1
|
Rossi F, Luppi S, Fejza A, Giolo E, Ricci G, Andreuzzi E. Extracellular matrix and pregnancy: functions and opportunities caught in the net. Reprod Biol Endocrinol 2025; 23:24. [PMID: 39953593 PMCID: PMC11827249 DOI: 10.1186/s12958-025-01348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025] Open
Abstract
The extracellular matrix is a complex network of macromolecules that support the growth and homeostatic development of organisms. By conveying multiple signaling cascades, it impacts on several biological processes and influences the behaviour of numerous cell types. During the endometrial cycle and the key events necessary for a correct embryo implantation and placentation, this bioactive meshwork is substantially modified to favour endometrial receptivity and vascular adaptation, trophoblast cell migration, and immune activation as well. A correct extracellular remodeling is fundamental for the establishment of a physiological pregnancy; indeed, the occurrence of altered matrix modifications associates with gestational disorders such as preeclampsia. In the present review, we will critically evaluate the role of pivotal matrix constituents in regulating the key steps of embryo implantation and placentation, provide up-to-date information concerning their primary mechanisms of action and discuss on their potential as a novel source of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Francesca Rossi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
| | - Stefania Luppi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Albina Fejza
- UBT-Higher Education Institution, Kalabria, Street Rexhep Krasniqi Nr. 56, Prishtina, 10000, Kosovo
| | - Elena Giolo
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Eva Andreuzzi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy.
| |
Collapse
|
2
|
Liu L, Tang L, Chen S, Zheng L, Ma X. Decoding the molecular pathways governing trophoblast migration and placental development; a literature review. Front Endocrinol (Lausanne) 2024; 15:1486608. [PMID: 39665023 PMCID: PMC11631628 DOI: 10.3389/fendo.2024.1486608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Placental development is a multifaceted process critical for a fruitful pregnancy, reinforced by a complex network of molecular pathways that synchronize trophoblast migration, differentiation, and overall placental function. This review provides an in-depth analysis of the key signaling pathways, such as Wnt, Notch, TGF-β, and VEGF, which play fundamental roles in trophoblast proliferation, invasion, and the complicated process of placental vascular development. For instance, the Wnt signaling pathway is essential to balance trophoblast stem cell proliferation and differentiation, while Notch signaling stimulates cell fate decisions and invasive behavior. TGF-β signaling plays a critical role in trophoblast invasion and differentiation, predominantly in response to the low oxygen environment of early pregnancy, regulated by hypoxia-inducible factors (HIFs). These factors promote trophoblast adaptation, ensure proper placental attachment and vascularization, and facilitate adequate fetal-maternal exchange. Further, we explore the epigenetic and post-transcriptional regulatory mechanisms that regulate trophoblast function, including DNA methylation and the contribution of non-coding RNAs, which contribute to the fine-tuning of gene expression during placental development. Dysregulation of these pathways is associated with severe pregnancy complications, such as preeclampsia, intrauterine growth restriction, and recurrent miscarriage, emphasizing the critical need for targeted therapeutic strategies. Finally, emerging technologies like trophoblast organoids, single-cell RNA sequencing, and placenta-on-chip models are discussed as innovative tools that hold promise for advancing our understanding of placental biology and developing novel interventions to improve pregnancy outcomes. This review emphasizes the importance of understanding these molecular mechanisms to better address placental dysfunctions and associated pregnancy disorders.
Collapse
Affiliation(s)
- Lianlian Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lin Tang
- Obstetrics Department, Foshan Maternity and Child Health Care Hospital, Foshan, China
| | - Shuai Chen
- Pathology Department, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Xiaoyan Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Morey R, Bui T, Cheung VC, Dong C, Zemke JE, Requena D, Arora H, Jackson MG, Pizzo D, Theunissen TW, Horii M. iPSC-based modeling of preeclampsia identifies epigenetic defects in extravillous trophoblast differentiation. iScience 2024; 27:109569. [PMID: 38623329 PMCID: PMC11016801 DOI: 10.1016/j.isci.2024.109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive pregnancy disorder with increased risk of maternal and fetal morbidity and mortality. Abnormal extravillous trophoblast (EVT) development and function is considered to be the underlying cause of PE, but has not been previously modeled in vitro. We previously derived induced pluripotent stem cells (iPSCs) from placentas of PE patients and characterized abnormalities in formation of syncytiotrophoblast and responses to changes in oxygen tension. In this study, we converted these primed iPSC to naïve iPSC, and then derived trophoblast stem cells (TSCs) and EVT to evaluate molecular mechanisms underlying PE. We found that primed (but not naïve) iPSC-derived PE-EVT have reduced surface HLA-G, blunted invasive capacity, and altered EVT-specific gene expression. These abnormalities correlated with promoter hypermethylation of genes associated with the epithelial-mesenchymal transition pathway, specifically in primed-iPSC derived PE-EVT. Our findings indicate that abnormal epigenetic regulation might play a role in PE pathogenesis.
Collapse
Affiliation(s)
- Robert Morey
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony Bui
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Virginia Chu Cheung
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Chen Dong
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph E. Zemke
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniela Requena
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Harneet Arora
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Madeline G. Jackson
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Donald Pizzo
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Thorold W. Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mariko Horii
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Seo JH, Shin JH, Lee J, Kim D, Hwang HY, Nam BG, Lee J, Kim HH, Cho SR. DNA double-strand break-free CRISPR interference delays Huntington's disease progression in mice. Commun Biol 2023; 6:466. [PMID: 37117485 PMCID: PMC10147674 DOI: 10.1038/s42003-023-04829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/11/2023] [Indexed: 04/30/2023] Open
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion in the huntingtin (HTT) gene. CRISPR-Cas9 nuclease causes double-strand breaks (DSBs) in the targeted DNA that induces toxicity, whereas CRISPR interference (CRISPRi) using dead Cas9 (dCas9) suppresses the target gene expression without DSBs. Delivery of dCas9-sgRNA targeting CAG repeat region does not damage the targeted DNA in HEK293T cells containing CAG repeats. When this study investigates whether CRISPRi can suppress mutant HTT (mHTT), CRISPRi results in reduced expression of mHTT with relative preservation of the wild-type HTT in human HD fibroblasts. Although both dCas9 and Cas9 treatments reduce mHTT by sgRNA targeting the CAG repeat region, CRISPRi delays behavioral deterioration and protects striatal neurons against cell death in HD mice. Collectively, CRISPRi can delay disease progression by suppressing mHtt, suggesting DNA DSB-free CRISPRi is a potential therapy for HD that can compensate for the shortcoming of CRISPR-Cas9 nuclease.
Collapse
Affiliation(s)
- Jung Hwa Seo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hong Shin
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junwon Lee
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hye-Yeon Hwang
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Bae-Geun Nam
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Hyongbum Henry Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Yu JH, Jung YJ, Kim MS, Cho SR, Kim YH. Differential Expression of NME4 in Trophoblast Stem-Like Cells and Peripheral Blood Mononuclear Cells of Normal Pregnancy and Preeclampsia. J Korean Med Sci 2023; 38:e128. [PMID: 37096311 PMCID: PMC10125796 DOI: 10.3346/jkms.2023.38.e128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/10/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Preeclampsia (PE) is known to arise from insufficient trophoblast invasion as uterine spiral arteries lack remodeling. A significant reduction in placental perfusion induces an ischemic placental microenvironment due to reduced oxygen delivery to the placenta and fetus, leading to oxidative stress. Mitochondria are involved in the regulation of cellular metabolism and the production of reactive oxygen species (ROS). NME/NM23 nuceloside diphosphate kinase 4 (NME4) gene is known to have the ability to supply nucleotide triphosphate and deoxynucleotide triphosphate for replication and transcription of mitochondria. Our study aimed to investigate changes in NME4 expression in PE using trophoblast stem-like cells (TSLCs) from induced pluripotent stem cells (iPSCs) as a model of early pregnancy and peripheral blood mononuclear cells (PBMNCs) as a model of late preterm pregnancy. METHODS Transcriptome analysis using TSLCs was performed to identify the candidate gene associated with the possible pathophysiology of PE. Then, the expression of NME4 associated with mitochondrial function, p53 associated with cell death, and thioredoxin (TRX) linked to ROS were investigated through qRT-PCR, western blotting and deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick end labelling (TUNEL) assay. RESULTS In patients with PE, NME4 was significantly downregulated in TSLCs but upregulated in PBMNCs. p53 was shown to be upregulated in TSLCs and PBMNCs of PE. In addition, western blot analysis confirmed that TRX expression had the tendency to increase in TSLCs of PE. Similarly, TUNEL analysis confirmed that the dead cells were higher in PE than in normal pregnancy. CONCLUSION Our study showed that the expression of the NME4 differed between models of early and late preterm pregnancy of PE, and suggests that this expression pattern may be a potential biomarker for early diagnosis of PE.
Collapse
Affiliation(s)
- Ji Hea Yu
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University Medical College, Seoul, Korea
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Severance Hospital, Yonsei University Medical College, Seoul, Korea
| | - Yun Ji Jung
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University Medical College, Seoul, Korea
| | - Myung-Sun Kim
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Severance Hospital, Yonsei University Medical College, Seoul, Korea
| | - Sung-Rae Cho
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Severance Hospital, Yonsei University Medical College, Seoul, Korea.
| | - Young-Han Kim
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University Medical College, Seoul, Korea.
| |
Collapse
|
6
|
Li H, Zhang X, Hong X, Zhang S, Tang H, Shi J, Peng H, Wu Y. Proteome Profiling of Serum Exosomes from Newborns Delivered by Mothers with Preeclampsia. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164619666220406121420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Preeclampsia (PE) is a common pregnancy-specific disease with potential adverse maternal and neonatal outcomes.
Objective:
We aimed to estimate proteomic profiles of serum-derived exosomes obtained from PE offspring with bioinformatics methods.
Method:
Serum samples were collected from 12 h, 24 h, and 72 h newborns delivered by preeclamptic and normal pregnant women. Exosomes were extracted, and the concentration and size distribution were determined. The exosome surface markers CD9, CD63, CD81, and TSG101, were assayed by Western blot. The exosome proteins were screened by quantitative proteomics with tandem mass tag (TMT). All the identified proteins were subjected to the Weighted Gene Co-Expression Network Analysis (WGCNA), GO function, and KEGG pathway analysis. A protein-protein interaction network (PPI) was used to extract hub proteins through the Cytohubba plugin of Cytoscape
Results:
The extracted exosomes were round or oval vesicular structures at a 100-200 nm concentration, and the size distribution was standard and uniform. Exosome surface markers CD9, CD63, and CD81 were detected, and TSG101 was not detected. A total of 450 expressed proteins were selected, and 444 proteins were mapped with gene names. A blue module with 66 proteins highly correlated with phenotype at 12 h. Functional analyses revealed that module proteins were mainly enriched in extracellular matrix. The top 10 selected hub proteins were identified as hub proteins, including COL6A2, HSPG2, COL4A1, COL3A1, etc.
Conclusion:
Our study provides important information for exploring molecular mechanisms of preeclampsia and potential biomarkers for future diagnosis and treatment in the clinic.
Collapse
Affiliation(s)
- Haiying Li
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaoqun Zhang
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xianhui Hong
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shuxuan Zhang
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Haijun Tang
- Department of Pediatrics, Rugao Branch of Affiliated Hospital of Nantong University (Rugao Bo\'ai Hospital)
| | - Jinlong Shi
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Hui Peng
- Department of Pediatrics, Rugao Branch of Affiliated Hospital of Nantong University (Rugao Bo\'ai Hospital)
| | - Youjia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
7
|
Deng L, Lu Y, Yang D, Yang F, Ruan H, Wei C, Lai K, Pang L. Placental transcriptome sequencing combined with bioinformatics predicts potential genes and circular RNAs associated with hemoglobin Bart's hydrops fetalis syndrome. J Obstet Gynaecol Res 2021; 48:313-327. [PMID: 34935248 DOI: 10.1111/jog.15126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/17/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023]
Abstract
AIM Hemoglobin Bart's hydrops fetalis syndrome (BHFS) is the most severe form of α-thalassemia. Histological alternations can be observed in placenta, but placental transcriptome profile and circular RNAs have not been studied in this disease. The aim of this study was to define the placental transcriptional changes and find relevant circular RNAs in BHFS. METHODS We performed high-throughput RNA sequencing to detect placental samples from fetuses affected by BHFS (n = 5) and normal fetuses (NF, n = 5), quantitative reverse transcription polymerase chain reaction (RT-qPCR), and Sanger sequencing to validate the differentially expressed circRNAs and their potentially related miRNAs (BHFS, n = 22; NF, n = 11). Bioinformatics methods were performed for further analysis. RESULTS Our results showed 152 differentially expressed genes (DEGs), 112 circRNAs, and 45 microRNAs that were differentially expressed. DEGs were found to be involved in Gene Ontology terms related to gas transport, cell adhesion, oxidative stress, organ development, hemopoiesis, and others. RT-qPCR results showed that hsa_circ_0003961 and hsa_circ_0006687 were upregulated (p < 0.05). The competing endogenous RNA and co-expression networks showed that hsa_circ_0003961 and hsa_circ_0006687 were connected with 3 miRNAs and some DEGs, including cell adhesion genes (e.g., CLDN19), hemoglobin related genes (e.g., SOX6 and HBZ) and angiogenesis related genes (e.g., EPHB2). Downregulations of hsa-miR-1299 and hsa-miR-625-5p in ceRNA network were also validated by RT-qPCR. Gene set enrichment analysis results for the two circRNAs showed that some gene sets associated with cell adhesion, hematopoietic system and apoptosis were significantly enriched. CONCLUSIONS Our study characterized the placental transcriptome of BHFS. The circRNAs hsa_circ_0003961 and hsa_circ_0006687 in placenta may be relevant to BHFS.
Collapse
Affiliation(s)
- Lingjie Deng
- Department of Prenatal Diagnosis and Genetic Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yebin Lu
- Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Dongmei Yang
- Department of Prenatal Diagnosis and Genetic Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fang Yang
- Department of Prenatal Diagnosis and Genetic Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Heyun Ruan
- Guangxi Medical University, Nanning, China
| | | | - Ketong Lai
- Guangxi Medical University, Nanning, China
| | - Lihong Pang
- Department of Prenatal Diagnosis and Genetic Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Tarca AL, Romero R, Erez O, Gudicha DW, Than NG, Benshalom-Tirosh N, Pacora P, Hsu CD, Chaiworapongsa T, Hassan SS, Gomez-Lopez N. Maternal whole blood mRNA signatures identify women at risk of early preeclampsia: a longitudinal study. J Matern Fetal Neonatal Med 2021; 34:3463-3474. [PMID: 31900005 PMCID: PMC10544754 DOI: 10.1080/14767058.2019.1685964] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE To determine whether previously established mRNA signatures are predictive of early preeclampsia when evaluated by maternal cellular transcriptome analysis in samples collected before clinical manifestation. MATERIALS AND METHODS We profiled gene expression at exon-level resolution in whole blood samples collected longitudinally from 49 women with normal pregnancy (controls) and 13 with early preeclampsia (delivery <34 weeks of gestation). After preprocessing and removal of gestational age-related trends in gene expression, data were converted into Z-scores based on the mean and standard deviation among controls for six gestational-age intervals. The average Z-scores of mRNAs in each previously established signature considered herein were compared between cases and controls at 9-11, 11-17, 17-22, 22-28, 28-32, and 32-34 weeks of gestation.Results: (1) Average expression of the 16-gene untargeted cellular mRNA signature was higher in women diagnosed with early preeclampsia at 32-34 weeks of gestation, yet more importantly, also prior to diagnosis at 28-32 weeks and 22-28 weeks of gestation, compared to controls (all, p < .05). (2) A combination of four genes from this signature, including a long non-protein coding RNA [H19 imprinted maternally expressed transcript (H19)], fibronectin 1 (FN1), tubulin beta-6 class V (TUBB6), and formyl peptide receptor 3 (FPR3) had a sensitivity of 0.85 (0.55-0.98) and a specificity of 0.92 (0.8-0.98) for prediction of early preeclampsia at 22-28 weeks of gestation. (3) H19, FN1, and TUBB6 were increased in women with early preeclampsia as early as 11-17 weeks of gestation (all, p < .05). (4) After diagnosis at 32-34 weeks, but also prior to diagnosis at 11-17 weeks, women destined to have early preeclampsia showed a coordinated increase in whole blood expression of several single-cell placental signatures, including the 20-gene signature of extravillous trophoblast (all, p < .05). (5) A combination of three mRNAs from the extravillous trophoblast signature (MMP11, SLC6A2, and IL18BP) predicted early preeclampsia at 11-17 weeks of gestation with a sensitivity of 0.83 (0.52-0.98) and specificity of 0.94 (0.79-0.99). CONCLUSIONS Circulating early transcriptomic markers for preeclampsia can be found either by untargeted profiling of the cellular transcriptome or by focusing on placental cell-specific mRNAs. The untargeted cellular mRNA signature was consistently increased in early preeclampsia after 22 weeks of gestation, and individual mRNAs of this signature were significantly increased as early as 11-17 weeks of gestation. Several single-cell placental signatures predicted future development of the disease at 11-17 weeks and were also increased in women already diagnosed at 32-34 weeks of gestation.
Collapse
Affiliation(s)
- Adi L. Tarca
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Maternity Department “D,” Division of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Dereje W. Gudicha
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Neta Benshalom-Tirosh
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Percy Pacora
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
9
|
Park S, Kim JY, Ryu KH, Kim AY, Kim J, Ko YJ, Lee EG. Production of a Foot-and-Mouth Disease Vaccine Antigen Using Suspension-Adapted BHK-21 Cells in a Bioreactor. Vaccines (Basel) 2021; 9:vaccines9050505. [PMID: 34068378 PMCID: PMC8153295 DOI: 10.3390/vaccines9050505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
The baby hamster kidney-21 (BHK-21) cell line is a continuous cell line used to propagate foot-and-mouth disease (FMD) virus for vaccine manufacturing. BHK-21 cells are anchorage-dependent, although suspension cultures would enable rapid growth in bioreactors, large-scale virus propagation, and cost-effective vaccine production with serum-free medium. Here, we report the successful adaptation of adherent BHK-21 cells to growth in suspension to a viable cell density of 7.65 × 106 cells/mL on day 3 in serum-free culture medium. The suspension-adapted BHK-21 cells showed lower adhesion to five types of extracellular matrix proteins than adherent BHK-21 cells, which contributed to the suspension culture. In addition, a chemically defined medium (selected by screening various prototype media) led to increased FMD virus production yields in the batch culture, even at a cell density of only 3.5 × 106 cells/mL. The suspension BHK-21 cell culture could be expanded to a 200 L bioreactor from a 20 mL flask, which resulted in a comparable FMD virus titer. This platform technology improved virus productivity, indicating its potential for enhancing FMD vaccine production.
Collapse
Affiliation(s)
- Soonyong Park
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanjiro Ochang-eup, Chungju-si 28116, Korea; (S.P.); (J.Y.K.); (K.-H.R.); (J.K.)
| | - Ji Yul Kim
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanjiro Ochang-eup, Chungju-si 28116, Korea; (S.P.); (J.Y.K.); (K.-H.R.); (J.K.)
- Department of Bioprocess Engineering, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Kyoung-Hwa Ryu
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanjiro Ochang-eup, Chungju-si 28116, Korea; (S.P.); (J.Y.K.); (K.-H.R.); (J.K.)
| | - Ah-Young Kim
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (A.-Y.K.); (Y.-J.K.)
| | - Jaemun Kim
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanjiro Ochang-eup, Chungju-si 28116, Korea; (S.P.); (J.Y.K.); (K.-H.R.); (J.K.)
- Department of Bioprocess Engineering, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Young-Joon Ko
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (A.-Y.K.); (Y.-J.K.)
| | - Eun Gyo Lee
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanjiro Ochang-eup, Chungju-si 28116, Korea; (S.P.); (J.Y.K.); (K.-H.R.); (J.K.)
- Correspondence: ; Tel.: +82-043-240-6633
| |
Collapse
|
10
|
Jain PN, Robertson M, Lasa JJ, Shekerdemian L, Guffey D, Zhang Y, Lingappan K, Checchia P, Coarfa C. Altered metabolic and inflammatory transcriptomics after cardiac surgery in neonates with congenital heart disease. Sci Rep 2021; 11:4965. [PMID: 33654130 PMCID: PMC7925649 DOI: 10.1038/s41598-021-83882-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
The study examines the whole blood transcriptome profile before and after cardiopulmonary bypass (CPB) in neonates with hypoplastic left heart syndrome (HLHS), a severe form of congenital heart disease, that can develop low cardiac output syndrome (LCOS). Whole blood mRNA transcriptome profiles of 13 neonates with HLHS before and after their first palliative surgery were analyzed to determine differentially expressed genes and pathways. The median age and weight at surgery were 4 days and 3.2 kg, respectively. Of the 13 patients, 8 developed LCOS. There was no significant difference between CPB, aortic cross clamp, deep hypothermic cardiac arrest times between patients that develop LCOS and those that do not. Upon comparing differential gene expression profiles between patients that develop LCOS and those that do not in pre-operative samples, 1 gene was up-regulated and 13 were down regulated. In the post-operative samples, 4 genes were up-regulated, and 4 genes were down regulated when patients that develop LCOS were compared to those that do not. When comparing post-operative samples to pre-operative samples in the patients that do not develop LCOS, 1484 genes were up-regulated, and 1388 genes were down regulated; while patients that developed LCOS had 2423 up-regulated genes, and 2414 down regulated genes for the same pre to post-operative comparison. Pathway analysis revealed differential regulation of inflammatory pathways (IL signaling, PDGF, NOTCH1, NGF, GPCR) and metabolic pathways (heme metabolism, oxidative phosphorylation, protein metabolism including amino acid and derivatives, fatty acid metabolism, TCA cycle and respiratory electron transport chain). By identifying altered transcriptome profiles related to inflammation and metabolism in neonates with HLHS who develop LCOS after CPB, this study opens for exploration novel pathways and potential therapeutic targets to improve outcomes in this high-risk population.
Collapse
Affiliation(s)
- Parag N Jain
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| | | | - Javier J Lasa
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Lara Shekerdemian
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | | - Yuhao Zhang
- Baylor College of Medicine, Houston, TX, USA
| | - Krithika Lingappan
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Paul Checchia
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | |
Collapse
|
11
|
Parchem JG, Kanasaki K, Lee SB, Kanasaki M, Yang JL, Xu Y, Earl KM, Keuls RA, Gattone VH, Kalluri R. STOX1 deficiency is associated with renin-mediated gestational hypertension and placental defects. JCI Insight 2021; 6:141588. [PMID: 33301424 PMCID: PMC7934881 DOI: 10.1172/jci.insight.141588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of preeclampsia and other hypertensive disorders of pregnancy remains poorly defined despite the substantial burden of maternal and neonatal morbidity associated with these conditions. In particular, the role of genetic variants as determinants of disease susceptibility is understudied. Storkhead-box protein 1 (STOX1) was first identified as a preeclampsia risk gene through family-based genetic linkage studies in which loss-of-function variants were proposed to underlie increased preeclampsia susceptibility. We generated a genetic Stox1 loss-of-function mouse model (Stox1 KO) to evaluate whether STOX1 regulates blood pressure in pregnancy. Pregnant Stox1-KO mice developed gestational hypertension evidenced by a significant increase in blood pressure compared with WT by E17.5. While severe renal, placental, or fetal growth abnormalities were not observed, the Stox1-KO phenotype was associated with placental vascular and extracellular matrix abnormalities. Mechanistically, we found that gestational hypertension in Stox1-KO mice resulted from activation of the uteroplacental renin-angiotensin system. This mechanism was supported by showing that treatment of pregnant Stox1-KO mice with an angiotensin II receptor blocker rescued the phenotype. Our study demonstrates the utility of genetic mouse models for uncovering links between genetic variants and effector pathways implicated in the pathogenesis of hypertensive disorders of pregnancy.
Collapse
Affiliation(s)
- Jacqueline G Parchem
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas, USA
| | - Keizo Kanasaki
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Soo Bong Lee
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Megumi Kanasaki
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Joyce L Yang
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Yong Xu
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kadeshia M Earl
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rachel A Keuls
- Development, Disease Models & Therapeutics Graduate Program, Center for Cell and Gene Therapy, and Stem Cells and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Vincent H Gattone
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Amaral MS, Goulart E, Caires-Júnior LC, Morales-Vicente DA, Soares-Schanoski A, Gomes RP, Olberg GGDO, Astray RM, Kalil JE, Zatz M, Verjovski-Almeida S. Differential gene expression elicited by ZIKV infection in trophoblasts from congenital Zika syndrome discordant twins. PLoS Negl Trop Dis 2020; 14:e0008424. [PMID: 32745093 PMCID: PMC7425990 DOI: 10.1371/journal.pntd.0008424] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/13/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) causes congenital Zika syndrome (CZS), which is characterized by fetal demise, microcephaly and other abnormalities. ZIKV in the pregnant woman circulation must cross the placental barrier that includes fetal endothelial cells and trophoblasts, in order to reach the fetus. CZS occurs in ~1-40% of cases of pregnant women infected by ZIKV, suggesting that mothers' infection by ZIKV during pregnancy is not deterministic for CZS phenotype in the fetus. Therefore, other susceptibility factors might be involved, including the host genetic background. We have previously shown that in three pairs of dizygotic twins discordant for CZS, neural progenitor cells (NPCs) from the CZS-affected twins presented differential in vitro ZIKV susceptibility compared with NPCs from the non-affected. Here, we analyzed human-induced-pluripotent-stem-cell-derived (hiPSC-derived) trophoblasts from these twins and compared by RNA-Seq the trophoblasts from CZS-affected and non-affected twins. Following in vitro exposure to a Brazilian ZIKV strain (ZIKVBR), trophoblasts from CZS-affected twins were significantly more susceptible to ZIKVBR infection when compared with trophoblasts from the non-affected. Transcriptome profiling revealed no differences in gene expression levels of ZIKV candidate attachment factors, IFN receptors and IFN in the trophoblasts, either before or after ZIKVBR infection. Most importantly, ZIKVBR infection caused, only in the trophoblasts from CZS-affected twins, the downregulation of genes related to extracellular matrix organization and to leukocyte activation, which are important for trophoblast adhesion and immune response activation. In addition, only trophoblasts from non-affected twins secreted significantly increased amounts of chemokines RANTES/CCL5 and IP10 after infection with ZIKVBR. Overall, our results showed that trophoblasts from non-affected twins have the ability to more efficiently activate genes that are known to play important roles in cell adhesion and in triggering the immune response to ZIKV infection in the placenta, and this may contribute to predict protection from ZIKV dissemination into fetuses' tissues.
Collapse
Affiliation(s)
| | - Ernesto Goulart
- Departmento de Genética e Biologia Evolutiva, Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Carlos Caires-Júnior
- Departmento de Genética e Biologia Evolutiva, Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - David Abraham Morales-Vicente
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | - Jorge E. Kalil
- Laboratório de Imunologia, Faculdade de Medicina e Instituto do Coração, Universidade de São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Departmento de Genética e Biologia Evolutiva, Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sergio Verjovski-Almeida
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
13
|
O’Connor BB, Pope BD, Peters MM, Ris-Stalpers C, Parker KK. The role of extracellular matrix in normal and pathological pregnancy: Future applications of microphysiological systems in reproductive medicine. Exp Biol Med (Maywood) 2020; 245:1163-1174. [PMID: 32640894 PMCID: PMC7400725 DOI: 10.1177/1535370220938741] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IMPACT STATEMENT Extracellular matrix in the womb regulates the initiation, progression, and completion of a healthy pregnancy. The composition and physical properties of extracellular matrix in the uterus and at the maternal-fetal interface are remodeled at each gestational stage, while maladaptive matrix remodeling results in obstetric disease. As in vitro models of uterine and placental tissues, including micro-and milli-scale versions of these organs on chips, are developed to overcome the inherent limitations of studying human development in vivo, we can isolate the influence of cellular and extracellular components in healthy and pathological pregnancies. By understanding and recreating key aspects of the extracellular microenvironment at the maternal-fetal interface, we can engineer microphysiological systems to improve assisted reproduction, obstetric disease treatment, and prenatal drug safety.
Collapse
Affiliation(s)
- Blakely B O’Connor
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering; Harvard John A. Paulson School of Engineering and Applied Sciences; Harvard University, Cambridge, MA 02138, USA
| | - Benjamin D Pope
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering; Harvard John A. Paulson School of Engineering and Applied Sciences; Harvard University, Cambridge, MA 02138, USA
| | - Michael M Peters
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering; Harvard John A. Paulson School of Engineering and Applied Sciences; Harvard University, Cambridge, MA 02138, USA
| | - Carrie Ris-Stalpers
- Department of Gynecology and Obstetrics, Academic Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam 1105, The Netherlands
| | - Kevin K Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering; Harvard John A. Paulson School of Engineering and Applied Sciences; Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
14
|
Cunningham SJ, Feng L, Allen TK, Reddy TE. Functional Genomics of Healthy and Pathological Fetal Membranes. Front Physiol 2020; 11:687. [PMID: 32655414 PMCID: PMC7325962 DOI: 10.3389/fphys.2020.00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/27/2020] [Indexed: 11/23/2022] Open
Abstract
Premature preterm rupture of membranes (PPROM), rupture of fetal membranes before 37 weeks of gestation, is the leading identifiable cause of spontaneous preterm births. Often there is no obvious cause that is identified in a patient who presents with PPROM. Identifying the upstream molecular events that lead to fetal membrane weakening presents potentially actionable mechanisms which could lead to the identification of at-risk patients and to the development of new therapeutic interventions. Functional genomic studies have transformed understanding of the role of gene regulation in diverse cells and tissues involved health and disease. Here, we review the results of those studies in the context of fetal membranes. We will highlight relevant results from major coordinated functional genomics efforts and from targeted studies focused on individual cell or tissue models. Studies comparing gene expression and DNA methylation between healthy and pathological fetal membranes have found differential regulation between labor and quiescent tissue as well as in preterm births, preeclampsia, and recurrent pregnancy loss. Whole genome and exome sequencing studies have identified common and rare fetal variants associated with preterm births. However, few fetal membrane tissue studies have modeled the response to stimuli relevant to pregnancy. Fetal membranes are readily adaptable to cell culture and relevant cellular phenotypes are readily observable. For these reasons, this is now an unrealized opportunity for genomic studies isolating the effect of cell signaling cascades and mapping the fetal membrane responses that lead to PPROM and other pregnancy complications.
Collapse
Affiliation(s)
- Sarah J Cunningham
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States.,University Program in Genetics and Genomics, Duke University, Durham, NC, United States.,Center for Genomic and Computational Biology, Duke University, Durham, NC, United States.,Center for Advanced Genomic Technologies, Duke University, Durham, NC, United States
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, United States
| | - Terrence K Allen
- Department of Anesthesiology, Duke University Hospital, Durham, NC, United States
| | - Timothy E Reddy
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States.,University Program in Genetics and Genomics, Duke University, Durham, NC, United States.,Center for Genomic and Computational Biology, Duke University, Durham, NC, United States.,Center for Advanced Genomic Technologies, Duke University, Durham, NC, United States
| |
Collapse
|
15
|
Database Mining of Genes of Prognostic Value for the Prostate Adenocarcinoma Microenvironment Using the Cancer Gene Atlas. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5019793. [PMID: 32509861 PMCID: PMC7251429 DOI: 10.1155/2020/5019793] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
Background Prostate adenocarcinoma (PRAD) is a common malignant tumor in elderly men. Our research uses The Cancer Gene Atlas (TCGA) database to find potential related genes for predicting the prognosis of patients with PRAD. Methods We downloaded gene expression profiles and clinical sample information from TCGA for 490 patients with PRAD (patient age: 41-78 years). We calculated stromal and immune scores using the ESTIMATE algorithm to predict the level of stromal and immune cell infiltration. We categorized patients with PRAD in TCGA into high and low score arrays according to their median immune/stromal scores and identified differentially expressed genes (DEGs) that were significantly correlated with the prognosis of PRAD. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. The association between DEGs and overall survival was investigated by weighted Kaplan–Meier survival analysis and multivariate analysis. Furthermore, the protein-protein interaction network (PPI) of DEGs was constructed using the STRING tool. Finally, the hub genes were identified by analyzing the degree of association of PPI networks. Results We found that 8 individual DEGs, C6, S100A12, MLC1, PAX5, C7, FAM162B, CAMK1G, and TCEAL5, were significantly predictive of favorable overall survival and one DEG, EPYC, was associated with poor overall survival. GO and KEGG pathway analyses revealed that the DEGs were associated with immune responses. Moreover, 30 hub genes were obtained using the PPI network of DEGs: ITGAM, CD4, CD3E, IL-10, LCP2, ITGB2, ZAP-70, C3, CCL19, CXCL13, CXCL9, BTK, CCL21, CD247, CD28, CD3D, FCER1G, PTPRC, TYROBP, CCR5, ITK, CCL13, CCR1, CCR2, CD79B, CYBB, IL2RG, JAK3, PLCG2, and CD19. These prominent nodes had the most associations with other genes, indicating that they might play crucial roles in the prognosis of PRAD. Conclusions We extracted a list of genes associated with the prostate adenocarcinoma microenvironment, which might contribute to the prediction and interpretation of PRAD prognosis.
Collapse
|
16
|
Whole-Genome Uterine Artery Transcriptome Profiling and Alternative Splicing Analysis in Rat Pregnancy. Int J Mol Sci 2020; 21:ijms21062079. [PMID: 32197362 PMCID: PMC7139363 DOI: 10.3390/ijms21062079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/05/2020] [Accepted: 03/13/2020] [Indexed: 01/27/2023] Open
Abstract
During pregnancy, the uterine artery (UA) undergoes extensive remodeling to permit a 20–40 fold increase in blood flow with associated changes in the expression of a multitude of genes. This study used next-gen RNA sequencing technology to identify pathways and genes potentially involved in arterial adaptations in pregnant rat UA (gestation day 20) compared with non-pregnant rat UA (diestrus). A total of 2245 genes were differentially expressed, with 1257 up-regulated and 970 down-regulated in pregnant UA. Gene clustering analysis revealed a unique cluster of suppressed genes implicated in calcium signaling pathway and vascular smooth muscle contraction in pregnant UA. Transcription factor binding site motif scanning identified C2H2 ZF, AP-2 and CxxC as likely factors functional on the promoters of down-regulated genes involved in calcium signaling and vascular smooth muscle contraction. In addition, 1686 genes exhibited alternative splicing that were mainly implicated in microtubule organization and smooth muscle contraction. Cross-comparison analysis identified novel genes that were both differentially expressed and alternatively spliced; these were involved in leukocyte and B cell biology and lipid metabolism. In conclusion, this first comprehensive study provides a valuable resource for understanding the molecular mechanism underlying gestational uterine arterial adaptations during pregnancy.
Collapse
|
17
|
Li L, Wang P, Liu S, Bai X, Zou B, Li Y. Transcriptome sequencing of endometrium revealed alterations in mRNAs and lncRNAs after ovarian stimulation. J Assist Reprod Genet 2020; 37:21-32. [PMID: 31745762 PMCID: PMC7000608 DOI: 10.1007/s10815-019-01616-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
RESEARCH QUESTION Using RNA-sequencing analysis, we investigated the relationship between ovarian stimulation and endometrial transcriptome profiles during the window of implantation (WOI) to identify candidate predictive factors for the WOI and to optimize timing for embryo transfer. METHODS Twelve women with normal basal hormone levels and regular ovulation were randomly assigned into three groups based on sampling time: late-proliferate phase (P group), and receptive phase in natural cycles (LH+7, N group) and stimulated cycles (hCG+7, S group). Transcriptome profiles of mRNAs and long non-coding RNAs (lncRNAs) were then compared among the three groups. Validation was performed using real-time qPCR. RESULTS Comparison of transcriptome profiles between the natural and stimulated endometrium revealed 173 differentially expressed genes (DEGs), with a > 2-fold change (FC) and p < 0.05, under the influence of supraphysiological estradiol (E2) induced by ovarian stimulation. By clustering and KEGG pathway analysis, molecules and pathways associated with endometrial receptivity were identified. Of the 39 DEGs common to the three groups, eight genes were validated using real-time PCR. ESR1, MMP10, and HPSE were previously reported to be associated with endometrial receptivity. In addition, three novel genes (IL13RA2, ZCCHC12, SRARP) and two lncRNAs (LINC01060, LINC01104) were new potential endometrial receptivity-related markers. CONCLUSION Using mRNA and lncRNA sequencing, we found that supraphysiological E2 levels from ovarian stimulation had a marked impact upon endometrial transcriptome profiles and may result in a shift of the WOI. The precise mechanisms underlying the supraphysiological hormone-induced shift of the WOI require further research. REGISTRATION NUMBER ChiCTR180001453.
Collapse
Affiliation(s)
- Lingxiu Li
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Peng Wang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shan Liu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xueyan Bai
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Binbin Zou
- Beijing NeoAntigen Biotechnology Co. Ltd, Beijing, China
| | - Yuan Li
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Brkić J, Dunk C, Shan Y, O'Brien JA, Lye P, Qayyum S, Yang P, Matthews SG, Lye SJ, Peng C. Differential Role of Smad2 and Smad3 in the Acquisition of an Endovascular Trophoblast-Like Phenotype and Preeclampsia. Front Endocrinol (Lausanne) 2020; 11:436. [PMID: 32733385 PMCID: PMC7362585 DOI: 10.3389/fendo.2020.00436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
During placental development, cytotrophoblast progenitor cells differentiate into the syncytiotrophoblast and invasive extravillous trophoblasts (EVTs). Some EVTs further differentiate into endovascular trophoblasts (enEVTs) which exhibit endothelial-like properties. Abnormal placental development, including insufficient enEVT-mediated remodeling of the uterine spiral arteries, is thought to be a precipitating factor in the onset of preeclampsia (PE), a pregnancy-related hypertensive disorder. Several members of the transforming growth factor-β (TGF-β) superfamily, such as TGF-βs, Nodal, and Activin have been reported to either promote or inhibit the invasive EVT pathway. These ligands signal through serine/threonine receptor complexes to activate downstream signaling mediators, Smad2 and Smad3. In this study, we determined Smad2 and Smad3 expression pattern in placenta and their effects on trophoblast invasion and differentiation. Total Smad2/3 levels were relatively constant across gestation while the ratio of active phosphorylated forms to their total levels varied with gestational stages, with a higher pSmad2/total Smad2 in later gestation and a higher pSmad3/total Smad3 in early gestation. Immunofluorescent staining revealed that pSmad3 was localized in nuclei of EVTs in anchoring villi. On the other hand, pSmad2 was mostly absent in this invasive EVT population. In addition, pSmad3/total Smad3, but not pSmad2/total Smad2, was significantly lower in both early onset and late onset PE cases, as compared to gestational age-matched controls. Functional studies carried out using a first trimester trophoblast cell line, HTR-8/SVneo, and first trimester human placental explants showed that Smad2 and Smad3 had differential roles in the invasive pathway. Specifically, siRNA-mediated knockdown of Smad2 resulted in an increase in trophoblast invasion and an upregulation of mRNA levels of enEVT markers while the opposite was observed with Smad3 knockdown. In addition, Smad2 siRNA accelerated the EVT outgrowth in first trimester placental explants while the Smad3 siRNA reduced the outgrowth of EVTs when compared to the control. Furthermore, knockdown of Smad2 enhanced, whereas overexpression of Smad2 suppressed, the ability of trophoblasts to form endothelial-like networks. Conversely, Smad3 had opposite effects as Smad2 on network formation. These findings suggest that Smad2 and Smad3 have opposite functions in the acquisition of an enEVT-like phenotype and defects in Smad3 activation are associated with PE.
Collapse
Affiliation(s)
- Jelena Brkić
- Department of Biology, York University, Toronto, ON, Canada
| | - Caroline Dunk
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Phetcharawan Lye
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Sheza Qayyum
- Department of Biology, York University, Toronto, ON, Canada
| | - Peifeng Yang
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Stephen J. Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng
| |
Collapse
|
19
|
Transcriptome Changes in the Mink Uterus during Blastocyst Dormancy and Reactivation. Int J Mol Sci 2019; 20:ijms20092099. [PMID: 31035421 PMCID: PMC6540205 DOI: 10.3390/ijms20092099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022] Open
Abstract
Embryo implantation in the mink follows the pattern of many carnivores, in that preimplantation embryo diapause occurs in every gestation. Details of the gene expression and regulatory networks that terminate embryo diapause remain poorly understood. Illumina RNA-Seq was used to analyze global gene expression changes in the mink uterus during embryo diapause and activation leading to implantation. More than 50 million high quality reads were generated, and assembled into 170,984 unigenes. A total of 1684 differential expressed genes (DEGs) in uteri with blastocysts in diapause were compared to the activated embryo group (p < 0.05). Among these transcripts, 1527 were annotated as known genes, including 963 up-regulated and 564 down-regulated genes. The gene ontology terms for the observed DEGs, included cellular communication, phosphatase activity, extracellular matrix and G-protein couple receptor activity. The KEGG pathways, including PI3K-Akt signaling pathway, focal adhesion and extracellular matrix (ECM)-receptor interactions were the most enriched. A protein-protein interaction (PPI) network was constructed, and hub nodes such as VEGFA, EGF, AKT, IGF1, PIK3C and CCND1 with high degrees of connectivity represent gene clusters expected to play an important role in embryo activation. These results provide novel information for understanding the molecular mechanisms of maternal regulation of embryo activation in mink.
Collapse
|
20
|
Hiraki HL, Nagao RJ, Himmelfarb J, Zheng Y. Fabricating a Kidney Cortex Extracellular Matrix-Derived Hydrogel. J Vis Exp 2018:58314. [PMID: 30371659 PMCID: PMC6235530 DOI: 10.3791/58314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular matrix (ECM) provides important biophysical and biochemical cues to maintain tissue homeostasis. Current synthetic hydrogels offer robust mechanical support for in vitro cell culture but lack the necessary protein and ligand composition to elicit physiological behavior from cells. This manuscript describes a fabrication method for a kidney cortex ECM-derived hydrogel with proper mechanical robustness and supportive biochemical composition. The hydrogel is fabricated by mechanically homogenizing and solubilizing decellularized human kidney cortex ECM. The matrix preserves native kidney cortex ECM protein ratios while also enabling gelation to physiological mechanical stiffnesses. The hydrogel serves as a substrate upon which kidney cortex-derived cells can be maintained under physiological conditions. Furthermore, the hydrogel composition can be manipulated to model a diseased environment which enables the future study of kidney diseases.
Collapse
Affiliation(s)
| | - Ryan J Nagao
- Department of Bioengineering, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington
| | - Jonathan Himmelfarb
- Department of Medicine, Kidney Research Institute, University of Washington;
| | - Ying Zheng
- Department of Bioengineering, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington;
| |
Collapse
|
21
|
Baek A, Kim M, Kim SH, Cho SR, Kim HJ. Anti-inflammatory Effect of DNA Polymeric Molecules in a Cell Model of Osteoarthritis. Inflammation 2018; 41:677-688. [PMID: 29302765 DOI: 10.1007/s10753-017-0722-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The DNA polymeric molecules polydeoxynucleotide (PDRN) and polynucleotide (PN) can be used as new alternative treatment for osteoarthritis (OA); however, the underlying mechanisms are not fully understood. In this study, we investigated the effect of PDRN and PN on gene-expression profiles in a cell model of OA using transcriptome analysis. Under hypoxic conditions, human chondrosarcoma cells were stressed for 24 h in the presence of interleukin (IL)-1β and subsequently treated with PDRN, PN, or hyaluronic acid (HA) for another 24 h, followed by transcriptome analysis. The results of the transcriptome study comprising differentially expressed genes were analyzed using the Database of Annotation Visualization and Integrated Discovery program, which yielded Kyoto Encyclopedia of Genes and Genomes pathways. Toll-like receptor (TLR)- and nucleotide-binding oligomerization domain-like receptor (NLR)-signaling pathways were related between the IL-1β group and the group treated with DNA polymeric molecules. The genes involved in the TLR- and NLR-signaling pathways were validated using real-time quantitative polymerase chain reaction and western blot. Among these genes, IL-6, IL-1β, IL-8, and chemokine (C-C motif) ligand 3 were dramatically upregulated in the IL-1β group, but significantly downregulated in the group treated with DNA polymeric molecules. Specifically, PN treatment resulted in a greater decrease in the expression of these genes as compared with PDRN treatment. Both PDRN and PN treatments were involved in the anti-inflammatory response associated with OA progression, with PN treatment exhibiting additional anti-inflammatory properties relative to PDRN treatment. These results provide insight into potential therapeutic approaches involving PDRN and PN treatment of OA.
Collapse
Affiliation(s)
- Ahreum Baek
- Department and Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - MinGi Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Sung Hoon Kim
- Department and Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea. .,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea. .,Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Hyun Jung Kim
- Department of Rehabilitation Medicine, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Baek A, Cho SR, Kim SH. Elucidation of Gene Expression Patterns in the Brain after Spinal Cord Injury. Cell Transplant 2018; 26:1286-1300. [PMID: 28933220 PMCID: PMC5657738 DOI: 10.1177/0963689717715822] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological disease. The pathophysiological mechanisms of SCI have been reported to be relevant to central nervous system injury such as brain injury. In this study, gene expression of the brain after SCI was elucidated using transcriptome analysis to characterize the temporal changes in global gene expression patterns in a SCI mouse model. Subjects were randomly classified into 3 groups: sham control, acute (3 h post-injury), and subacute (2 wk post-injury) groups. We sought to confirm the genes differentially expressed between post-injured groups and sham control group. Therefore, we performed transcriptome analysis to investigate the enriched pathways associated with pathophysiology of the brain after SCI using Database for Annotation Visualization, and Integrated Discovery (DAVID), which yielded Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Following enriched pathways were found in the brain: oxidative phosphorylation pathway; inflammatory response pathways—cytokine–cytokine receptor interaction and chemokine signaling pathway; and endoplasmic reticulum (ER) stress-related pathways—antigen processing and presentation and mitogen-activated protein kinase signaling pathway. Oxidative phosphorylation pathway was identified at acute phase, while inflammation response and ER stress-related pathways were identified at subacute phase. Since the following pathways—oxidative phosphorylation pathway, inflammatory response pathways, and ER stress-related pathways—have been well known in the SCI, we suggested a link between SCI and brain injury. These mechanisms provide valuable reference data for better understanding pathophysiological processes in the brain after SCI.
Collapse
Affiliation(s)
- Ahreum Baek
- 1 Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea.,2 Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Rae Cho
- 2 Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,5 Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Hoon Kim
- 1 Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| |
Collapse
|
23
|
Baek A, Park EJ, Kim SY, Nam BG, Kim JH, Jun SW, Kim SH, Cho SR. High-Frequency Repetitive Magnetic Stimulation Enhances the Expression of Brain-Derived Neurotrophic Factor Through Activation of Ca 2+-Calmodulin-Dependent Protein Kinase II-cAMP-Response Element-Binding Protein Pathway. Front Neurol 2018; 9:285. [PMID: 29867712 PMCID: PMC5949612 DOI: 10.3389/fneur.2018.00285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 04/12/2018] [Indexed: 12/12/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) can be used in various neurological disorders. However, neurobiological mechanism of rTMS is not well known. Therefore, in this study, we examined the global gene expression patterns depending on different frequencies of repetitive magnetic stimulation (rMS) in both undifferentiated and differentiated Neuro-2a cells to generate a comprehensive view of the biological mechanisms. The Neuro-2a cells were randomly divided into three groups—the sham (no active stimulation) group, the low-frequency (0.5 Hz stimulation) group, and high-frequency (10 Hz stimulation) group—and were stimulated 10 min for 3 days. The low- and high-frequency groups of rMS on Neuro-2a cells were characterized by transcriptome array. Differentially expressed genes were analyzed using the Database of Annotation Visualization and Integrated Discovery program, which yielded a Kyoto Encyclopedia of Genes and Genomes pathway. Amphetamine addiction pathway, circadian entrainment pathway, long-term potentiation (LTP) pathway, neurotrophin signaling pathway, prolactin signaling pathway, and cholinergic synapse pathway were significantly enriched in high-frequency group compared with low-frequency group. Among these pathways, LTP pathway is relevant to rMS, thus the genes that were involved in LTP pathway were validated by quantitative real-time polymerase chain reaction and western blotting. The expression of glutamate ionotropic receptor N-methyl d-aspartate 1, calmodulin-dependent protein kinase II (CaMKII) δ, and CaMKIIα was increased, and the expression of CaMKIIγ was decreased in high-frequency group. These genes can activate the calcium (Ca2+)–CaMKII–cAMP-response element-binding protein (CREB) pathway. Furthermore, high-frequency rMS induced phosphorylation of CREB, brain-derived neurotrophic factor (BDNF) transcription via activation of Ca2+–CaMKII–CREB pathway. In conclusion, high-frequency rMS enhances the expression of BDNF by activating Ca2+–CaMKII–CREB pathway in the Neuro-2a cells. These findings may help clarify further therapeutic mechanisms of rTMS.
Collapse
Affiliation(s)
- Ahreum Baek
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Jee Park
- Department of Rehabilitation Medicine, The Graduate School Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Soo Yeon Kim
- Department of Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Bae-Geun Nam
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Graduate Program of NanoScience and Technology, Yonsei University, Seoul, South Korea
| | - Ji Hyun Kim
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Sang Woo Jun
- Department of Biomedical Clinical Engineering, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Sung Hoon Kim
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Graduate Program of NanoScience and Technology, Yonsei University, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea.,Yonsei Stem Cell Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea.,Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
24
|
Leavey K, Wilson SL, Bainbridge SA, Robinson WP, Cox BJ. Epigenetic regulation of placental gene expression in transcriptional subtypes of preeclampsia. Clin Epigenetics 2018; 10:28. [PMID: 29507646 PMCID: PMC5833042 DOI: 10.1186/s13148-018-0463-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
Background Preeclampsia (PE) is a heterogeneous, hypertensive disorder of pregnancy, with no robust biomarkers or effective treatments. We hypothesized that this heterogeneity is due to the existence of multiple subtypes of PE and, in support of this hypothesis, we recently identified five clusters of placentas within a large gene expression microarray dataset (N = 330), of which four (clusters 1, 2, 3, and 5) contained a substantial number of PE samples. However, while transcriptional analysis of placentas can subtype patients, we propose that the addition of epigenetic information could discern gene regulatory mechanisms behind the distinct PE pathologies, as well as identify clinically useful potential biomarkers. Results We subjected 48 of our samples from transcriptional clusters 1, 2, 3, and 5 to Infinium HumanMethylation450 arrays. Samples belonging to transcriptional clusters 1–3 still showed visible relationships to each other by methylation, but cluster 5, with known chromosomal abnormalities, no longer formed a cohesive group. Within transcriptional clusters 2 and 3, controlling for fetal sex and gestational age in the identification of differentially methylated sites, compared to the healthier cluster 1, dramatically reduced the number of significant sites, but increased the percentage that demonstrated a strong linear correlation with gene expression (from 5% and 2% to 9% and 8%, respectively). Locations exhibiting a positive relationship between methylation and gene expression were most frequently found in CpG open sea enhancer regions within the gene body, while those with a significant negative correlation were often annotated to the promoter in a CpG shore region. Integrated transcriptome and epigenome analysis revealed modifications in TGF-beta signaling, cell adhesion, oxidative phosphorylation, and metabolism pathways in cluster 2 placentas, and aberrations in antigen presentation, allograft rejection, and cytokine-cytokine receptor interaction in cluster 3 samples. Conclusions Overall, we have established DNA methylation alterations underlying a portion of the transcriptional development of “canonical” PE in cluster 2 and “immunological” PE in cluster 3. However, a significant number of the observed methylation changes were not associated with corresponding changes in gene expression, and vice versa, indicating that alternate methods of gene regulation will need to be explored to fully comprehend these PE subtypes. Electronic supplementary material The online version of this article (10.1186/s13148-018-0463-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine Leavey
- 1Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON Canada
| | - Samantha L Wilson
- 2BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC Canada.,3Department of Medical Genetics, University of British Columbia, C201-4500 Oak St, Vancouver, BC Canada
| | - Shannon A Bainbridge
- 4Interdisciplinary School of Health Sciences, University of Ottawa, 25 University Private, Ottawa, ON Canada.,5Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, ON Canada
| | - Wendy P Robinson
- 2BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC Canada.,3Department of Medical Genetics, University of British Columbia, C201-4500 Oak St, Vancouver, BC Canada
| | - Brian J Cox
- 1Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON Canada.,6Department of Obstetrics and Gynecology, University of Toronto, 23 Edward Street, Toronto, ON Canada
| |
Collapse
|
25
|
Association of Maternal and Fetal Single-Nucleotide Polymorphisms in Metalloproteinase ( MMP1, MMP2, MMP3, and MMP9) Genes with Preeclampsia. DISEASE MARKERS 2018; 2018:1371425. [PMID: 29670668 PMCID: PMC5835279 DOI: 10.1155/2018/1371425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/30/2017] [Accepted: 01/11/2018] [Indexed: 11/29/2022]
Abstract
Background Metalloproteinases (MMPs) play a pivotal role during the process of trophoblast invasion and placentation. The appearance of five functional single-nucleotide polymorphisms (SNP) in the genes of the metalloproteinases most commonly implicated in the implantation process may influence the development of preeclampsia. Methods Blood samples were collected from 86 mothers and 86 children after preeclampsia and 85 mothers and 85 children with uncomplicated pregnancies. The distribution of genotypes for −1607 1G/2G MMP1, −735 C/T MMP2, −1306 C/T MMP2, −1171 5A/6A MMP3, and −1562C/T MMP9 polymorphisms was determined by RFLP-PCR. Results The occurrence of 1G/1G MMP1 or 5A/5A MMP3 genotype in the mother or 1G/1G MMP1 or 5A/6A MMP3 genotype in the child is associated with preeclampsia development. Moreover, simultaneous maternal and fetal 1G/1G homozygosity increases the risk of preeclampsia development 2.39-fold and the set of maternal 5A/5A and fetal 5A/6A MMP3 genotypes by over 4.5 times. No association between the carriage of studied MMP2 or MMP9 polymorphisms and the predisposition to preeclampsia was found. Conclusion The maternal 1G/1G MMP1 and 5A/5A MMP3 and fetal 1G/1G MMP1 and 5A/6A MMP3 gene polymorphisms may be strong genetic markers of preeclampsia, occurring either individually or together.
Collapse
|