1
|
Colombatti Olivieri MA, Cuerda MX, Moyano RD, Gravisaco MJ, Pinedo MFA, Delgado FO, Calamante G, Mundo S, de la Paz Santangelo M, Romano MI, Alonso MN, Del Medico Zajac MP. Superior protection against paratuberculosis by a heterologous prime-boost immunization in a murine model. Vaccine 2024; 42:126055. [PMID: 38880691 DOI: 10.1016/j.vaccine.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Vaccination is the best strategy to control Paratuberculosis (PTB), which is a significant disease in cattle and sheep. Previously we showed the humoral and cellular immune response induced by a novel vaccine candidate against PTB based on the Argentinian Mycobacterium avium subspecies paratuberculosis (Map) 6611 strain. To improve 6611 immunogenicity and efficacy, we evaluated this vaccine candidate in mice with two different adjuvants and a heterologous boost with a recombinant modified vaccinia Ankara virus (MVA) expressing the antigen 85A (MVA85A). We observed that boosting with MVA85A did not improve total IgG or specific isotypes in serum induced by one or two doses of 6611 formulated with incomplete Freund's adjuvant (IFA). However, when 6611 was formulated with ISA201 adjuvant, MVA85A boost enhanced the production of IFNγ, Th1/Th17 cytokines (IL-2, TNF, IL-17A) and IL-6, IL-4 and IL-10. Also, this group showed the highest levels of IgG2b and IgG3 isotypes, both important for better protection against Map infection in the murine model. Finally, the heterologous scheme elicited the highest levels of protection after Map challenge (lowest CFU count and liver lesion score). In conclusion, our results encourage further evaluation of 6611 strain + ISA201 prime and MVA85A boost in bovines.
Collapse
MESH Headings
- Animals
- Mycobacterium avium subsp. paratuberculosis/immunology
- Immunization, Secondary/methods
- Mice
- Paratuberculosis/prevention & control
- Paratuberculosis/immunology
- Immunoglobulin G/blood
- Cytokines/metabolism
- Female
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Adjuvants, Immunologic/administration & dosage
- Disease Models, Animal
- Bacterial Vaccines/immunology
- Bacterial Vaccines/administration & dosage
- Mice, Inbred BALB C
- Vaccinia virus/immunology
- Vaccinia virus/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/genetics
- Immunity, Cellular/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Freund's Adjuvant/administration & dosage
- Freund's Adjuvant/immunology
Collapse
Affiliation(s)
| | - María Ximena Cuerda
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - Roberto Damián Moyano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María José Gravisaco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María Fiorella Alvarado Pinedo
- Centro de Diagnóstico e Investigaciones Veterinarias (CEDIVE) de la Facultad de Ciencias Veterinarias - Universidad de La Plata, Chascomús, Buenos Aires 7130, Argentina
| | - Fernando Oscar Delgado
- Instituto de Patobiologia Veterinaria (IPV), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - Gabriela Calamante
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - Silvia Mundo
- Cátedra de Inmunología de la Facultad de Ciencias Veterinarias - Universidad de Buenos Aires, Ciudad de Buenos Aires 1427, Argentina
| | - María de la Paz Santangelo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María Isabel Romano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María Natalia Alonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina.
| | - María Paula Del Medico Zajac
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| |
Collapse
|
2
|
Navarro León A, Muñoz M, Iglesias N, Blanco-Vázquez C, Balseiro A, Milhano Santos F, Ciordia S, Corrales FJ, Iglesias T, Casais R. Proteomic Serum Profiling of Holstein Friesian Cows with Different Pathological Forms of Bovine Paratuberculosis Reveals Changes in the Acute-Phase Response and Lipid Metabolism. J Proteome Res 2024; 23:2762-2779. [PMID: 37863471 PMCID: PMC11301775 DOI: 10.1021/acs.jproteome.3c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/22/2023]
Abstract
The lack of sensitive diagnostic methods to detect Mycobacterium avium subsp. paratuberculosis (Map) subclinical infections has hindered the control of paratuberculosis (PTB). The serum proteomic profiles of naturally infected cows presenting focal and diffuse pathological forms of PTB and negative controls (n = 4 per group) were analyzed using TMT-6plex quantitative proteomics. Focal and diffuse are the most frequent pathological forms in subclinical and clinical stages of PTB, respectively. One (focal versus (vs.) control), eight (diffuse vs. control), and four (focal vs. diffuse) differentially abundant (DA) proteins (q-value < 0.05) were identified. Ingenuity pathway analysis of the DA proteins revealed changes in the acute-phase response and lipid metabolism. Six candidate biomarkers were selected for further validation by specific ELISA using serum from animals with focal, multifocal, and diffuse PTB-associated lesions (n = 108) and controls (n = 56). Overall, the trends of the serum expression levels of the selected proteins were consistent with the proteomic results. Alpha-1-acid glycoprotein (ORM1)-based ELISA, insulin-like growth factor-binding protein 2 (IGFBP2)-based ELISA, and the anti-Map ELISA had the best diagnostic performance for detection of animals with focal, multifocal, and diffuse lesions, respectively. Our findings identify potential biomarkers that improve diagnostic sensitivity of PTB and help to elucidate the mechanisms involved in PTB pathogenesis.
Collapse
Affiliation(s)
- Alejandra
Isabel Navarro León
- Center
for Animal Biotechnology, Servicio Regional
de Investigación y Desarrollo Agroalimentario [SERIDA], 33394 Deva, Asturias, Spain
| | - Marta Muñoz
- Center
for Animal Biotechnology, Servicio Regional
de Investigación y Desarrollo Agroalimentario [SERIDA], 33394 Deva, Asturias, Spain
| | - Natalia Iglesias
- Center
for Animal Biotechnology, Servicio Regional
de Investigación y Desarrollo Agroalimentario [SERIDA], 33394 Deva, Asturias, Spain
| | - Cristina Blanco-Vázquez
- Center
for Animal Biotechnology, Servicio Regional
de Investigación y Desarrollo Agroalimentario [SERIDA], 33394 Deva, Asturias, Spain
| | - Ana Balseiro
- Departamento
de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071 León, Spain
| | - Fátima Milhano Santos
- Functional
Proteomics Laboratory, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas [CSIC],
Proteored-ISCIII, 28049 Madrid, Spain
| | - Sergio Ciordia
- Functional
Proteomics Laboratory, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas [CSIC],
Proteored-ISCIII, 28049 Madrid, Spain
| | - Fernando J. Corrales
- Functional
Proteomics Laboratory, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas [CSIC],
Proteored-ISCIII, 28049 Madrid, Spain
| | - Tania Iglesias
- Unidad
de Consultoría Estadística, Servicios Científico-técnicos, Universidad de Oviedo, Campus de Gijón, 33203 Gijón, Asturias, Spain
| | - Rosa Casais
- Center
for Animal Biotechnology, Servicio Regional
de Investigación y Desarrollo Agroalimentario [SERIDA], 33394 Deva, Asturias, Spain
| |
Collapse
|
3
|
Kravitz A, Liao M, Morota G, Tyler R, Cockrum R, Manohar BM, Ronald BSM, Collins MT, Sriranganathan N. Retrospective Single Nucleotide Polymorphism Analysis of Host Resistance and Susceptibility to Ovine Johne's Disease Using Restored FFPE DNA. Int J Mol Sci 2024; 25:7748. [PMID: 39062990 PMCID: PMC11276633 DOI: 10.3390/ijms25147748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Johne's disease (JD), also known as paratuberculosis, is a chronic, untreatable gastroenteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection. Evidence for host genetic resistance to disease progression exists, although it is limited due to the extended incubation period (years) and diagnostic challenges. To overcome this, previously restored formalin-fixed paraffin embedded tissue (FFPE) DNA from archived FFPE tissue cassettes was utilized for a novel retrospective case-control genome-wide association study (GWAS) on ovine JD. Samples from known MAP-infected flocks with ante- and postmortem diagnostic data were used. Cases (N = 9) had evidence of tissue infection, compared to controls (N = 25) without evidence of tissue infection despite positive antemortem diagnostics. A genome-wide efficient mixed model analysis (GEMMA) to conduct a GWAS using restored FFPE DNA SNP results from the Illumina Ovine SNP50 Bead Chip, identified 10 SNPs reaching genome-wide significance of p < 1 × 10-6 on chromosomes 1, 3, 4, 24, and 26. Pathway analysis using PANTHER and the Kyoto Encyclopedia of Genes and Genomes (KEGG) was completed on 45 genes found within 1 Mb of significant SNPs. Our work provides a framework for the novel use of archived FFPE tissues for animal genetic studies in complex diseases and further evidence for a genetic association in JD.
Collapse
Affiliation(s)
- Amanda Kravitz
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Mingsi Liao
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Gota Morota
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ron Tyler
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Rebecca Cockrum
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - B. Murali Manohar
- Department of Veterinary Pathology, Tamilnadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai 600051, Tamil Nadu India, India
| | - B. Samuel Masilamoni Ronald
- Department of Veterinary Pathology, Tamilnadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai 600051, Tamil Nadu India, India
| | - Michael T. Collins
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nammalwar Sriranganathan
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Ha S, Kang S, Jung M, Kim SB, Lee HG, Park HT, Lee JH, Choi KC, Park J, Kim UH, Yoo HS. Comparison of blood parameters according to fecal detection of Mycobacterium avium subspecies paratuberculosis in subclinically infected Holstein cattle. J Vet Sci 2023; 24:e70. [PMID: 38031649 PMCID: PMC10556293 DOI: 10.4142/jvs.23111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic and progressive granulomatous enteritis and economic losses in dairy cattle in subclinical stages. Subclinical infection in cattle can be detected using serum MAP antibody enzyme-linked immunosorbent assay (ELISA) and fecal polymerase chain reaction (PCR) tests. OBJECTIVES To investigate the differences in blood parameters, according to the detection of MAP using serum antibody ELISA and fecal PCR tests. METHODS We divided 33 subclinically infected adult cattle into three groups: seronegative and fecal-positive (SNFP, n = 5), seropositive and fecal-negative (SPFN, n = 10), and seropositive and fecal-positive (SPFP, n = 18). Hematological and serum biochemical analyses were performed. RESULTS Although the cows were clinically healthy without any manifestations, the SNFP and SPFP groups had higher platelet counts, mean platelet volumes, plateletcrit, lactate dehydrogenase levels, lactate levels, and calcium levels but lower mean corpuscular volume concentration than the SPFN group (p < 0.017). The red blood cell count, hematocrit, monocyte count, glucose level, and calprotectin level were different according to the detection method (p < 0.05). The SNFP and SPFP groups had higher red blood cell counts, hematocrit and calprotectin levels, but lower monocyte counts and glucose levels than the SPFN group, although there were no significant differences (p > 0.017). CONCLUSIONS The cows with fecal-positive MAP status had different blood parameters from those with fecal-negative MAP status, although they were subclinically infected. These findings provide new insights into understanding the mechanism of MAP infection in subclinically infected cattle.
Collapse
Affiliation(s)
- Seungmin Ha
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Seogjin Kang
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Mooyoung Jung
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Sang Bum Kim
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Han Gyu Lee
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Hong-Tae Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jun Ho Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Ki Choon Choi
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Jinho Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Ui-Hyung Kim
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
5
|
Kyselová J, Tichý L, Sztankóová Z, Marková J, Kavanová K, Beinhauerová M, Mušková M. Comparative Characterization of Immune Response in Sheep with Caseous Lymphadenitis through Analysis of the Whole Blood Transcriptome. Animals (Basel) 2023; 13:2144. [PMID: 37443943 DOI: 10.3390/ani13132144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Caseous lymphadenitis (CL) is a chronic contagious disease that affects small ruminants and is characterized by the formation of pyogranulomas in lymph nodes and other organs. However, the pathogenesis of this disease and the response of the host genome to infection are not yet fully understood. This study aimed to investigate the whole blood transcriptome and evaluate differential gene expression during the later stages of CL in naturally infected ewes. The study included diseased, serologically positive (EP), exposed, serologically negative (EN) ewes from the same infected flock and healthy ewes (CN) from a different flock. RNA sequencing was performed using the Illumina NextSeq system, and differential gene expression was estimated using DESeq2 and Edge R approaches. The analysis identified 191 annotated differentially expressed genes (DEGs) in the EP group (102 upregulated and 89 downregulated) and 256 DEGs in the EN group (106 upregulated and 150 downregulated) compared to the CN group. Numerous immunoregulatory interactions between lymphoid and nonlymphoid cells were influenced in both EP and EN ewes. Immune DEGs were preferentially assigned to antigen presentation through the MHC complex, T lymphocyte-mediated immunity, and extracellular matrix interactions. Furthermore, the EP group showed altered regulation of cytokine and chemokine signaling and activation and recombination of B-cell receptors. Conversely, NF-kappa B signaling, apoptosis, and stress response were the main processes influenced in the EN group. In addition, statistically significant enrichment of the essential immune pathways of binding and uptake of ligands by scavenger receptors in EP and p53 signaling in the EN group was found. In conclusion, this study provides new insights into the disease course and host-pathogen interaction in naturally CL-infected sheep by investigating the blood transcriptome.
Collapse
Affiliation(s)
- Jitka Kyselová
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| | - Ladislav Tichý
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Zuzana Sztankóová
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| | - Jiřina Marková
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Kateřina Kavanová
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Monika Beinhauerová
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Michala Mušková
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| |
Collapse
|
6
|
Hu W, Koch BEV, Lamers GEM, Forn-Cuní G, Spaink HP. Specificity of the innate immune responses to different classes of non-tuberculous mycobacteria. Front Immunol 2023; 13:1075473. [PMID: 36741407 PMCID: PMC9890051 DOI: 10.3389/fimmu.2022.1075473] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Mycobacterium avium is the most common nontuberculous mycobacterium (NTM) species causing infectious disease. Here, we characterized a M. avium infection model in zebrafish larvae, and compared it to M. marinum infection, a model of tuberculosis. M. avium bacteria are efficiently phagocytosed and frequently induce granuloma-like structures in zebrafish larvae. Although macrophages can respond to both mycobacterial infections, their migration speed is faster in infections caused by M. marinum. Tlr2 is conservatively involved in most aspects of the defense against both mycobacterial infections. However, Tlr2 has a function in the migration speed of macrophages and neutrophils to infection sites with M. marinum that is not observed with M. avium. Using RNAseq analysis, we found a distinct transcriptome response in cytokine-cytokine receptor interaction for M. avium and M. marinum infection. In addition, we found differences in gene expression in metabolic pathways, phagosome formation, matrix remodeling, and apoptosis in response to these mycobacterial infections. In conclusion, we characterized a new M. avium infection model in zebrafish that can be further used in studying pathological mechanisms for NTM-caused diseases.
Collapse
|
7
|
Heidari M, Pakdel A, Bakhtiarizadeh MR, Dehghanian F. A framework for non-preserved consensus gene module detection in Johne's disease. Front Vet Sci 2022; 9:974444. [PMID: 35968017 PMCID: PMC9363878 DOI: 10.3389/fvets.2022.974444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
Johne's disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) is a major concern in dairy industry. Since, the pathogenesis of the disease is not clearly known, it is necessary to develop an approach to discover molecular mechanisms behind this disease with high confidence. Biological studies often suffer from issues with reproducibility. Lack of a method to find stable modules in co-expression networks from different datasets related to Johne's disease motivated us to present a computational pipeline to identify non-preserved consensus modules. Two RNA-Seq datasets related to MAP infection were analyzed, and consensus modules were detected and were subjected to the preservation analysis. The non-preserved consensus modules in both datasets were determined as they are modules whose connectivity and density are affected by the disease. Long non-coding RNAs (lncRNAs) and TF genes in the non-preserved consensus modules were identified to construct integrated networks of lncRNA-mRNA-TF. These networks were confirmed by protein-protein interactions (PPIs) networks. Also, the overlapped hub genes between two datasets were considered hub genes of the consensus modules. Out of 66 consensus modules, 21 modules were non-preserved consensus modules, which were common in both datasets and 619 hub genes were members of these modules. Moreover, 34 lncRNA and 152 TF genes were identified in 12 and 19 non-preserved consensus modules, respectively. The predicted PPIs in 17 non-preserved consensus modules were significant, and 283 hub genes were commonly identified in both co-expression and PPIs networks. Functional enrichment analysis revealed that eight out of 21 modules were significantly enriched for biological processes associated with Johne's disease including “inflammatory response,” “interleukin-1-mediated signaling pathway”, “type I interferon signaling pathway,” “cytokine-mediated signaling pathway,” “regulation of interferon-beta production,” and “response to interferon-gamma.” Moreover, some genes (hub mRNA, TF, and lncRNA) were introduced as potential candidates for Johne's disease pathogenesis such as TLR2, NFKB1, IRF1, ATF3, TREM1, CDH26, HMGB1, STAT1, ISG15, CASP3. This study expanded our knowledge of molecular mechanisms involved in Johne's disease, and the presented pipeline enabled us to achieve more valid results.
Collapse
Affiliation(s)
- Maryam Heidari
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Abbas Pakdel
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
- *Correspondence: Abbas Pakdel
| | - Mohammad Reza Bakhtiarizadeh
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
- Mohammad Reza Bakhtiarizadeh
| | | |
Collapse
|
8
|
Ibeagha-Awemu EM, Bissonnette N, Do DN, Dudemaine PL, Wang M, Facciuolo A, Griebel P. Regionally Distinct Immune and Metabolic Transcriptional Responses in the Bovine Small Intestine and Draining Lymph Nodes During a Subclinical Mycobacterium avium subsp. paratuberculosis Infection. Front Immunol 2022; 12:760931. [PMID: 34975852 PMCID: PMC8714790 DOI: 10.3389/fimmu.2021.760931] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative infectious agent of Johne’s disease (JD), an incurable granulomatous enteritis affecting domestic livestock and other ruminants around the world. Chronic MAP infections usually begin in calves with MAP uptake by Peyer’s patches (PP) located in the jejunum (JE) and ileum (IL). Determining host responses at these intestinal sites can provide a more complete understanding of how MAP manipulates the local microenvironment to support its long-term survival. We selected naturally infected (MAPinf, n=4) and naive (MAPneg, n=3) cows and transcriptionally profiled the JE and IL regions of the small intestine and draining mesenteric lymph nodes (LN). Differentially expressed (DE) genes associated with MAP infection were identified in the IL (585), JE (218), jejunum lymph node (JELN) (205), and ileum lymph node (ILLN) (117). Three DE genes (CD14, LOC616364 and ENSBTAG00000027033) were common to all MAPinf versus MAPneg tissues. Functional enrichment analysis revealed immune/disease related biological processes gene ontology (GO) terms and pathways predominated in IL tissue, indicative of an activated immune response state. Enriched GO terms and pathways in JE revealed a distinct set of host responses from those detected in IL. Regional differences were also identified between the mesenteric LNs draining each intestinal site. More down-regulated genes (52%) and fewer immune/disease pathways (n=5) were found in the ILLN compared to a higher number of up-regulated DE genes (56%) and enriched immune/disease pathways (n=13) in the JELN. Immunohistochemical staining validated myeloid cell transcriptional changes with increased CD172-positive myeloid cells in IL and JE tissues and draining LNs of MAPinf versus MAPneg cows. Several genes, GO terms, and pathways related to metabolism were significantly DE in IL and JE, but to a lesser extent (comparatively fewer enriched metabolic GO terms and pathways) in JELN suggesting distinct regional metabolic changes in IL compared to JE and JELN in response to MAP infection. These unique tissue- and regional-specific differences provides novel insight into the dichotomy in host responses to MAP infection that occur throughout the small intestine and mesenteric LN of chronically MAP infected cows.
Collapse
Affiliation(s)
- Eveline M Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Duy N Do
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Pier-Luc Dudemaine
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Mengqi Wang
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Antonio Facciuolo
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Philip Griebel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada.,School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Ibeagha-Awemu EM, Bissonnette N, Bhattarai S, Wang M, Dudemaine PL, McKay S, Zhao X. Whole Genome Methylation Analysis Reveals Role of DNA Methylation in Cow's Ileal and Ileal Lymph Node Responses to Mycobacterium avium subsp. paratuberculosis Infection. Front Genet 2021; 12:797490. [PMID: 34992636 PMCID: PMC8724574 DOI: 10.3389/fgene.2021.797490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Johne's Disease (JD), caused by Mycobacterium avium subsp paratuberculosis (MAP), is an incurable disease of ruminants and other animal species and is characterized by an imbalance of gut immunity. The role of MAP infection on the epigenetic modeling of gut immunity during the progression of JD is still unknown. This study investigated the DNA methylation patterns in ileal (IL) and ileal lymph node (ILLN) tissues from cows diagnosed with persistent subclinical MAP infection over a one to 4 years period. DNA samples from IL and ILLN tissues from cows negative (MAPneg) (n = 3) or positive for MAP infection (MAPinf) (n = 4) were subjected to whole genome bisulfite sequencing. A total of 11,263 and 62,459 differentially methylated cytosines (DMCs), and 1259 and 8086 differentially methylated regions (DMRs) (FDR<0.1) were found between MAPinf and MAPneg IL and ILLN tissues, respectively. The DMRs were found on 394 genes (denoted DMR genes) in the IL and on 1305 genes in the ILLN. DMR genes with hypermethylated promoters/5'UTR [3 (IL) and 88 (ILLN)] or hypomethylated promoters/5'UTR [10 (IL) and 25 (ILLN)] and having multiple functions including response to stimulus/immune response (BLK, BTC, CCL21, AVPR1A, CHRNG, GABRA4, TDGF1), cellular processes (H2AC20, TEX101, GLA, NCKAP5L, RBM27, SLC18A1, H2AC20BARHL2, NLGN3, SUV39H1, GABRA4, PPA1, UBE2D2) and metabolic processes (GSTO2, H2AC20, SUV39H1, PPA1, UBE2D2) are potential DNA methylation candidate genes of MAP infection. The ILLN DMR genes were enriched for more biological process (BP) gene ontology (GO) terms (n = 374), most of which were related to cellular processes (27.6%), biological regulation (16.6%), metabolic processes (15.4%) and response to stimulus/immune response (8.2%) compared to 75 BP GO terms (related to cellular processes, metabolic processes and transport, and system development) enriched for IL DMR genes. ILLN DMR genes were enriched for more pathways (n = 47) including 13 disease pathways compared with 36 enriched pathways, including 7 disease/immune pathways for IL DMR genes. In conclusion, the results show tissue specific responses to MAP infection with more epigenetic changes (DMCs and DMRs) in the ILLN than in the IL tissue, suggesting that the ILLN and immune processes were more responsive to regulation by methylation of DNA relative to IL tissue. Our data is the first to demonstrate a potential role for DNA methylation in the pathogenesis of MAP infection in dairy cattle.
Collapse
Affiliation(s)
- Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Suraj Bhattarai
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, United States
| | - Mengqi Wang
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Pier-Luc Dudemaine
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Stephanie McKay
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, United States
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-Be-Bellevue, QC, Canada
| |
Collapse
|
10
|
Zhang J, Han B, Zheng W, Lin S, Li H, Gao Y, Sun D. Genome-Wide DNA Methylation Profile in Jejunum Reveals the Potential Genes Associated With Paratuberculosis in Dairy Cattle. Front Genet 2021; 12:735147. [PMID: 34721525 PMCID: PMC8554095 DOI: 10.3389/fgene.2021.735147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/23/2021] [Indexed: 12/04/2022] Open
Abstract
Paratuberculosis in cattle causes substantial economic losses to the dairy industry. Exploring functional genes and corresponding regulatory pathways related to resistance or susceptibility to paratuberculosis is essential to the breeding of disease resistance in cattle. Co-analysis of genome-wide DNA methylation and transcriptome profiles is a critically important approach to understand potential regulatory mechanism underlying the development of diseases. In this study, we characterized the profiles of DNA methylation of jejunum from nine Holstein cows in clinical, subclinical, and healthy groups using whole-genome bisulfite sequencing (WGBS). The average methylation level in functional regions was 29.95% in the promoter, 29.65% in the 5’ untranslated region (UTR), 68.24% in exons, 71.55% in introns, and 72.81% in the 3’ UTR. A total of 3,911, 4,336, and 4,094 differentially methylated genes (DMGs) were detected in clinical vs. subclinical, clinical vs. healthy, and subclinical vs. healthy comparative group, respectively. Gene ontology (GO) and analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that these DMGs were significantly enriched in specific biological processes related to immune response, such as Th1 and Th2 cell differentiation, wnt, TNF, MAPK, ECM-receptor interaction, cellular senescence, calcium, and chemokine signaling pathways (q value <0.05). The integration of information about DMGs, differentially expressed genes (DEGs), and biological functions suggested nine genes CALCRL, TNC, GATA4, CD44, TGM3, CXCL9, CXCL10, PPARG, and NFATC1 as promising candidates related to resistance/susceptibility to Mycobacterium avium subspecies paratuberculosis (MAP). This study reports on the high-resolution DNA methylation landscapes of the jejunum methylome across three conditions (clinical, subclinical, and healthy) in dairy cows. Our investigations integrated different sources of information about DMGs, DEGs, and pathways, enabling us to find nine functional genes that might have potential application in resisting paratuberculosis in dairy cattle.
Collapse
Affiliation(s)
- Junnan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bo Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Weijie Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shan Lin
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Houcheng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yahui Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Mallikarjunappa S, Brito LF, Pant SD, Schenkel FS, Meade KG, Karrow NA. Johne's Disease in Dairy Cattle: An Immunogenetic Perspective. Front Vet Sci 2021; 8:718987. [PMID: 34513975 PMCID: PMC8426623 DOI: 10.3389/fvets.2021.718987] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Johne's disease (JD), also known as paratuberculosis, is a severe production-limiting disease with significant economic and welfare implications for the global cattle industry. Caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP), JD manifests as chronic enteritis in infected cattle. In addition to the economic losses and animal welfare issues associated with JD, MAP has attracted public health concerns with potential association with Crohn's disease, a human inflammatory bowel disease. The lack of effective treatment options, such as a vaccine, has hampered JD control resulting in its increasing global prevalence. The disease was first reported in 1895, but in recognition of its growing economic impact, extensive recent research facilitated by a revolution in technological approaches has led to significantly enhanced understanding of the immunological, genetic, and pathogen factors influencing disease pathogenesis. This knowledge has been derived from a variety of diverse models to elucidate host-pathogen interactions including in vivo and in vitro experimental infection models, studies measuring immune parameters in naturally-infected animals, and by studies conducted at the population level to enable the estimation of genetic parameters, and the identification of genetic markers and quantitative trait loci (QTL) putatively associated with susceptibility or resistance to JD. The main objectives of this review are to summarize these recent developments from an immunogenetics perspective and attempt to extract the principal and common findings emerging from this wealth of recent information. Based on these analyses, and in light of emerging technologies such as gene-editing, we conclude by discussing potential future avenues for effectively mitigating JD in cattle.
Collapse
Affiliation(s)
- Sanjay Mallikarjunappa
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Sameer D Pant
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Flavio S Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Kieran G Meade
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Niel A Karrow
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
12
|
Heidari M, Pakdel A, Bakhtiarizadeh MR, Dehghanian F. Integrated Analysis of lncRNAs, mRNAs, and TFs to Identify Regulatory Networks Underlying MAP Infection in Cattle. Front Genet 2021; 12:668448. [PMID: 34290737 PMCID: PMC8287970 DOI: 10.3389/fgene.2021.668448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022] Open
Abstract
Johne’s disease is a chronic infection of ruminants that burdens dairy herds with a significant economic loss. The pathogenesis of the disease has not been revealed clearly due to its complex nature. In order to achieve deeper biological insights into molecular mechanisms involved in MAP infection resulting in Johne’s disease, a system biology approach was used. As far as is known, this is the first study that considers lncRNAs, TFs, and mRNAs, simultaneously, to construct an integrated gene regulatory network involved in MAP infection. Weighted gene coexpression network analysis (WGCNA) and functional enrichment analysis were conducted to explore coexpression modules from which nonpreserved modules had altered connectivity patterns. After identification of hub and hub-hub genes as well as TFs and lncRNAs in the nonpreserved modules, integrated networks of lncRNA-mRNA-TF were constructed, and cis and trans targets of lncRNAs were identified. Both cis and trans targets of lncRNAs were found in eight nonpreserved modules. Twenty-one of 47 nonpreserved modules showed significant biological processes related to the immune system and MAP infection. Some of the MAP infection’s related pathways in the most important nonpreserved modules comprise “positive regulation of cytokine-mediated signaling pathway,” “negative regulation of leukocyte migration,” “T-cell differentiation,” “neutrophil activation,” and “defense response.” Furthermore, several genes were identified in these modules, including SLC11A1, MAPK8IP1, HMGCR, IFNGR1, CMPK2, CORO1A, IRF1, LDLR, BOLA-DMB, and BOLA-DMA, which are potentially associated with MAP pathogenesis. This study not only enhanced our knowledge of molecular mechanisms behind MAP infection but also highlighted several promising hub and hub-hub genes involved in macrophage-pathogen interaction.
Collapse
Affiliation(s)
- Maryam Heidari
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Abbas Pakdel
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | | |
Collapse
|
13
|
Blanco Vázquez C, Balseiro A, Alonso-Hearn M, Juste RA, Iglesias N, Canive M, Casais R. Bovine Intelectin 2 Expression as a Biomarker of Paratuberculosis Disease Progression. Animals (Basel) 2021; 11:ani11051370. [PMID: 34065919 PMCID: PMC8151335 DOI: 10.3390/ani11051370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary The potential of the bovine intelectin 2 as a biomarker of Mycobacterium avium subsp. paratuberculosis infection was investigated using quantitative immunohistochemical analysis of ileocecal valve samples of animals with increasing degrees of lesion severity (focal, multifocal and diffuse histological lesions) and control animals without detected lesions. Significant differences were observed in the mean number of intelectin 2 immunolabelled cells between the three histopathological types and the control. Specifically, the mean number of intelectin 2 labelled cells was indicative of disease progression as the focal group had the highest number of intelectin 2 secreting cells followed by the multifocal, diffuse and control groups indicating that intelectin 2 is a good biomarker for the different stages of Mycobacterium avium subsp. paratuberculosis infection. Quantification of bovine intelectin 2 secreting cells could constitute a good post-mortem tool, complementary to histopathology, to improve detection of Mycobacterium avium subsp. Paratuberculosis infections, especially latent forms of infection. Abstract Paratuberculosis (PTB), a chronic granulomatous enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP), is responsible for important economic losses in the dairy industry. Our previous RNA-sequencing (RNA-Seq) analysis showed that bovine intelectin 2 (ITLN2) precursor gene was overexpressed in ileocecal valve (ICV) samples of animals with focal (log2 fold-change = 10.6) and diffuse (log2 fold-change = 6.8) PTB-associated lesions compared to animals without lesions. This study analyzes the potential use of ITLN2, a protein that has been described as fundamental in the innate immune response to infections, as a biomarker of MAP infection. The presence of ITLN2 was investigated by quantitative immunohistochemical analysis of ICV samples of 20 Holstein Friesian cows showing focal (n = 5), multifocal (n = 5), diffuse (n = 5) and no histological lesions (n = 5). Significant differences were observed in the mean number of ITLN2 immunostained goblet and Paneth cells between the three histopathological types and the control. The number of immunolabelled cells was higher in the focal histopathological type (116.9 ± 113.9) followed by the multifocal (108.7 ± 140.5), diffuse (76.5 ± 97.8) and control types (41.0 ± 81.3). These results validate ITLN2 as a post-mortem biomarker of disease progression.
Collapse
Affiliation(s)
- Cristina Blanco Vázquez
- Center for Animal Biotechnology, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394 Deva, Spain; (C.B.V.); (N.I.)
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071 León, Spain;
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas, Grulleros, 24346 León, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Spain; (M.A.-H.); (R.A.J.); (M.C.)
| | - Ramón A. Juste
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Spain; (M.A.-H.); (R.A.J.); (M.C.)
| | - Natalia Iglesias
- Center for Animal Biotechnology, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394 Deva, Spain; (C.B.V.); (N.I.)
| | - Maria Canive
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Spain; (M.A.-H.); (R.A.J.); (M.C.)
| | - Rosa Casais
- Center for Animal Biotechnology, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394 Deva, Spain; (C.B.V.); (N.I.)
- Correspondence:
| |
Collapse
|
14
|
Identification of loci associated with susceptibility to bovine paratuberculosis and with the dysregulation of the MECOM, eEF1A2, and U1 spliceosomal RNA expression. Sci Rep 2021; 11:313. [PMID: 33432064 PMCID: PMC7801378 DOI: 10.1038/s41598-020-79619-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Although genome-wide association studies have identified single nucleotide polymorphisms (SNPs) associated with the susceptibility to Mycobacterium avium subsp. paratuberculosis (MAP) infection, only a few functional mutations for bovine paratuberculosis (PTB) have been characterized. Expression quantitative trait loci (eQTLs) are genetic variants typically located in gene regulatory regions that alter gene expression in an allele-specific manner. eQTLs can be considered as functional links between genomic variants, gene expression, and ultimately phenotype. In the current study, peripheral blood (PB) and ileocecal valve (ICV) gene expression was quantified by RNA-Seq from fourteen Holstein cattle with no lesions and with PTB-associated histopathological lesions in gut tissues. Genotypes were generated from the Illumina LD EuroG10K BeadChip. The associations between gene expression levels (normalized read counts) and genetic variants were analyzed by a linear regression analysis using R Matrix eQTL 2.2. This approach allowed the identification of 192 and 48 cis-eQTLs associated with the expression of 145 and 43 genes in the PB and ICV samples, respectively. To investigate potential relationships between these cis-eQTLs and MAP infection, a case–control study was performed using the genotypes for all the identified cis-eQTLs and phenotypical data (histopathology, ELISA for MAP-antibodies detection, tissue PCR, and bacteriological culture) of 986 culled cows. Our results suggested that the heterozygous genotype in the cis-eQTL-rs43744169 (T/C) was associated with the up-regulation of the MDS1 and EVI1 complex (MECOM) expression, with positive ELISA, PCR, and bacteriological culture results, and with increased risk of progression to clinical PTB. As supporting evidence, the presence of the minor allele was associated with higher MECOM levels in plasma samples from infected cows and with increased MAP survival in an ex-vivo macrophage killing assay. Moreover, the presence of the two minor alleles in the cis-eQTL-rs110345285 (C/C) was associated with the dysregulation of the eukaryotic elongation factor 1-α2 (eEF1A2) expression and with increased ELISA (OD) values. Finally, the presence of the minor allele in the cis-eQTL rs109859270 (C/T) was associated with the up-regulation of the U1 spliceosomal RNA expression and with an increased risk of progression to clinical PTB. The introduction of these novel functional variants into marker-assisted breeding programs is expected to have a relevant effect on PTB control.
Collapse
|
15
|
Epithelial processed Mycobacterium avium subsp. paratuberculosis induced prolonged Th17 response and suppression of phagocytic maturation in bovine peripheral blood mononuclear cells. Sci Rep 2020; 10:21048. [PMID: 33273606 PMCID: PMC7713309 DOI: 10.1038/s41598-020-78113-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Johne’s disease (JD) caused by Mycobacterium avium subsp. paratuberculosis (MAP) is a chronic, wasting infectious disease in ruminants that causes enormous economic losses to the dairy and beef cattle industries. Understanding the mechanism of persistency of MAP is key to produce novel ideas for the development of new diagnostic methods or prevention techniques. We sought interactions between the host and MAP using epithelial passage model, which mimic initial stage of infection. From the transcriptomic analysis of bovine immune cells (PBMCs), it was suggested that infection through the epithelial cells elicited prolonged Th17-derived immune response, as indicated by upregulation of IL-17A, IL-17F and RORC until 120 h p.i., compared to directly infected PBMCs. Global downregulation of gene expression was observed after 72 h p.i., especially for genes encoding cell surface receptors of phagocytic cells, such as Toll-like receptors and MHC class II molecules. In addition, the cholesterol efflux transporters ABCA1, ABCG1, and APOE, which are regulated by the LXR/RXR pathway, were downregulated. In summary, it would be suggested that the host initiate immune response to activate Th17-derived cytokines, and MAP survives persistently by altering the host adaptive immune response by suppressing surface receptors and manipulating lipid metabolism in phagocytic cells.
Collapse
|
16
|
Abstract
Mycobacterium avium paratuberculosis is responsible for paratuberculosis or Johne's disease in cows, having economic impacts on the dairy industry and a prevalence rate exceeding 50% in dairy herds. The economic burden of Johne's disease relates to decreased milk production and costs of disease prevention, treatment, and management, while having an economic impact on dairy producers, processors, consumers, and stakeholders of the dairy industry. Determining the true economic impact of the disease is difficult at regional and farm level as symptoms are not evident in subclinically infected animals. At present, the virulence, pathogenicity, persistence, and infectious dose of M. avium paratuberculosis are poorly understood, consequently effective paratuberculosis control measures remain obscure. M. avium paratuberculosis is potentially zoonotic with foodborne transmission a public health risk due to a possible causative link with inflammatory bowel disease in humans. A preventive approach is necessary to reduce the presence of this drug-resistant pathogen in dairy herds and subsequently dairy food. The use of inefficient diagnostic tests coupled with the long latency period of infection results in delayed animal culling and trade of asymptomatic animals, leading to regional transmission and increased disease prevalence. To date, there has been limited success at controlling and treating this terminal endemic disease, leading to significant prevalence rates. This study aims to outline the key factors associated with Johne's' disease while outlining its significant impact on the dairy sector.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Sligo Institute of Technology, F91 YW50 Sligo, Ireland
| |
Collapse
|
17
|
Mycobacterium Avium Paratuberculosis: A Disease Burden on the Dairy Industry. Animals (Basel) 2020; 10:ani10101773. [PMID: 33019502 PMCID: PMC7601789 DOI: 10.3390/ani10101773] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium avium paratuberculosis is responsible for paratuberculosis or Johne's disease in cows, having economic impacts on the dairy industry and a prevalence rate exceeding 50% in dairy herds. The economic burden of Johne's disease relates to decreased milk production and costs of disease prevention, treatment, and management, while having an economic impact on dairy producers, processors, consumers, and stakeholders of the dairy industry. Determining the true economic impact of the disease is difficult at regional and farm level as symptoms are not evident in subclinically infected animals. At present, the virulence, pathogenicity, persistence, and infectious dose of M. avium paratuberculosis are poorly understood, consequently effective paratuberculosis control measures remain obscure. M. avium paratuberculosis is potentially zoonotic with foodborne transmission a public health risk due to a possible causative link with inflammatory bowel disease in humans. A preventive approach is necessary to reduce the presence of this drug-resistant pathogen in dairy herds and subsequently dairy food. The use of inefficient diagnostic tests coupled with the long latency period of infection results in delayed animal culling and trade of asymptomatic animals, leading to regional transmission and increased disease prevalence. To date, there has been limited success at controlling and treating this terminal endemic disease, leading to significant prevalence rates. This study aims to outline the key factors associated with Johne's' disease while outlining its significant impact on the dairy sector.
Collapse
|
18
|
Ghoreishifar SM, Eriksson S, Johansson AM, Khansefid M, Moghaddaszadeh-Ahrabi S, Parna N, Davoudi P, Javanmard A. Signatures of selection reveal candidate genes involved in economic traits and cold acclimation in five Swedish cattle breeds. Genet Sel Evol 2020; 52:52. [PMID: 32887549 PMCID: PMC7487911 DOI: 10.1186/s12711-020-00571-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023] Open
Abstract
Background Thousands of years of natural and artificial selection have resulted in indigenous cattle breeds that are well-adapted to the environmental challenges of their local habitat and thereby are considered as valuable genetic resources. Understanding the genetic background of such adaptation processes can help us design effective breeding objectives to preserve local breeds and improve commercial cattle. To identify regions under putative selection, GGP HD 150 K single nucleotide polymorphism (SNP) arrays were used to genotype 106 individuals representing five Swedish breeds i.e. native to different regions and covering areas with a subarctic cold climate in the north and mountainous west, to those with a continental climate in the more densely populated south regions. Results Five statistics were incorporated within a framework, known as de-correlated composite of multiple signals (DCMS) to detect signatures of selection. The obtained p-values were adjusted for multiple testing (FDR < 5%), and significant genomic regions were identified. Annotation of genes in these regions revealed various verified and novel candidate genes that are associated with a diverse range of traits, including e.g. high altitude adaptation and response to hypoxia (DCAF8, PPP1R12A, SLC16A3, UCP2, UCP3, TIGAR), cold acclimation (AQP3, AQP7, HSPB8), body size and stature (PLAG1, KCNA6, NDUFA9, AKAP3, C5H12orf4, RAD51AP1, FGF6, TIGAR, CCND2, CSMD3), resistance to disease and bacterial infection (CHI3L2, GBP6, PPFIBP1, REP15, CYP4F2, TIGD2, PYURF, SLC10A2, FCHSD2, ARHGEF17, RELT, PRDM2, KDM5B), reproduction (PPP1R12A, ZFP36L2, CSPP1), milk yield and components (NPC1L1, NUDCD3, ACSS1, FCHSD2), growth and feed efficiency (TMEM68, TGS1, LYN, XKR4, FOXA2, GBP2, GBP5, FGD6), and polled phenotype (URB1, EVA1C). Conclusions We identified genomic regions that may provide background knowledge to understand the mechanisms that are involved in economic traits and adaptation to cold climate in cattle. Incorporating p-values of different statistics in a single DCMS framework may help select and prioritize candidate genes for further analyses.
Collapse
Affiliation(s)
- Seyed Mohammad Ghoreishifar
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Susanne Eriksson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden.
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Majid Khansefid
- AgriBio Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, 3083, Australia
| | - Sima Moghaddaszadeh-Ahrabi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Nahid Parna
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, B2N5E3, Canada
| | - Arash Javanmard
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
19
|
Blanco Vázquez C, Alonso-Hearn M, Juste RA, Canive M, Iglesias T, Iglesias N, Amado J, Vicente F, Balseiro A, Casais R. Detection of latent forms of Mycobacterium avium subsp. paratuberculosis infection using host biomarker-based ELISAs greatly improves paratuberculosis diagnostic sensitivity. PLoS One 2020; 15:e0236336. [PMID: 32881863 PMCID: PMC7470414 DOI: 10.1371/journal.pone.0236336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Bovine paratuberculosis (PTB) is a chronic granulomatous enteritis, caused by Mycobacterium avium subsp. paratuberculosis (MAP), responsible for important economic losses in the dairy industry. Current diagnostic methods have low sensitivities for detection of latent forms of MAP infection, defined by focal granulomatous lesions and scarce humoral response or MAP presence. In contrast, patent infections correspond to multifocal and diffuse types of enteritis where there is increased antibody production, and substantial mycobacterial load. Our previous RNA-Seq analysis allowed the selection of five candidate biomarkers overexpressed in peripheral blood of MAP infected Holstein cows with focal (ABCA13 and MMP8) and diffuse (FAM84A, SPARC and DES) lesions vs. control animals with no detectable PTB-associated lesions in intestine and regional lymph nodes. The aim of the current study was to assess the PTB diagnostic potential of commercial ELISAs designed for the specific detection of these biomarkers. The ability of these ELISAs to identify animals with latent and/or patent forms of MAP infection was investigated using serum from naturally infected cattle (n = 88) and non-infected control animals (n = 67). ROC analysis revealed that the ABCA13-based ELISA showed the highest diagnostic accuracy for the detection of infected animals with focal lesions (AUC 0.837, sensitivity 79.25% and specificity 88.06%) and with any type of histological lesion (AUC 0.793, sensitivity 69.41% and specificity 86.57%) improving on the diagnostic performance of the popular IDEXX ELISA and other conventional diagnostic methods. SPARC and MMP8 showed the highest diagnostic accuracy for the detection of animals with multifocal (AUC 0.852) and diffuse lesions (AUC 0.831), respectively. In conclusion, our results suggest that quantification of ABCA13, SPARC and MMP8 by ELISA has the potential for implementation as a diagnostic tool to reliably identify MAP infection, greatly improving early detection of MAP latent infections when antibody responses and fecal shedding are undetectable using conventional diagnostic methods.
Collapse
Affiliation(s)
- Cristina Blanco Vázquez
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva Gijón, Asturias, Spain
| | - Marta Alonso-Hearn
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| | - Ramón A. Juste
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Villaviciosa, Asturias, Spain
| | - María Canive
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| | - Tania Iglesias
- Unidad de Consultoría Estadística, Servicios científico-técnicos, Universidad de Oviedo, Campus de Gijón, Asturias, Spain
| | - Natalia Iglesias
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva Gijón, Asturias, Spain
| | - Javier Amado
- Departament of Microbiology and Parasitology, Laboratorio de Sanidad Animal del Principado de Asturias (LSAPA), Gijón, Asturias, Spain
| | - Fernando Vicente
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Villaviciosa, Asturias, Spain
| | - Ana Balseiro
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva Gijón, Asturias, Spain
- Department of Animal Health, Facultad de Veterinaria, Instituto Ganadería de Montaña (CSIC-ULE), University of León, León, Spain
| | - Rosa Casais
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva Gijón, Asturias, Spain
- * E-mail:
| |
Collapse
|
20
|
Facciuolo A, Lee AH, Gonzalez Cano P, Townsend HGG, Falsafi R, Gerdts V, Potter A, Napper S, Hancock REW, Mutharia LM, Griebel PJ. Regional Dichotomy in Enteric Mucosal Immune Responses to a Persistent Mycobacterium avium ssp. paratuberculosis Infection. Front Immunol 2020; 11:1020. [PMID: 32547548 PMCID: PMC7272674 DOI: 10.3389/fimmu.2020.01020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic enteric Mycobacterium avium ssp. paratuberculosis (MAP) infections are endemic in ruminants globally resulting in significant production losses. The mucosal immune responses occurring at the site of infection, specifically in Peyer's patches (PP), are not well-understood. The ruminant small intestine possesses two functionally distinct PPs. Discrete PPs function as mucosal immune induction sites and a single continuous PP, in the terminal small intestine, functions as a primary lymphoid tissue for B cell repertoire diversification. We investigated whether MAP infection of discrete vs. continuous PPs resulted in the induction of significantly different pathogen-specific immune responses and persistence of MAP infection. Surgically isolated intestinal segments in neonatal calves were used to target MAP infection to individual PPs. At 12 months post-infection, MAP persisted in continuous PP (n = 4), but was significantly reduced (p = 0.046) in discrete PP (n = 5). RNA-seq analysis revealed control of MAP infection in discrete PP was associated with extensive transcriptomic changes (1,707 differentially expressed genes) but MAP persistent in continuous PP elicited few host responses (4 differentially expressed genes). Cytokine gene expression in tissue and MAP-specific recall responses by mucosal immune cells isolated from PP, lamina propria and mesenteric lymph node revealed interleukin (IL)22 and IL27 as unique correlates of protection associated with decreased MAP infection in discrete PP. This study provides the first description of mucosal immune responses occurring in bovine discrete jejunal PPs and reveals that a significant reduction in MAP infection is associated with specific cytokine responses. Conversely, MAP infection persists in the continuous ileal PP with minimal perturbation of host immune responses. These data reveal a marked dichotomy in host-MAP interactions within the two functionally distinct PPs of the small intestine and identifies mucosal immune responses associated with the control of a mycobacterial infection in the natural host.
Collapse
Affiliation(s)
- Antonio Facciuolo
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amy H. Lee
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | | | - Hugh G. G. Townsend
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Reza Falsafi
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Volker Gerdts
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Potter
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott Napper
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - R. E. W. Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Lucy M. Mutharia
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Philip J. Griebel
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
21
|
DeKuiper JL, Cooperider HE, Lubben N, Ancel CM, Coussens PM. Mycobacterium avium Subspecies paratuberculosis Drives an Innate Th17-Like T Cell Response Regardless of the Presence of Antigen-Presenting Cells. Front Vet Sci 2020; 7:108. [PMID: 32258066 PMCID: PMC7089878 DOI: 10.3389/fvets.2020.00108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/12/2020] [Indexed: 01/05/2023] Open
Abstract
The gastrointestinal disease of ruminants is clinically known as Johne's disease (JD) and is caused by Mycobacterium avium subspecies paratuberculosis (MAP). An accumulative effect by insensitive diagnostic tools, a long subclinical stage of infection, and lack of effective vaccines have made the control of JD difficult. Currently lacking in the model systems of JD are undefined correlates of protection and the sources of inflammation due to JD. As an alternative to commonly studied immune responses, such as the Th1/Th2 paradigm, a non-classical Th17 immune response to MAP has been suggested. Indeed MAP antigens induce mRNAs encoding the Th17-associated cytokines IL-17A, IL-17F, IL-22, IL-23, IL-27, and IFNγ in CD3+ T cell cultures as determined by RT-qPCR. Although not as robust as when cultured with monocyte-derived macrophages (MDMs), MAP is able to stimulate the upregulation of these cytokines from sorted CD3+ T cells in the absence of antigen-presenting cells (APCs). CD4+ and CD8+ T cells are the main contributors of IL-17A and IL-22 in the absence of APCs. However, MAP-stimulated MDMs are the main contributor of IL-23. In vivo, JD+ cows have more circulating IL-23 than JD– cows, suggesting that this proinflammatory cytokine may be important in the etiology of JD. Our data in this study continue to suggest that Th17-like cells and associated cytokines may indeed play an important role in the immune responses to MAP infection and the development or control of JD.
Collapse
Affiliation(s)
- Justin L DeKuiper
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Hannah E Cooperider
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Noah Lubben
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Caitlin M Ancel
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Paul M Coussens
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
22
|
RNA-Seq analysis of ileocecal valve and peripheral blood from Holstein cattle infected with Mycobacterium avium subsp. paratuberculosis revealed dysregulation of the CXCL8/IL8 signaling pathway. Sci Rep 2019; 9:14845. [PMID: 31619718 PMCID: PMC6795908 DOI: 10.1038/s41598-019-51328-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022] Open
Abstract
Paratuberculosis is chronic granulomatous enteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Whole RNA-sequencing (RNA-Seq) is a promising source of novel biomarkers for early MAP infection and disease progression in cattle. Since the blood transcriptome is widely used as a source of biomarkers, we analyzed whether it recapitulates, at least in part, the transcriptome of the ileocecal valve (ICV), the primary site of MAP colonization. Total RNA was prepared from peripheral blood (PB) and ICV samples, and RNA-Seq was used to compare gene expression between animals with focal or diffuse histopathological lesions in gut tissues versus control animals with no detectable signs of infection. Our results demonstrated both shared, and PB and ICV-specific gene expression in response to a natural MAP infection. As expected, the number of differentially expressed (DE) genes was larger in the ICV than in the PB samples. Among the DE genes in the PB and ICV samples, there were some common genes irrespective of the type of lesion including the C-X-C motif chemokine ligand 8 (CXCL8/IL8), apolipoprotein L (APOLD1), and the interferon inducible protein 27 (IFI27). The biological processes (BP) enriched in the PB gene expression profiles from the cows with diffuse lesions included the killing of cells of other organism, defense response, immune response and the regulation of neutrophil chemotaxis. Two of these BP, the defense and immune response, were also enriched in the ICV from the cows with diffuse lesions. Metabolic analysis of the DE genes revealed that the N-glycan biosynthesis, bile secretion, one-carbon pool by folate and purine metabolism were significantly enriched in the ICV from the cows with focal lesions. In the ICV from cows with diffuse lesions; the valine, leucine and isoleucine degradation route, purine metabolism, vitamin digestion and absorption and the cholesterol routes were enriched. Some of the identified DE genes, BP and metabolic pathways will be studied further to develop novel diagnostic tools, vaccines and immunotherapeutics.
Collapse
|
23
|
van den Esker MH, Koets AP. Application of Transcriptomics to Enhance Early Diagnostics of Mycobacterial Infections, with an Emphasis on Mycobacterium avium ssp. paratuberculosis. Vet Sci 2019; 6:vetsci6030059. [PMID: 31247942 PMCID: PMC6789504 DOI: 10.3390/vetsci6030059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022] Open
Abstract
Mycobacteria cause a wide variety of disease in human and animals. Species that infect ruminants include M. bovis and M. avium ssp. paratuberculosis (MAP). MAP is the causative agent of Johne’s disease in ruminants, which is a chronic granulomatous enteric infection that leads to severe economic losses worldwide. Characteristic of MAP infection is the long, latent phase in which intermittent shedding can take place, while diagnostic tests are unable to reliably detect an infection in this stage. This leads to unnoticed dissemination within herds and the presence of many undetected, silent carriers, which makes the eradication of Johne’s disease difficult. To improve the control of MAP infection, research is aimed at improving early diagnosis. Transcriptomic approaches can be applied to characterize host-pathogen interactions during infection, and to develop novel biomarkers using transcriptional profiles. Studies have focused on the identification of specific RNAs that are expressed in different infection stages, which will assist in the development and clinical implementation of early diagnostic tests.
Collapse
Affiliation(s)
- Marielle H van den Esker
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands
| | - Ad P Koets
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands.
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
24
|
Mallikarjunappa S, Adnane M, Cormican P, Karrow NA, Meade KG. Characterization of the bovine salivary gland transcriptome associated with Mycobacterium avium subsp. paratuberculosis experimental challenge. BMC Genomics 2019; 20:491. [PMID: 31195975 PMCID: PMC6567491 DOI: 10.1186/s12864-019-5845-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mycobacterium avium subsp. paratuberculosis (MAP), the etiologic agent of Johne's disease is spread between cattle via the fecal-oral route, yet the functional changes in the salivary gland associated with infection remain uncharacterized. In this study, we hypothesized that experimental challenge with MAP would induce stable changes in gene expression patterns in the salivary gland that may shed light on the mucosal immune response as well as the regional variation in immune capacity of this extensive gland. Holstein-Friesian cattle were euthanized 33 months' post oral challenge with MAP strain CIT003 and both the parotid and mandibular salivary glands were collected from healthy control (n = 5) and MAP exposed cattle (n = 5) for histopathological and transcriptomic analysis. RESULTS A total of 205, 21, 61, and 135 genes were significantly differentially expressed between control and MAP exposed cattle in dorsal mandibular (M1), ventral mandibular (M2), dorsal parotid (P1) and ventral parotid salivary glands (P2), respectively. Expression profiles varied between the structurally divergent parotid and mandibular gland sections which was also reflected in the enriched biological pathways identified. Changes in gene expression associated with MAP exposure were detected with significantly elevated expression of BoLA DR-ALPHA, BOLA-DRB3 and complement factors in MAP exposed cattle. In contrast, reduced expression of genes such as polymeric immunoglobin receptor (PIGR), TNFSF13, and the antimicrobial genes lactoferrin (LF) and lactoperoxidase (LPO) was detected in MAP exposed animals. CONCLUSIONS This first analysis of the transcriptomic profile of salivary glands in cattle adds an important layer to our understanding of salivary gland immune function. Transcriptomic changes associated with MAP exposure have been identified including reduced LF and LPO. These critical antimicrobial and immunoregulatory proteins are known to be secreted into saliva and their downregulation may contribute to disease susceptibility. Future work will focus on the validation of their expression levels in saliva from additional cattle of known infection status as a potential strategy to augment disease diagnosis.
Collapse
Affiliation(s)
- Sanjay Mallikarjunappa
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland.,Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mounir Adnane
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland.,Institute of Veterinary Sciences, Ibn Khaldoun University, Tiaret, Algeria
| | - Paul Cormican
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Niel A Karrow
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Kieran G Meade
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland.
| |
Collapse
|
25
|
Stabel JR, Reinhardt TA, Hempel RJ. Short communication: Vitamin D status and responses in dairy cows naturally infected with Mycobacterium avium ssp. paratuberculosis. J Dairy Sci 2018; 102:1594-1600. [PMID: 30594355 DOI: 10.3168/jds.2018-15241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/26/2018] [Indexed: 01/15/2023]
Abstract
Serum samples were obtained from Holstein dairy control cows and cows naturally infected with Mycobacterium avium ssp. paratuberculosis (MAP) to evaluate the effects of disease status on serum 25-hydroxyvitamin D3 (25OHD3) levels. Disease status was stratified for infected cows into asymptomatic, subclinical infection (n = 25), and cows demonstrating clinical signs (n = 20), along with noninfected control (n = 12) cows for comparison. In addition, portions of the ileocecal valve were taken from a subsample of cows (n = 5 per treatment group) at necropsy and processed for RNA sequencing gene transcription studies. Genes associated with vitamin D metabolism were queried to determine any association between infection and gene expression. Serum 25OHD3 levels were significantly lower in cows in the clinical stage of disease compared with either cows in the subclinical stage and noninfected control cows. Differential expression for genes associated with the vitamin D pathway such as CYP27A1, CYP27B1, vitamin D-binding protein (DBP), and IFNG was dependent upon infection status. An upregulation of CYP27A1 was noted for cows in subclinical status, whereas CYP27B1 expression was enhanced for clinical cows. Increased expression of vitamin D-binding protein was observed for infected cattle, regardless of infection status. In summary, decreases in circulating 25OHD3 for animals with clinical disease may suggest that these cows have reduced innate immune responses, thereby influencing the ability of animals to fight infection.
Collapse
Affiliation(s)
- J R Stabel
- USDA-Agricultural Research Service, National Animal Disease Center, Ames, IA 50010.
| | - T A Reinhardt
- USDA-Agricultural Research Service, National Animal Disease Center, Ames, IA 50010
| | - R J Hempel
- USDA-Agricultural Research Service, National Animal Disease Center, Ames, IA 50010
| |
Collapse
|
26
|
Ken CF, Chen CN, Ting CH, Pan CY, Chen JY. Transcriptome analysis of hybrid tilapia (Oreochromis spp.) with Streptococcus agalactiae infection identifies Toll-like receptor pathway-mediated induction of NADPH oxidase complex and piscidins as primary immune-related responses. FISH & SHELLFISH IMMUNOLOGY 2017; 70:106-120. [PMID: 28870856 DOI: 10.1016/j.fsi.2017.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Streptococcus agalactiae infection is one of the most significant bacterial diseases in tilapia aquaculture. Identification of immune-related genes associated with Streptococcus agalactiae infection may provide a basis for breeding selection or therapeutics to augment disease resistance. Therefore, we utilized transcriptome profiling to study the host response in tilapia following Streptococcus agalactiae infection. Based on GO and KEGG enrichment analyses, we found that differentially expressed genes are widely involved in immune-related pathways, including the induction of antimicrobial peptides. Moreover, the main components of two immune-related pathways (Toll-like receptor signaling and leukocyte transendothelial migration) and four environmental information processing pathways (TNF, PI3K-Akt, Jak-STAT and MAPK) were identified. Finally, a time-course expression profile for several of the identified transcripts including tilapia piscidin 3 (TP3), tilapia piscidin 4 (TP4), TLR2, TLR5, MyD88, TRAF6, p38, and interleukin components was performed by qRT-PCR. Collectively, these results provide a starting point to study molecular mechanisms of tilapia immune response to Streptococcus agalactiae infection and may be applied as a basis for developing disease resistant strains by breeding selection.
Collapse
Affiliation(s)
- Chuian-Fu Ken
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan
| | - Chieh-Ning Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan
| | - Chen-Hung Ting
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung 811, Taiwan.
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan.
| |
Collapse
|
27
|
Pathways and Genes Associated with Immune Dysfunction in Sheep Paratuberculosis. Sci Rep 2017; 7:46695. [PMID: 28436433 PMCID: PMC5402263 DOI: 10.1038/srep46695] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Multibacillary and paucibacillary paratuberculosis are both caused by Mycobacterium avium subspecies paratuberculosis. Multibacillary lesions are composed largely of infected epithelioid macrophages and paucibacillary lesions contain T cells but few bacteria. Multibacillary disease is similar to human lepromatous leprosy, with variable/high levels of antibody and a dysfunctional immune response. Animals with paucibacillary disease have high cell-mediated immunity and variable levels of antibody. This study aims to characterize the immunological dysfunction using TruSeq analysis of the ileocaecal lymph node that drains disease lesions. Immune dysfunction is highlighted by repression of TCR/CD3 genes, T cell co-receptors/co-stimulators, T cell activation and signal-transduction genes. Inflammation was an acute phase response and chronic inflammation, with little evidence of acute inflammation. The high levels of immunoglobulin and plasma cell transcripts is consistent with the anti-MAP antibody responses in paratuberculosis sheep. Also notable was the overwhelming reduction in mast cell transcripts, potentially affecting DC activation of the immune response. This study also shows that there were no fundamental differences in the gene expression patterns in multibacillary and paucibacillary disease, no shift in T cell genes from Th1 to Th2 pattern but rather an incremental decline into immune dysfunction leading to multibacillary pathology.
Collapse
|