1
|
Meaza I, Williams AR, Wise SS, Lu H, Pierce JW. Carcinogenic Mechanisms of Hexavalent Chromium: From DNA Breaks to Chromosome Instability and Neoplastic Transformation. Curr Environ Health Rep 2024; 11:484-546. [PMID: 39466546 DOI: 10.1007/s40572-024-00460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW Hexavalent chromium [Cr(VI)] is a well-established human carcinogen, yet the mechanisms by which it leads to carcinogenic outcomes is still unclear. As a driving factor in its carcinogenic mechanism, Cr(VI) causes DNA double strand breaks and break-repair deficiency, leading to the development of chromosome instability. Therefore, the aim of this review is to discuss studies assessing Cr(VI)-induced DNA double strand breaks, chromosome damage and instability, and neoplastic transformation including cell culture, experimental animal, human pathology and epidemiology studies. RECENT FINDINGS Recent findings confirm Cr(VI) induces DNA double strand breaks, chromosome instability and neoplastic transformation in exposed cells, animals and humans, emphasizing these outcomes as key steps in the mechanism of Cr(VI) carcinogenesis. Moreover, recent findings suggest chromosome instability is a key phenotype in Cr(VI)-neoplastically transformed clones and is an inheritable and persistent phenotype in exposed cells, once more suggesting chromosome instability as central in the carcinogenic mechanism. Although limited, some studies have demonstrated DNA damage and epigenetic modulation are also key outcomes in biopsies from chromate workers that developed lung cancer. Additionally, we also summarized new studies showing Cr(VI) causes genotoxic and clastogenic effects in cells from wildlife, such as sea turtles, whales, and alligators. Overall, across the literature, it is clear that Cr(VI) causes neoplastic transformation and lung cancer. Many studies measured Cr(VI)-induced increases in DNA double strand breaks, the most lethal type of breaks clearly showing that Cr(VI) is genotoxic. Unrepaired or inaccurately repaired breaks lead to the development of chromosome instability, which is a common phenotype in Cr(VI) exposed cells, animals, and humans. Indeed, many studies show Cr(VI) induces both structural and numerical chromosome instability. Overall, the large body of literature strongly supports the conclusion that Cr(VI) causes DNA double strand breaks, inhibits DNA repair and chromosome instability, which are key to the development of Cr(VI)-induced cell transformation.
Collapse
Affiliation(s)
- Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - Aggie R Williams
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - John W Pierce
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA.
| |
Collapse
|
2
|
Fischer F, Stößer S, Wegmann L, Veh E, Lumpp T, Parsdorfer M, Schumacher P, Hartwig A. Chromate Affects Gene Expression and DNA Methylation in Long-Term In Vitro Experiments in A549 Cells. Int J Mol Sci 2024; 25:10129. [PMID: 39337613 PMCID: PMC11431867 DOI: 10.3390/ijms251810129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Chromate has been shown to dysregulate epigenetic mechanisms such as DNA methylation, leading to changes in gene expression and genomic instability. However, most in vitro studies are limited to short incubation periods, although chronic exposure may be more relevant for both environmental and occupational exposure. In this study, human adenocarcinoma A549 cells were treated with 1, 2 or 5 µM chromate for 24 h and compared with incubations with 0.2, 0.5 or 1 µM chromate for 1 to 5 weeks. Chromium accumulated in a pronounced time- and concentration-dependent manner after short-term treatment, whereas a plateau of intracellular chromium content was observed after long-term treatment. While short-term treatment induced a G2 arrest of the cell cycle, this effect was not observed after long-term treatment at lower concentrations. The opposite was observed for global DNA methylation: while short-term treatment showed no effect of chromate, significant dose-dependent hypomethylation was observed in the long-term experiments. Time-dependent effects were also observed in a high-throughput RT-qPCR gene expression analysis, particularly in genes related to the inflammatory response and DNA damage response. Taken together, the results suggest specific differences in toxicity profiles when comparing short-term and long-term exposure to chromate in A549 cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Liu S, Costa M, Ortiz A. Chronic nickel exposure alters extracellular vesicles to mediate cancer progression via sustained NUPR1 expression. J Inorg Biochem 2024; 252:112477. [PMID: 38199052 DOI: 10.1016/j.jinorgbio.2023.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Cancer cells release extracellular vesicles (EVs) that participate in altering the proximal tumor environment and distal tissues to promote cancer progression. Chronic exposure to nickel (Ni), a human group I carcinogen, results in epigenetic changes that promotes epithelial to mesenchymal transition (EMT). Cells that undergo EMT demonstrate various molecular changes, including elevated levels of the mesenchymal cadherin N-cadherin (N-CAD) and the transcription factor Zinc finger E-box binding homeobox 1 (ZEB1). Moreover, the molecular changes following EMT induce changes in cellular behavior, including anchorage-independent growth, which contributes to cancer cells detaching from tumor bulk during the metastatic process. Here, we present data demonstrating that EVs from Ni-exposed cells induce EMT in recipient BEAS-2B cells in the absence of Ni. Moreover, we show evidence that the EVs from Ni-altered cells package the transcription factor nuclear protein 1 (NUPR1), a transcription factor associated with Ni exposure and cancer progression. Moreover, our data demonstrates that the NUPR1 in the EVs becomes part of the recipient cell proteomic milieu and carry the NUPR1 to the nuclear space of the recipient cell. Interestingly, knockdown of NUPR1 in Ni-transformed cells suppressed NUPR1 packaging in the EVs, and nanoparticle tracking analysis (NTA) demonstrated decreased EV release. Reduction of NUPR1 in EVs resulted in diminished EMT capacity that resulted in decreased anchorage independent growth. This study is the first to demonstrate the role of NUPR1 in extracellular vesicle-mediate cancer progression.
Collapse
Affiliation(s)
- Shan Liu
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, United States of America
| | - Max Costa
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, United States of America
| | - Angelica Ortiz
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, United States of America.
| |
Collapse
|
4
|
Ortiz A, Stavrou A, Liu S, Chen D, Shen SS, Jin C. NUPR1 packaged in extracellular vesicles promotes murine triple-negative breast cancer in a type 1 interferon-independent manner. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:19-36. [PMID: 38405101 PMCID: PMC10887431 DOI: 10.20517/evcna.2023.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Aim This study aims to elucidate the involvement of triple-negative breast cancer (TNBC)-derived extracellular vesicles in metastasis. The loss of components in the type 1 interferon (IFN1) signaling pathway has been linked to the promotion of metastasis. However, IFN1 signaling induces immunological dormancy and promotes tumorigenesis. Our hypothesis was that TNBC cells release tumor-derived extracellular vesicles (TEVs) that promote metastasis in an IFN1-independent manner. Methods Two murine TNBC models and transgenic mice were used to examine the role of IFN1 in TNBC progression to metastasis. Reserpine was employed to determine the effect of TEV education on TNBC progression and overall survival. EVs from cancer cells treated with vehicle and reserpine and from the serum of tumor-bearing mice receiving reserpine were examined to determine changes in EV release and EV content. Results TNBC cells progress to metastasis in mice lacking the IFN1-induced gene cholesterol-25 hydroxylase (CH25H) or expressing the IFNAR1S526 knock-in that cannot be downregulated. Reserpine suppresses EV release from TNBC cells in vitro and in vivo. Western blot analysis demonstrated reserpine decreased NUPR1 protein levels in EVs. RNAseq analysis demonstrated that endothelial cells lacking CH25H treated with TEVs exhibited increased NUPR1 expression that was decreased by adding reserpine with the TEVs. NUPR1 overexpression upregulated genes that mediate TEV biogenesis and incorporation. Knockdown of NUPR1 with shRNA decreased the release of TEVs. Conclusion In conclusion, our study suggests that TNBC is driven by aberrant packaging of NUPR1 into TEVs which were transferred into recipient cells to activate pro-metastatic transcription driven by NUPR1.
Collapse
Affiliation(s)
- Angelica Ortiz
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
- Department of Biomedical Science, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aikaterini Stavrou
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| | - Shan Liu
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| | - Danqi Chen
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| | - Steven S. Shen
- Clinical Translational Science Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chunyuan Jin
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| |
Collapse
|
5
|
Zablon HA, VonHandorf A, Puga A. Mechanisms of chromate carcinogenesis by chromatin alterations. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 96:1-23. [PMID: 36858770 DOI: 10.1016/bs.apha.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a dynamic environment, organisms must constantly mount an adaptive response to new environmental conditions in order to survive. Novel patterns of gene expression, driven by attendant changes in chromatin architecture, aid in adaptation and survival. Critical mechanisms in the control of gene transcription govern new spatiotemporal chromatin-chromatin interactions that make regulatory DNA elements accessible to the transcription factors that control the response. Consequently, agents that disrupt chromatin structure are likely to have a direct impact on the transcriptional programs of cells and organisms and to drive alterations in fundamental physiological processes. In this regard, hexavalent chromium (Cr(VI)) is of special interest because it interacts directly with cellular proteins, DNA, and other macromolecules, and is likely to upset cell functions that may cause generalized damage to the organism. Here, we will highlight chromium-mediated mechanisms that disrupt chromatin architecture and discuss how these mechanisms are integral to its carcinogenic properties. Emerging evidence indicates that Cr(VI) targets euchromatin, particularly in genomic locations flanking the binding sites of the essential transcription factors CTCF and AP1, and, in so doing, they disrupt nucleosomal architecture. Ultimately, the ensuing changes, if occurring in critical regulatory domains, may establish a new chromatin state, either toxic or adaptive, that will be governed by the corresponding gene transcription changes in key biological processes associated with that state.
Collapse
Affiliation(s)
- Hesbon A Zablon
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew VonHandorf
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Alvaro Puga
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
6
|
Zhao L, Islam R, Wang Y, Zhang X, Liu LZ. Epigenetic Regulation in Chromium-, Nickel- and Cadmium-Induced Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235768. [PMID: 36497250 PMCID: PMC9737485 DOI: 10.3390/cancers14235768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Environmental and occupational exposure to heavy metals, such as hexavalent chromium, nickel, and cadmium, are major health concerns worldwide. Some heavy metals are well-documented human carcinogens. Multiple mechanisms, including DNA damage, dysregulated gene expression, and aberrant cancer-related signaling, have been shown to contribute to metal-induced carcinogenesis. However, the molecular mechanisms accounting for heavy metal-induced carcinogenesis and angiogenesis are still not fully understood. In recent years, an increasing number of studies have indicated that in addition to genotoxicity and genetic mutations, epigenetic mechanisms play critical roles in metal-induced cancers. Epigenetics refers to the reversible modification of genomes without changing DNA sequences; epigenetic modifications generally involve DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs. Epigenetic regulation is essential for maintaining normal gene expression patterns; the disruption of epigenetic modifications may lead to altered cellular function and even malignant transformation. Therefore, aberrant epigenetic modifications are widely involved in metal-induced cancer formation, development, and angiogenesis. Notably, the role of epigenetic mechanisms in heavy metal-induced carcinogenesis and angiogenesis remains largely unknown, and further studies are urgently required. In this review, we highlight the current advances in understanding the roles of epigenetic mechanisms in heavy metal-induced carcinogenesis, cancer progression, and angiogenesis.
Collapse
|
7
|
Wang Z, Yang C. Epigenetic and epitranscriptomic mechanisms of chromium carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:241-265. [PMID: 36858774 PMCID: PMC10565670 DOI: 10.1016/bs.apha.2022.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hexavalent chromium [Cr(VI)], a Group I carcinogen classified by the International Agency for Research on Cancer (IARC), represents one of the most common occupational and environmental pollutants. The findings from human epidemiological and laboratory animal studies show that long-term exposure to Cr(VI) causes lung cancer and other cancer. Although Cr(VI) is a well-recognized carcinogen, the mechanism of Cr(VI) carcinogenesis has not been well understood. Due to the fact that Cr(VI) undergoes a series of metabolic reductions once entering cells to generate reactive Cr metabolites and reactive oxygen species (ROS) causing genotoxicity, Cr(VI) is generally considered as a genotoxic carcinogen. However, more and more studies have demonstrated that acute or chronic Cr(VI) exposure also causes epigenetic dysregulations including changing DNA methylation, histone posttranslational modifications and regulatory non-coding RNA (microRNA and long non-coding RNA) expressions. Moreover, emerging evidence shows that Cr(VI) exposure is also capable of altering cellular epitranscriptome. Given the increasingly recognized importance of epigenetic and epitranscriptomic dysregulations in cancer initiation and progression, it is believed that Cr(VI) exposure-caused epigenetic and epitranscriptomic changes could play important roles in Cr(VI) carcinogenesis. The goal of this chapter is to review the epigenetic and epitranscriptomic effects of Cr(VI) exposure and discuss their roles in Cr(VI) carcinogenesis. Better understanding the mechanism of Cr(VI) carcinogenesis may identify new molecular targets for more efficient prevention and treatment of cancer resulting from Cr(VI) exposure.
Collapse
Affiliation(s)
- Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Chengfeng Yang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
8
|
Chakraborty R, Renu K, Eladl MA, El-Sherbiny M, Elsherbini DMA, Mirza AK, Vellingiri B, Iyer M, Dey A, Valsala Gopalakrishnan A. Mechanism of chromium-induced toxicity in lungs, liver, and kidney and their ameliorative agents. Biomed Pharmacother 2022; 151:113119. [PMID: 35613529 DOI: 10.1016/j.biopha.2022.113119] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Heavy metal Chromium (Cr), can adversely affect humans and their health if accumulated in organs of the body, such as the lungs, liver, and kidneys. Cr (VI) is highly toxic and has a higher solubility in water than Cr (III). One of the most common routes for Cr exposure is through inhalation and is associated with liver, lung, kidney damage, widespread dermatitis, GI tract damage, human lung cancer, cardiomyopathies, and cardiovascular disease. The increase in ROS production has been attributed to most of the damage caused by Cr toxicity. Cr-induced ROS-mediated oxidative stress has been seen to cause a redox imbalance affecting the antioxidant system balance in the body. The Nrf2 pathway dysregulation has been implicated in the same. Deregulation of histone acetylation and methylation has been observed, together with gene methylation in genes such as p16, MGMT, APC, hMLH1, and also miR-143 repression. Several ultra-structural changes have been observed following Cr (VI)-toxicity, including rough ER dilation, alteration in the mitochondrial membrane and nuclear membrane, pycnotic nuclei formation, and cytoplasm vacuolization. A significant change was observed in the metabolism of lipid, glucose, and the metabolism of protein after exposure to Cr. Cr-toxicity also leads to immune system dysregulations with changes seen in the expression of IL-8, IL-4, IgM, lymphocytes, and leukocytes among others. P53, as well as pro-and anti-apoptotic proteins, are involved in apoptosis. These Cr-induced damages can be alleviated via agents that restore antioxidant balance, regulate Nrf-2 levels, or increase anti-apoptotic proteins while decreasing pro-apoptotic proteins.
Collapse
Affiliation(s)
- Rituraj Chakraborty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600 077, India
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O.Box 2014, Sakaka, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Arshi Khalid Mirza
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
9
|
Olmedo-Suárez MÁ, Ramírez-Díaz I, Pérez-González A, Molina-Herrera A, Coral-García MÁ, Lobato S, Sarvari P, Barreto G, Rubio K. Epigenetic Regulation in Exposome-Induced Tumorigenesis: Emerging Roles of ncRNAs. Biomolecules 2022; 12:513. [PMID: 35454102 PMCID: PMC9032613 DOI: 10.3390/biom12040513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, including pollutants and lifestyle, constitute a significant role in severe, chronic pathologies with an essential societal, economic burden. The measurement of all environmental exposures and assessing their correlation with effects on individual health is defined as the exposome, which interacts with our unique characteristics such as genetics, physiology, and epigenetics. Epigenetics investigates modifications in the expression of genes that do not depend on the underlying DNA sequence. Some studies have confirmed that environmental factors may promote disease in individuals or subsequent progeny through epigenetic alterations. Variations in the epigenetic machinery cause a spectrum of different disorders since these mechanisms are more sensitive to the environment than the genome, due to the inherent reversible nature of the epigenetic landscape. Several epigenetic mechanisms, including modifications in DNA (e.g., methylation), histones, and noncoding RNAs can change genome expression under the exogenous influence. Notably, the role of long noncoding RNAs in epigenetic processes has not been well explored in the context of exposome-induced tumorigenesis. In the present review, our scope is to provide relevant evidence indicating that epigenetic alterations mediate those detrimental effects caused by exposure to environmental toxicants, focusing mainly on a multi-step regulation by diverse noncoding RNAs subtypes.
Collapse
Affiliation(s)
- Miguel Ángel Olmedo-Suárez
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Decanato de Ciencias de la Salud, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Sagrario Lobato
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
10
|
Xia B, Yuan J, Pang L, He K. Chromium [Cr(VI)] Exposure Causes Cytotoxicity of Human Bronchial Epithelial Cells (16-HBE) and Proteomic Alterations. Int J Toxicol 2022; 41:225-233. [PMID: 35341331 DOI: 10.1177/10915818221078277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hexavalent chromium [Cr(VI)] is a common industrial pollutant, and exposure may cause toxic effects in multiple organ systems and carcinogenesis, including lung cancer. However, the toxic effect of Cr(VI) on the respiratory system is poorly understood. In the present study, it was demonstrated that Cr(VI) exposure significantly decreased the viability of human bronchial epithelial cells (16-HBE) in a dose-dependent manner. Flow cytometry demonstrated that Cr(VI) enhanced the transition of 16-HBE cells from G1 to S phase and arrested S-phase progression. Reverse transcription-quantitative polymerase chain reaction analysis revealed a significant alteration in the expression of apoptosis-associated genes in Cr(VI)-treated 16-HBE cells. In addition, using two-dimensional fluorescence differential gel electrophoresis with mass spectrometry, 15 differentially expressed proteins (1 upregulated and 14 downregulated) were identified in 16-HBE cells with Cr(VI) treatment compared with controls. Functional classification revealed that these differentially expressed proteins were involved in apoptosis, cytoskeletal structure, and energy metabolism. In conclusion, these data suggested that Cr(VI) caused toxic effects in bronchial epithelial cells and the mechanisms may involve the abnormal expression of apoptosis-associated proteins, cytoskeletal proteins, and energy metabolism-associated proteins.
Collapse
Affiliation(s)
- Bo Xia
- College of Food Science and Technology, 12575Hunan Agricultural University, East Renmin Road, Changsha, China.,Key Laboratory of Modern Toxicology of Shenzhen, 568734Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jiao Yuan
- College of Food Science and Technology, 12575Hunan Agricultural University, East Renmin Road, Changsha, China
| | - Li Pang
- College of Horticulture, 12575Hunan Agricultural University, East Renmin Road, Changsha, China
| | - Kaiwu He
- Key Laboratory of Modern Toxicology of Shenzhen, 568734Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
11
|
Wise JP, Young JL, Cai J, Cai L. Current understanding of hexavalent chromium [Cr(VI)] neurotoxicity and new perspectives. ENVIRONMENT INTERNATIONAL 2022; 158:106877. [PMID: 34547640 PMCID: PMC8694118 DOI: 10.1016/j.envint.2021.106877] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 05/21/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a global environmental pollutant that increases risk for several types of cancers and is increasingly being recognized as a neurotoxicant. Traditionally, the brain has been viewed as a largely post-mitotic organ due to its specialized composition of neurons, and consequently, clastogenic effects were not considered in neurotoxicology. Today, we understand the brain is composed of at least eight distinct cell types - most of which continue mitotic activity throughout lifespan. We have learned these dividing cells play essential roles in brain and body health. This review focuses on Cr(VI), a potent clastogen and known human carcinogen, as a potentially neurotoxic agent targeting mitotic cells of the brain. Despite its well-established role as a human carcinogen, Cr(VI) neurotoxicity studies have failed to find a significant link to brain cancers. In the few studies that did find a link, Cr(VI) was identified as a risk for gliomas. Instead, in the human brain, Cr(VI) appears to have more subtle deleterious effects that can impair childhood learning and attention development, olfactory function, social memory, and may contribute to motor neuron diseases. Studies of Cr(VI) neurotoxicity with animal and cell culture models have demonstrated elevated markers of oxidative damage and redox stress, with widespread neurodegeneration. One study showed mice exposed to Cr(VI)-laden tannery effluent exhibited longer periods of aggressive behavior toward an "intruder" mouse and took longer to recognize mice previously encountered, recapitulating the social memory deficits observed in humans. Here we conducted a critical review of the available literature on Cr(VI) neurotoxicity and synthesize the collective observations to thoroughly evaluate Cr(VI) neurotoxicity - much remains to be understood and recognized.
Collapse
Affiliation(s)
- John P Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Pediatric Research Institute, The Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | - Jamie L Young
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Pediatric Research Institute, The Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jun Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Pediatric Research Institute, The Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Pediatric Research Institute, The Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
12
|
VonHandorf A, Zablon HA, Puga A. Hexavalent chromium disrupts chromatin architecture. Semin Cancer Biol 2021; 76:54-60. [PMID: 34274487 PMCID: PMC8627925 DOI: 10.1016/j.semcancer.2021.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022]
Abstract
Accessibility of DNA elements and the orchestration of spatiotemporal chromatin-chromatin interactions are critical mechanisms in the regulation of gene transcription. Thus, in an ever-changing milieu, cells mount an adaptive response to environmental stimuli by modulating gene expression that is orchestrated by coordinated changes in chromatin architecture. Correspondingly, agents that alter chromatin structure directly impact transcriptional programs in cells. Heavy metals, including hexavalent chromium (Cr(VI)), are of special interest because of their ability to interact directly with cellular protein, DNA and other macromolecules, resulting in general damage or altered function. In this review we highlight the chromium-mediated mechanisms that promote disruption of chromatin architecture and how these processes are integral to its carcinogenic properties. Emerging evidence shows that Cr(VI) targets nucleosomal architecture in euchromatin, particularly in genomic locations flanking binding sites of the essential transcription factors CTCF and AP1. Ultimately, these changes contribute to an altered chromatin state in critical gene regulatory regions, which disrupts gene transcription in functionally relevant biological processes.
Collapse
Affiliation(s)
- Andrew VonHandorf
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH, 45267, USA
| | - Hesbon A Zablon
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH, 45267, USA
| | - Alvaro Puga
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH, 45267, USA.
| |
Collapse
|
13
|
Jiang W, Zhang C, Zhang X, Sun L, Li J, Zuo J. CircRNA HIPK3 promotes the progression of oral squamous cell carcinoma through upregulation of the NUPR1/PI3K/AKT pathway by sponging miR-637. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:860. [PMID: 34164494 PMCID: PMC8184441 DOI: 10.21037/atm-21-1908] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background To investigate the expression, function, and related mechanisms of circHIPK3 in oral squamous cell carcinoma (OSCC). Methods CircHIPK3 expression was determined by quantitative reverse transcription polymerized chain reaction (QRT-PCR) in OSCC and adjacent tissues, and the correlation between the circHIPK3 level and clinicopathological indexes of OSCC was analyzed. CircHIPK3 expressions in different OSCC cell lines were detected, cell counting kit-8 (CCK-8) and 5-bromodeoxyuridine (BrdU) assays were utilized to monitor cell proliferation and activity. Flow cytometry was adopted to detect apoptosis and transwell assay was used to detect cell invasion. The expressions of nuclear protein 1 (NUPR1), phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) (PI3K/AKT) pathway proteins, and E-cadherin, Vimentin, and N-cadherin markers of epithelial-mesenchymal transformation (EMT) were detected by Western blot or Quantitative Real-time PCR (QRT-PCR). Results Upregulated circHIPK3 was noted in OSCC tissues (compared with adjacent tissues), and its overexpression was related to OSCC size and histopathological grade. Functionally, overexpressed circHIPK3 can significantly promote EMT, proliferation, and invasion of OSCC cells and can inhibit cell apoptosis in vivo and in vitro. In addition, CircHIPK3 upregulated the activation of NUPR1 and PI3K/AKT. Bioinformatics analyses showed that miR-637 was the common target of circHIPK3 and NUPR1, while a dual luciferase reporting assay and RIP assay further demonstrated that circHIPK3 targeted miR-637 and bound to 3' UTR of NUPR1. Conclusions CircHIPK3 demonstrates potential as a prognostic marker of OSCC and mediates OSCC progression via the miR-637-mediated NUPR1/PI3K/AKT axis.
Collapse
Affiliation(s)
- Weipeng Jiang
- Department of Outpatient Oral and Maxillofacial Surgery, Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Health Science Center, School of Dentistry, Shenzhen University, Shenzhen, China
| | - Chunxiao Zhang
- Department of Medical Genetics, Weihai Maternity and Child Care Hospital, Weihai, China.,Department of Medical Genetics, Weihai Municipal Second Hospital Affiliated to Qingdao University, Weihai, China
| | - Xiaoming Zhang
- School of Dentistry, Binzhou Medical University, Binzhou, China
| | - Legang Sun
- School of Dentistry, Binzhou Medical University, Binzhou, China
| | - Jikui Li
- School of Dentistry, Binzhou Medical University, Binzhou, China
| | - Jinhua Zuo
- School of Dentistry, Binzhou Medical University, Binzhou, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Binzhou Medical College, Binzhou, China
| |
Collapse
|
14
|
Murphy A, Roy N, Sun H, Jin C, Costa M. Induction of NUPR1 and AP‑1 contributes to the carcinogenic potential of nickel. Oncol Rep 2021; 45:41. [PMID: 33649793 DOI: 10.3892/or.2021.7992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/03/2021] [Indexed: 12/25/2022] Open
Abstract
Nickel (Ni) is carcinogenic to humans, and causes cancers of the lung, nasal cavity, and paranasal sinuses. The primary mechanisms of Ni‑mediated carcinogenesis involve the epigenetic reprogramming of cells and the ability for Ni to mimic hypoxia. However, the exact mechanisms of carcinogenesis related to Ni are obscure. Nuclear protein 1 (NUPR1) is a stress‑response gene overexpressed in cancers, and is capable of conferring chemotherapeutic resistance. Likewise, activator protein 1 (AP‑1) is highly responsive to environmental signals, and has been associated with cancer development. In this study, NUPR1 was found to be rapidly and highly induced in human bronchial epithelial (BEAS‑2B) cells exposed to Ni, and was overexpressed in Ni‑transformed BEAS‑2B cells. Similarly, AP‑1 subunits, JUN and FOS, were induced in BEAS‑2B cells following Ni exposure. Knockdown of JUN or FOS was found to significantly suppress NUPR1 induction following Ni exposure, demonstrating their importance in NUPR1 transactivation. Reactive oxygen species (ROS) are known to induce AP‑1, and Ni has been shown to produce ROS. Treatment of BEAS‑2B cells with antioxidants was unable to prevent NUPR1 induction by Ni, suggesting that NUPR1 induction by Ni relies on mechanisms other than oxidative stress. To determine how NUPR1 is transcriptionally regulated following Ni exposure, the NUPR1 promoter was cloned and inserted into a luciferase gene reporter vector. Multiple JUN binding sites reside within the NUPR1 promoter, and upon deleting a JUN binding site in the upstream most region within the NUPR1 promoter using site‑directed mutagenesis, NUPR1 promoter activity was significantly reduced. This suggests that AP‑1 transcriptionally regulates NUPR1. Moreover, knockdown of NUPR1 significantly reduced colony formation and anchorage‑independent growth in Ni‑transformed BEAS‑2B cells. Therefore, these results collectively demonstrate a novel mechanism of NUPR1 induction following Ni exposure, and provide a molecular basis by which NUPR1 may contribute to lung carcinogenesis.
Collapse
Affiliation(s)
- Anthony Murphy
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Nirmal Roy
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Chunyuan Jin
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
15
|
Abstract
Chromium (Cr) is a common element in the Earth’s crust. It may exist in different oxidation states, Cr(0), Cr(III) and Cr(VI), with Cr(III) and Cr(VI) being relatively stable and largely predominant. Chromium’s peculiarity is that its behavior relies on its valence state. Cr(III) is a trace element in humans and plays a major role in glucose and fat metabolism. The beneficial effects of Cr(III) in obesity and types 2 diabetes are known. It has been long considered an essential element, but now it has been reclassified as a nutritional supplement. On the other hand, Cr(VI) is a human carcinogen and exposure to it occurs both in occupational and environmental contexts. It induces also epigenetic effects on DNA, histone tails and microRNA; its toxicity seems to be related to its higher mobility in soil and swifter penetration through cell membranes than Cr(III). The microorganisms Acinetobacter sp. Cr1 and Pseudomonas sp. Cr13 have been suggested as a promising agent for bioremediation of Cr(VI). This review intends to underline the important role of Cr(III) for human health and the dangerousness of Cr(VI) as a toxic element. The dual and opposing roles of this metal make it particularly interesting. An overview of the recent literature is reported in support.
Collapse
|
16
|
Neckel A, Korcelski C, Kujawa HA, Schaefer da Silva I, Prezoto F, Walker Amorin AL, Maculan LS, Gonçalves AC, Bodah ET, Bodah BW, Dotto GL, Silva LFO. Hazardous elements in the soil of urban cemeteries; constructive solutions aimed at sustainability. CHEMOSPHERE 2021; 262:128248. [PMID: 32962839 DOI: 10.1016/j.chemosphere.2020.128248] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 05/21/2023]
Abstract
Urban cemeteries on a global scale raise concerns due to their potential to concentrate differing levels of hazardous pollutants in their native soils due to the unnatural concentration of burials in a limited space. It is paramount for sustainability that designers of future cemeteries take this into account in order to minimize the deposition and movement of these contaminants within the soil profile. The objective of this manuscript is to identify the levels of certain hazardous element contamination, specifically heavy metals, in the soil of horizontal urban cemeteries that do not utilize herbicides for weed control. In this, solutions were sought for the construction of future urban cemeteries capable of mitigating further contamination of the environment by the increase in interments. The soils of three urban cemeteries (A, B and C) in the Brazilian city of Carazinho, in Rio Grande do Sul State, were sampled with 5 monitoring points in the internal area and 5 points in the external area of the cemeteries. At each point, 3 replications were performed at two depths (0-20 and 20-40 cm), totaling 180 samples in all, to determine the concentration of the following metals: copper (Cu), zinc (Zn), iron (Fe), manganese (Mn), lead (Pb), and chromium (Cr) (g kg-1). In addition, online interviews with 15 architects who design cemeteries were conducted. Architectural design solutions to mitigate environmental contamination were modeled utilizing the Building Information Modeling system (BIM). The results showed an excess of Cu in the soil of cemeteries A, B and C, surpassing the standards allowed by Brazilian federal regulations. A total of 80% of the interviewed architects expressed their preference for the vertical cemetery, with gas and effluent treatment systems to mitigate environmental impacts.
Collapse
Affiliation(s)
- Alcindo Neckel
- Faculdade Meridional - IMED, Rua General Prestes Guimarães, 304 Vila Rodrigues, Passo Fundo, RS, 99070-220, Brazil.
| | - Cleiton Korcelski
- Faculdade Meridional - IMED, Rua General Prestes Guimarães, 304 Vila Rodrigues, Passo Fundo, RS, 99070-220, Brazil
| | - Henrique Aniceto Kujawa
- Faculdade Meridional - IMED, Rua General Prestes Guimarães, 304 Vila Rodrigues, Passo Fundo, RS, 99070-220, Brazil
| | - Izabella Schaefer da Silva
- Departent of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Fábio Prezoto
- Departent of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Anderson Luis Walker Amorin
- Faculdade Meridional - IMED, Rua General Prestes Guimarães, 304 Vila Rodrigues, Passo Fundo, RS, 99070-220, Brazil
| | - Laércio Stolfo Maculan
- Faculdade Meridional - IMED, Rua General Prestes Guimarães, 304 Vila Rodrigues, Passo Fundo, RS, 99070-220, Brazil
| | - Affonso Celso Gonçalves
- State University of Western Paraná - UNIOESTE, Center of Agrarian Sciences, Rua Pernambuco 1777 Centro, Marechal Cândido Rondon, PR, 85960-000, Brazil
| | - Eliane Thaines Bodah
- State University of New York, Onondaga Community College, 4585 West Seneca Turnpike, Syracuse, NY, 13215, USA; Thaines and Bodah Center for Education and Development, 840 South Meadowlark Lane, Othello, WA, 99344, USA.
| | - Brian William Bodah
- Thaines and Bodah Center for Education and Development, 840 South Meadowlark Lane, Othello, WA, 99344, USA
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria e UFSM, 1000 Roraima Avenue 97105e900, Santa Maria, RS, Brazil
| | - Luis F O Silva
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55e66, Barranquilla, Atlantico, Colombia.
| |
Collapse
|
17
|
Chen Z, Zhong J, Ren X, Liu W, Wu D, Chen C, Huang H, Huang X, Liu Y, Liu J. Involvement of a novel regulatory cascade consisting of SET-H3K18ac/H3K27ac-53BP1 in Cr(VI)-induced malignant transformation of 16HBE cells. Toxicol Lett 2020; 339:70-77. [PMID: 33370592 DOI: 10.1016/j.toxlet.2020.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
Hexavalent chromium (Cr(VI)) is a well-established human carcinogen with DNA damaging effects. Recently we established a Cr(VI)-induced malignant transformation model from a human bronchial epithelial (16HBE) cell line, and in the transformed (16HBE-T) cells reduced levels of 53BP1 (critical for DNA repair) and the acetylated histone H3K18/27 (H3K18/27ac) were observed. In 16HBE-T cells SET (a multifunctional protein) was elevated by Cr(VI) through quantitative proteomics analysis. In the present study, we further explore the involvement of SET in the H3K18/27ac/53BP1 cascade in the 16HBE-T model, primarily by knockdown of SET. Bioinformatic analysis of the differentially expressed proteins indicated enrichment in histone modifications, in which SET was a major regulator. In 16HBE cells SET expression was enhanced by Cr(VI) in a concentration- and exposure duration-dependent manner. In 16HBE-T cells, SET knockdown showed the following effects: reversal of H3K18/27ac and 53BP1 levels, enhanced enrichment H3K18/27ac in 53BP1's promotor region, increase rate of apoptosis and cell cycle G0/G1 arrest (with or without Cr(VI) treatment), and reduced colony-forming efficiency. Finally, In comparison with benzo(a)pyrene-transformed (malignant, 16HBE-B) cells from 16HBE where no changes in H3K18/27ac, 53BP1 or SET were observed, while the H3K18/27ac/53BP1 cascade was downregulated and SET upregulated in 16HBE-T cells, as compared with the parental 16HBE cells; thus the changes in 16HBE-T might be a specific effect of Cr(VI). In conclusion, our results suggest that SET may be involved in the malignant cell transformation, through inhibiting the H3K18/27ac/53BP1 cascade, at least in the 16HBE cell model.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 518055
| | - Jiacheng Zhong
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 518055
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 518055
| | - Wei Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 518055
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 518055
| | - Chongyang Chen
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 518055
| | - Haiyan Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 518055
| | - Xinfeng Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 518055
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianjun Liu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 518055.
| |
Collapse
|
18
|
Mansour SMA, Ali SA, Nofal S, Soror SH. Targeting NUPR1 for Cancer Treatment: A Risky Endeavor. Curr Cancer Drug Targets 2020; 20:768-778. [PMID: 32619170 DOI: 10.2174/1568009620666200703152523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
NUPR1 is a transcription factor that has attracted great attention because of its various roles in cancer. Several studies were carried out to determine its molecular targets and mechanism of action to develop novel therapies against cancer. Here, we shed light on the role of NUPR1 in different types of cancer. NUPR1 regulates a complex network of pathways that may be affected by its silencing, which can cause varying effects. Its role in some types of cancer has been reported but remains incompletely understood, whereas its roles in other types of cancers have not been reported yet. Therefore, targeting NUPR1 for cancer treatment remains challenging and risky.
Collapse
Affiliation(s)
- Salma M A Mansour
- Egyptian Patent Office, Academy of Scientific Research and Technology (ASRT), 101 Kaser Al-Ainy Street, Cairo, Egypt
| | - Sahar A Ali
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan Cairo 11795, Egypt
| | - Shaira Nofal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan Cairo 11795, Egypt
| | - Sameh H Soror
- Egyptian Patent Office, Academy of Scientific Research and Technology (ASRT), 101 Kaser Al-Ainy Street, Cairo, Egypt.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan Cairo 11795, Egypt
| |
Collapse
|
19
|
Murphy A, Costa M. Nuclear protein 1 imparts oncogenic potential and chemotherapeutic resistance in cancer. Cancer Lett 2020; 494:132-141. [PMID: 32835767 DOI: 10.1016/j.canlet.2020.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Nuclear protein 1 (NUPR1) also known as p8 and candidate of metastasis 1 (COM1) functions as a transcriptional regulator, and plays a role in cell cycle, DNA damage response, apoptosis, autophagy, and chromatin remodeling in response to various cellular stressors. Since it was first suggested to contribute to cancer development and progression in 1999, a number of studies have sought to reveal its function. However, NUPR1 and its biological relevance in cancer have proven difficult to pinpoint. Based on evidence of NUPR1 expression in cancers, its function extends from carcinogenesis and tumorigenesis to metastasis and chemotherapeutic resistance. A tumor suppressive function of NUPR1 has also been documented in multiple cancers. By and large, literature involving NUPR1 and cancer is confined to pancreatic and breast cancers, yet significant progress has been made with respect to NUPR1 expression and its function in lung, colorectal, blood, and prostate cancers, among others. Recent evidence strongly supports the notion that NUPR1 is key in chemotherapeutic resistance by mediating both anti-apoptotic activity and autophagy when challenged with anti-cancer compounds. Therefore, it is of significant importance to understand the broad range of molecular functions directed by NUPR1. In this review, NUPR1 expression and its role in breast, lung, and colorectal cancer development and progression will be addressed.
Collapse
Affiliation(s)
- Anthony Murphy
- Department of Environmental Medicine, New York University School of Medicine, USA.
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, USA.
| |
Collapse
|
20
|
Pavesi T, Moreira JC. Mechanisms and individuality in chromium toxicity in humans. J Appl Toxicol 2020; 40:1183-1197. [DOI: 10.1002/jat.3965] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/23/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Thelma Pavesi
- Centro de Estudos da Saúde do Trabalhador e Ecologia HumanaEscola Nacional de Saúde Pública, Fundação Oswaldo Cruz Rio de Janeiro Brazil
| | - Josino Costa Moreira
- Centro de Estudos da Saúde do Trabalhador e Ecologia HumanaEscola Nacional de Saúde Pública, Fundação Oswaldo Cruz Rio de Janeiro Brazil
| |
Collapse
|
21
|
Birkett N, Al-Zoughool M, Bird M, Baan RA, Zielinski J, Krewski D. Overview of biological mechanisms of human carcinogens. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:288-359. [PMID: 31631808 DOI: 10.1080/10937404.2019.1643539] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review summarizes the carcinogenic mechanisms for 109 Group 1 human carcinogens identified as causes of human cancer through Volume 106 of the IARC Monographs. The International Agency for Research on Cancer (IARC) evaluates human, experimental and mechanistic evidence on agents suspected of inducing cancer in humans, using a well-established weight of evidence approach. The monographs provide detailed mechanistic information about all carcinogens. Carcinogens with closely similar mechanisms of action (e.g. agents emitting alpha particles) were combined into groups for the review. A narrative synopsis of the mechanistic profiles for the 86 carcinogens or carcinogen groups is presented, based primarily on information in the IARC monographs, supplemented with a non-systematic review. Most carcinogens included a genotoxic mechanism.
Collapse
Affiliation(s)
- Nicholas Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mustafa Al-Zoughool
- Department of Community and Environmental Health, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Michael Bird
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert A Baan
- International Agency for Research on Cancer, Lyon, France
| | - Jan Zielinski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Risk Sciences International, Ottawa, Canada
| |
Collapse
|
22
|
Hu J, Yu Y. Epigenetic response profiles into environmental epigenotoxicant screening and health risk assessment: A critical review. CHEMOSPHERE 2019; 226:259-272. [PMID: 30933735 DOI: 10.1016/j.chemosphere.2019.03.096] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The epigenome may be an important interface between exposure to environmental contaminants and adverse outcome on human health. Many environmental pollutants deregulate gene expression and promote diseases by modulating the epigenome. Adverse epigenetic responses have been widely used for risk assessment of chemical substances. Various pollutants, including trace elements and persistent organic pollutants, have been detected frequently in the environment. Epigenetic toxicity of environmental matrices including water, air, soil, and food cannot be ignored. This review provides a comprehensive overview of epigenetic effects of pollutants and environmental matrices. We start with an overview of the mechanisms of epigenetic regulation and the effects of several types of environmental pollutants (trace elements, persistent organic pollutants, endocrine disrupting chemicals, and volatile organic pollutants) on epigenetic modulation. We then discuss the epigenetic responses to environmental water, air, and soil based on in vivo and in vitro assays. Finally, we discuss recommendations to promote the incorporation of epigenotoxicity into contamination screening and health risk assessment.
Collapse
Affiliation(s)
- Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, PR China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
23
|
Chen QY, Murphy A, Sun H, Costa M. Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis. Toxicol Appl Pharmacol 2019; 377:114636. [PMID: 31228494 DOI: 10.1016/j.taap.2019.114636] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Chromium (Cr) is a naturally occurring metallic element found in the Earth's crust. While trivalent chromium ([Cr(III)] is considered non-carcinogenic, hexavalent chromium [Cr(VI)] has long been established as an IARC class I human carcinogen, known to induce cancers of the lung. Current literature suggests that Cr(VI) is capable of inducing carcinogenesis through both genetic and epigenetic mechanisms. Although much has been learned about the molecular etiology of Cr(VI)-induced lung carcinogenesis, more remains to be explored. In particular, the explicit epigenetic alterations induced by Cr(VI) in lung cancer including histone modifications and miRNAs, remain understudied. Through comprehensive review of available literature found between 1973 and 2019, this article provides a summary of updated understanding of the molecular mechanisms of Cr(VI)-carcinogenesis. In addition, this review identifies potential research gaps in the areas of histone modifications and miRNAs, which may prompt new niches for future research.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| | - Anthony Murphy
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| |
Collapse
|
24
|
Zablon HA, VonHandorf A, Puga A. Chromium exposure disrupts chromatin architecture upsetting the mechanisms that regulate transcription. Exp Biol Med (Maywood) 2019; 244:752-757. [PMID: 30935235 PMCID: PMC6567585 DOI: 10.1177/1535370219839953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
IMPACT STATEMENT This mini-review highlights current evidence on the mechanisms through which hexavalent chromium (Cr(VI)) disrupts transcriptional regulation, an emerging area of interest and one of the central processes by which chromium induces carcinogenesis. Several studies have shown that Cr(VI) causes widespread DNA damage and disrupts epigenetic signatures, suggesting that chromatin may be a direct Cr(VI) target. The findings discussed here suggest that Cr(VI) disrupts transcriptional regulation by causing genomic architecture changes.
Collapse
Affiliation(s)
- Hesbon A Zablon
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Andrew VonHandorf
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
25
|
Abstract
Chromium is a pervasive environmental contaminant that is of great importance because of its toxicity. Hexavalent chromium is a classified group 1 carcinogen with multiple complex mechanisms by which it triggers cancer development. Increased levels of oxidative stress, chromosome breaks, and DNA-adduct formation are some of the major mechanisms by which C(VI) causes cellular damage. Trivalent chromium is another species of chromium that is described as a non-essential metal, and is used in nutritional supplementation. Evidence on nutritional benefit is conflicting which could suggest that humans absorb enough Cr(III) from diet alone, and that extra supplementation is not necessary. This review highlights the differences between Cr(VI) and Cr(III) from a chemical and toxicological perspective, describes short-comings in nutritional research of Cr(III), and explains the multiple mechanisms by which Cr(VI) is involved in the process of carcinogenesis.
Collapse
Affiliation(s)
- Thomas L DesMarais
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10010
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10010
| |
Collapse
|
26
|
Sun F, Ye C, Thanki K, Leng D, van Hasselt PM, Hennink WE, van Nostrum CF. Mixed micellar system stabilized with saponins for oral delivery of vitamin K. Colloids Surf B Biointerfaces 2018; 170:521-528. [PMID: 29966905 DOI: 10.1016/j.colsurfb.2018.06.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/30/2022]
Abstract
Poorly soluble vitamin K cannot be absorbed by patients suffering from cholestasis due to extremely low level of bile salts in the intestine. A formulation of vitamin K including glycocholic acid (i.e. Konakion® MM), does not increase bioavailability because it is unstable due to protonation of glycocholic acid at gastric pH. To develop a stable formulation, saponins were introduced as neutral surfactants to (partly) replace glycocholic acid. Experimental design was made to investigate the effect of the composition on particle size at neutral pH and upon acidification at pH 1.5. Two formulations that were within the optimized composition window were loaded with vitamin K and those showed superior stability at low pH as compared to Konakion® MM: sizes were between 43 and 46 nm at pH 7.3 and between 46 and 58 nm after 1 h incubation at pH 1.5, respectively, but large aggregates were formed at pH 1.5 in presence of Konakion® MM. Micelles were cytocompatible with Caco-2 cells at concentration of surfactants (saponins and glycocholic acid) up to 0.15 mg/ml. Uptake of vitamin K by Caco-2 cells was 4.2-4.9 nmol/mg protein for saponins-containing formulations and 7.1 nmol/mg protein for Konakion® MM. This, together with the superior stability at low pH, makes saponins-containing mixed micelles promising oral formulations for vitamin K.
Collapse
Affiliation(s)
- Feilong Sun
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Chengpei Ye
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Kaushik Thanki
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Donglei Leng
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Peter M van Hasselt
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
27
|
Single-cell RNA sequencing reveals an altered gene expression pattern as a result of CRISPR/cas9-mediated deletion of Gene 33/Mig6 and chronic exposure to hexavalent chromium in human lung epithelial cells. Toxicol Appl Pharmacol 2017; 330:30-39. [PMID: 28688920 DOI: 10.1016/j.taap.2017.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023]
Abstract
Gene 33 (Mig6, ERRFI1) is an adaptor protein with multiple cellular functions. We recently reported that depletion of this protein promotes lung epithelial cell transformation induced by hexavalent chromium [Cr(VI)]. However, the early molecular events that mediate this process are not clear. In the present study, we used single-cell RNA sequencing to compare gene expression profiles between BEAS-2B lung epithelial cells chronically exposed to a sublethal dose of Cr(VI) with or without CRISPR/cas9-mediated deletion of Gene 33. Our data reveal 83 differentially expressed genes. The most notable changes are genes associated with cell adhesion, oxidative stresses, protein ubiquitination, epithelial-mesenchymal transition/metastasis, and WNT signaling. Up-regulation of some neuro-specific genes is also evident, particularly ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), a deubiquitinase and potential biomarker for lung cancer. Gene 33 deletion and/or Cr(VI) exposure did not cause discernable changes in cell morphology. However, Gene 33 deletion led to a modest but significant reduction of cells in the G2/M phase of the cell cycle regardless of Cr(VI) exposure. Gene 33 deletion also significantly reduced cell proliferation. Interestingly, Cr(VI) exposure eliminated the difference in cell proliferation between the two genotypes. Gene 33 deletion also significantly elevated cell migration. Our data indicate that combined Gene 33 deletion and chronic Cr(VI) exposure produces a gene expression pattern and a phenotype resemble those of the transformed lung epithelial cells. Given the known association of UCHL1 with lung cancer, we propose that UCHL1 is an important player in the early stage of lung epithelial cell transformation and tumorigenesis.
Collapse
|
28
|
de Conti A, Dreval K, Tryndyak V, Orisakwe OE, Ross SA, Beland FA, Pogribny IP. Inhibition of the Cell Death Pathway in Nonalcoholic Steatohepatitis (NASH)-Related Hepatocarcinogenesis Is Associated with Histone H4 lysine 16 Deacetylation. Mol Cancer Res 2017; 15:1163-1172. [PMID: 28512251 DOI: 10.1158/1541-7786.mcr-17-0109] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/11/2017] [Accepted: 05/10/2017] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive human cancers, and its incidence is steadily increasing worldwide. Recent epidemiologic findings have suggested that the increased incidence of HCC is associated with obesity, type II diabetes mellitus, and nonalcoholic steatohepatitis (NASH); however, the mechanisms and the molecular pathogenesis of NASH-related HCC are not fully understood. To elucidate the underlying mechanisms of the development of NASH-related HCC, we investigated the hepatic transcriptomic and histone modification profiles in Stelic Animal Model mice, the first animal model of NASH-related HCC to resemble the disease pathogenesis in humans. The results demonstrate that the development of NASH-related HCC is characterized by progressive transcriptomic alterations, global loss of histone H4 lysine 20 trimethylation (H4K20me3), and global and gene-specific deacetylation of histone H4 lysine 16 (H4K16). Pathway analysis of the entire set of differentially expressed genes indicated that the inhibition of cell death pathway was the most prominent alteration, and this was facilitated by persistent gene-specific histone H4K16 deacetylation. Mechanistically, deacetylation of histone H4K16 was associated with downregulation of lysine acetyltransferase KAT8, which was driven by overexpression of its inhibitor nuclear protein 1 (Nupr1). The results of this study identified a reduction of global and gene-specific histone H4K16 acetylation as a key pathophysiologic mechanism contributing to the development of NASH-derived HCC and emphasized the importance of epigenetic alterations as diagnostic and therapeutic targets for HCC.Implications: Histone H4K16 deacetylation induces silencing of genes related to the cell death that occurred during the development of NASH-related HCC. Mol Cancer Res; 15(9); 1163-72. ©2017 AACR.
Collapse
Affiliation(s)
- Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Kostiantyn Dreval
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Orish E Orisakwe
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas.,Department of Experimental Pharmacology and Toxicology, University of Port-Harcourt, Rivers State, Nigeria
| | - Sharon A Ross
- Division of Cancer Prevention, NCI, Bethesda, Maryland
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas.
| |
Collapse
|