors tumor progression.
Collapse
Affiliation(s)
- Daniela Zanini
- Medical School, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil. .,Molecular biochemistry and biology, Federal University of Santa Maria, Santa Maria, 97105-900, Rio Grande do Sul, Brazil.
| | | | - Luana Paula Pelinson
- Molecular biochemistry and biology, Federal University of Santa Maria, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Victor Camera Pimentel
- Molecular biochemistry and biology, Federal University of Santa Maria, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Andréia Machado Cardoso
- Medical School, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil.,Molecular biochemistry and biology, Federal University of Santa Maria, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | | | - Cláudia Bertoncelli Dos Santos
- Molecular biochemistry and biology, Federal University of Santa Maria, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Jessié Martins Gutierres
- Molecular biochemistry and biology, Federal University of Santa Maria, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Vera Maria Morsch
- Molecular biochemistry and biology, Federal University of Santa Maria, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Daniela Bitencourt Rosa Leal
- Molecular biochemistry and biology, Federal University of Santa Maria, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | | |
Collapse
|
29
|
Passarelli A, Tucci M, Mannavola F, Felici C, Silvestris F. The metabolic milieu in melanoma: Role of immune suppression by CD73/adenosine. Tumour Biol 2019; 42:1010428319837138. [PMID: 30957676 DOI: 10.1177/1010428319837138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022] Open
Abstract
The mechanisms leading to immune escape of melanoma have been largely investigated in relation to its tumour immunogenicity and features of inflamed microenvironment that promote the immune suppression during the disease progression. These findings have recently led to advantages in terms of immunotherapy-based approaches as rationale for overcoming the immune escape. However, besides immune checkpoints, other mechanisms including the adenosine produced by ectonucleotidases CD39 and CD73 contribute to the melanoma progression due to the immunosuppression induced by the tumour milieu. On the other hand, CD73 has recently emerged as both promising therapeutic target and unfavourable prognostic biomarker. Here, we review the major mechanisms of immune escape activated by the CD39/CD73/adenosine pathway in melanoma and focus potential therapeutic strategies based on the control of CD39/CD73 downstream adenosine receptor signalling. These evidences provide the basis for translational strategies of immune combination, while CD73 would serve as potential prognostic biomarker in metastatic melanoma.
Collapse
Affiliation(s)
- Anna Passarelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Mannavola
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
30
|
de Leve S, Wirsdörfer F, Jendrossek V. Targeting the Immunomodulatory CD73/Adenosine System to Improve the Therapeutic Gain of Radiotherapy. Front Immunol 2019; 10:698. [PMID: 31024543 PMCID: PMC6460721 DOI: 10.3389/fimmu.2019.00698] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
Extracellular adenosine is a potent endogenous immunosuppressive mediator critical to the maintenance of homeostasis in various normal tissues including the lung. Adenosine is either released from stressed or injured cells or generated from extracellular adenine nucleotides by the concerted action of the ectoenzymes ectoapyrase (CD39) and 5′ ectonucleotidase (CD73) that catabolize ATP to adenosine. An acute CD73-dependent increase of adenosine in normal tissues mostly exerts tissue protective functions whereas chronically increased adenosine-levels in tissues exposed to DNA damaging chemotherapy or radiotherapy promote pathologic remodeling processes and fibrosis for example in the skin and the lung. Importantly, cancer cells also express CD73 and high CD73 expression in the tumor tissue has been linked to poor overall survival and recurrence free survival in patients suffering from breast and ovarian cancer. CD73 and adenosine support growth-promoting neovascularization, metastasis, and survival in cancer cells. In addition, adenosine can promote tumor intrinsic or therapy-induced immune escape by various mechanisms that dampen the immune system. Consequently, modulating CD73 or cancer-derived adenosine in the tumor microenvironment emerges as an attractive novel therapeutic strategy to limit tumor progression, improve antitumor immune responses, avoid therapy-induced immune deviation, and potentially limit normal tissue toxicity. However, the role of CD73/adenosine signaling in the tumor and normal tissue responses to radiotherapy and its use as therapeutic target to improve the outcome of radiotherapy approaches is less understood. The present review will highlight the dual role of CD73 and adenosine in tumor and tissue responses to radiotherapy with a special focus to the lung. It will also discuss the potential benefits and risks of pharmacologic modulation of the CD73/adenosine system to increase the therapeutic gain of radiotherapy or combined radioimmunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
31
|
Wiltberger G, Wu Y, Lange U, Hau HM, Tapper E, Krenzien F, Atanasov G, Benzing C, Feldbrügge L, Csizmadia E, Broschewitz J, Bartels M, Seehofer D, Jonas S, Berg T, Hessel P, Ascherl R, Neumann UP, Pratschke J, Robson SC, Schmelzle M. Protective effects of coffee consumption following liver transplantation for hepatocellular carcinoma in cirrhosis. Aliment Pharmacol Ther 2019; 49:779-788. [PMID: 30811647 DOI: 10.1111/apt.15089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/22/2018] [Revised: 07/05/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Increasing evidence suggests that coffee consumption might protect against hepatocellular carcinoma (HCC) and liver cirrhosis-associated death risk. Caffeine is a natural antagonist to extracellular adenosine and exhibits experimental tumoricidal activity. AIM To evaluate if coffee consumption has beneficial effects on HCC recurrence after orthotopic liver transplantation (OLT). METHODS Coffee consumption of patients before and after OLT for HCC was assessed and correlated with HCC recurrence. HepG2 cells were analysed for proliferation and metastasis potential after treatment with adenosine, in the presence or absence of adenosine receptor antagonists. Expression of adenosine receptors was determined, and known adenosine-mediated cancer pathways inclusive of MAPK and NF-kappa B were tested. RESULTS Ninety patients underwent OLT for HCC. Sixteen (17.8%) patients experienced HCC recurrence after median time of 11.5 months (range 1-40.5). For overall survival postoperative coffee intake emerged as major factor of hazard reduction in a multivariate analysis (HR = 0.2936, 95% CI = 0.12-0.71, P = 0.006). Those with such postoperative coffee intake (≥3 cups per day) had a longer overall survival than those who consumed less or no coffee: M = 11.0 years, SD = 0.52 years vs. M = 7.48 years, SD = 0.76 years = 4.7, P = 0.029). CONCLUSIONS Coffee consumption is associated with a decreased risk of HCC recurrence and provides for increased survival following OLT. We suggest that these results might be, at least in part, associated with the antagonist activity of caffeine on adenosine-A2AR mediated growth-promoting effects on HCC cells.
Collapse
Affiliation(s)
- Georg Wiltberger
- Department of General, Visceral, and Transplantation Surgery, University Hospital of RWTH Aachen, Aachen, Germany
| | - Yan Wu
- Liver Center and The Transplant Institute, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Undine Lange
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Hans-Michael Hau
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Elliot Tapper
- Liver Center and The Transplant Institute, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Felix Krenzien
- Departmentof Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georgi Atanasov
- Departmentof Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Benzing
- Departmentof Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Linda Feldbrügge
- Departmentof Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Csizmadia
- Liver Center and The Transplant Institute, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Johannes Broschewitz
- Liver Center and The Transplant Institute, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Michael Bartels
- Department of General- and Visceral surgery, Helios Clinic Leipzig, Leipzig, Germany
| | - Daniel Seehofer
- Liver Center and The Transplant Institute, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sven Jonas
- Department of Hepato-, Pancreato- and Biliary Surgery, 310Klinik Nürnberg, Nuremberg, Germany
| | - Thomas Berg
- Section of Hepatology, Department of Internal Medicine, Neurology, Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Phillip Hessel
- Center for Population and Development Studies, Harvard University, Cambridge, Massachusetts
| | - Rudi Ascherl
- Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | - Ulf P Neumann
- Department of General, Visceral, and Transplantation Surgery, University Hospital of RWTH Aachen, Aachen, Germany
| | - Johann Pratschke
- Departmentof Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon C Robson
- Liver Center and The Transplant Institute, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Moritz Schmelzle
- Departmentof Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
32
|
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of Adenosine Receptors: The State of the Art. Physiol Rev 2018; 98:1591-1625. [PMID: 29848236 DOI: 10.1152/physrev.00049.2017] [Citation(s) in RCA: 506] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine is a ubiquitous endogenous autacoid whose effects are triggered through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Due to the rapid generation of adenosine from cellular metabolism, and the widespread distribution of its receptor subtypes in almost all organs and tissues, this nucleoside induces a multitude of physiopathological effects, regulating central nervous, cardiovascular, peripheral, and immune systems. It is becoming clear that the expression patterns of adenosine receptors vary among cell types, lending weight to the idea that they may be both markers of pathologies and useful targets for novel drugs. This review offers an overview of current knowledge on adenosine receptors, including their characteristic structural features, molecular interactions and cellular functions, as well as their essential roles in pain, cancer, and neurodegenerative, inflammatory, and autoimmune diseases. Finally, we highlight the latest findings on molecules capable of targeting adenosine receptors and report which stage of drug development they have reached.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Gessi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Merighi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| |
Collapse
|
33
|
Sek K, Mølck C, Stewart GD, Kats L, Darcy PK, Beavis PA. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Int J Mol Sci 2018; 19:ijms19123837. [PMID: 30513816 PMCID: PMC6321150 DOI: 10.3390/ijms19123837] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a major role in the surveillance and control of malignant cells, with the presence of tumor infiltrating lymphocytes (TILs) correlating with better patient prognosis in multiple tumor types. The development of ‘checkpoint blockade’ and adoptive cellular therapy has revolutionized the landscape of cancer treatment and highlights the potential of utilizing the patient’s own immune system to eradicate cancer. One mechanism of tumor-mediated immunosuppression that has gained attention as a potential therapeutic target is the purinergic signaling axis, whereby the production of the purine nucleoside adenosine in the tumor microenvironment can potently suppress T and NK cell function. The production of extracellular adenosine is mediated by the cell surface ectoenzymes CD73, CD39, and CD38 and therapeutic agents have been developed to target these as well as the downstream adenosine receptors (A1R, A2AR, A2BR, A3R) to enhance anti-tumor immune responses. This review will discuss the role of adenosine and adenosine receptor signaling in tumor and immune cells with a focus on their cell-specific function and their potential as targets in cancer immunotherapy.
Collapse
Affiliation(s)
- Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Christina Mølck
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
| | - Gregory D Stewart
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Australia.
| | - Lev Kats
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
- Department of Immunology, Monash University, Clayton 3052, Australia.
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| |
Collapse
|
34
|
Bekisz JM, Lopez CD, Corciulo C, Mediero A, Coelho PG, Witek L, Flores RL, Cronstein BN. The Role of Adenosine Receptor Activation in Attenuating Cartilaginous Inflammation. Inflammation 2018; 41:1135-1141. [PMID: 29656316 DOI: 10.1007/s10753-018-0781-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/17/2022]
Abstract
Adenosine receptor activation has been explored as a modulator of the inflammatory process that propagates osteoarthritis. It has been reported that cartilage has enhanced regenerative potential when influenced by adenosine receptor activation. As adenosine's role in maintaining chondrocyte homeostasis at the cellular and molecular levels is explored, successful in vivo applications of adenosine delivery for cartilage repair continue to be reported. This review summarizes the role adenosine receptor ligation plays in chondrocyte homeostasis and regeneration of articular cartilage damaged in osteoarthritis. It also reports on all the modalities reported for delivery of adenosine through in vivo applications.
Collapse
Affiliation(s)
- Jonathan M Bekisz
- New York University School of Medicine, 550 First Avenue, MSB 521, New York, NY, 10016, USA. .,Hansjörg Wyss Department of Plastic Surgery at New York University School of Medicine, 307 East 33rd Street, New York, NY, 10016, USA.
| | - Christopher D Lopez
- Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA.,Division of Translational Medicine at New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.,Department of Biomaterials and Biomimetics at New York University College of Dentistry, 433 First Avenue, New York, NY, 10010, USA
| | - Carmen Corciulo
- Division of Translational Medicine at New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Aranzazu Mediero
- Division of Translational Medicine at New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.,Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Paulo G Coelho
- Hansjörg Wyss Department of Plastic Surgery at New York University School of Medicine, 307 East 33rd Street, New York, NY, 10016, USA.,Department of Biomaterials and Biomimetics at New York University College of Dentistry, 433 First Avenue, New York, NY, 10010, USA
| | - Lukasz Witek
- Department of Biomaterials and Biomimetics at New York University College of Dentistry, 433 First Avenue, New York, NY, 10010, USA
| | - Roberto L Flores
- Hansjörg Wyss Department of Plastic Surgery at New York University School of Medicine, 307 East 33rd Street, New York, NY, 10016, USA
| | - Bruce N Cronstein
- New York University School of Medicine, 550 First Avenue, MSB 521, New York, NY, 10016, USA.,Division of Translational Medicine at New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| |
Collapse
|
35
|
Ottensmeyer PF, Witzler M, Schulze M, Tobiasch E. Small Molecules Enhance Scaffold-Based Bone Grafts via Purinergic Receptor Signaling in Stem Cells. Int J Mol Sci 2018; 19:E3601. [PMID: 30441872 PMCID: PMC6274752 DOI: 10.3390/ijms19113601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
The need for bone grafts is high, due to age-related diseases, such as tumor resections, but also accidents, risky sports, and military conflicts. The gold standard for bone grafting is the use of autografts from the iliac crest, but the limited amount of accessible material demands new sources of bone replacement. The use of mesenchymal stem cells or their descendant cells, namely osteoblast, the bone-building cells and endothelial cells for angiogenesis, combined with artificial scaffolds, is a new approach. Mesenchymal stem cells (MSCs) can be obtained from the patient themselves, or from donors, as they barely cause an immune response in the recipient. However, MSCs never fully differentiate in vitro which might lead to unwanted effects in vivo. Interestingly, purinergic receptors can positively influence the differentiation of both osteoblasts and endothelial cells, using specific artificial ligands. An overview is given on purinergic receptor signaling in the most-needed cell types involved in bone metabolism-namely osteoblasts, osteoclasts, and endothelial cells. Furthermore, different types of scaffolds and their production methods will be elucidated. Finally, recent patents on scaffold materials, as wells as purinergic receptor-influencing molecules which might impact bone grafting, are discussed.
Collapse
Affiliation(s)
- Patrick Frank Ottensmeyer
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Markus Witzler
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| |
Collapse
|
36
|
Kutryb-Zajac B, Koszalka P, Mierzejewska P, Bulinska A, Zabielska MA, Brodzik K, Skrzypkowska A, Zelazek L, Pelikant-Malecka I, Slominska EM, Smolenski RT. Adenosine deaminase inhibition suppresses progression of 4T1 murine breast cancer by adenosine receptor-dependent mechanisms. J Cell Mol Med 2018; 22:5939-5954. [PMID: 30291675 PMCID: PMC6237598 DOI: 10.1111/jcmm.13864] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
The activity of a cell-surface ecto-adenosine deaminase (eADA) is markedly increased in the endothelial activation and vascular inflammation leading to decreased adenosine concentration and alterations in adenosine signalling. Depending on the specific pathway activated, extracellular purines mediate host cell response or regulate growth and cytotoxicity on tumour cells. The aim of this study was to test the effects of adenosine deaminase inhibition by 2'deoxycoformycin (dCF) on the breast cancer development. dCF treatment decreased a tumour growth and a final tumour mass in female BALB/c mice injected orthotopically with 4T1 cancer cells. dCF also counteracted cancer-induced endothelial dysfunction in orthotopic and intravenous 4T1 mouse breast cancer models. In turn, this low dCF dose had a minor effect on immune stimulation exerted by 4T1 cell implantation. In vitro studies revealed that dCF suppressed migration and invasion of 4T1 cells via A2a and A3 adenosine receptor activation as well as 4T1 cell adhesion and transmigration through the endothelial cell layer via A2a receptor stimulation. Similar effects of dCF were observed in human breast cancer cells. Moreover, dCF improved a barrier function of endothelial cells decreasing its permeability. This study highlights beneficial effects of adenosine deaminase inhibition on breast cancer development. The inhibition of adenosine deaminase activity by dCF reduced tumour size that was closely related to the decreased aggressiveness of tumour cells by adenosine receptor-dependent mechanisms and endothelial protection.
Collapse
Affiliation(s)
| | - Patrycja Koszalka
- Department of Medical Biotechnology, Laboratory of Cell Biology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland
| | | | - Alicja Bulinska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena A Zabielska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.,Department of Physiology, Medical University of Gdansk, Gdansk, Poland
| | - Karolina Brodzik
- Department of Medical Biotechnology, Laboratory of Cell Biology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland
| | - Aleksandra Skrzypkowska
- Department of Medical Biotechnology, Laboratory of Cell Biology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland
| | - Lukasz Zelazek
- Department of Medical Biotechnology, Laboratory of Cell Biology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland
| | | | - Ewa M Slominska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
37
|
Bahreyni A, Rezaei M, Khazaei M, Fuiji H, Ferns GA, Ryzhikov M, Avan A, Hassanian SM. The potential role of adenosine signaling in the pathogenesis of melanoma. Biochem Pharmacol 2018; 156:451-457. [PMID: 30232037 DOI: 10.1016/j.bcp.2018.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022]
Abstract
Melanoma cancer cell proliferation, motility, invasion, and tumor growth is affected by the adenosine pathway that consists of adenosine-synthesizing enzymes, receptors, and their respective agonists/antagonists. Accumulating evidence suggests that ischemia and inflammation, two conditions associated with melanoma, display dysregulated adenosine metabolism, which implicates it as the mechanism responsible for the pathogenesis of melanoma, thereby resulting in advanced diagnosis and therapy. Suppression of adenosine signaling by inhibiting adenosine receptors or adenosine-generating enzymes (CD39 and CD73) on melanoma cells presents a novel therapeutic target for patients with melanoma. This review summarizes the role of adenosine signaling in the pathogenesis of melanoma to advance its understanding and hence improve therapeutics and management.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Melika Rezaei
- Department of Biology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fuiji
- Department of Biochemistry, Payam-e-Noor University, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO, USA
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
38
|
Jacobson KA, Merighi S, Varani K, Borea PA, Baraldi S, Tabrizi MA, Romagnoli R, Baraldi PG, Ciancetta A, Tosh DK, Gao ZG, Gessi S. A 3 Adenosine Receptors as Modulators of Inflammation: From Medicinal Chemistry to Therapy. Med Res Rev 2018; 38:1031-1072. [PMID: 28682469 PMCID: PMC5756520 DOI: 10.1002/med.21456] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2017] [Revised: 05/02/2017] [Accepted: 06/13/2017] [Indexed: 01/09/2023]
Abstract
The A3 adenosine receptor (A3 AR) subtype is a novel, promising therapeutic target for inflammatory diseases, such as rheumatoid arthritis (RA) and psoriasis, as well as liver cancer. A3 AR is coupled to inhibition of adenylyl cyclase and regulation of mitogen-activated protein kinase (MAPK) pathways, leading to modulation of transcription. Furthermore, A3 AR affects functions of almost all immune cells and the proliferation of cancer cells. Numerous A3 AR agonists, partial agonists, antagonists, and allosteric modulators have been reported, and their structure-activity relationships (SARs) have been studied culminating in the development of potent and selective molecules with drug-like characteristics. The efficacy of nucleoside agonists may be suppressed to produce antagonists, by structural modification of the ribose moiety. Diverse classes of heterocycles have been discovered as selective A3 AR blockers, although with large species differences. Thus, as a result of intense basic research efforts, the outlook for development of A3 AR modulators for human therapeutics is encouraging. Two prototypical selective agonists, N6-(3-Iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA; CF101) and 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA; CF102), have progressed to advanced clinical trials. They were found safe and well tolerated in all preclinical and human clinical studies and showed promising results, particularly in psoriasis and RA, where the A3 AR is both a promising therapeutic target and a biologically predictive marker, suggesting a personalized medicine approach. Targeting the A3 AR may pave the way for safe and efficacious treatments for patient populations affected by inflammatory diseases, cancer, and other conditions.
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Stefania Merighi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Pier Andrea Borea
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Stefania Baraldi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Mojgan Aghazadeh Tabrizi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Romeo Romagnoli
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Antonella Ciancetta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Stefania Gessi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| |
Collapse
|
39
|
Targeting the tumor promoting effects of adenosine in chronic lymphocytic leukemia. Crit Rev Oncol Hematol 2018; 126:24-31. [DOI: 10.1016/j.critrevonc.2018.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2017] [Revised: 02/27/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
|
40
|
Ghalamfarsa G, Rastegari A, Atyabi F, Hassannia H, Hojjat‐Farsangi M, Ghanbari A, Anvari E, Mohammadi J, Azizi G, Masjedi A, Yousefi M, Yousefi B, Hadjati J, Jadidi‐Niaragh F. Anti‐angiogenic effects of CD73‐specific siRNA‐loaded nanoparticles in breast cancer‐bearing mice. J Cell Physiol 2018; 233:7165-7177. [DOI: 10.1002/jcp.26743] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2018] [Accepted: 04/13/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Ghasem Ghalamfarsa
- Cellular and Molecular Research Center Yasuj University of Medical Sciences Yasuj Iran
| | - Ali Rastegari
- Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
- Nanotechnology Research Centre, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Centre, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Faculty of Medicine Mazandaran University of Medical Sciences Sari Iran
- Amol Faculty of Paramedical Sciences Mazandaran University of Medical Sciences Sari Iran
| | - Mohammad Hojjat‐Farsangi
- Department of Oncology‐Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK) Karolinska University Hospital Solna and Karolinska Institute Stockholm Sweden
- Department of Immunology, School of Medicine Bushehr University of Medical Sciences Bushehr Iran
| | - Amir Ghanbari
- Cellular and Molecular Research Center Yasuj University of Medical Sciences Yasuj Iran
| | - Enayat Anvari
- Department of Physiology, Faculty of Medicine Ilam University of Medical Sciences Ilam Iran
| | - Jamshid Mohammadi
- Medicinal Plants Research Center Yasuj University of Medical Sciences Yasuj Iran
| | - Gholamreza Azizi
- Non‐Communicable Diseases Research Center Alborz University of Medical Sciences Karaj Iran
| | - Ali Masjedi
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Mehdi Yousefi
- Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Bahman Yousefi
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Jamshid Hadjati
- Department of Immunology, Faculty of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Farhad Jadidi‐Niaragh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology, Faculty of Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
41
|
Rocha R, Torres Á, Ojeda K, Uribe D, Rocha D, Erices J, Niechi I, Ehrenfeld P, San Martín R, Quezada C. The Adenosine A₃ Receptor Regulates Differentiation of Glioblastoma Stem-Like Cells to Endothelial Cells under Hypoxia. Int J Mol Sci 2018; 19:ijms19041228. [PMID: 29670017 PMCID: PMC5979496 DOI: 10.3390/ijms19041228] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma (GBM) is a neoplasm characterized by an extensive blood vessel network. Hypoxic niches of GBM can induce tumorigenic properties of a small cell subpopulation called Glioblastoma stem-like cells (GSCs) and can also increase extracellular adenosine generation which activates the A₃ adenosine receptor (A₃AR). Moreover, GSCs potentiates the persistent neovascularization in GBM. The aim of this study was to determine if A₃AR blockade can reduce the vasculogenesis mediated by the differentiation of GSCs to Endothelial Cells (ECs) under hypoxia. We evaluated the expression of endothelial cell markers (CD31, CD34, CD144, and vWF) by fluorescence-activated cell sorting (FACS), and vascular endothelial growth factor (VEGF) secretion by ELISA using MRS1220 (A₃AR antagonist) under hypoxia. We validate our results using U87MG-GSCs A₃AR knockout (GSCsA3-KO). The effect of MRS1220 on blood vessel formation was evaluated in vivo using a subcutaneous GSCs-tumor model. GSCs increased extracellular adenosine production and A₃AR expression under hypoxia. Hypoxia also increased the percentage of GSCs positive for endothelial cell markers and VEGF secretion, which was in turn prevented when using MRS1220 and in GSCsA3-KO. Finally, in vivo treatment with MRS1220 reduced tumor size and blood vessel formation. Blockade of A₃AR decreases the differentiation of GSCs to ECs under hypoxia and in vivo blood vessel formation.
Collapse
Affiliation(s)
- René Rocha
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Ángelo Torres
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Karina Ojeda
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Daniel Uribe
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Dellis Rocha
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - José Erices
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Ignacio Niechi
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Rody San Martín
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Claudia Quezada
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| |
Collapse
|
42
|
Gessi S, Bencivenni S, Battistello E, Vincenzi F, Colotta V, Catarzi D, Varano F, Merighi S, Borea PA, Varani K. Inhibition of A 2A Adenosine Receptor Signaling in Cancer Cells Proliferation by the Novel Antagonist TP455. Front Pharmacol 2017; 8:888. [PMID: 29249971 PMCID: PMC5716981 DOI: 10.3389/fphar.2017.00888] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2017] [Accepted: 11/17/2017] [Indexed: 01/03/2023] Open
Abstract
Several evidences indicate that the ubiquitous nucleoside adenosine, acting through A1, A2A, A2B, and A3 receptor (AR) subtypes, plays crucial roles in tumor development. Adenosine has contrasting effects on cell proliferation depending on the engagement of different receptor subtypes in various tumors. The involvement of A2AARs in human A375 melanoma, as well as in human A549 lung and rat MRMT1 breast carcinoma proliferation has been evaluated in view of the availability of a novel A2AAR antagonist, with high affinity and selectivity, named as 2-(2-furanyl)-N5-(2-methoxybenzyl)[1,3]thiazolo[5,4-d]pyrimidine-5,7-diammine (TP455). Specifically, the signaling pathways triggered in the cancer cells of different origin and the antagonist effect of TP455 were investigated. The A2AAR protein expression was evaluated through receptor binding assays. Furthermore, the effect of A2AAR activation on cell proliferation at 24, 48 and 72 hours was studied. The selective A2AAR agonist 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride (CGS21680), concentration-dependently induced cell proliferation in A375, A549, and MRMT1 cancer cells and the effect was potently antagonized by the A2AAR antagonist TP455, as well as by the reference A2AAR blocker 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM241385). As for the signaling pathway recruited in this response we demonstrated that, by using the specific inhibitors of signal transduction pathways, the effect of A2AAR stimulation was induced through phospholipase C (PLC) and protein kinase C-delta (PKC-δ). In addition, we evaluated, through the AlphaScreen SureFire phospho(p) protein assay, the kinases enrolled by A2AAR to stimulate cell proliferation and we found the involvement of protein kinase B (AKT), extracellular regulated kinases (ERK1/2), and c-Jun N-terminal kinases (JNKs). Indeed, we demonstrated that the CGS21680 stimulatory effect on kinases was strongly reduced in the presence of the new potent compound TP455, as well as by ZM241385, confirming the role of the A2AAR. In conclusion, the A2AAR activation stimulates proliferation of A375, A549, and MRMT1 cancer cells and importantly TP455 reveals its capability to counteract this effect, suggesting selective A2AAR antagonists as potential new therapeutics.
Collapse
Affiliation(s)
- Stefania Gessi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Serena Bencivenni
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Enrica Battistello
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Vittoria Colotta
- Department of Neuroscience, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Daniela Catarzi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Flavia Varano
- Department of Neuroscience, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Stefania Merighi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Pier Andrea Borea
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Ferrara, Italy
| |
Collapse
|
43
|
Bahreyni A, Khazaei M, Rajabian M, Ryzhikov M, Avan A, Hassanian SM. Therapeutic potency of pharmacological adenosine receptor agonist/antagonist in angiogenesis, current status and perspectives. ACTA ACUST UNITED AC 2017; 70:191-196. [PMID: 29057476 DOI: 10.1111/jphp.12844] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2017] [Accepted: 09/30/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Adenosine concentration significantly increases in tumour microenvironment contributing to tumorigenic processes including cell proliferation, survival, invasion and of special interest in this review angiogenesis. KEY FINDINGS This review summarizes the role of pharmacological adenosine receptor agonist and antagonist in regulating angiogenesis for a better understanding and hence a better management of angiogenesis-associated disorders. SUMMARY Depending upon the pharmacological characteristics of adenosine receptor subtypes, adenosine elicits anti- or pro-angiogenic responses in stimulated cells. Inhibition of the stimulatory effect of adenosine signalling on angiogenesis using specific pharmacological adenosine receptor agonist, and antagonist is a potentially novel strategy to suppress angiogenesis in tumours.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Faculty of Medicine, Department of Clinical Biochemistry and Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Majid Khazaei
- Faculty of Medicine, Department of Medical Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rajabian
- Department of Biochemistry, Payam-e-Noor University, Mashhad, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO, USA
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed M Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pathological overproduction: the bad side of adenosine. Br J Pharmacol 2017; 174:1945-1960. [PMID: 28252203 PMCID: PMC6398520 DOI: 10.1111/bph.13763] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/12/2022] Open
Abstract
Adenosine is an endogenous ubiquitous purine nucleoside, which is increased by hypoxia, ischaemia and tissue damage and mediates a number of physiopathological effects by interacting with four GPCRs, identified as A1 , A2A , A2B and A3 . Physiological and acutely increased adenosine is mostly associated with beneficial effects that include vasodilatation and a decrease in inflammation. In contrast, chronic overproduction of adenosine occurs in important pathological states, where long-lasting increases in the nucleoside levels are responsible for the bad side of adenosine associated with chronic inflammation, fibrosis and organ damage. In this review, we describe and critically discuss the pathological overproduction of adenosine and analyse when, where and how adenosine exerts its detrimental effects throughout the body.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| | - Stefania Gessi
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| | - Stefania Merighi
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| | - Fabrizio Vincenzi
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| | - Katia Varani
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| |
Collapse
|
45
|
Kazemi MH, Raoofi Mohseni S, Hojjat-Farsangi M, Anvari E, Ghalamfarsa G, Mohammadi H, Jadidi-Niaragh F. Adenosine and adenosine receptors in the immunopathogenesis and treatment of cancer. J Cell Physiol 2017; 233:2032-2057. [DOI: 10.1002/jcp.25873] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2017] [Accepted: 02/21/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Mohammad H. Kazemi
- Student Research Committee, Department of Immunology, School of Medicine; Iran University of Medical Sciences (IUMS); Tehran Iran
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Sahar Raoofi Mohseni
- Department of Immunology, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK); Karolinska University Hospital Solna and Karolinska Institute; Stockholm Sweden
- Department of Immunology, School of Medicine; Bushehr University of Medical Sciences; Bushehr Iran
| | - Enayat Anvari
- Faculty of Medicine, Department of Physiology; Ilam University of Medical Sciences; Ilam Iran
| | - Ghasem Ghalamfarsa
- Medicinal Plants Research Center; Yasuj University of Medical Sciences; Yasuj Iran
| | - Hamed Mohammadi
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Immunology, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
46
|
Khoo CP, Roubelakis MG, Schrader JB, Tsaknakis G, Konietzny R, Kessler B, Harris AL, Watt SM. miR-193a-3p interaction with HMGB1 downregulates human endothelial cell proliferation and migration. Sci Rep 2017; 7:44137. [PMID: 28276476 PMCID: PMC5343468 DOI: 10.1038/srep44137] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2016] [Accepted: 02/02/2017] [Indexed: 12/12/2022] Open
Abstract
Circulating endothelial colony forming cells (ECFCs) contribute to vascular repair where they are a target for therapy. Since ECFC proliferative potential is increased in cord versus peripheral blood and to define regulatory factors controlling this proliferation, we compared the miRNA profiles of cord blood and peripheral blood ECFC-derived cells. Of the top 25 differentially regulated miRNAs selected, 22 were more highly expressed in peripheral blood ECFC-derived cells. After validating candidate miRNAs by q-RT-PCR, we selected miR-193a-3p for further investigation. The miR-193a-3p mimic reduced cord blood ECFC-derived cell proliferation, migration and vascular tubule formation, while the miR-193a-3p inhibitor significantly enhanced these parameters in peripheral blood ECFC-derived cells. Using in silico miRNA target database analyses combined with proteome arrays and luciferase reporter assays of miR-193a-3p mimic treated cord blood ECFC-derived cells, we identified 2 novel miR-193a-3p targets, the high mobility group box-1 (HMGB1) and the hypoxia upregulated-1 (HYOU1) gene products. HMGB1 silencing in cord blood ECFC-derived cells confirmed its role in regulating vascular function. Thus, we show, for the first time, that miR-193a-3p negatively regulates human ECFC vasculo/angiogenesis and propose that antagonising miR-193a-3p in less proliferative and less angiogenic ECFC-derived cells will enhance their vasculo/angiogenic function.
Collapse
Affiliation(s)
- Cheen P. Khoo
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9BQ, UK
- Stem Cell Research, NHS Blood and Transplant, Oxford, OX3 9BQ, UK
| | - Maria G. Roubelakis
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9BQ, UK
- Stem Cell Research, NHS Blood and Transplant, Oxford, OX3 9BQ, UK
- Laboratory of Biology, National and Kapodistrian University of Athens Medical School, Athens 115 27, Greece
- Cell and Gene Therapy Laboratory, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, 11527, Greece
| | - Jack B. Schrader
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9BQ, UK
- Stem Cell Research, NHS Blood and Transplant, Oxford, OX3 9BQ, UK
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Grigorios Tsaknakis
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9BQ, UK
- Stem Cell Research, NHS Blood and Transplant, Oxford, OX3 9BQ, UK
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology, GR-70013 Heraklion, Crete
| | - Rebecca Konietzny
- Target Discovery Institute, NDM Research Building, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, UK
| | - Benedikt Kessler
- Target Discovery Institute, NDM Research Building, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, UK
| | - Adrian L. Harris
- The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9BQ, UK
- Stem Cell Research, NHS Blood and Transplant, Oxford, OX3 9BQ, UK
| |
Collapse
|
47
|
Joós G, Jákim J, Kiss B, Szamosi R, Papp T, Felszeghy S, Sághy T, Nagy G, Szondy Z. Involvement of adenosine A3 receptors in the chemotactic navigation of macrophages towards apoptotic cells. Immunol Lett 2017; 183:62-72. [PMID: 28188820 DOI: 10.1016/j.imlet.2017.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 11/16/2022]
Abstract
The first step in the clearance of apoptotic cells is chemotactic migration of macrophages towards the apoptotic cells guided by find-me signals provided by the dying cells. Upon sensing the chemotactic signals, macrophages release ATP. ATP is then degraded to ADP, AMP and adenosine to trigger purinergic receptors concentrated at the leading edge of the cell. Previous studies have shown that in addition to the chemotactic signals, this purinergic autocrine signaling is required to amplify and translate chemotactic signals into directional motility. In the present study the involvement of adenosine A3 receptors (A3R) was studied in the chemotactic migration of macrophages directed by apoptotic thymocyte-derived find-me signals. By taking video images in vitro, we demonstrate 1, by administering apyrase, which degrades ATP and ADP, that the purinergic autocrine signaling is required for maintaining both the velocity and the directionality of macrophage migration towards the apoptotic thymocytes; 2, by readding 5'-N-ethylcarboxamidoadenosine, an adenosine analogue, to apyrase treated cells that the adenosine receptor signaling alone is sufficient to act so; and 3, by studying migration of various adenosine receptor null or adenosine receptor antagonist-treated macrophages, that the individual loss of the A3R signaling leads to the loss of chemotactic navigation. Though loss of A3Rs does not affect the phagocytotic capacity of macrophages, intraperitoneally-injected apoptotic thymocytes were cleared with a delayed kinetics by A3R null macrophages in vivo due to the impaired chemotactic navigation. All together these data demonstrate the involvement of macrophage A3Rs in the proper chemotactic navigation and consequent in vivo clearance of apoptotic cells. Interestingly, loss of A3Rs did not affect the in vivo clearance of apoptotic thymocytes in the dexamethasone-treated thymus.
Collapse
Affiliation(s)
- Gergely Joós
- Dental Biochemistry Section, Department of Biochemistry and Molecular Biology, Faculty of Dentistry, Research Center of Molecular Medicine, Hungary
| | - Judit Jákim
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, Hungary
| | - Beáta Kiss
- Dental Biochemistry Section, Department of Biochemistry and Molecular Biology, Faculty of Dentistry, Research Center of Molecular Medicine, Hungary
| | - Regina Szamosi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, Hungary
| | - Tamás Papp
- Division of Oral Anatomy, Department of Anatomy, Histology and Embryology, Faculty of Dentistry, University of Debrecen, H-4012 Debrecen, Hungary
| | - Szabolcs Felszeghy
- Division of Oral Anatomy, Department of Anatomy, Histology and Embryology, Faculty of Dentistry, University of Debrecen, H-4012 Debrecen, Hungary
| | - Tibor Sághy
- Dental Biochemistry Section, Department of Biochemistry and Molecular Biology, Faculty of Dentistry, Research Center of Molecular Medicine, Hungary
| | - Gábor Nagy
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, Hungary
| | - Zsuzsa Szondy
- Dental Biochemistry Section, Department of Biochemistry and Molecular Biology, Faculty of Dentistry, Research Center of Molecular Medicine, Hungary.
| |
Collapse
|
48
|
Targeting A2 adenosine receptors in cancer. Immunol Cell Biol 2017; 95:333-339. [PMID: 28174424 DOI: 10.1038/icb.2017.8] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2016] [Revised: 01/09/2017] [Accepted: 01/24/2017] [Indexed: 12/28/2022]
Abstract
Tumor cells use various ways to evade anti-tumor immune responses. Adenosine, a potent immunosuppressive metabolite, is often found elevated in the extracellular tumor microenvironment. Therefore, targeting adenosine-generating enzymes (CD39 and CD73) or adenosine receptors has emerged as a novel means to stimulate anti-tumor immunity. In particular, the A2 (A2a and A2b) adenosine receptors exhibit similar immunosuppressive and pro-angiogenic functions, yet have distinct biological roles in cancer. In this review, we describe the common and distinct biological consequences of A2a and A2b adenosine receptor signaling in cancer. We discuss recent pre-clinical studies and summarize the different mechanisms-of-action of adenosine-targeting drugs. We also review the rationale for combining inhibitors of the adenosine pathway with other anticancer therapies such immune checkpoint inhibitors, tumor vaccines, chemotherapy and adoptive T cell therapy.
Collapse
|