1
|
Hiza H, Zwyer M, Hella J, Arbués A, Sasamalo M, Borrell S, Xu ZM, Ross A, Brites D, Fellay J, Reither K, Gagneux S, Portevin D. Bacterial diversity dominates variable macrophage responses of tuberculosis patients in Tanzania. Sci Rep 2024; 14:9287. [PMID: 38653771 DOI: 10.1038/s41598-024-60001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) comprises nine human-adapted lineages that differ in their geographical distribution. Local adaptation of specific MTBC genotypes to the respective human host population has been invoked in this context. We aimed to assess if bacterial genetics governs MTBC pathogenesis or if local co-adaptation translates into differential susceptibility of human macrophages to infection by different MTBC genotypes. We generated macrophages from cryopreserved blood mononuclear cells of Tanzanian tuberculosis patients, from which the infecting MTBC strains had previously been phylogenetically characterized. We infected these macrophages ex vivo with a phylogenetically similar MTBC strain ("matched infection") or with strains representative of other MTBC lineages ("mismatched infection"). We found that L1 infections resulted in a significantly lower bacterial burden and that the intra-cellular replication rate of L2 strains was significantly higher compared the other MTBC lineages, irrespective of the MTBC lineage originally infecting the patients. Moreover, L4-infected macrophages released significantly greater amounts of TNF-α, IL-6, IL-10, MIP-1β, and IL-1β compared to macrophages infected by all other strains. While our results revealed no measurable effect of local adaptation, they further highlight the strong impact of MTBC phylogenetic diversity on the variable outcome of the host-pathogen interaction in human tuberculosis.
Collapse
Affiliation(s)
- Hellen Hiza
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Michaela Zwyer
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jerry Hella
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ainhoa Arbués
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mohamed Sasamalo
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Zhi Ming Xu
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sébastien Gagneux
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Damien Portevin
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Hussien B, Zewude A, Wondale B, Hailu A, Ameni G. Spoligotyping of Clinical Isolates of Mycobacterium tuberculosis Complex Species in the Oromia Region of Ethiopia. Front Public Health 2022; 10:808626. [PMID: 35372211 PMCID: PMC8970530 DOI: 10.3389/fpubh.2022.808626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022] Open
Abstract
Background Tuberculosis (TB) is a leading cause of morbidity and mortality in Ethiopia. Investigation of the Mycobacterium tuberculosis complex (MTBC) species circulating in the Ethiopian population would contribute to the efforts made to control TB in the country. Therefore, this study was conducted to investigate the MTBC species and spoligo patterns in the Oromia region (central) of Ethiopia. Methods A cross-sectional study design was used to recruit 450 smear positive pulmonary TB (PTB) cases from the Oromia region between September 2017 and August 2018. Mycobacteria were isolated from sputum samples on the Lowenstein Jensen (LJ) medium. Molecular identification of the isolates was performed by spoligotyping. The results of spoligotyping were transferred into a query box in the SITVIT2 database and Run TB-Lineage in the TB Insight website for the identification of spoligo international type (SIT) number and linages of the isolates, respectively. Statistical Product and Service Solutions (SPSS) 20 was applied for statistical analysis. Results Three hundred and fifteen isolates were grouped under 181 different spoligotype patterns. The most dominantly isolated spoligotype pattern was SIT149 and it consisted of 23 isolates. The majority of the isolates were grouped under Euro-American (EA), East-African-Indian (EAI), and Indo-Oceanic (IO) lineages. These lineages consisted of 79.4, 9.8, and 9.8% of the isolates, respectively. One hundred and sixty-five of the isolates were classified under 31 clustered spoligotypes whereas the remaining 150 were singleton types. Furthermore, 91.1% of the total isolates were classified as orphan types. Clustering of spoligotypes was associated (p < 0.001) with EAI lineage. Conclusion SIT149 and EA lineage were predominantly isolated from the Oromia region substantiating the findings of the similar studies conducted in other regions of Ethiopia. The observation of significant number of singleton and orphan spoligotypes warrants for additional genetic typing of the isolates using method(s) with a better discriminatory power than spoligotyping.
Collapse
Affiliation(s)
- Bedru Hussien
- Department of Public Health, Goba Referral Hospital, Madda Walabu University, Goba, Ethiopia
| | - Aboma Zewude
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Ministry of Health, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Biniam Wondale
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Awraris Hailu
- Department of Public Health, College of Health Sciences, Debre Birhan University, Debre Birhan, Ethiopia
| | - Gobena Ameni
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Thumamo Pokam BD, Yeboah-Manu D, Amiteye D, Asare P, Guemdjom PW, Yhiler NY, Azumah Morton SN, Ofori-Yirenkyi S, Laryea R, Tagoe R, Asuquo AE. Molecular epidemiology and multidrug resistance of Mycobacterium tuberculosis complex from pulmonary tuberculosis patients in the Eastern region of Ghana. Heliyon 2021; 7:e08152. [PMID: 34746460 PMCID: PMC8551511 DOI: 10.1016/j.heliyon.2021.e08152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/12/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Background Tuberculosis (TB) and drug-resistant TB (DR-TB) continue to persist as a serious public health challenges in Ghana. Although several research has evaluated the drug resistance of Mycobacterium tuberculosis complex (MTBc) strains across the country, there is a paucity of data on its magnitude as well as the various lineages circulating in the Eastern region of Ghana. Objective This study therefore evaluated the distribution of the various lineages of MTBc in the Eastern region of the country and the associated drug resistance. Materials and methods One hundred and forty-three (143) patients with pulmonary TB attending the Eastern Regional Hospital, Koforidua/Ghana were included in the study. The BACTEC MGIT 960 tube media was used for both sputum culture and drug susceptibility of streptomycin (STR), isoniazid (INH), rifampicin (RIF) and Ethambutol (ETH). Isolates were initially typed using IS6110, followed by large sequence polymorphisms analysis and spoligotyping. Results The majority [108 (75.5%)] of the 143 patients were male gender and the 45-54 years [46 (32.2%)] age range had the highest frequency. Forty-one (28.7%) of the 143 isolates were IS6110 negative. Of the 102 spoligotyped isolates, the main sub-lineages included 45 (44.1%) Cameroon and 23 (22.5%) Ghana. SITs 61 and 53 represented the major cluster with 22/102 (21.6%) and 13/102 (12.7%) isolates respectively, while 59/65 (90.8%) isolates belonged to Lineage 4 with 27/65 (41.5%) LAM10_CAM. MDR-TB occurred in 26/79 (32.9%) isolates, and was not associated with neither gender [20/58 (34.5%) male vs 6/21 (28.6%) female, OR = 1.31; 95%CI, 0.44-3.92; p = 0.624)] nor age. No association was found between MDR-TB and the major sub-lineages [8/25 (32%) Cameroon (OR = 0.94; 95%CI, 0.34-2.59; p = 0.920) and 5/11 (45.5%) Ghana (OR = 1.87; 95%CI, 0.51-6.80; p = 0.489)], or previously treated [8/23 (34.8%), OR = 0.89; 95%CI, 0.32-2.48; p = 0.823)] patients. Conclusion Despite the serious threat posed by MDR in the study area, no sub-lineage was shown to be associated with drug resistance. Nonetheless, a sustained surveillance of drug resistance pattern is advocated. A lower proportion of M. africanum was observed in the Eastern region of Ghana and will require further evaluation.
Collapse
Affiliation(s)
- Benjamin D Thumamo Pokam
- Department of Medical Laboratory Science, Faculty of Health Sciences, University of Buea, Buea, Cameroon.,Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Dorothy Yeboah-Manu
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Daniel Amiteye
- Department of Biomedical Engineering, All Nations University College, Koforidua, Ghana
| | - Prince Asare
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Prisca Wabo Guemdjom
- Department of Public Health, Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | - Nchawa Yangkam Yhiler
- Department of Medical Laboratory Science, Faculty of Health Sciences, University of Buea, Buea, Cameroon.,Department of Allied Health, Biaka University Institute, Buea, Cameroon
| | | | | | | | | | - Anne Ebri Asuquo
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, College of Medicine, University of Calabar, Calabar, Nigeria
| |
Collapse
|
4
|
Characterization of Mutations Associated with Streptomycin Resistance in Multidrug-Resistant Mycobacterium tuberculosis in Zambia. Antibiotics (Basel) 2021; 10:antibiotics10101169. [PMID: 34680750 PMCID: PMC8532810 DOI: 10.3390/antibiotics10101169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Streptomycin (STR) is recommended for the management of multidrug-resistant tuberculosis (MDR-TB). Streptomycin resistance-conferring mutation types and frequency are shown to be influenced by genotypes of circulating strains in a population. This study aimed to characterize the mutations in MDR-TB isolates and examine their relationship with the genotypes in Zambia. A total of 138 MDR-TB isolates stored at the University Teaching Hospital Tuberculosis Reference Laboratory in Zambia were analyzed using spoligotyping and sequencing of STR resistance-associated genes. Streptomycin resistance was observed in 65.9% (91/138) of MDR-TB isolates. Mutations in rpsL, rrs, and gidB accounted for 33%, 12.1%, and 49.5%, respectively. Amino acid substitution K43R in rpsL was strongly associated with the CAS1_Kili genotype (p < 0.0001). The combination of three genes could predict 91.2% of STR resistance. Clustering of isolates based on resistance-conferring mutations and spoligotyping was observed. The clustering of isolates suggests that the increase in STR-resistant MDR-TB in Zambia is largely due to the spread of resistant strains from inadequate treatment. Therefore, rapid detection of STR resistance genetically is recommended before its use in MDR-TB treatment in Zambia.
Collapse
|
5
|
Diversity of Mycobacterium tuberculosis Complex Lineages Associated with Pulmonary Tuberculosis in Southwestern, Uganda. Tuberc Res Treat 2021; 2021:5588339. [PMID: 34306752 PMCID: PMC8264515 DOI: 10.1155/2021/5588339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/05/2021] [Indexed: 11/23/2022] Open
Abstract
Uganda is among the 22 countries in the world with a high burden of tuberculosis. The southwestern region of the country has consistently registered a high TB/HIV incidence rate. This study is aimed at characterizing the Mycobacterium tuberculosis complex (MTBC) genotypic diversity in southwestern Uganda. A total of 283 sputum samples from patients with pulmonary tuberculosis were genotyped using specific single nucleotide polymorphism markers for lineages 3 and 4. Most of the patients were males with a mean age of 34. The lineage 4 Ugandan family was found to be the most dominant strains accounting for 59.7% of all cases followed by lineage 3 at 15.2%. The lineage 4 non-Ugandan family accounted for 14.5% of all cases while 4.2% showed amplification for both lineage 4 and lineage 3. Eighteen samples (6.4%) of the strains remained unclassified since they could not be matched to any lineage based on the genotyping technique used. This study demonstrates that a wide diversity of strains is causing pulmonary tuberculosis in this region with those belonging to the lineage 4 Ugandan family being more predominant. However, to confirm this, further studies using more discriminative genotyping methods are necessary.
Collapse
|
6
|
Netikul T, Palittapongarnpim P, Thawornwattana Y, Plitphonganphim S. Estimation of the global burden of Mycobacterium tuberculosis lineage 1. INFECTION GENETICS AND EVOLUTION 2021; 91:104802. [PMID: 33684570 DOI: 10.1016/j.meegid.2021.104802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/16/2020] [Accepted: 03/02/2021] [Indexed: 12/15/2022]
Abstract
Tuberculosis is still problematic as it affects large numbers of people globally. Mycobacterium tuberculosis Lineage 1 (L1) or Indo Oceanic Lineage, one of widespread major lineages, has a specific geographic distribution and high mortality. It is highly diverse and endemic in several high burden countries. However, studies on the global burden of L1 and its sublineages remain limited. This may lead to the underestimation of the importance of its variance in developing and applying tuberculosis control measures. This study aimed to estimate the number of patients infected with M. tuberculosis L1 and its sublineages worldwide. The proportion of L1 among tuberculosis patients was searched in published reports from countries around the world and the number of patients was calculated based on a WHO report on country incidences and populations. The numbers of patients infected with the five major sublineages, namely L1.1.1, L1.1.2, L1.1.3, L1.2.1, and L1.2.2 were estimated where information was available. It was found that L1 accounted for 28% of global tuberculosis cases in 2012 and 2018. Over 80% of the L1 global burden was in India, the Philippines, Indonesia and Bangladesh, which are also among the countries with highest absolute numbers of tuberculosis patients in the world. Globally, the estimated number of patients infected with M. tuberculosis L1.2.1 and L1.1.2 was over 1.1 million and of patients infected with L1.1.1 was about 200,000. This study demonstrated that L1 contributes significantly to the global burden of tuberculosis. To achieve the End TB Strategy, more attention needs to be paid to the responses of M. tuberculosis L1 to various control measures.
Collapse
Affiliation(s)
- Thidarat Netikul
- Faculty of Medicine, Siam University, Phet Kasem Road, Bangkok, Thailand
| | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 road, Bangkok, Thailand; National Science and Technology Development Agency, Pathumthani, Thailand
| | - Yuttapong Thawornwattana
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 road, Bangkok, Thailand
| | - Supada Plitphonganphim
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Rama 6 road, Bangkok, Thailand.
| |
Collapse
|
7
|
Mutavhatsindi H, van der Spuy GD, Malherbe ST, Sutherland JS, Geluk A, Mayanja-Kizza H, Crampin AC, Kassa D, Howe R, Mihret A, Sheehama JA, Nepolo E, Günther G, Dockrell HM, Corstjens PLAM, Stanley K, Walzl G, Chegou NN. Validation and Optimization of Host Immunological Bio-Signatures for a Point-of-Care Test for TB Disease. Front Immunol 2021; 12:607827. [PMID: 33717089 PMCID: PMC7952865 DOI: 10.3389/fimmu.2021.607827] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
The development of a non-sputum-based, point-of-care diagnostic test for tuberculosis (TB) is a priority in the global effort to combat this disease, particularly in resource-constrained settings. Previous studies have identified host biomarker signatures which showed potential, but there is a need to validate and refine these for development as a test. We recruited 1,403 adults presenting with symptoms suggestive of pulmonary TB at primary healthcare clinics in six countries from West, East and Southern Africa. Of the study cohort, 326 were diagnosed with TB and 787 with other respiratory diseases, from whom we randomly selected 1005 participants. Using Luminex® technology, we measured the levels of 20 host biomarkers in serum samples which we used to evaluate the diagnostic accuracy of previously identified and novel bio-signatures. Our previously identified seven-marker bio-signature did not perform well (sensitivity: 89%, specificity: 60%). We also identified an optimal, two-marker bio-signature with a sensitivity of 94% and specificity of 69% in patients with no history of previous TB. This signature performed slightly better than C-reactive protein (CRP) alone. The cut-off value for a positive diagnosis differed for human immuno-deficiency virus (HIV)-positive and -negative individuals. Notably, we also found that no signature was able to diagnose TB adequately in patients with a prior history of the disease. We have identified a two-marker, pan-African bio-signature which is more robust than CRP alone and meets the World Health Organization (WHO) target product profile requirements for a triage test in both HIV-negative and HIV-positive individuals. This signature could be incorporated into a point-of-care device, greatly reducing the necessity for expensive confirmatory diagnostics and potentially reducing the number of cases currently lost to follow-up. It might also potentially be useful with individuals unable to provide sputum or with paucibacillary disease. We suggest that the performance of TB diagnostic signatures can be improved by incorporating the HIV-status of the patient. We further suggest that only patients who have never had TB be subjected to a triage test and that those with a history of previous TB be evaluated using more direct diagnostic techniques.
Collapse
Affiliation(s)
- Hygon Mutavhatsindi
- Department of Science and Innovation - National Research Foundation (DSI-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gian D van der Spuy
- Department of Science and Innovation - National Research Foundation (DSI-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stephanus T Malherbe
- Department of Science and Innovation - National Research Foundation (DSI-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jayne S Sutherland
- TB Research Group, Medical Research Council Gambia at London School of Hygiene and Tropical Medicine (LSHTM), Banjul, Gambia
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Harriet Mayanja-Kizza
- Department of Internal Medicine and Immunology, School of Medicine, Makerere University, Kampala, Uganda
| | - Amelia C Crampin
- Karonga Prevention Study, London School of Hygiene and Tropical Medicine, Karonga, Malawi
| | - Desta Kassa
- Infectious and Non-Infectious Diseases Research Directorate, Ethiopian Health and Nutrition Research Institute, Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Department of Immunology, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Adane Mihret
- Department of Immunology, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Jacob A Sheehama
- Department of Biochemistry & Microbiology, School of Medicine, University of Namibia, Windhoek, Namibia
| | - Emmanuel Nepolo
- Department of Biochemistry & Microbiology, School of Medicine, University of Namibia, Windhoek, Namibia
| | - Gunar Günther
- Department of Biochemistry & Microbiology, School of Medicine, University of Namibia, Windhoek, Namibia
| | - Hazel M Dockrell
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Paul L A M Corstjens
- Department of Molecular Cell Biology, Leiden University Medical Centre, Leiden, Netherlands
| | - Kim Stanley
- Department of Science and Innovation - National Research Foundation (DSI-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerhard Walzl
- Department of Science and Innovation - National Research Foundation (DSI-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Novel N Chegou
- Department of Science and Innovation - National Research Foundation (DSI-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | |
Collapse
|
8
|
Ejo M, Torrea G, Uwizeye C, Kassa M, Girma Y, Bekele T, Ademe Y, Diro E, Gehre F, Rigouts L, de Jong BC. Genetic diversity of the Mycobacterium tuberculosis complex strains from newly diagnosed tuberculosis patients in Northwest Ethiopia reveals a predominance of East-African-Indian and Euro-American lineages. Int J Infect Dis 2020; 103:72-80. [PMID: 33189940 DOI: 10.1016/j.ijid.2020.11.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES This study described the population structure of M. tuberculosis complex (MTBc) strains among patients with pulmonary or lymph node tuberculosis (TB) in Northwest Ethiopia and tested the performance of culture isolation and MPT64-based speciation for Lineage 7 (L7). METHODS Patients were recruited between April 2017 and June 2019 in North Gondar, Ethiopia. The MPT64 assay was used to confirm MTBc, and spoligotyping was used to characterize mycobacterial lineages. Line probe assay (LPA) was used to detect resistance to rifampicin and isoniazid. RESULTS Among 274 MTBc genotyped isolates, there were five MTBc lineages: L1-L4 and L7 were identified, with predominant East-African-Indian (L3) (53.6%) and Euro-American (L4) (40.1%) strains, and low prevalence (2.6%) of Ethiopia L7. The genotypes were similarly distributed between pulmonary and lymph node TB, and all lineages were equally isolated by culture and recognized as MTBc by the MPT64 assay. Additionally, LPA showed that 259 (94.5%) MTBc were susceptible to both rifampicin and isoniazid, and one (0.4%) was multi-drug resistant (resistant to both rifampicin and isoniazid). CONCLUSION These findings show that TB in North Gondar, Ethiopia, is mainly caused by L3 and L4 strains, with low rates of L7, confirmed as MTBc by MPT64 assay and with limited resistance to rifampicin and isoniazid.
Collapse
Affiliation(s)
- Mebrat Ejo
- Institute of Tropical Medicine (ITM), Antwerp, Belgium; University of Gondar, Gondar, Ethiopia; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | | | | - Meseret Kassa
- TB Culture Laboratory, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Yilak Girma
- TB Culture Laboratory, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Tiruzer Bekele
- Department of Pathology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yilkal Ademe
- Department of Pathology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Ermias Diro
- Department of Internal Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Florian Gehre
- Institute of Tropical Medicine (ITM), Antwerp, Belgium; Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany; East African Community Secretariat (EAC), Arusha, Tanzania
| | - Leen Rigouts
- Institute of Tropical Medicine (ITM), Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
9
|
Maung HMW, Palittapongarnpim P, Aung HL, Surachat K, Nyunt WW, Chongsuvivatwong V. Geno-Spatial Distribution of Mycobacterium Tuberculosis and Drug Resistance Profiles in Myanmar-Thai Border Area. Trop Med Infect Dis 2020; 5:E153. [PMID: 33007895 PMCID: PMC7709706 DOI: 10.3390/tropicalmed5040153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
Worldwide, studies investigating the relationship between the lineage of Mycobacterium tuberculosis (MTB) across geographic areas has empowered the "End TB" program and understand transmission across national boundaries. Genomic diversity of MTB varies with geographical locations and ethnicity. Genomic diversity can also affect the emergence of drug resistance. In Myanmar, we still have limited genetic information about geographical, ethnicity, and drug resistance linkage to MTB genetic information. This study aimed to describe the geno-spatial distribution of MTB and drug resistance profiles in Myanmar-Thailand border areas. A cross-sectional study was conducted with a total of 109 sequenced isolates. The lineages of MTB and the potential associated socio-demographic, geographic and clinical factors were analyzed using Fisher's exact tests. p value of statistically significance was set at < 0.05. We found that 67% of the isolates were lineage 1 (L1)/East-African-Indian (EAI) (n = 73), followed by lineage 2 (L2)/Beijing (n = 26), lineage 4 (L4)/European American (n = 6) and lineage 3 (L3)/Delhi/Central Asian (n = 4). "Gender", "type of TB patient", "sputum smear grading" and "streptomycin resistance" were significantly different with the lineages of MTB. Sublineages of L1, which had never been reported elsewhere in Myanmar, were detected in this study area. Moreover, both ethnicity and lineage of MTB significantly differed in distribution by patient location. Diversity of the lineage of MTB and detection of new sublineages suggested that this small area had been resided by a heterogeneous population group who actively transmitted the disease. This information on distribution of lineage of MTB can be linked in the future with those on the other side of the border to evaluate cross-border transmission.
Collapse
Affiliation(s)
- Htet Myat Win Maung
- National TB Programme, Department of Public Health, Ministry of Health and Sports, Naypyitaw 15011, Myanmar;
- Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Htin Lin Aung
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand;
| | - Komwit Surachat
- Information and Communication Technology Programme, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Wint Wint Nyunt
- National TB Reference Laboratory, National TB Programme, Department of Public Health, Yangon 11011, Myanmar;
| | | |
Collapse
|
10
|
Welekidan LN, Skjerve E, Dejene TA, Gebremichael MW, Brynildsrud O, Agdestein A, Tessema GT, Tønjum T, Yimer SA. Characteristics of pulmonary multidrug-resistant tuberculosis patients in Tigray Region, Ethiopia: A cross-sectional study. PLoS One 2020; 15:e0236362. [PMID: 32797053 PMCID: PMC7428183 DOI: 10.1371/journal.pone.0236362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/03/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is among the top 10 causes of mortality and the first killer among infectious diseases worldwide. One of the factors fuelling the TB epidemic is the global rise of multidrug resistant TB (MDR-TB). The aim of this study was to determine the magnitude and factors associated with MDR-TB in the Tigray Region, Ethiopia. METHOD This study employed a facility-based cross-sectional study design, which was conducted between July 2018 and August 2019. The inclusion criteria for the study participants were GeneXpert-positive who were not under treatment for TB, PTB patients' ≥15 years of age and who provided written informed consent. A total of 300 participants were enrolled in the study, with a structured questionnaire used to collect data on clinical, sociodemographic and behavioral factors. Sputum samples were collected and processed for acid-fast bacilli staining, culture and drug susceptibility testing. Drug susceptibility testing was performed using a line probe assay. Logistic regression was used to analyze associations between outcome and predictor variables. RESULTS The overall proportion of MDR-TB was 16.7% (11.6% and 32.7% for new and previously treated patients, respectively). Of the total MDR-TB isolates, 5.3% were pre-XDR-TB. The proportion of MDR-TB/HIV co-infection was 21.1%. A previous history of TB treatment AOR 3.75; 95% CI (0.7-2.24), cigarette smoking AOR 6.09; CI (1.65-2.50) and patients who had an intermittent fever (AOR = 2.54, 95% CI = 1.21-5.4) were strongly associated with MDR-TB development. CONCLUSIONS The magnitude of MDR-TB observed among new and previously treated patients is very alarming, which calls for an urgent need for intervention. The high proportion of MDR-TB among newly diagnosed cases indicates ongoing transmission, which suggests the need for enhanced TB control program performance to interrupt transmission. The increased proportion of MDR-TB among previously treated cases indicates a need for better patient management to prevent the evolution of drug resistance. Assessing the TB control program performance gaps and an optimal implementation of the WHO recommended priority actions for the management of drug-resistant TB, is imperative to help reduce the current high MDR-TB burden in the study region.
Collapse
Affiliation(s)
- Letemichael Negash Welekidan
- Department of Para Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
- Department of Production Animal Medicine, Norwegian University of Life Sciences, Oslo, Norway
- Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Eystein Skjerve
- Department of Production Animal Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Tsehaye Asmelash Dejene
- Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | | | - Ola Brynildsrud
- Department of Para Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
- Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | - Tone Tønjum
- Department of Microbiology, Unit for Genome Dynamics, University of Oslo, Oslo, Norway
- Department of Microbiology, Unit for Genome Dynamics, Oslo University Hospital, Oslo, Norway
| | - Solomon Abebe Yimer
- Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, Norway
- Department of Microbiology, Unit for Genome Dynamics, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Kone B, Somboro AM, Holl JL, Baya B, Togo AACG, Sarro YDS, Diarra B, Kodio O, Murphy RL, Bishai W, Maiga M, Doumbia S. Exploring the usefulness of molecular epidemiology of tuberculosis in Africa: a systematic review. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2020; 11:1-15. [PMID: 32714498 PMCID: PMC7373718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Tuberculosis (TB) is caused by Mycobacterium tuberculosis complex (MTBC) and remains a serious global public health threat, especially in resource-limited settings such as the African region. Recent developments in molecular epidemiology tools have significantly improved our understanding of TB transmission patterns and revealed the high genetic diversity of TB isolates across geographical entities in Africa. This study reports the results of a systematic review of current knowledge about MTBC strain diversity and geographical distribution in African regions. METHODS Search tools (PubMed, Embase, Popline, OVID and Africa Wide Information) were employed to identify the relevant literature about prevalence, strain diversity, and geographic distribution of MTBC infection in Africa. RESULTS A total of 59 articles from 739 citations met our inclusion criteria. Most articles reported about patients with presumptive pulmonary TB (73%), fewer reports were on retreatment and treatment failure cases (12%), and presumptive drug resistance cases (3%). Spoligotyping was the most used, alone in 21 studies and in parallel with either the Mycobacterial Interspersed Repetitive Units Variable Number of Tandem Repeats or the Restriction Fragment Length Polymorphism. Various TB lineages were observed across the African continent, with the originally European lineage 4 spotted in all countries studied. CONCLUSION TB molecular epidemiology tools have substantially improved our understanding of the MTBC circulating isolates, their evolution, and diversity in this highly endemic region of Africa. We found that only TB lineage 4 is present throughout all the continent and the clusters identified provides an extended insight into the disease transmission dynamics.
Collapse
Affiliation(s)
- Bourahima Kone
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Anou M Somboro
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
- Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurban, South Africa
| | | | - Bocar Baya
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Antieme ACG Togo
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Yeya Dit Sadio Sarro
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Bassirou Diarra
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Ousmane Kodio
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Robert L Murphy
- Institute for Global Health, Northwestern UniversityChicago, Illinois, USA
| | - William Bishai
- Center for TB Research, Johns Hopkins UniversityBaltimore, MD, USA
| | - Mamoudou Maiga
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
- Institute for Global Health, Northwestern UniversityChicago, Illinois, USA
| | - Seydou Doumbia
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| |
Collapse
|
12
|
Genetic diversity and drug resistance pattern of Mycobacterium tuberculosis strains isolated from pulmonary tuberculosis patients in the Benishangul Gumuz region and its surroundings, Northwest Ethiopia. PLoS One 2020; 15:e0231320. [PMID: 32267877 PMCID: PMC7141659 DOI: 10.1371/journal.pone.0231320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/20/2020] [Indexed: 01/30/2023] Open
Abstract
Introduction Tuberculosis (TB) remains a major global public health problem and is the leading cause of death from a single bacterium, Mycobacterium tuberculosis (MTB) complex. The emergence and spread of drug-resistant strains aggravate the problem, especially in tuberculosis high burden countries such as Ethiopia. The supposedly high initial cost of laboratory diagnosis coupled with scarce financial resources has limited collection of information about drug resistance patterns and circulating strains in peripheral and emerging regions of Ethiopia. Here, we investigated drug susceptibility and genetic diversity of mycobacterial isolates among pulmonary tuberculosis patients in the Benishangul Gumuz region and its surroundings in northwest Ethiopia. Methods and material In a cross-sectional study, 107 consecutive sputum smear-positive pulmonary tuberculosis (PTB) patients diagnosed at two hospitals and seven health centers were enrolled between October 2013 and June 2014. Sputum samples were cultured at Armauer Hansen Research Institute (AHRI) TB laboratory, and drug susceptibility testing (DST) was performed against Isoniazid, Rifampicin, Ethambutol, and Streptomycin using the indirect proportion method. Isolates were characterized using polymerase chain reaction (PCR)based Region of Difference 9 (RD9) testing and spoligotyping. Statistical analysis was performed using Statistical Package for the Social Sciences (SPSS) for Windows version 24.0. Results Of 107 acid-fast-bacilli (AFB) smear-positive sputum samples collected, 81.3% (87/107) were culture positive. A PCR based RD9 testing revealed that all the 87 isolates were M. tuberculosis. Of these isolates, 16.1% (14/87) resistance to one or more drugs was observed. Isoniazid monoresistance occurred in 6.9% (6/87). Multidrug resistance (MDR) was observed in two isolates (2.3%), one of which was resistant to all the four drugs tested. Spoligotyping revealed that the majority, 61.3% (46/75) of strains could be grouped into ten spoligotype patterns containing two to 11 isolates each while the remaining 38.7% (29/75) were unique. SIT289 (11 isolates) and SIT53 (nine isolates) constituted 43.5% (20/46) among clustered isolates while 29.3% (22/75) were ‘‘New” to the database. The dominant families were T, 37% (28/75), CAS, 16.0% (12/75), and H, 8% (6/75), adding up to 51.3% (46/75) of all isolates identified. Conclusion and recommendations The current study indicates a moderate prevalence of MDR TB. However, the observed high monoresistance to Isoniazid, one of the two proxy drugs for MDR-TB, reveals the hidden potential threat fora sudden increase in MDR-TB if resistance to Rifampicin would increase. Clustered spoligotype patterns suggest ongoing active tuberculosis transmission in the area. The results underscore the need for enhanced monitoring of TB drug resistance and epidemiological studies in this and other peripheral regions of the country using robust molecular tools with high discriminatory power such as the Mycobacterial Interspersed Repetitive Units -Variable Number of Tandem Repeats (MIRU-VNTR) typing and whole-genome sequencing (WGS).
Collapse
|
13
|
Katale BZ, Mbelele PM, Lema NA, Campino S, Mshana SE, Rweyemamu MM, Phelan JE, Keyyu JD, Majigo M, Mbugi EV, Dockrell HM, Clark TG, Matee MI, Mpagama S. Whole genome sequencing of Mycobacterium tuberculosis isolates and clinical outcomes of patients treated for multidrug-resistant tuberculosis in Tanzania. BMC Genomics 2020; 21:174. [PMID: 32085703 PMCID: PMC7035673 DOI: 10.1186/s12864-020-6577-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/12/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Tuberculosis (TB), particularly multi- and or extensive drug resistant TB, is still a global medical emergency. Whole genome sequencing (WGS) is a current alternative to the WHO-approved probe-based methods for TB diagnosis and detection of drug resistance, genetic diversity and transmission dynamics of Mycobacterium tuberculosis complex (MTBC). This study compared WGS and clinical data in participants with TB. RESULTS This cohort study performed WGS on 87 from MTBC DNA isolates, 57 (66%) and 30 (34%) patients with drug resistant and susceptible TB, respectively. Drug resistance was determined by Xpert® MTB/RIF assay and phenotypic culture-based drug-susceptibility-testing (DST). WGS and bioinformatics data that predict phenotypic resistance to anti-TB drugs were compared with participant's clinical outcomes. They were 47 female participants (54%) and the median age was 35 years (IQR): 29-44). Twenty (23%) and 26 (30%) of participants had TB/HIV co-infection BMI < 18 kg/m2 respectively. MDR-TB participants had MTBC with multiple mutant genes, compared to those with mono or polyresistant TB, and the majority belonged to lineage 3 Central Asian Strain (CAS). Also, MDR-TB was associated with delayed culture-conversion (median: IQR (83: 60-180 vs. 51:30-66) days). WGS had high concordance with both culture-based DST and Xpert® MTB/RIF assay in detecting drug resistance (kappa = 1.00). CONCLUSION This study offers comparison of mutations detected by Xpert and WGS with phenotypic DST of M. tuberculosis isolates in Tanzania. The high concordance between the different methods and further insights provided by WGS such as PZA-DST, which is not routinely performed in most resource-limited-settings, provides an avenue for inclusion of WGS into diagnostic matrix of TB including drug-resistant TB.
Collapse
Affiliation(s)
- Bugwesa Z Katale
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | - Peter M Mbelele
- Kibong'oto Infectious Disease Hospital (KIDH), Sanya Juu, Tanzania
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Nsiande A Lema
- Field Epidemiology and Laboratory Training Programme, Dar es Salaam, Tanzania
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Stephen E Mshana
- Department of Medical Microbiology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Mark M Rweyemamu
- Southern African Centre for Infectious Diseases Surveillance (SACIDS), Sokoine University of Agriculture (SUA), Morogoro, Tanzania
| | - Jody E Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Julius D Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | - Mtebe Majigo
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Erasto V Mbugi
- Department of Biochemistry, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Hazel M Dockrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Mecky I Matee
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania.
| | - Stellah Mpagama
- Kibong'oto Infectious Disease Hospital (KIDH), Sanya Juu, Tanzania
| |
Collapse
|
14
|
Phylogenetic diversity of Mycobacterium tuberculosis in two geographically distinct locations in Botswana - The Kopanyo Study. INFECTION GENETICS AND EVOLUTION 2020; 81:104232. [PMID: 32028055 DOI: 10.1016/j.meegid.2020.104232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis complex (MTBC) is divided into several major phylogenetic lineages, with differential distribution globally. Using population-based data collected over a three year period, we performed 24-locus Mycobacterial Interspersed Repeat Unit - Variable Number Tandem Repeat (MIRU-VNTR) genotyping on all culture isolates from two districts of the country that differ in tuberculosis (TB) incidence (Gaborone, the capital, and Ghanzi in the Western Kalahari). The study objective was to characterize the molecular epidemiology of TB in these districts. Overall phylogenetic diversity mirrored that reported from neighboring Republic of South Africa, but differences in the two districts were marked. All four major lineages of M. tuberculosis were found in Gaborone, but only three of the four major lineages were found in Ghanzi. Strain diversity was lower in Ghanzi, with a large proportion (38%) of all isolates having an identical MIRU-VNTR result, compared to 6% of all isolates in Gaborone with the same MIRU-VNTR result. This study demonstrates localized differences in strain diversity by two districts in Botswana, and contributes to a growing characterization of MTBC diversity globally.
Collapse
|
15
|
Bhembe NL, Green E. Molecular epidemiological study of multidrug-resistant tuberculosis isolated from sputum samples in Eastern Cape, South Africa. INFECTION GENETICS AND EVOLUTION 2020; 80:104182. [PMID: 31923728 DOI: 10.1016/j.meegid.2020.104182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 11/18/2022]
Abstract
Drug-resistant tuberculosis prevalence is still a global challenge. Making it imperative to examine the molecular epidemiology of drug resistant tuberculosis. Molecular epidemiology methods can evaluate transmission patterns and risk factors, ascertain transmission cases of multidrug-resistant tuberculosis (MDR-TB) and furthermore determine transmission patterns in a human populace. This work focuses on MDR-TB isolates in distinguishing them into several species and genotyping the MDR-TB isolates, mainly for epidemiological studies using the genomic regions of difference and the spoligotyping techniques. A total of 184 deoxyribonucleic acid isolated from sputum samples that showed resistance against the two major first-line anti-tuberculosis drugs (Rifampicin and Isoniazid) were examined. The deoxyribonucleic acid samples were amplified with primers specific for each flanking region of the genomic regions of difference for the identification of different MTBC species. Isolates were further characterized into different lineages using the spoligotyping commercial kit. The M. tuberculosis species was detected in 83.7% (154/184) of the deoxyribonucleic acid isolates, followed by the M. caprae in 8.7% (16/184) and the least detected species was the M. africanum in 2.2% (4/184). Nineteen spoligotype international types (SITs) were identified in this study. The pre-existing shared types were from 94.6% (174/184) isolates with 1.1% (2/184) isolates recognized as orphans and 4.3% (8/184) isolates were not found in the SITVIT database. The predominant family (spoligotype) was the Beijing with 67.4% (124/184) strains. This study gives a general overview of drug resistant strains and the circulating strains in the Eastern Cape, South Africa and it shows that the common Mycobacteria in the province is the Beijing strain.
Collapse
Affiliation(s)
- Nolwazi Londiwe Bhembe
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Ezekiel Green
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, 2028, South Africa
| |
Collapse
|
16
|
López MG, Dogba JB, Torres-Puente M, Goig GA, Moreno-Molina M, Villamayor LM, Cadmus S, Comas I. Tuberculosis in Liberia: high multidrug-resistance burden, transmission and diversity modelled by multiple importation events. Microb Genom 2020; 6:e000325. [PMID: 31935183 PMCID: PMC7067037 DOI: 10.1099/mgen.0.000325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis (TB) surveillance is scarce in most African countries, even though it is the continent with the greatest disease incidence according to the World Health Organization. Liberia is within the 30 countries with the highest TB burden, probably as a consequence of the long civil war and the recent Ebola outbreak, both crippling the health system and depreciating the TB prevention and control programmes. Due to difficulties working in the country, there is a lack of resistance surveys and bacillus characterization. Here, we use genome sequencing of Mycobacteriumtuberculosis clinical isolates to fill this gap. Our results highlight that the bacillus population structure is dominated by lineage 4 strains that harbour an outstanding genetic diversity, higher than in the rest of Africa as a whole. Coalescent analyses demonstrate that strains currently circulating in Liberia were introduced several times beginning in the early year 600 CE until very recently coinciding with migratory movements associated with the civil war and Ebola epidemics. A higher multidrug-resistant (MDR)-TB frequency (23.5 %) than current estimates was obtained together with non-catalogued drug-resistance mutations. Additionally, 39 % of strains were in genomic clusters revealing that ongoing transmission is a major contribution to the TB burden in the country. Our report emphasizes the importance of TB surveillance and control in African countries where bacillus diversity, MDR-TB prevalence and transmission are coalescing to jeopardize TB control programmes.
Collapse
Affiliation(s)
- Mariana G. López
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - John B. Dogba
- Tuberculosis and Brucellosis Laboratories, Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
- Center for Control and Prevention of Zoonoses, University of Ibadan, Ibadan, Nigeria
- Tuberculosis Laboratory, National Public Health Reference Laboratory, National Public Health Institute of Liberia, Margibi, Liberia
| | - Manuela Torres-Puente
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Galo A. Goig
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Miguel Moreno-Molina
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Luis M. Villamayor
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Unidad Mixta “Infección y Salud Pública” (FISABIO-CSISP), Valencia, Spain
| | - Simeon Cadmus
- Tuberculosis and Brucellosis Laboratories, Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
- Center for Control and Prevention of Zoonoses, University of Ibadan, Ibadan, Nigeria
- Tuberculosis Laboratory, National Public Health Reference Laboratory, National Public Health Institute of Liberia, Margibi, Liberia
| | - Iñaki Comas
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
17
|
Katale BZ, Mbugi EV, Keyyu JD, Fyumagwa RD, Rweyemamu MM, van Helden PD, Dockrell HM, Matee MI. One Health approach in the prevention and control of mycobacterial infections in Tanzania: lessons learnt and future perspectives. ONE HEALTH OUTLOOK 2019; 1:2. [PMID: 33829123 PMCID: PMC7990093 DOI: 10.1186/s42522-019-0002-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 09/24/2019] [Indexed: 06/12/2023]
Abstract
BACKGROUND One Health (OH) is an integrated approach, formed inclusive of using multiple disciplines to attain optimal health for humans, animals, and the environment. The increasing proximity between humans, livestock, and wildlife, and its role in the transmission dynamics of mycobacterial infections, necessitates an OH approach in the surveillance of zoonotic diseases. The challenge remains as humans, livestock, and wildlife share resources and interact at various interfaces. Therefore, this review explores the potential of the OH approach to understand the impact of mycobacterial infections in Tanzania in terms of lessons learnt and future perspectives. MATERIALS AND METHODS Available literature on OH and mycobacterial infections in Tanzania was searched in PubMed, Google Scholar, and Web of Science. Articles on mycobacterial infections in Tanzania, published between 1997 to 2017, were retrieved to explore the information on OH and mycobacterial infections. MAIN BODY The studies conducted in Tanzania had have reported a wide diversity of mycobacterial species in humans and animals, which necessitates an OH approach in surveillance of diseases for better control of infectious agents and to safeguard the health of humans and animals. The close proximity between humans and animals increases the chances of inter-specific transmission of infectious pathogens, including drug-resistant mycobacteria. In an era where HIV co-infection is also the case, opportunistic infection by environmental non-tuberculous mycobacteria (NTM), commonly known as mycobacteria other than tuberculosis (MOTT) may further exacerbate the impact of drug resistance. NTM from various sources have greatest potential for diverse strains among which are resistant strains due to continued evolutional changes. CONCLUSION A collaborative interdisciplinary approach among professionals could help in solving the threats posed by mycobacterial infections to public health, particularly by the spread of drug-resistant strains.
Collapse
Affiliation(s)
- Bugwesa Z. Katale
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
- Southern African Centre for Infectious Diseases Surveillance (SACIDS), Sokoine University of Agriculture (SUA), Chuo Kikuu, Morogoro, Tanzania
| | - Erasto V. Mbugi
- Department of Biochemistry, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Julius D. Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | | | - Mark M. Rweyemamu
- Southern African Centre for Infectious Diseases Surveillance (SACIDS), Sokoine University of Agriculture (SUA), Chuo Kikuu, Morogoro, Tanzania
| | - Paul D. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/ South African Medical Research Council (MRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Hazel M. Dockrell
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine (LSHTM), London, UK
| | - Mecky I. Matee
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
- Southern African Centre for Infectious Diseases Surveillance (SACIDS), Sokoine University of Agriculture (SUA), Chuo Kikuu, Morogoro, Tanzania
| |
Collapse
|
18
|
Couvin D, Reynaud Y, Rastogi N. Two tales: Worldwide distribution of Central Asian (CAS) versus ancestral East-African Indian (EAI) lineages of Mycobacterium tuberculosis underlines a remarkable cleavage for phylogeographical, epidemiological and demographical characteristics. PLoS One 2019; 14:e0219706. [PMID: 31299060 PMCID: PMC6625721 DOI: 10.1371/journal.pone.0219706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/29/2019] [Indexed: 11/18/2022] Open
Abstract
The East African Indian (EAI) and Central Asian (CAS) lineages of Mycobacterium tuberculosis complex (MTBC) mainly infect tuberculosis (TB) patients in the eastern hemisphere which contains many of the 22 high TB burden countries including China and India. We investigated if phylogeographical, epidemiological and demographical characteristics for these 2 lineages differed in SITVIT2 database. Genotyping results and associated data (age, sex, HIV serology, drug resistance) on EAI and CAS lineages (n = 10,974 strains) were extracted. Phylogenetic and Bayesian, and other statistical analyses were used to compare isolates. The male/female sex ratio was 907/433 (2.09) for the EAI group vs. 881/544 (1.62) for CAS (p-value<0.002). The proportion of younger patients aged 0-20 yrs. with CAS lineage was significantly higher than for EAI lineage (18.07% vs. 10.85%, p-value<0.0001). The proportion of multidrug resistant and extensively drug resistant TB among CAS group (30.63% and 1.03%, respectively) was significantly higher than in the EAI group (12.14% and 0.29%, respectively; p-value<0.0001). Lastly, the proportion of HIV+ patients was 20.34% among the EAI group vs. 3.46% in the CAS group (p-value<0.0001). This remarkable split observed between various parameters for these 2 lineages was further corroborated by their geographic distribution profile (EAI being predominantly found in Eastern-Coast of Africa, South-India and Southeast Asia, while CAS was predominantly found in Afghanistan, Pakistan, North India, Nepal, Middle-east, Libya, Sudan, Ethiopia, Kenya and Tanzania). Some geo-specificities were highlighted. This study demonstrated a remarkable cleavage for aforementioned characteristics of EAI and CAS lineages, showing a North-South divide along the tropic of cancer in Eastern hemisphere-mainly in Asia, and partly prolonged along the horn of Africa. Such studies would be helpful to better comprehend prevailing TB epidemic in context of its historical spread and evolutionary features, and provide clues to better treatment and patient-care in countries and regions concerned by these lineages.
Collapse
Affiliation(s)
- David Couvin
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
- * E-mail: (DC); (NR)
| | - Yann Reynaud
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
- * E-mail: (DC); (NR)
| |
Collapse
|
19
|
Mogashoa T, Melamu P, Ley SD, Streicher EM, Iketleng T, Kelentse N, Mupfumi L, Mokomane M, Kgwaadira B, Novitsky V, Kasvosve I, Moyo S, Warren RM, Gaseitsiwe S. Genetic diversity of Mycobacterium tuberculosis strains circulating in Botswana. PLoS One 2019; 14:e0216306. [PMID: 31063472 PMCID: PMC6504092 DOI: 10.1371/journal.pone.0216306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/17/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Molecular typing of Mycobacterium tuberculosis (M.tb) isolates can inform Tuberculosis (TB) control programs on the relative proportion of transmission driving the TB epidemic. There is limited data on the M. tb genotypes that are circulating in Botswana. The aim of this study was to generate baseline data on the genetic diversity of M.tb isolates circulating in the country. METHODS A total of 461 M.tb isolates received at the Botswana National Tuberculosis Reference Laboratory between March 2012 and October 2013 were included in this study. Drug susceptibility testing was conducted using the BD BACTEC MGIT 960 System. M.tb strains were genotyped using spoligotyping and spoligotype patterns were compared with existing patterns in the SITVIT Web database. A subset of drug resistant isolates which formed spoligo clusters (n = 65) was additionally genotyped with 12-loci MIRU. Factors associated with drug resistance and clustering were evaluated using logistic regression. RESULTS Of the 461 isolates genotyped, 458 showed 108 distinct spoligotype patterns. The predominant M.tb lineages were Lineage 4 (81.9%), Lineage 2 (9%) and Lineage 1 (7.2%). The predominant spoligotype families within Lineage 4 were LAM (33%), S (14%), T (16%), X (16%). Three hundred and ninety-two (86%) isolates could be grouped into 44 clusters (2-46 isolates per cluster); giving a clustering rate of 76%. We identified 173 (37.8%) drug resistant isolates, 48 (10.5%) of these were multi-drug resistant. MIRU typing of the drug resistant isolates allowed grouping of 46 isolates into 14 clusters, giving a clustering rate of 49.2%. There was no association between age, sex, treatment category, region and clustering. CONCLUSIONS This study highlights the complexity of the TB epidemic in Botswana with multiple strains contributing to disease and provides baseline data on the population structure of M.tb strains in Botswana.
Collapse
Affiliation(s)
- Tuelo Mogashoa
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Pinkie Melamu
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Serej D. Ley
- DST-NRF Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Elizabeth M. Streicher
- DST-NRF Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Thato Iketleng
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- College of Health Sciences, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Lucy Mupfumi
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Margaret Mokomane
- National Tuberculosis Reference Laboratory, Ministry of Health and Wellness, Gaborone, Botswana
| | - Botshelo Kgwaadira
- National Tuberculosis Reference Laboratory, Ministry of Health and Wellness, Gaborone, Botswana
| | - Vladimir Novitsky
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Ishmael Kasvosve
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Robin M. Warren
- DST-NRF Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- * E-mail: ,
| |
Collapse
|
20
|
Rutaihwa LK, Menardo F, Stucki D, Gygli SM, Ley SD, Malla B, Feldmann J, Borrell S, Beisel C, Middelkoop K, Carter EJ, Diero L, Ballif M, Jugheli L, Reither K, Fenner L, Brites D, Gagneux S. Multiple Introductions of Mycobacterium tuberculosis Lineage 2–Beijing Into Africa Over Centuries. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00112] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Rutaihwa LK, Sasamalo M, Jaleco A, Hella J, Kingazi A, Kamwela L, Kingalu A, Malewo B, Shirima R, Doetsch A, Feldmann J, Reinhard M, Borrell S, Brites D, Reither K, Doulla B, Fenner L, Gagneux S. Insights into the genetic diversity of Mycobacterium tuberculosis in Tanzania. PLoS One 2019; 14:e0206334. [PMID: 30978186 PMCID: PMC6461268 DOI: 10.1371/journal.pone.0206334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/14/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Human tuberculosis (TB) is caused by seven phylogenetic lineages of the Mycobacterium tuberculosis complex (MTBC), Lineage 1-7. Recent advances in rapid genotyping of MTBC based on single nucleotide polymorphisms (SNP), allow for phylogenetically robust strain classification, paving the way for defining genotype-phenotype relationships in clinical settings. Such studies have revealed that, in addition to host and environmental factors, strain variation in the MTBC influences the outcome of TB infection and disease. In Tanzania, such molecular epidemiological studies of TB however are scarce in spite of a high TB burden. METHODS AND FINDINGS Here we used SNP-typing to characterize a nationwide collection of 2,039 MTBC clinical isolates representative of 1.6% of all new and retreatment TB cases notified in Tanzania during 2012 and 2013. Four lineages, namely Lineage 1-4 were identified within the study population. The distribution and frequency of these lineages varied across regions but overall, Lineage 4 was the most frequent (n = 866, 42.5%), followed by Lineage 3 (n = 681, 33.4%) and 1 (n = 336, 16.5%), with Lineage 2 being the least frequent (n = 92, 4.5%). We found Lineage 2 to be independently associated with female sex (adjusted odds ratio [aOR] 2.14; 95% confidence interval [95% CI] 1.31 - 3.50, p = 0.002) and retreatment cases (aOR 1.67; 95% CI 0.95 - 2.84, p = 0. 065) in the study population. We found no associations between MTBC lineage and patient age or HIV status. Our sublineage typing based on spacer oligotyping on a subset of Lineage 1, 3 and 4 strains revealed the presence of mainly EAI, CAS and LAM families. Finally, we detected low levels of multidrug resistant isolates among a subset of 144 retreatment cases. CONCLUSIONS This study provides novel insights into the MTBC lineages and the possible influence of pathogen-related factors on the TB epidemic in Tanzania.
Collapse
Affiliation(s)
- Liliana K. Rutaihwa
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Mohamed Sasamalo
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Aladino Jaleco
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jerry Hella
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | | | - Lujeko Kamwela
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Amri Kingalu
- Central Tuberculosis Reference Laboratory, Dar es Salaam, Tanzania
- National Tuberculosis and Leprosy Programme, Dar es Salaam, Tanzania
| | - Bryceson Malewo
- Central Tuberculosis Reference Laboratory, Dar es Salaam, Tanzania
- National Tuberculosis and Leprosy Programme, Dar es Salaam, Tanzania
| | - Raymond Shirima
- Central Tuberculosis Reference Laboratory, Dar es Salaam, Tanzania
- National Tuberculosis and Leprosy Programme, Dar es Salaam, Tanzania
| | - Anna Doetsch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Julia Feldmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Basra Doulla
- Central Tuberculosis Reference Laboratory, Dar es Salaam, Tanzania
- National Tuberculosis and Leprosy Programme, Dar es Salaam, Tanzania
| | - Lukas Fenner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Palittapongarnpim P, Ajawatanawong P, Viratyosin W, Smittipat N, Disratthakit A, Mahasirimongkol S, Yanai H, Yamada N, Nedsuwan S, Imasanguan W, Kantipong P, Chaiyasirinroje B, Wongyai J, Toyo-Oka L, Phelan J, Parkhill J, Clark TG, Hibberd ML, Ruengchai W, Palittapongarnpim P, Juthayothin T, Tongsima S, Tokunaga K. Evidence for Host-Bacterial Co-evolution via Genome Sequence Analysis of 480 Thai Mycobacterium tuberculosis Lineage 1 Isolates. Sci Rep 2018; 8:11597. [PMID: 30072734 PMCID: PMC6072702 DOI: 10.1038/s41598-018-29986-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis presents a global health challenge. Mycobacterium tuberculosis is divided into several lineages, each with a different geographical distribution. M. tuberculosis lineage 1 (L1) is common in the high-burden areas in East Africa and Southeast Asia. Although the founder effect contributes significantly to the phylogeographic profile, co-evolution between the host and M. tuberculosis may also play a role. Here, we reported the genomic analysis of 480 L1 isolates from patients in northern Thailand. The studied bacterial population was genetically diverse, allowing the identification of a total of 18 sublineages distributed into three major clades. The majority of isolates belonged to L1.1 followed by L1.2.1 and L1.2.2. Comparison of the single nucleotide variant (SNV) phylogenetic tree and the clades defined by spoligotyping revealed some monophyletic clades representing EAI2_MNL, EAI2_NTM and EAI6_BGD1 spoligotypes. Our work demonstrates that ambiguity in spoligotype assignment could be partially resolved if the entire DR region is investigated. Using the information to map L1 diversity across Southeast Asia highlighted differences in the dominant strain-types in each individual country, despite extensive interactions between populations over time. This finding supported the hypothesis that there is co-evolution between the bacteria and the host, and have implications for tuberculosis disease control.
Collapse
Affiliation(s)
- Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand.
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand.
| | - Pravech Ajawatanawong
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
| | - Wasna Viratyosin
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Nat Smittipat
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Areeya Disratthakit
- Department of Medical Sciences, Ministry of Public Health, Tiwanon Road, Nonthaburi, Thailand
| | | | - Hideki Yanai
- TB-HIV Research Foundation, Chiangrai, Thailand
- Fukujuji Hospital, Japan Anti-tuberculosis Association (JATA), Kiyose, Japan
| | - Norio Yamada
- Research Institute of Tuberculosis, JATA, Kiyose, Japan
| | - Supalert Nedsuwan
- Chiangrai Prachanukroh Hospital, Ministry of Public Health, Chiangrai, Thailand
| | - Worarat Imasanguan
- Chiangrai Prachanukroh Hospital, Ministry of Public Health, Chiangrai, Thailand
| | - Pacharee Kantipong
- Chiangrai Prachanukroh Hospital, Ministry of Public Health, Chiangrai, Thailand
| | | | | | - Licht Toyo-Oka
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Jody Phelan
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Taane G Clark
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Wuthiwat Ruengchai
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
| | | | - Tada Juthayothin
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Sissades Tongsima
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Chihota VN, Niehaus A, Streicher EM, Wang X, Sampson SL, Mason P, Källenius G, Mfinanga SG, Pillay M, Klopper M, Kasongo W, Behr MA, Gey van Pittius NC, van Helden PD, Couvin D, Rastogi N, Warren RM. Geospatial distribution of Mycobacterium tuberculosis genotypes in Africa. PLoS One 2018; 13:e0200632. [PMID: 30067763 PMCID: PMC6070189 DOI: 10.1371/journal.pone.0200632] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/29/2018] [Indexed: 11/24/2022] Open
Abstract
Objective To investigate the distribution of Mycobacterium tuberculosis genotypes across Africa. Methods The SITVIT2 global repository and PUBMED were searched for spoligotype and published genotype data respectively, of M. tuberculosis from Africa. M. tuberculosis lineages in Africa were described and compared across regions and with those from 7 European and 6 South-Asian countries. Further analysis of the major lineages and sub-lineages using Principal Component analysis (PCA) and hierarchical cluster analysis were done to describe clustering by geographical regions. Evolutionary relationships were assessed using phylogenetic tree analysis. Results A total of 14727 isolates from 35 African countries were included in the analysis and of these 13607 were assigned to one of 10 major lineages, whilst 1120 were unknown. There were differences in geographical distribution of major lineages and their sub-lineages with regional clustering. Southern African countries were grouped based on high prevalence of LAM11-ZWE strains; strains which have an origin in Portugal. The grouping of North African countries was due to the high percentage of LAM9 strains, which have an origin in the Eastern Mediterranean region. East African countries were grouped based on Central Asian (CAS) and East-African Indian (EAI) strain lineage possibly reflecting historic sea trade with Asia, while West African Countries were grouped based on Cameroon lineage of unknown origin. A high percentage of the Haarlem lineage isolates were observed in the Central African Republic, Guinea, Gambia and Tunisia, however, a mixed distribution prevented close clustering. Conclusions This study highlighted that the TB epidemic in Africa is driven by regional epidemics characterized by genetically distinct lineages of M. tuberculosis. M. tuberculosis in these regions may have been introduced from either Europe or Asia and has spread through pastoralism, mining and war. The vast array of genotypes and their associated phenotypes should be considered when designing future vaccines, diagnostics and anti-TB drugs.
Collapse
Affiliation(s)
- Violet N. Chihota
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- The Aurum Institute, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Antoinette Niehaus
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Elizabeth M. Streicher
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Xia Wang
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Samantha L. Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Peter Mason
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Gunilla Källenius
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Sayoki G. Mfinanga
- National Institute for Medical Research Muhimbili Medical Research Centre, Dar es Saalam, Tanzania
| | - Marnomorney Pillay
- Department of Medical Microbiology University of KwaZulu Natal, Durban, South Africa
| | - Marisa Klopper
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | | | - Marcel A. Behr
- Division of Infectious Diseases, Department of Medicine McGill University Health Centre, Montreal, Quebec, Canada
| | - Nicolaas C. Gey van Pittius
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Paul D. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Robin M. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
24
|
Ayub Y, Mollel JT, Mbugi EV. Potential Value of Qiagen and PrepIT•MAX Kits in Extraction of Mycobacterial DNA From Presumptive Tuberculosis Archived Formalin-Fixed Paraffin-Embedded Tissues. East Afr Health Res J 2018; 2:18-25. [PMID: 34308170 PMCID: PMC8279293 DOI: 10.24248/eahrj-d-17-00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND DNA analysis has potential for screening for and diagnosing a variety of conditions as well as the characterization of various pathogens for many purposes including to identify genetic disorders and mutations, study genetic diversity, and establish evolutional trends. METHODS Our study compared the performance of 2 DNA extraction kits: Qiagen and prepIT•MAX. The study tested 160 formalin-fixed paraffin-embedded (FFPE) human tissue samples that had been collected at Muhimbili National Hospital (MNH) between 2010 and 2016. For each sample, DNA extraction was performed using both the Qiagen and prepIT•MAX kits followed by polymerase chain reaction (PCR) tests to target the RNA polymerase gene and gel electrophoresis. RESULTS The findings showed that the Qiagen was 3 times superior to the prepIT•MAX kit in successfully extracting mycobacterial DNA from presumptive tuberculosis (TB) FFPE tissues. Of the 160 previously Ziehl-Neelsen stain-negative Mycobacterium tuberculosis suspicious tissue samples, 12 (7.5%) tested positive with the PCR. Of the 12 PCR-detected positive samples, 8 (66.7%) yielded positive results with the Qiagen kit only and 4 (33.3%) yielded positive results with both Qiagen and prepIT•MAX kits. Additionally, 10 (83.3%) came from well-formed granuloma, 1 (8%) from caseous necrosis, and 1 (8.3%) Langhans-type giant cells endorsing their potential for housing infection such as TB adenitis. CONCLUSIONS A combination of molecular techniques, microscopy, and pathological features increases detection of M. tuberculosis from FFPE tissues. Both the Qiagen and the prepIT•MAX DNA extraction kits have shown a remarkable capability for extracting DNA from M. tuberculosis, although examination of FFPE tissues is not an intended use for the prepIT MAX, according to the manufacturer. In resource-limited countries, however, these kits may complement each other. We recommend further studies for validation and optimization, which includes the cost effectiveness of prepIT•MAX extraction kit to advocate for its use in extraction of mycobacterial DNA from FFPE tissues.
Collapse
Affiliation(s)
- Yunus Ayub
- Biochemistry Department, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Ministry of Health, Community Development, Gender, Elders & Children, Department of Human Resources Development, Singida Health Laboratory Assistants Training Centre, Singida, Tanzania
| | - Jackson T Mollel
- Department of Biological and Pre-Clinical studies, Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Erasto V Mbugi
- Biochemistry Department, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
25
|
Kidenya BR, Mshana SE, Fitzgerald DW, Ocheretina O. Genotypic drug resistance using whole-genome sequencing of Mycobacterium tuberculosis clinical isolates from North-western Tanzania. Tuberculosis (Edinb) 2018; 109:97-101. [PMID: 29559127 PMCID: PMC5912878 DOI: 10.1016/j.tube.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/02/2018] [Accepted: 02/17/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Drug resistant Tuberculosis (TB) is considered a global public health threat. Whole-genome sequencing (WGS) is a new technology for tuberculosis (TB) diagnostics and is capable of providing rapid drug resistance profiles and genotypes for epidemiologic surveillance. Therefore, we used WGS to determine genotypic drug resistance profiles and genetic diversity of drug resistant Mycobacterium tuberculosis isolates from Mwanza, North-western Tanzania. METHODS A cross-sectional study was conducted at the Bugando Medical Center (BMC) from September 2014 to June 2015. Consecutively, smear-positive newly diagnosed TB patients aged ≥18 years were enrolled. Sputum samples were cultured on Löwenstein-Jensen (LJ) slants. Mycobacterial genomic DNA was extracted for WGS to determine drug resistant mutations for first and second line drugs as well as the spoligotypes. RESULTS A total of 78 newly diagnosed patients with pulmonary TB with a median age of 37 [IQR: 30-46] years were enrolled. Of these, 57.8% (45/74) were males and 34.6% (27/78) were HIV positive. Mycobacterium tuberculosis genomic DNA for WGS was obtained from isolates in 74 (94.9%) patients. Of the 74 isolates, six (8.1%) isolates harbored mutations for resistance to at least one drug. The resistance to the drugs was isoniazid 3/74 (4.1%), rifampicin mono-resistant 2/74 (2.7%), ethambutol 2/74 (2.7%) and streptomycin 1/74 (1.4%). None was isoniazid mono-resistant. Of the 74 only one (1.4%) patient had MDR-TB. The resistance to ethionamide, the second line drug, was detected in one patient (1.4%). None was resistant to pyrazinamide, fluoroquinolones, kanamycin, amikacin, or capreomycin. The mutations detected were mabA-inhA promoter region C(-15)T and katG Ser513Thr for isoniazid; rpoB His526Leu and rpoB Ser531Leu for rifampicin; embB Met306Val and embB Met306Ile for ethambutol; rpsL Lys43Arg for streptomycin; and mabA-inhA promoter region C(-15)T for ethionamide. The spoligotypes of the drug resistant Mycobacterium tuberculosis were distinct to all six isolates and belonged to T1, T2, T3-ETH, CAS1-DELHI, EAI5 and LAM11-ZWE lineages. CONCLUSION The genetic drug resistance profile of Mycobacterium tuberculosis isolates from North-western Tanzania comprises of the common previously reported mutations. The prevalence of resistance to first and second line drugs including MDR-TB is low. Six drug resistant strains exhibited different spoligotypes, suggesting limited transmission of drug resistant strains in the region.
Collapse
MESH Headings
- Adult
- Antitubercular Agents/therapeutic use
- Bacteriological Techniques
- Cross-Sectional Studies
- DNA Mutational Analysis
- DNA, Bacterial/genetics
- Drug Resistance, Multiple, Bacterial/genetics
- Female
- Genotype
- Humans
- Male
- Microbial Sensitivity Tests
- Middle Aged
- Molecular Epidemiology
- Mutation
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Phenotype
- Tanzania/epidemiology
- Tuberculosis, Multidrug-Resistant/diagnosis
- Tuberculosis, Multidrug-Resistant/drug therapy
- Tuberculosis, Multidrug-Resistant/epidemiology
- Tuberculosis, Multidrug-Resistant/microbiology
- Tuberculosis, Pulmonary/diagnosis
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/epidemiology
- Tuberculosis, Pulmonary/microbiology
- Exome Sequencing
- Young Adult
Collapse
Affiliation(s)
- Benson R Kidenya
- Department of Biochemistry and Molecular Biology, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania.
| | - Stephen E Mshana
- Department of Medical Microbiology/Immunology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Daniel W Fitzgerald
- Center for Global Health, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY, USA
| | - Oksana Ocheretina
- Center for Global Health, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
26
|
Malm S, Linguissi LSG, Tekwu EM, Vouvoungui JC, Kohl TA, Beckert P, Sidibe A, Rüsch-Gerdes S, Madzou-Laboum IK, Kwedi S, Penlap Beng V, Frank M, Ntoumi F, Niemann S. New Mycobacterium tuberculosis Complex Sublineage, Brazzaville, Congo. Emerg Infect Dis 2018; 23:423-429. [PMID: 28221129 PMCID: PMC5382753 DOI: 10.3201/eid2303.160679] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tuberculosis is a leading cause of illness and death in Congo. No data are available about the population structure and transmission dynamics of the Mycobacterium tuberculosis complex strains prevalent in this central Africa country. On the basis of single-nucleotide polymorphisms detected by whole-genome sequencing, we phylogenetically characterized 74 MTBC isolates from Brazzaville, the capital of Congo. The diversity of the study population was high; most strains belonged to the Euro-American lineage, which split into Latin American Mediterranean, Uganda I, Uganda II, Haarlem, X type, and a new dominant sublineage named Congo type (n = 26). Thirty strains were grouped in 5 clusters (each within 12 single-nucleotide polymorphisms), from which 23 belonged to the Congo type. High cluster rates and low genomic diversity indicate recent emergence and transmission of the Congo type, a new Euro-American sublineage of MTBC.
Collapse
|
27
|
Hijikata M, Keicho N, Duc LV, Maeda S, Hang NTL, Matsushita I, Kato S. Spoligotyping and whole-genome sequencing analysis of lineage 1 strains of Mycobacterium tuberculosis in Da Nang, Vietnam. PLoS One 2017; 12:e0186800. [PMID: 29049400 PMCID: PMC5648229 DOI: 10.1371/journal.pone.0186800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/06/2017] [Indexed: 11/18/2022] Open
Abstract
Background Spacer oligonucleotide typing (spoligotyping), a widely used, classical genotyping method for Mycobacterium tuberculosis complex (MTBC), is a PCR-based dot-blot hybridization technique to detect the genetic diversity of the direct repeat (DR) region. Of the seven major MTBC lineages in the world, lineage 1 (Indo-Oceanic) mostly corresponds to the East African–Indian (EAI) spoligotype family in East Africa and Southeast Asia. Objectives We investigated the genomic features of Vietnamese lineage 1 strains, comparing spoligotype patterns using whole-genome sequencing (WGS) data. Methods M. tuberculosis strains isolated in Da Nang, Vietnam were subjected to conventional spoligotyping, followed by WGS analysis using a high-throughput sequencer. Vietnamese lineage 1 strains were further analyzed with other lineage 1 strains obtained from a public database. Results Indicating a major spoligotype in Da Nang, 86 (46.2%) of the 186 isolates belonged to the EAI family or lineage 1. Although typical EAI4-VNM strains are characterized by the deletion of spacers 26 and 27, 65 (75.6%) showed ambiguous signals on spacer 26. De novo assembly of the entire DR region and in silico spoligotyping analysis suggested the absence of spacer 26, and direct sequencing revealed that the 17th spacer sequence not used for conventional typing, was cross-hybridized to the spacer 26 probe. Vietnamese EAI4-VNM, other EAI-like strains, and those showing a non-EAI pattern lacking many spacers formed a monophyletic group separate from other EAI families in the world. Conclusion Information about the alignment of spacers in the entire DR region obtained from WGS data provides a clue for the determination of experimentally ambiguous spoligo patterns. WGS data also helped to analyze the hidden relationships between apparently distinct spoligo patterns.
Collapse
Affiliation(s)
- Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Naoto Keicho
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
- * E-mail:
| | | | - Shinji Maeda
- Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Hokkaido, Japan
| | | | - Ikumi Matsushita
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Seiya Kato
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| |
Collapse
|
28
|
The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:43-78. [PMID: 29116629 DOI: 10.1007/978-3-319-64371-7_3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is a contagious disease with a complex epidemiology. Therefore, molecular typing (genotyping) of Mycobacterium tuberculosis complex (MTBC) strains is of primary importance to effectively guide outbreak investigations, define transmission dynamics and assist global epidemiological surveillance of the disease. Large-scale genotyping is also needed to get better insights into the biological diversity and the evolution of the pathogen. Thanks to its shorter turnaround and simple numerical nomenclature system, mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing, based on 24 standardized plus 4 hypervariable loci, optionally combined with spoligotyping, has replaced IS6110 DNA fingerprinting over the last decade as a gold standard among classical strain typing methods for many applications. With the continuous progress and decreasing costs of next-generation sequencing (NGS) technologies, typing based on whole genome sequencing (WGS) is now increasingly performed for near complete exploitation of the available genetic information. However, some important challenges remain such as the lack of standardization of WGS analysis pipelines, the need of databases for sharing WGS data at a global level, and a better understanding of the relevant genomic distances for defining clusters of recent TB transmission in different epidemiological contexts. This chapter provides an overview of the evolution of genotyping methods over the last three decades, which culminated with the development of WGS-based methods. It addresses the relative advantages and limitations of these techniques, indicates current challenges and potential directions for facilitating standardization of WGS-based typing, and provides suggestions on what method to use depending on the specific research question.
Collapse
|
29
|
Mbugi EV, Katale BZ, Lupindu AM, Keyyu JD, Kendall SL, Dockrell HM, Michel AL, Matee MI, van Helden PD. Tuberculosis Infection: Occurrence and Risk Factors in Presumptive Tuberculosis Patients of the Serengeti Ecosystem in Tanzania. East Afr Health Res J 2017; 1:19-30. [PMID: 34308155 PMCID: PMC8279301 DOI: 10.24248/eahrj-d-16-00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/01/2017] [Indexed: 11/20/2022] Open
Abstract
Background Cross-species tuberculosis (TB) transmission between humans and animals has been reported for quite a long time in sub-Saharan Africa. Because humans and animals coexist in the same ecosystem, exploring their potential for cross-species transmission and the impact the disease may have on the health of humans, animals, and their products is critical. Objectives This study aimed to identify risk factors for transmission of TB (Mycobacterium tuberculosis) and to assess the potential for zoonotic TB (Mycobacterium bovis) transmission in the Serengeti ecosystem where humans and animals are in intense contact. Our aim is to create a base for future implementation of appropriate control strategies to limit infection in both humans and animals. Methodology We administered a semi-structured questionnaire to 421 self-reporting patients to gather information on risk factors and TB occurrence. In a parallel study, researchers screened sputum smears using Ziehl-Neelsen staining and confirmed by mycobacterial culture. We then performed descriptive statistics (Pearson's chi-square test) and logistic regression analysis to establish frequencies, association, and quantification of the risk factors associated with TB cases. Results Our findings showed 44% (95% confidence interval [CI], 0.40-0.49) of the results were positive from sputum samples collected over a 1-year duration in areas with a high TB burden, particularly the Bunda district, followed by the Serengeti and Ngorongoro districts. Of the culture-positive patients who also had infections other than TB (43/187 patients), 21 (49%) were HIV positive. Contact with livestock products (odds ratio [OR] 6.0; 95% CI, 1.81-19.9), infrequent milk consumption (OR 2.5; 95% CI, 1.42-4.23), cigarette smoking (OR 2.9; 95% CI, 1.19-7.1.2), and alcohol consumption (OR 2.3; 95% CI, 1.22-4.23) were associated with a higher likelihood of TB infection. Conclusion There was no evidence of direct cross-species transmission of either M tuberculosis or M bovis between humans and animals using the study methods. The absence of cross-species TB transmission could be due to limited chances of contact rather than an inability of cross-species disease transmission. In addition, not all people with presumptive TB are infected with TB, and therefore control strategies should emphasise confirming TB status before administering anti-TB drugs.
Collapse
Affiliation(s)
- Erasto V Mbugi
- Department of Biochemistry, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,Departments of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Bugwesa Z Katale
- Departments of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,Tanzania Wildlife Research Institute, Arusha, Tanzania
| | - Athumani M Lupindu
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | | | - Hazel M Dockrell
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Anita L Michel
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Mecky I Matee
- Departments of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Paul D van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/Medical Research Council, Centre for Molecular and Cellular Biology, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|