1
|
Murata D, Roy S, Lutsenko S, Iijima M, Sesaki H. Slc25a3-dependent copper transport controls flickering-induced Opa1 processing for mitochondrial safeguard. Dev Cell 2024; 59:2578-2592.e7. [PMID: 38986607 PMCID: PMC11461135 DOI: 10.1016/j.devcel.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Following the Goldilocks principle, mitochondria size must be "just right." Mitochondria balance division and fusion to avoid becoming too big or too small. Defects in this balance produce dysfunctional mitochondria in human diseases. Mitochondrial safeguard (MitoSafe) is a defense mechanism that protects mitochondria against extreme enlarging by suppressing fusion in mammalian cells. In MitoSafe, hyperfused mitochondria elicit flickering-short pulses of mitochondrial depolarization. Flickering activates an inner membrane protease, Oma1, which in turn proteolytically inactivates a mitochondrial fusion protein, Opa1. The mechanisms underlying flickering are unknown. Using a live-imaging screen, we identified Slc25a3 (a mitochondrial carrier transporting phosphate and copper) as necessary for flickering and Opa1 cleavage. Remarkably, copper, but not phosphate, is critical for flickering. Furthermore, we found that two copper-containing mitochondrial enzymes, superoxide dismutase 1 and cytochrome c oxidase, regulate flickering. Our data identify an unforeseen mechanism linking copper, redox homeostasis, and membrane flickering in mitochondrial defense against deleterious fusion.
Collapse
Affiliation(s)
- Daisuke Murata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Kozhukhar N, Alexeyev MF. Efficient Elimination of mtDNA from Mammalian Cells with 2',3'-Dideoxycytidine. DNA 2024; 4:201-211. [PMID: 39035221 PMCID: PMC11259038 DOI: 10.3390/dna4030013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Mammalian cell lines devoid of mitochondrial DNA (mtDNA) are indispensable in studies aimed at elucidating the contribution of mtDNA to various cellular processes or interactions between nuclear and mitochondrial genomes. However, the repertoire of tools for generating such cells (also known as rho-0 or ρ0 cells) remains limited, and approaches remain time- and labor-intensive, ultimately limiting their availability. Ethidium bromide (EtBr), which is most commonly used to induce mtDNA loss in mammalian cells, is cytostatic and mutagenic as it affects both nuclear and mitochondrial genomes. Therefore, there is growing interest in new tools for generating ρ0 cell lines. Here, we examined the utility of 2',3'-dideoxycytidine (ddC, zalcitabine) alone or in combination with EtBr for generating ρ0 cell lines of mouse and human origin as well as inducing the ρ0 state in mouse/human somatic cell hybrids. We report that ddC is superior to EtBr in both immortalized mouse fibroblasts and human 143B cells. Also, unlike EtBr, ddC exhibits no cytostatic effects at the highest concentration tested (200 μM), making it more suitable for general use. We conclude that ddC is a promising new tool for generating mammalian ρ0 cell lines.
Collapse
Affiliation(s)
- Natalya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail F. Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
3
|
Schubert E, Mun K, Larsson M, Panagiotou S, Idevall-Hagren O, Svensson C, Punga T. Complex regulation of mitochondrial signaling by human adenovirus minor capsid protein VI. J Virol 2024; 98:e0035624. [PMID: 38837380 PMCID: PMC11265209 DOI: 10.1128/jvi.00356-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024] Open
Abstract
The controlled release of mitochondrial content into the cytosol has emerged as one of the key steps in mitochondrial signaling. In particular, the release of mitochondrial DNA (mtDNA) into the cytosol has been shown to activate interferon beta (IFN-β) gene expression to execute the innate immune response. In this report, we show that human adenovirus type 5 (HAdV-C5) infection induces the release of mtDNA into the cytosol. The release of mtDNA is mediated by the viral minor capsid protein VI (pVI), which localizes to mitochondria. The presence of the mitochondrial membrane proteins Bak and Bax are needed for the mtDNA release, whereas the viral E1B-19K protein blocked pVI-mediated mtDNA release. Surprisingly, the pVI-mediated mtDNA release did not increase but inhibited the IFN-β gene expression. Notably, the pVI expression caused mitochondrial leakage of the HSP60 protein. The latter prevented specific phosphorylation of the interferon regulatory factor 3 (IRF3) needed for IFN-β gene expression. Overall, we assign a new mitochondria and IFN-β signaling-modulating function to the HAdV-C5 minor capsid protein VI. IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing various self-limiting diseases, including conjunctivitis and the common cold. HAdVs need to interfere with multiple cellular signaling pathways during the infection to gain control over the host cell. In this study, we identified human adenovirus type 5 (HAdV-C5) minor capsid protein VI as a factor modulating mitochondrial membrane integrity and mitochondrial signaling. We show that pVI-altered mitochondrial signaling impedes the cell's innate immune response, which may benefit HAdV growth. Overall, our study provides new detailed insights into the HAdV-mitochondria interactions and signaling. This knowledge is helpful when developing new anti-viral treatments against pathogenic HAdV infections and improving HAdV-based therapeutics.
Collapse
Affiliation(s)
- Erik Schubert
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kwangchol Mun
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mårten Larsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Catharina Svensson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Tao Y, He C, Lin D, Gu Z, Pu W. Comprehensive Identification of Mitochondrial Pseudogenes (NUMTs) in the Human Telomere-to-Telomere Reference Genome. Genes (Basel) 2023; 14:2092. [PMID: 38003036 PMCID: PMC10671835 DOI: 10.3390/genes14112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Practices related to mitochondrial research have long been hindered by the presence of mitochondrial pseudogenes within the nuclear genome (NUMTs). Even though partially assembled human reference genomes like hg38 have included NUMTs compilation, the exhaustive NUMTs within the only complete reference genome (T2T-CHR13) remain unknown. Here, we comprehensively identified the fixed NUMTs within the reference genome using human pan-mitogenome (HPMT) from GeneBank. The inclusion of HPMT serves the purpose of establishing an authentic mitochondrial DNA (mtDNA) mutational spectrum for the identification of NUMTs, distinguishing it from the polymorphic variations found in NUMTs. Using HPMT, we identified approximately 10% of additional NUMTs in three human reference genomes under stricter thresholds. And we also observed an approximate 6% increase in NUMTs in T2T-CHR13 compared to hg38, including NUMTs on the short arms of chromosomes 13, 14, and 15 that were not assembled previously. Furthermore, alignments based on 20-mer from mtDNA suggested the presence of more mtDNA-like short segments within the nuclear genome, which should be avoided for short amplicon or cell free mtDNA detection. Finally, through the assay of transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) on cell lines before and after mtDNA elimination, we concluded that NUMTs have a minimal impact on bulk ATAC-seq, even though 16% of sequencing data originated from mtDNA.
Collapse
Affiliation(s)
- Yichen Tao
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.T.); (D.L.)
| | - Chengpeng He
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511458, China;
| | - Deng Lin
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.T.); (D.L.)
| | - Zhenglong Gu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.T.); (D.L.)
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511458, China;
| | - Weilin Pu
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511458, China;
| |
Collapse
|
5
|
Cai X, Ng CP, Jones O, Fung TS, Ryu KW, Li D, Thompson CB. Lactate activates the mitochondrial electron transport chain independently of its metabolism. Mol Cell 2023; 83:3904-3920.e7. [PMID: 37879334 PMCID: PMC10752619 DOI: 10.1016/j.molcel.2023.09.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
Lactate has long been considered a cellular waste product. However, we found that as extracellular lactate accumulates, it also enters the mitochondrial matrix and stimulates mitochondrial electron transport chain (ETC) activity. The resulting increase in mitochondrial ATP synthesis suppresses glycolysis and increases the utilization of pyruvate and/or alternative respiratory substrates. The ability of lactate to increase oxidative phosphorylation does not depend on its metabolism. Both L- and D-lactate are effective at enhancing ETC activity and suppressing glycolysis. Furthermore, the selective induction of mitochondrial oxidative phosphorylation by unmetabolized D-lactate reversibly suppressed aerobic glycolysis in both cancer cell lines and proliferating primary cells in an ATP-dependent manner and enabled cell growth on respiratory-dependent bioenergetic substrates. In primary T cells, D-lactate enhanced cell proliferation and effector function. Together, these findings demonstrate that lactate is a critical regulator of the ability of mitochondrial oxidative phosphorylation to suppress glucose fermentation.
Collapse
Affiliation(s)
- Xin Cai
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles P Ng
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Olivia Jones
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tak Shun Fung
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Keun Woo Ryu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dayi Li
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
6
|
Arumugam S, Li B, Boodapati SLT, Nathanson MH, Sun B, Ouyang X, Mehal WZ. Mitochondrial DNA and the STING pathway are required for hepatic stellate cell activation. Hepatology 2023; 78:1448-1461. [PMID: 37013923 PMCID: PMC10804318 DOI: 10.1097/hep.0000000000000388] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 03/26/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND AND AIMS TGF-β induces multiple structural and functional changes in quiescent HSCs, including an increase in proliferation, mitochondrial mass, and matrix deposition. HSC transdifferentiation requires significant bioenergetic capacity, and it is not known how TGF-β-mediated transcriptional upregulation is coordinated with the bioenergetic capacity of HSCs. APPROACH AND RESULTS Mitochondria are key bioenergetic organelles, and here, we report that TGF-β induces release of mitochondrial DNA (mtDNA) from healthy HSCs through voltage-dependent anion channels (VDACs), with the formation of an mtDNA-CAP on the external mitochondrial membrane. This stimulates organization of cytosolic cyclic GMP-AMP synthase (cGAS) onto the mtDNA-CAP and subsequent activation of the cGAS-STING-IRF3 pathway. TGF-β is unable to induce conversion of HSCs from a quiescent to a transdifferentiated phenotype in the absence of mtDNA, VDAC, or stimulator of interferon genes (STING). Transdifferentiation by TGF-β is blocked by a STING inhibitor, which also reduces liver fibrosis prophylactically and therapeutically. CONCLUSIONS We have identified a pathway that requires the presence of functional mitochondria for TGF-β to mediate HSC transcriptional regulation and transdifferentiation and therefore provides a key link between bioenergetic capacity of HSCs and signals for transcriptional upregulation of genes of anabolic pathways.
Collapse
Affiliation(s)
- Suyavaran Arumugam
- Department of Internal Medicine, Section of Digestive
Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Hepatobiliary Surgery, the Affiliated Drum
Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Binghua Li
- Department of Internal Medicine, Section of Digestive
Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Hepatobiliary Surgery, the Affiliated Drum
Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Sri Lakshmi Tejaswi Boodapati
- Department of Internal Medicine, Section of Digestive
Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael H. Nathanson
- Department of Internal Medicine, Section of Digestive
Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, the Affiliated Drum
Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinshou Ouyang
- Department of Internal Medicine, Section of Digestive
Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Wajahat Z. Mehal
- Department of Internal Medicine, Section of Digestive
Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Internal Medicine, West Haven Veterans
Medical Center, West Haven, Connecticut, USA
| |
Collapse
|
7
|
Cai X, Ng CC, Jones O, Fung TS, Ryu K, Li D, Thompson CB. Lactate activates the mitochondrial electron transport chain independent of its metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551712. [PMID: 37577602 PMCID: PMC10418154 DOI: 10.1101/2023.08.02.551712] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Lactate has long been considered a cellular waste product. However, we found that as extracellular lactate accumulates, it also enters the mitochondrial matrix and stimulates mitochondrial electron transport chain (ETC) activity. The resulting increase in mitochondrial ATP synthesis suppresses glycolysis and increases the utilization of pyruvate and/or alternative respiratory substrates. The ability of lactate to increase oxidative phosphorylation does not depend on its metabolism. Both L- and D-lactate are effective at enhancing ETC activity and suppressing glycolysis. Furthermore, the selective induction of mitochondrial oxidative phosphorylation by unmetabolized D-lactate reversibly suppressed aerobic glycolysis in both cancer cell lines and proliferating primary cells in an ATP-dependent manner and enabled cell growth on respiratory-dependent bioenergetic substrates. In primary T cells, D-lactate enhanced cell proliferation and effector function. Together, these findings demonstrate that lactate is a critical regulator of the ability of mitochondrial oxidative phosphorylation to suppress glucose fermentation.
Collapse
|
8
|
Khozhukhar N, Spadafora D, Rodriguez Rodriguez YA, Fayzulin R, Alexeyev M. Generation of Mammalian Cells Devoid of Mitochondrial DNA (ρ 0 cells). Curr Protoc 2023; 3:e679. [PMID: 36809687 PMCID: PMC10151036 DOI: 10.1002/cpz1.679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
To cope with DNA damage, mitochondria have developed a pathway whereby severely damaged or unrepairable mitochondrial DNA (mtDNA) molecules can be discarded and degraded, after which new molecules are synthesized using intact templates. In this unit, we describe a method that harnesses this pathway to eliminate mtDNA from mammalian cells by transiently overexpressing the Y147A mutant of human uracil-N-glycosylase (mUNG1) in mitochondria. We also provide alternate protocols for mtDNA elimination using either combined treatment with ethidium bromide (EtBr) and dideoxycytidine (ddC) or clustered regulatory interspersed short palindromic repeat (CRISPR)-Cas9-mediated knockout of TFAM or other genes essential for mtDNA replication. Support protocols detail approaches for several processes: (1) genotyping ρ0 cells of human, mouse, and rat origin by polymerase chain reaction (PCR); (2) quantification of mtDNA by quantitative PCR (qPCR); (3) preparation of calibrator plasmids for mtDNA quantification; and (4) quantification of mtDNA by direct droplet digital PCR (dddPCR). © 2023 Wiley Periodicals LLC. Basic Protocol: Inducing mtDNA loss with mUNG1 Alternate Protocol 1: Generation of ρ0 cells by mtDNA depletion with EtBr and ddC Alternate Protocol 2: Generation of ρ0 cells by knocking out genes critical for mtDNA replication Support Protocol 1: Genotyping ρ0 cells by DirectPCR Support Protocol 2: Determination of mtDNA copy number by qPCR Support Protocol 3: Preparation of calibrator plasmid for qPCR Support Protocol 4: Determination of mtCN by direct droplet digital PCR (dddPCR).
Collapse
Affiliation(s)
| | | | | | - Rafik Fayzulin
- University of South Alabama, Department of Physiology and Cell Biology
| | - Mikhail Alexeyev
- University of South Alabama, Department of Physiology and Cell Biology
| |
Collapse
|
9
|
The role of mitochondria in pharmacological ascorbate-induced toxicity. Sci Rep 2022; 12:22521. [PMID: 36581766 PMCID: PMC9800562 DOI: 10.1038/s41598-022-27185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
At pharmacological levels, ascorbate (P-AscH-) acts as a pro-oxidant by generating H2O2, depleting ATP in sensitive cells leading to cell death. The aim of this study was to determine the role of ATP production by oxidative phosphorylation or glycolysis in mechanisms of resistance to P-AscH-induced cell death. Pancreatic cancer cells were used to generate ρ0 cells by mitochondrial overexpression of the Y147A mutant uracil-N-glycosylase or Herpes Simplex Virus protein. The ρ0 phenotype was confirmed by probing for mitochondrial DNA, mitochondrial DNA-encoded cytochrome c oxidase subunit 2, and monitoring the rate of oxygen consumption. In ρ0 cells, glycolysis accounted for 100% of ATP production as there was no mitochondrial oxygen consumption. Even though the activities of H2O2-removing antioxidant enzymes were similar in both the parental and ρ0 clones, P-AscH- -induced clonogenic cell death in ρ0 cells showed more resistance than the parental cell line. In addition, P-AscH- induced more DNA damage and more consumption of NAD+ and greater decreases in the production of ATP in the parental cell line compared to the ρ0 cells. Thus, cancer cells that largely use oxidative phosphorylation to generate ATP may be more sensitive to P-AscH- compared with cells that are glycolysis-dependent.
Collapse
|
10
|
Feric M, Sarfallah A, Dar F, Temiakov D, Pappu RV, Misteli T. Mesoscale structure-function relationships in mitochondrial transcriptional condensates. Proc Natl Acad Sci U S A 2022; 119:e2207303119. [PMID: 36191226 PMCID: PMC9565167 DOI: 10.1073/pnas.2207303119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022] Open
Abstract
In live cells, phase separation is thought to organize macromolecules into membraneless structures known as biomolecular condensates. Here, we reconstituted transcription in condensates from purified mitochondrial components using optimized in vitro reaction conditions to probe the structure-function relationships of biomolecular condensates. We find that the core components of the mt-transcription machinery form multiphasic, viscoelastic condensates in vitro. Strikingly, the rates of condensate-mediated transcription are substantially lower than in solution. The condensate-mediated decrease in transcriptional rates is associated with the formation of vesicle-like structures that are driven by the production and accumulation of RNA during transcription. The generation of RNA alters the global phase behavior and organization of transcription components within condensates. Coarse-grained simulations of mesoscale structures at equilibrium show that the components stably assemble into multiphasic condensates and that the vesicles formed in vitro are the result of dynamical arrest. Overall, our findings illustrate the complex phase behavior of transcribing, multicomponent condensates, and they highlight the intimate, bidirectional interplay of structure and function in transcriptional condensates.
Collapse
Affiliation(s)
- Marina Feric
- National Cancer Institute, NIH, Bethesda, MD 20892
- National Institute of General Medical Sciences, NIH, Bethesda, MD 20892
| | - Azadeh Sarfallah
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Furqan Dar
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Dmitry Temiakov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
11
|
Abstract
In the course of its short history, mitochondrial DNA (mtDNA) has made a long journey from obscurity to the forefront of research on major biological processes. mtDNA alterations have been found in all major disease groups, and their significance remains the subject of intense research. Despite remarkable progress, our understanding of the major aspects of mtDNA biology, such as its replication, damage, repair, transcription, maintenance, etc., is frustratingly limited. The path to better understanding mtDNA and its role in cells, however, remains torturous and not without errors, which sometimes leave a long trail of controversy behind them. This review aims to provide a brief summary of our current knowledge of mtDNA and highlight some of the controversies that require attention from the mitochondrial research community.
Collapse
Affiliation(s)
- Inna Shokolenko
- Department of Biomedical Sciences, Pat Capps Covey College of Allied Health Professions, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
- Correspondence:
| |
Collapse
|
12
|
Lang M, Grünewald A, Pramstaller PP, Hicks AA, Pichler I. A genome on shaky ground: exploring the impact of mitochondrial DNA integrity on Parkinson's disease by highlighting the use of cybrid models. Cell Mol Life Sci 2022; 79:283. [PMID: 35513611 PMCID: PMC9072496 DOI: 10.1007/s00018-022-04304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
Mitochondria play important roles in the regulation of key cellular processes, including energy metabolism, oxidative stress response, and signaling towards cell death or survival, and are distinguished by carrying their own genome (mtDNA). Mitochondrial dysfunction has emerged as a prominent cellular mechanism involved in neurodegeneration, including Parkinson’s disease (PD), a neurodegenerative movement disorder, characterized by progressive loss of dopaminergic neurons and the occurrence of proteinaceous Lewy body inclusions. The contribution of mtDNA variants to PD pathogenesis has long been debated and is still not clearly answered. Cytoplasmic hybrid (cybrid) cell models provided evidence for a contribution of mtDNA variants to the PD phenotype. However, conclusive evidence of mtDNA mutations as genetic cause of PD is still lacking. Several models have shown a role of somatic, rather than inherited mtDNA variants in the impairment of mitochondrial function and neurodegeneration. Accordingly, several nuclear genes driving inherited forms of PD are linked to mtDNA quality control mechanisms, and idiopathic as well as familial PD tissues present increased mtDNA damage. In this review, we highlight the use of cybrids in this PD research field and summarize various aspects of how and to what extent mtDNA variants may contribute to the etiology of PD.
Collapse
Affiliation(s)
- Martin Lang
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| |
Collapse
|
13
|
Urakawa N, Nakamura S, Kishimoto M, Moriyama Y, Kawano S, Higashiyama T, Sasaki N. Semi-in vitro detection of Mg 2+-dependent DNase that specifically digest mitochondrial nucleoids in the zygote of Physarum polycephalum. Sci Rep 2022; 12:2995. [PMID: 35194142 PMCID: PMC8864008 DOI: 10.1038/s41598-022-06920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
The maternal/uniparental inheritance of mitochondria is controlled by the selective elimination of paternal/uniparental mitochondria and digestion of their mitochondrial DNA (mtDNA). In isogamy, the selective digestion of mtDNA in uniparental mitochondria is initiated after mating and is completed prior to the elimination of mitochondria, but the molecular mechanism of the digestion of uniparental mtDNA remains unknown. In this study, we developed a semi-in vitro assay for DNase, wherein the digestion of mitochondrial nucleoids (mt-nucleoids) was microscopically observed using isolated mitochondria from Physarum polycephalum and the DNase involved in uniparental inheritance was characterized. When myxamoebae of AI35 and DP246 are crossed, mtDNA and mt-nucleoid from only the DP246 parent are digested. The digestion of mt-nucleoids was observed in zygotes 3 h after plating for mating. During the digestion of mt-nucleoids, mitochondrial membrane integrity was maintained. In the semi-in vitro assay, the digestion of mt-nucleoids was only observed in the presence of Mg2+ at pH 7.5-9.0. Moreover, such Mg2+-dependent DNase activity was specifically detected in mitochondria isolated from zygotes 3 h after plating for mating. Therefore, Mg2+-dependent DNase is potentially involved in uniparental inheritance. Our findings provide insights into the DNase involved in uniparental inheritance and its regulatory mechanism.
Collapse
Affiliation(s)
- Naoki Urakawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Satoru Nakamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Mariko Kishimoto
- Center for the Development of New Model Organisms, National Institute for Basic Biology (NIBB), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Yohsuke Moriyama
- Science and Technology Group, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Shigeyuki Kawano
- Functional Biotechnology PJ, Future Center Initiative, The University of Tokyo, 178-4-4 Wakasiba, Kashiwa, Chiba, 277-0871, Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Narie Sasaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan. .,Institute for Human Life Innovation, Ochanomizu University, 2‑1‑1 Otsuka, Bunkyo‑ku, Tokyo, 112‑8610, Japan.
| |
Collapse
|
14
|
Wang Y, Wang X, Long Q, Liu Y, Yin T, Sirota I, Ren F, Gu Z, Luo J. Reducing embryonic mtDNA copy number alters epigenetic profile of key hepatic lipolytic genes and causes abnormal lipid accumulation in adult mice. FEBS J 2021; 288:6828-6843. [PMID: 34258867 DOI: 10.1111/febs.16121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022]
Abstract
Adverse fetal environment, in particular a shortage or excess of nutrients, is associated with increased risks of metabolic diseases later in life. However, the molecular mechanisms underlying this developmental origin of adult diseases remain unclear. Here, we directly tested the role of mitochondrial stress in mediating fetal programming in mice by enzymatically depleting mtDNA in zygotes. mtDNA-targeted plasmid microinjection is used to reduce embryonic mtDNA copy number directly, followed by embryo transfer. Mice with reduced zygote mtDNA copy number were born morphologically normal and showed no accelerated body weight gain. However, at 5 months of age these mice showed markedly increased hepatic lipidosis and became glucose-intolerant. Hepatic mRNA and protein expressions of peroxisome proliferator-activated receptor α (Pparα), a key transcriptional regulator of lipid metabolism, were significantly decreased as a result of increased DNA methylation in its proximal regulatory region. These results indicate that perturbation of mitochondrial function around the periconceptional period causes hypermethylation and thus suppressed expression of PPARα in fetal liver, leading to impaired hepatic lipid metabolism. Our findings provide the first direct evidence that mitochondrial stress mediates epigenetic changes associated with fetal programming of adult diseases in a mammalian system.
Collapse
Affiliation(s)
- Yakun Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Qiaoming Long
- Cam-Su Mouse Genomic Resource Center, Soochow University, China
| | - Yuanwu Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Tao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Inna Sirota
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Junjie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Han YS, Yi EY, Jegal ME, Kim YJ. Cancer Stem-Like Phenotype of Mitochondria Dysfunctional Hep3B Hepatocellular Carcinoma Cell Line. Cells 2021; 10:1608. [PMID: 34198967 PMCID: PMC8307994 DOI: 10.3390/cells10071608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are major organelles that play various roles in cells, and mitochondrial dysfunction is the main cause of numerous diseases. Mitochondrial dysfunction also occurs in many cancer cells, and these changes are known to affect malignancy. The mitochondria of normal embryonic stem cells (ESCs) exist in an undifferentiated state and do not function properly. We hypothesized that mitochondrial dysfunction in cancer cells caused by the depletion of mitochondrial DNA might be similar to the mitochondrial state of ESCs. We generated mitochondria dysfunctional (ρ0) cells from the Hep3B hepatocellular carcinoma cell line and tested whether these ρ0 cells show cancer stem-like properties, such as self-renewal, chemotherapy resistance, and angiogenesis. Compared with Hep3B cells, the characteristics of each cancer stem-like cell were increased in Hep3B/ρ0 cells. The Hep3B/ρ0 cells formed a continuous and large sphere from a single cell. Additionally, the Hep3B/ρ0 cells showed resistance to the anticancer drug doxorubicin because of the increased expression of ATP-binding cassette Subfamily B Member 1. The Hep3B/ρ0 conditioned medium induced more and thicker blood vessels and increased the mobility and invasiveness of the blood vessel cells. Therefore, our data suggest that mitochondrial dysfunction can transform cancer cells into cancer stem-like cells.
Collapse
Affiliation(s)
- Yu-Seon Han
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea; (Y.-S.H.); (E.-Y.Y.); (M.-E.J.)
| | - Eui-Yeun Yi
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea; (Y.-S.H.); (E.-Y.Y.); (M.-E.J.)
| | - Myeong-Eun Jegal
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea; (Y.-S.H.); (E.-Y.Y.); (M.-E.J.)
| | - Yung-Jin Kim
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea; (Y.-S.H.); (E.-Y.Y.); (M.-E.J.)
- Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea
| |
Collapse
|
16
|
Oshima Y, Cartier E, Boyman L, Verhoeven N, Polster BM, Huang W, Kane M, Lederer WJ, Karbowski M. Parkin-independent mitophagy via Drp1-mediated outer membrane severing and inner membrane ubiquitination. J Cell Biol 2021; 220:211984. [PMID: 33851959 PMCID: PMC8050842 DOI: 10.1083/jcb.202006043] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/02/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Here, we report that acute reduction in mitochondrial translation fidelity (MTF) causes ubiquitination of the inner mitochondrial membrane (IMM) proteins, including TRAP1 and CPOX, which occurs selectively in mitochondria with a severed outer mitochondrial membrane (OMM). Ubiquitinated IMM recruits the autophagy machinery. Inhibiting autophagy leads to increased accumulation of mitochondria with severed OMM and ubiquitinated IMM. This process occurs downstream of the accumulation of cytochrome c/CPOX in a subset of mitochondria heterogeneously distributed throughout the cell (“mosaic distribution”). Formation of mosaic mitochondria, OMM severing, and IMM ubiquitination require active mitochondrial translation and mitochondrial fission, but not the proapoptotic proteins Bax and Bak. In contrast, in Parkin-overexpressing cells, MTF reduction does not lead to the severing of the OMM or IMM ubiquitination, but it does induce Drp1-independent ubiquitination of the OMM. Furthermore, high–cytochrome c/CPOX mitochondria are preferentially targeted by Parkin, indicating that in the context of reduced MTF, they are mitophagy intermediates regardless of Parkin expression. In sum, Parkin-deficient cells adapt to mitochondrial proteotoxicity through a Drp1-mediated mechanism that involves the severing of the OMM and autophagy targeting ubiquitinated IMM proteins.
Collapse
Affiliation(s)
- Yumiko Oshima
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Etienne Cartier
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Nicolas Verhoeven
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD
| | - Maureen Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Mariusz Karbowski
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
17
|
Li C, Zhang Y, Liu J, Kang R, Klionsky DJ, Tang D. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy 2021; 17:948-960. [PMID: 32186434 PMCID: PMC8078708 DOI: 10.1080/15548627.2020.1739447] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/06/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer tends to be highly resistant to current therapy and remains one of the great challenges in biomedicine with very low 5-year survival rates. Here, we report that zalcitabine, an antiviral drug for human immunodeficiency virus infection, can suppress the growth of primary and immortalized human pancreatic cancer cells through the induction of ferroptosis, an iron-dependent form of regulated cell death. Mechanically, this effect relies on zalcitabine-induced mitochondrial DNA stress, which activates the STING1/TMEM173-mediated DNA sensing pathway, leading to macroautophagy/autophagy-dependent ferroptotic cell death via lipid peroxidation, but not a type I interferon response. Consequently, the genetic and pharmacological inactivation of the autophagy-dependent ferroptosis pathway diminishes the anticancer effects of zalcitabine in cell culture and animal models. Together, these findings not only provide a new approach for pancreatic cancer therapy but also increase our understanding of the interplay between autophagy and DNA damage response in shaping cell death.Abbreviations: ALOX: arachidonate lipoxygenase; ARNTL/BMAL1: aryl hydrocarbon receptor nuclear translocator-like; ATM: ATM serine/threonine kinase; ATG: autophagy-related; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; ER: endoplasmic reticulum; FANCD2: FA complementation group D2; GPX4: glutathione peroxidase 4; IFNA1/IFNα: interferon alpha 1; IFNB1/IFNβ: interferon beta 1; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; MDA: malondialdehyde; mtDNA: mitochondrial DNA; NCOA4: nuclear receptor coactivator 4; PDAC: pancreatic ductal adenocarcinoma; POLG: DNA polymerase gamma, catalytic subunit; qRT-PCR: quantitative polymerase chain reaction; RCD: regulated cell death; ROS: reactive oxygen species; SLC7A11: solute carrier family 7 member 11; STING1/TMEM173: stimulator of interferon response cGAMP interactor 1; TFAM: transcription factor A, mitochondrial.
Collapse
Affiliation(s)
- Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Zhang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiao Liu
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
18
|
Jin Y, Luan G, Li J, Wang H, Wang Z, Bai B. Effect of mtDNA depletion from C6 glioma cells and characteristics of the generated C6ρ0 cells. Mol Med Rep 2021; 23:265. [PMID: 33576438 PMCID: PMC7893707 DOI: 10.3892/mmr.2021.11904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/08/2020] [Indexed: 01/24/2023] Open
Abstract
Malignant tumors of the central nervous system (CNS) are among the types of cancer with the poorest prognosis and glioma is the commonest primary CNS tumor. A mitochondrial DNA (mtDNA)-depleted cell line C6ρ0 was generated from C6 glioma cells after long-term exposure to ethidium bromide and 2′,3′-dideoxycytidine in order to determine the effect of mtDNA damage on cell proliferation and pathological changes in glioma cells. Single cell clones were isolated and identified after 42 days of incubation. Repopulated cybrids were formed when the clonal C6ρ0 cells were fused with rat platelets and no difference was observed in their growth in a selective medium without uridine and pyruvate compared with the growth of the parent C6 cells. Disruption of mtDNA resulted in changes in mitochondrial morphology, decreased cell proliferation, reduced intracellular reactive oxygen species and intracellular ATP, along with decreased mtDNA and mitochondrial membrane potential in C6ρ0 cells compared with the C6 cells. Taken together, C6ρ0 cells without mtDNA were established for the first time and their characteristics were compared with parent cells. This C6ρ0 cell line could be used to explore the contribution of mitochondrial dysfunction and mtDNA mutations in the pathogenesis of glioma.
Collapse
Affiliation(s)
- Youcai Jin
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, P.R. China
| | - Guangxiang Luan
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, P.R. China
| | - Ji Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, P.R. China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Bo Bai
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, P.R. China
| |
Collapse
|
19
|
Li T, Huang T, Du M, Chen X, Du F, Ren J, Chen ZJ. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science 2021; 371:science.abc5386. [PMID: 33542149 PMCID: PMC8171060 DOI: 10.1126/science.abc5386] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/23/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022]
Abstract
The cyclic GMP-AMP synthase (cGAS) detects microbial and self-DNA in the cytosol to activate immune and inflammatory programs. cGAS also associates with chromatin especially after nuclear envelope breakdown when cells enter mitosis. How cGAS is regulated during cell cycle transition is not clear. Here we found direct biochemical evidence that cGAS activity was selectively suppressed during mitosis, and uncovered two parallel mechanisms underlying this suppression. Firstly, cGAS was hyperphosphorylated at the N-terminus by mitotic kinases, including Aurora kinase B. The N-terminus of cGAS was critical for sensing nuclear chromatin, but not mitochondrial DNA. Chromatin sensing was blocked by hyperphosphorylation. Secondly, oligomerization of chromatin-bound cGAS, which is required for its activation,was prevented. Together, these mechanisms ensure that cGAS is inactive when associated with chromatin during mitosis, which may help to prevent autoimmune reaction. cGAS is inhibited by phosphorylation and chromatin tethering during mitosis.
Collapse
Affiliation(s)
- Tuo Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.,Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Tuozhi Huang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.,Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Mingjian Du
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.,Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Xiang Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.,Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Fenghe Du
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.,Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Junyao Ren
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.,Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. .,Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| |
Collapse
|
20
|
Abstract
The study of the mitochondrial DNA (mtDNA) has been hampered by the lack of methods to genetically manipulate the mitochondrial genome in living animal cells. This limitation has been partially alleviated by the ability to transfer mitochondria (and their mtDNAs) from one cell into another, as long as they are from the same species. This is done by isolating mtDNA-containing cytoplasts and fusing these to cells lacking mtDNA. This transmitochondrial cytoplasmic hybrid (cybrid) technology has helped the field understand the mechanism of several pathogenic mutations. In this chapter, we describe procedures to obtain transmitochondrial cybrids.
Collapse
Affiliation(s)
- Sandra R Bacman
- Department of Neurology, University of Miami School of Medicine, Miami, FL, United States
| | - Nadee Nissanka
- Department of Neurology, University of Miami School of Medicine, Miami, FL, United States
| | - Carlos T Moraes
- Department of Neurology, University of Miami School of Medicine, Miami, FL, United States.
| |
Collapse
|
21
|
Prole DL, Chinnery PF, Jones NS. Visualizing, quantifying, and manipulating mitochondrial DNA in vivo. J Biol Chem 2020; 295:17588-17601. [PMID: 33454000 PMCID: PMC7762947 DOI: 10.1074/jbc.rev120.015101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/15/2020] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial DNA (mtDNA) encodes proteins and RNAs that support the functions of mitochondria and thereby numerous physiological processes. Mutations of mtDNA can cause mitochondrial diseases and are implicated in aging. The mtDNA within cells is organized into nucleoids within the mitochondrial matrix, but how mtDNA nucleoids are formed and regulated within cells remains incompletely resolved. Visualization of mtDNA within cells is a powerful means by which mechanistic insight can be gained. Manipulation of the amount and sequence of mtDNA within cells is important experimentally and for developing therapeutic interventions to treat mitochondrial disease. This review details recent developments and opportunities for improvements in the experimental tools and techniques that can be used to visualize, quantify, and manipulate the properties of mtDNA within cells.
Collapse
Affiliation(s)
- David L Prole
- Department of Mathematics, Imperial College London, London, United Kingdom; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Patrick F Chinnery
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom; Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - Nick S Jones
- Department of Mathematics, Imperial College London, London, United Kingdom.
| |
Collapse
|
22
|
Unusual mtDNA Control Region Length Heteroplasmy in the COS-7 Cell Line. Genes (Basel) 2020; 11:genes11060607. [PMID: 32486194 PMCID: PMC7348793 DOI: 10.3390/genes11060607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 11/29/2022] Open
Abstract
The COS-7 cell line is a workhorse of virology research. To expand this cell line’s utility and to enable studies on mitochondrial DNA (mtDNA) transcription and replication, we determined the complete nucleotide sequence of its mitochondrial genome by Sanger sequencing. In contrast to other available mtDNA sequences from Chlorocebus aethiops, the mtDNA of the COS-7 cell line was found to contain a variable number of perfect copies of a 108 bp unit tandemly repeated in the control region. We established that COS-7 cells are heteroplasmic with at least two variants being present: with four and five repeat units. The analysis of the mitochondrial genome sequences from other primates revealed that tandem repeats are absent from examined mtDNA control regions of humans and great apes, but appear in lower primates, where they are present in a homoplasmic state. To our knowledge, this is the first report of mtDNA length heteroplasmy in primates.
Collapse
|
23
|
White SM, Avantaggiati ML, Nemazanyy I, Di Poto C, Yang Y, Pende M, Gibney GT, Ressom HW, Field J, Atkins MB, Yi C. YAP/TAZ Inhibition Induces Metabolic and Signaling Rewiring Resulting in Targetable Vulnerabilities in NF2-Deficient Tumor Cells. Dev Cell 2020; 49:425-443.e9. [PMID: 31063758 DOI: 10.1016/j.devcel.2019.04.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 02/04/2019] [Accepted: 04/08/2019] [Indexed: 02/09/2023]
Abstract
Merlin/NF2 is a bona fide tumor suppressor whose mutations underlie inherited tumor syndrome neurofibromatosis type 2 (NF2), as well as various sporadic cancers including kidney cancer. Multiple Merlin/NF2 effector pathways including the Hippo-YAP/TAZ pathway have been identified. However, the molecular mechanisms underpinning the growth and survival of NF2-mutant tumors remain poorly understood. Using an inducible orthotopic kidney tumor model, we demonstrate that YAP/TAZ silencing is sufficient to induce regression of pre-established NF2-deficient tumors. Mechanistically, YAP/TAZ depletion diminishes glycolysis-dependent growth and increases mitochondrial respiration and reactive oxygen species (ROS) buildup, resulting in oxidative-stress-induced cell death when challenged by nutrient stress. Furthermore, we identify lysosome-mediated cAMP-PKA/EPAC-dependent activation of RAF-MEK-ERK signaling as a resistance mechanism to YAP/TAZ inhibition. Finally, unbiased analysis of TCGA primary kidney tumor transcriptomes confirms a positive correlation of a YAP/TAZ signature with glycolysis and inverse correlations with oxidative phosphorylation and lysosomal gene expression, supporting the clinical relevance of our findings.
Collapse
Affiliation(s)
- Shannon M White
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | | | - Ivan Nemazanyy
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, Institut Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Cristina Di Poto
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Yang Yang
- Department of Systems Pharmacology and Translational Therapeutics, Perelmen School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mario Pende
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, Institut Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Geoffrey T Gibney
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Habtom W Ressom
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Jeffery Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelmen School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael B Atkins
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA.
| |
Collapse
|
24
|
Gao Y, Dorn P, Liu S, Deng H, Hall SRR, Peng RW, Schmid RA, Marti TM. Cisplatin-resistant A549 non-small cell lung cancer cells can be identified by increased mitochondrial mass and are sensitive to pemetrexed treatment. Cancer Cell Int 2019; 19:317. [PMID: 31798346 PMCID: PMC6883680 DOI: 10.1186/s12935-019-1037-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/15/2019] [Indexed: 01/13/2023] Open
Abstract
Background Cisplatin plus pemetrexed combination therapy is considered the standard treatment for patients with advanced, non-squamous, non-small-cell lung cancer (NSCLC). However, advanced NSCLC has a 5-year survival rate of below 10%, which is mainly due to therapy resistance. We previously showed that the NSCLC cell line A549 harbors different subpopulations including a mesenchymal-like subpopulation characterized by increased chemo- and radiotherapy resistance. Recently, therapy resistance in hematological and solid tumors has been associated with increased mitochondrial activity. Thus, the aim of this study was to investigate the role of the mitochondrial activity in NSCLC chemotherapy resistance. Methods Based on MitoTracker staining, subpopulations characterized by the highest 10% (Mito-High) or lowest 10% (Mito-Low) mitochondrial mass content were sorted by FACS (Fluorescence-Activated Cell Sorting) from paraclonal cultures of the NSCLC A549 cell line . Mitochondrial DNA copy numbers were quantified by real-time PCR whereas basal cellular respiration was measured by high-resolution respirometry. Cisplatin and pemetrexed response were quantified by proliferation and colony formation assay. Results Pemetrexed treatment of parental A549 cells increased mitochondrial mass over time. FACS-sorted paraclonal Mito-High cells featured increased mitochondrial mass and mitochondrial DNA copy number compared to the Mito-Low cells. Paraclonal Mito-High cells featured an increased proliferation rate and were significantly more resistant to cisplatin treatment than Mito-Low cells. Interestingly, cisplatin-resistant, paraclonal Mito-High cells were significantly more sensitive to pemetrexed treatment than Mito-Low cells. We provide a working model explaining the molecular mechanism underlying the increased cisplatin- and decreased pemetrexed resistance of a distinct subpopulation characterized by high mitochondrial mass. Conclusions This study revealed that cisplatin resistant A549 lung cancer cells can be identified by their increased levels of mitochondrial mass. However, Mito-High cells feature an increased sensitivity to pemetrexed treatment. Thus, pemetrexed and cisplatin target reciprocal lung cancer subpopulations, which could explain the increased efficacy of the combination therapy in the clinical setting.
Collapse
Affiliation(s)
- Yanyun Gao
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Patrick Dorn
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Shengchen Liu
- 2Department of BioMedical Research, University of Bern, Bern, Switzerland.,3Department of Intensive Care Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Haibin Deng
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Sean R R Hall
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Ren-Wang Peng
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Ralph A Schmid
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Thomas M Marti
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Khozhukhar N, Spadafora D, Rodriguez Y, Alexeyev M. Elimination of Mitochondrial DNA from Mammalian Cells. ACTA ACUST UNITED AC 2018; 78:20.11.1-20.11.14. [PMID: 30040188 DOI: 10.1002/cpcb.39] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To cope with DNA damage, mitochondria developed a pathway by which severely damaged or unrepairable mitochondrial DNA (mtDNA) molecules are abandoned and degraded, and new molecules are resynthesized using intact templates, if available. In this unit, we describe a method that harnesses this pathway to completely eliminate mtDNA from mammalian cells by transiently overexpressing the Y147A mutant of human uracil-N-glycosylase (mUNG1). We also provide an alternate protocol for mtDNA depletion using combined treatment with ethidium bromide (EtBr) and dideoxycytidine (ddC). Support protocols detail approaches for (1) genotyping ρ° cells of human, mouse, and rat origin by PCR; (2) quantitation of mtDNA by quantitative PCR (qPCR); and (3) preparation of calibrator plasmids for mtDNA quantitation. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Natalya Khozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
| | | | - Yelitza Rodriguez
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
| | - Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
26
|
Dhir A, Dhir S, Borowski LS, Jimenez L, Teitell M, Rötig A, Crow YJ, Rice GI, Duffy D, Tamby C, Nojima T, Munnich A, Schiff M, de Almeida CR, Rehwinkel J, Dziembowski A, Szczesny RJ, Proudfoot NJ. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature 2018; 560:238-242. [PMID: 30046113 DOI: 10.1038/s41586-018-0363-0] [Citation(s) in RCA: 387] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/06/2018] [Indexed: 11/09/2022]
Abstract
Mitochondria are descendants of endosymbiotic bacteria and retain essential prokaryotic features such as a compact circular genome. Consequently, in mammals, mitochondrial DNA is subjected to bidirectional transcription that generates overlapping transcripts, which are capable of forming long double-stranded RNA structures1,2. However, to our knowledge, mitochondrial double-stranded RNA has not been previously characterized in vivo. Here we describe the presence of a highly unstable native mitochondrial double-stranded RNA species at single-cell level and identify key roles for the degradosome components mitochondrial RNA helicase SUV3 and polynucleotide phosphorylase PNPase in restricting the levels of mitochondrial double-stranded RNA. Loss of either enzyme results in massive accumulation of mitochondrial double-stranded RNA that escapes into the cytoplasm in a PNPase-dependent manner. This process engages an MDA5-driven antiviral signalling pathway that triggers a type I interferon response. Consistent with these data, patients carrying hypomorphic mutations in the gene PNPT1, which encodes PNPase, display mitochondrial double-stranded RNA accumulation coupled with upregulation of interferon-stimulated genes and other markers of immune activation. The localization of PNPase to the mitochondrial inter-membrane space and matrix suggests that it has a dual role in preventing the formation and release of mitochondrial double-stranded RNA into the cytoplasm. This in turn prevents the activation of potent innate immune defence mechanisms that have evolved to protect vertebrates against microbial and viral attack.
Collapse
Affiliation(s)
- Ashish Dhir
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Somdutta Dhir
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lukasz S Borowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Laura Jimenez
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Teitell
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Agnès Rötig
- INSERM UMR1163, Institut Imagine, Paris, France
| | - Yanick J Crow
- INSERM UMR1163, Institut Imagine, Paris, France.,Paris Descartes University, Sorbonne-Paris-Cité, Institut Imagine, Paris, France.,Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Gillian I Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Darragh Duffy
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France.,INSERM U1223, Paris, France
| | | | - Takayuki Nojima
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | | | - Jan Rehwinkel
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland. .,Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | |
Collapse
|
27
|
Generating Rho-0 Cells Using Mesenchymal Stem Cell Lines. PLoS One 2016; 11:e0164199. [PMID: 27764131 PMCID: PMC5072612 DOI: 10.1371/journal.pone.0164199] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/21/2016] [Indexed: 12/28/2022] Open
Abstract
Introduction The generation of Rho-0 cells requires the use of an immortalization process, or tumor cell selection, followed by culture in the presence of ethidium bromide (EtBr), incurring the drawbacks its use entails. The purpose of this work was to generate Rho-0 cells using human mesenchymal stem cells (hMSCs) with reagents having the ability to remove mitochondrial DNA (mtDNA) more safely than by using EtBr. Methodology Two immortalized hMSC lines (3a6 and KP) were used; 143B.TK-Rho-0 cells were used as reference control. For generation of Rho-0 hMSCs, cells were cultured in medium supplemented with each tested reagent. Total DNA was isolated and mtDNA content was measured by real-time polymerase chain reaction (PCR). Phenotypic characterization and gene expression assays were performed to determine whether 3a6 Rho-0 hMSCs maintain the same stem properties as untreated 3a6 hMSCs. To evaluate whether 3a6 Rho-0 hMSCs had a phenotype similar to that of 143B.TK-Rho-0 cells, in terms of reactive oxygen species (ROS) production, apoptotic levels and mitochondrial membrane potential (Δψm) were measured by flow cytometry and mitochondrial respiration was evaluated using a SeaHorse XFp Extracellular Flux Analyzer. The differentiation capacity of 3a6 and 3a6 Rho-0 hMSCs was evaluated using real-time PCR, comparing the relative expression of genes involved in osteogenesis, adipogenesis and chondrogenesis. Results The results showed the capacity of the 3a6 cell line to deplete its mtDNA and to survive in culture with uridine. Of all tested drugs, Stavudine (dt4) was the most effective in producing 3a6-Rho cells. The data indicate that hMSC Rho-0 cells continue to express the characteristic MSC cell surface receptor pattern. Phenotypic characterization showed that 3a6 Rho-0 cells resembled 143B.TK-Rho-0 cells, indicating that hMSC Rho-0 cells are Rho-0 cells. While the adipogenic capability was higher in 3a6 Rho-0 cells than in 3a6 cells, the osteogenic and chondrogenic capacities were lower. Conclusion Among the drugs and conditions tested, the use of d4t was the best option for producing Rho-0 cells from hMSCs. Rho-0 cells are useful for studying the role of mitochondria in hMSC differentiation.
Collapse
|