1
|
Song Y, Jia H, Ma Q, Zhang L, Lai X, Wang Y. The causes of pulmonary hypertension and the benefits of aerobic exercise for pulmonary hypertension from an integrated perspective. Front Physiol 2024; 15:1461519. [PMID: 39483752 PMCID: PMC11525220 DOI: 10.3389/fphys.2024.1461519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/26/2024] [Indexed: 11/03/2024] Open
Abstract
Pulmonary hypertension is a progressive disease of the pulmonary arteries that begins with increased pulmonary artery pressure, driven by progressive remodeling of the small pulmonary arteries, and ultimately leads to right heart failure and death. Vascular remodeling is the main pathological feature of pulmonary hypertension, but treatments for pulmonary hypertension are lacking. Determining the process of vascular proliferation and dysfunction may be a way to decipher the pathogenesis of pulmonary hypertension. In this review, we summarize the important pathways of pulmonary hypertension pathogenesis. We show how these processes are integrated and emphasize the benign role of aerobic exercise, which, as an adjunctive therapy, may be able to modify vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Yinping Song
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Hao Jia
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Qing Ma
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Lulu Zhang
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Xiangyi Lai
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Youhua Wang
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
2
|
Ding J, Ji R, Wang Z, Jia Y, Meng T, Song X, Gao J, He Q. Cardiovascular protection of YiyiFuzi powder and the potential mechanisms through modulating mitochondria-endoplasmic reticulum interactions. Front Pharmacol 2024; 15:1405545. [PMID: 38978978 PMCID: PMC11228702 DOI: 10.3389/fphar.2024.1405545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death worldwide and represent a major public health challenge. YiyiFuzi Powder (YYFZ), composed of Coicis semen and Fuzi, is a classical traditional Chinese medicine prescription from the Synopsis of Golden Chamber dating back to the Han Dynasty. Historically, YYFZ has been used to treat various CVD, rooted in Chinese therapeutic principles. Network pharmacology analysis indicated that YYFZ may exhibit direct or indirect effects on mitochondria-endoplasmic reticulum (ER) interactions. This review, focusing on the cardiovascular protective effects of Coicis semen and Fuzi, summarizes the potential mechanisms by which YYFZ acts on mitochondria and the ER. The underlying mechanisms are associated with regulating cardiovascular risk factors (such as blood lipids and glucose), impacting mitochondrial structure and function, modulating ER stress, inhibiting oxidative stress, suppressing inflammatory responses, regulating cellular apoptosis, and maintaining calcium ion balance. The involved pathways include, but were not limited to, upregulating the IGF-1/PI3K/AKT, cAMP/PKA, eNOS/NO/cGMP/SIRT1, SIRT1/PGC-1α, Klotho/SIRT1, OXPHOS/ATP, PPARα/PGC-1α/SIRT3, AMPK/JNK, PTEN/PI3K/AKT, β2-AR/PI3K/AKT, and modified Q cycle signaling pathways. Meanwhile, the MCU, NF-κB, and JAK/STAT signaling pathways were downregulated. The PERK/eIF2α/ATF4/CHOP, PERK/SREBP-1c/FAS, IRE1, PINK1-dependent mitophagy, and AMPK/mTOR signaling pathways were bidirectionally regulated. High-quality experimental studies are needed to further elucidate the underlying mechanisms of YYFZ in CVD treatment.
Collapse
Affiliation(s)
- Jingyi Ding
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Ji
- Department of Intensive Care Unit, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyi Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzhi Jia
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Meng
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Yang Q, Lai B, Xie H, Deng M, Li J, Yang Y, Wan J, Liao B, Liu F. Identification of differentially expressed ER stress-related genes and their association with pulmonary arterial hypertension. Respir Res 2024; 25:220. [PMID: 38789967 PMCID: PMC11127292 DOI: 10.1186/s12931-024-02849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a complex and progressive illness that has a multifaceted origin, significant fatality rates, and profound effects on health. The pathogenesis of PAH is poorly defined due to the insufficient understanding of the combined impact of endoplasmic reticulum (ER) stress and immune infiltration, both of which play vital roles in PAH development. This study aims to identify potential ER stress-related biomarkers in PAH and investigate their involvement in immune infiltration. METHODS The GEO database was used to download gene expression profiles. Genes associated with ER stress were obtained from the MSigDB database. Weighted gene co-expression network analysis (WGCNA), GO, KEGG, and protein-protein interaction (PPI) were utilized to conduct screening of hub genes and explore potential molecular mechanisms. Furthermore, the investigation also delved into the presence of immune cells in PAH tissues and the correlation between hub genes and the immune system. Finally, we validated the diagnostic value and expression levels of the hub genes in PAH using subject-workup characterization curves and real-time quantitative PCR. RESULTS In the PAH and control groups, a total of 31 genes related to ER stress were found to be differentially expressed. The enrichment analysis revealed that these genes were primarily enriched in reacting to stress in the endoplasmic reticulum, dealing with unfolded proteins, transporting proteins, and processing proteins within the endoplasmic reticulum. EIF2S1, NPLOC4, SEC61B, SYVN1, and DERL1 were identified as the top 5 hub genes in the PPI network. Immune infiltration analysis revealed that these hub genes were closely related to immune cells. The receiver operating characteristic (ROC) curves revealed that the hub genes exhibited excellent diagnostic efficacy for PAH. The levels of SEC61B, NPLOC4, and EIF2S1 expression were in agreement with the findings of bioinformatics analysis in the PAH group. CONCLUSIONS Potential biomarkers that could be utilized are SEC61B, NPLOC4, and EIF2S1, as identified in this study. The infiltration of immune cells was crucial to the development and advancement of PAH. This study provided new potential therapeutic targets for PAH.
Collapse
Affiliation(s)
- Qi Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Banghui Lai
- Department of Cardiovascular Surgery, The Affiliated Hospital, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Hao Xie
- Department of Cardiovascular Surgery, The Affiliated Hospital, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Mingbin Deng
- Department of Cardiovascular Surgery, The Affiliated Hospital, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Jun Li
- Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Yan Yang
- Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Juyi Wan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
- Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
| | - Feng Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
- Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
| |
Collapse
|
4
|
Zanotto TM, Gonçalves AEDSS, Saad MJA. Pulmonary hypertension and insulin resistance: a mechanistic overview. Front Endocrinol (Lausanne) 2024; 14:1283233. [PMID: 38239990 PMCID: PMC10794542 DOI: 10.3389/fendo.2023.1283233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a vascular remodeling disease, characterized by increased blood pressure levels in pulmonary circulation, leading to a restriction in the circulation flow and heart failure. Although the emergence of new PAH therapies has increased survival rates, this disease still has a high mortality and patients that receive diagnosis die within a few years. The pathogenesis of PAH involves multiple pathways, with a complex interaction of local and distant cytokines, hormones, growth factors, and transcription factors, leading to an inflammation that changes the vascular anatomy in PAH patients. These abnormalities involve more than just the lungs, but also other organs, and between these affected organs there are different metabolic dysfunctions implied. Recently, several publications demonstrated in PAH patients a disturbance in glucose metabolism, demonstrated by higher levels of glucose, insulin, and lipids in those patients. It is possible that a common molecular mechanism can have a significant role in this connection. In this regard, this narrative review intends to focus on the recent papers that mainly discuss the molecular determinants between insulin resistance (IR) associated PAH, which included obesity subclinical inflammation induced IR, PPAR gamma and Adiponectin, BMPR2, mitochondrial dysfunction and endoplasmic reticulum stress. Therefore, the following review will summarize some of the existing data for IR associated PAH, focusing on the better understanding of PAH molecular mechanisms, for the development of new translational therapies.
Collapse
Affiliation(s)
- Tamires M. Zanotto
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Departament of Medical Clinics, Obesity and Comorbidities Research Centre (O.C.R.C.), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Mario J. A. Saad
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Departament of Medical Clinics, Obesity and Comorbidities Research Centre (O.C.R.C.), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
5
|
Gladwell LR, Ahiarah C, Rasheed S, Rahman SM, Choudhury M. Traditional Therapeutics and Potential Epidrugs for CVD: Why Not Both? Life (Basel) 2023; 14:23. [PMID: 38255639 PMCID: PMC10820772 DOI: 10.3390/life14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. In addition to the high mortality rate, people suffering from CVD often endure difficulties with physical activities and productivity that significantly affect their quality of life. The high prevalence of debilitating risk factors such as obesity, type 2 diabetes mellitus, smoking, hypertension, and hyperlipidemia only predicts a bleak future. Current traditional CVD interventions offer temporary respite; however, they compound the severe economic strain of health-related expenditures. Furthermore, these therapeutics can be prescribed indefinitely. Recent advances in the field of epigenetics have generated new treatment options by confronting CVD at an epigenetic level. This involves modulating gene expression by altering the organization of our genome rather than altering the DNA sequence itself. Epigenetic changes are heritable, reversible, and influenced by environmental factors such as medications. As CVD is physiologically and pathologically diverse in nature, epigenetic interventions can offer a ray of hope to replace or be combined with traditional therapeutics to provide the prospect of addressing more than just the symptoms of CVD. This review discusses various risk factors contributing to CVD, perspectives of current traditional medications in practice, and a focus on potential epigenetic therapeutics to be used as alternatives.
Collapse
Affiliation(s)
- Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| | - Chidinma Ahiarah
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| | - Shireen Rasheed
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| | - Shaikh Mizanoor Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz, Nizwa 616, Oman
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| |
Collapse
|
6
|
Li K, Li Y, Ding H, Chen J, Zhang X. Metal-Binding Proteins Cross-Linking with Endoplasmic Reticulum Stress in Cardiovascular Diseases. J Cardiovasc Dev Dis 2023; 10:jcdd10040171. [PMID: 37103050 PMCID: PMC10143100 DOI: 10.3390/jcdd10040171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
The endoplasmic reticulum (ER), an essential organelle in eukaryotic cells, is widely distributed in myocardial cells. The ER is where secreted protein synthesis, folding, post-translational modification, and transport are all carried out. It is also where calcium homeostasis, lipid synthesis, and other processes that are crucial for normal biological cell functioning are regulated. We are concerned that ER stress (ERS) is widespread in various damaged cells. To protect cells' function, ERS reduces the accumulation of misfolded proteins by activating the unfolded protein response (UPR) pathway in response to numerous stimulating factors, such as ischemia or hypoxia, metabolic disorders, and inflammation. If these stimulatory factors are not eliminated for a long time, resulting in the persistence of the UPR, it will aggravate cell damage through a series of mechanisms. In the cardiovascular system, it will cause related cardiovascular diseases and seriously endanger human health. Furthermore, there has been a growing number of studies on the antioxidative stress role of metal-binding proteins. We observed that a variety of metal-binding proteins can inhibit ERS and, hence, mitigate myocardial damage.
Collapse
Affiliation(s)
- Kejuan Li
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Hong Ding
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Jianshu Chen
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Xiaowei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| |
Collapse
|
7
|
Moutsoglou DM, Tatah J, Prisco SZ, Prins KW, Staley C, Lopez S, Blake M, Teigen L, Kazmirczak F, Weir EK, Kabage AJ, Guan W, Khoruts A, Thenappan T. Pulmonary Arterial Hypertension Patients Have a Proinflammatory Gut Microbiome and Altered Circulating Microbial Metabolites. Am J Respir Crit Care Med 2023; 207:740-756. [PMID: 36343281 PMCID: PMC10037487 DOI: 10.1164/rccm.202203-0490oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Rationale: Inflammation drives pulmonary arterial hypertension (PAH). Gut dysbiosis causes immune dysregulation and systemic inflammation by altering circulating microbial metabolites; however, little is known about gut dysbiosis and microbial metabolites in PAH. Objectives: To characterize the gut microbiome and microbial metabolites in patients with PAH. Methods: We performed 16S ribosomal RNA gene and shotgun metagenomics sequencing on stool from patients with PAH, family control subjects, and healthy control subjects. We measured markers of inflammation, gut permeability, and microbial metabolites in plasma from patients with PAH, family control subjects, and healthy control subjects. Measurements and Main Results: The gut microbiome was less diverse in patients with PAH. Shannon diversity index correlated with measures of pulmonary vascular disease but not with right ventricular function. Patients with PAH had a distinct gut microbial signature at the phylogenetic level, with fewer copies of gut microbial genes that produce antiinflammatory short-chain fatty acids (SCFAs) and secondary bile acids and lower relative abundances of species encoding these genes. Consistent with the gut microbial changes, patients with PAH had relatively lower plasma concentrations of SCFAs and secondary bile acids. Patients with PAH also had enrichment of species with the microbial genes that encoded the proinflammatory microbial metabolite trimethylamine. The changes in the gut microbiome and circulating microbial metabolites between patients with PAH and family control subjects were not as substantial as the differences between patients with PAH and healthy control subjects. Conclusions: Patients with PAH have proinflammatory gut dysbiosis, in which lower circulating SCFAs and secondary bile acids may facilitate pulmonary vascular disease. These findings support investigating modulation of the gut microbiome as a potential treatment for PAH.
Collapse
Affiliation(s)
| | - Jasmine Tatah
- Division of Cardiovascular Medicine, Department of Medicine
| | | | - Kurt W. Prins
- Division of Cardiovascular Medicine, Department of Medicine
| | - Christopher Staley
- Division of Basic and Translational Research, Department of Surgery, and
| | - Sharon Lopez
- Division of Gastroenterology, Hepatology, and Nutrition
| | - Madelyn Blake
- Division of Cardiovascular Medicine, Department of Medicine
| | - Levi Teigen
- Division of Gastroenterology, Hepatology, and Nutrition
| | | | | | | | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | | | | |
Collapse
|
8
|
Li J, Zhang X, Mo Y, Huang T, Rao H, Tan Z, Huang L, Zeng D, Jiang C, Zhong Y, Cai Y, Liang B, Wu J. Urokinase-loaded cyclic RGD-decorated liposome targeted therapy for in-situ thrombus of pulmonary arteriole of pulmonary hypertension. Front Bioeng Biotechnol 2022; 10:1038829. [PMID: 36324896 PMCID: PMC9618629 DOI: 10.3389/fbioe.2022.1038829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 09/07/2024] Open
Abstract
Backgroud: In-situ thrombosis is a significant pathophysiological basis for the development of pulmonary hypertension (PH). However, thrombolytic therapy for in-situ thrombus in PH was often hampered by the apparent side effects and the low bioavailability of common thrombolytic medications. Nanoscale cyclic RGD (cRGD)-decorated liposomes have received much attention thanks to their thrombus-targeting and biodegradability properties. As a result, we synthesized urokinase-loaded cRGD-decorated liposome (UK-cRGD-Liposome) for therapy of in-situ thrombosis as an exploration of pulmonary hypertensive novel therapeutic approaches. Purpose: To evaluate the utilize of UK-cRGD-Liposome for targeted thrombolysis of in-situ thrombus in PH and to explore the potential mechanisms of in-situ thrombus involved in the development of PH. Methods: UK-cRGD-Liposome nanoscale drug delivery system was prepared using combined methods of thin-film hydration and sonication. Induced PH via subcutaneous injection of monocrotaline (MCT). Fibrin staining (modified MSB method) was applied to detect the number of vessels within-situ thrombi in PH. Echocardiography, hematoxylin-eosin (H & E) staining, and Masson's trichrome staining were used to analyze right ventricular (RV) function, pulmonary vascular remodeling, as well as RV remodeling. Results: The number of vessels with in-situ thrombi revealed that UK-cRGD-Liposome could actively target urokinase to in-situ thrombi and release its payload in a controlled manner in the in vivo environment, thereby enhancing the thrombolytic effect of urokinase. Pulmonary artery hemodynamics and echocardiography indicated a dramatical decrease in pulmonary artery pressure and a significant improvement in RV function post targeted thrombolytic therapy. Moreover, pulmonary vascular remodeling and RV remodeling were significantly restricted post targeted thrombolytic therapy. Conclusion: UK-cRGD-Liposome can restrict the progression of PH and improve RV function by targeting the dissolution of pulmonary hypertensive in-situ thrombi, which may provide promising therapeutic approaches for PH.
Collapse
Affiliation(s)
- Jingtao Li
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaofeng Zhang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingying Mo
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tongtong Huang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huaqing Rao
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenyuan Tan
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Liuliu Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Decai Zeng
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunlan Jiang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanfen Zhong
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yongzhi Cai
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Binbin Liang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ji Wu
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Effect of Dietary 4-Phenylbuthyric Acid Supplementation on Acute Heat-Stress-Induced Hyperthermia in Broiler Chickens. Animals (Basel) 2022; 12:ani12162056. [PMID: 36009646 PMCID: PMC9404993 DOI: 10.3390/ani12162056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Heat stress (HS) induces endoplasmic reticulum (ER) stress and disrupts the ER and cellular homeostasis. A recent study showed that ER stress was induced in broiler chickens under severe and acute HS; however, it was unclear how the alleviation of ER stress affects the physiological state of broiler chickens. Therefore, this study aimed to investigate the ameliorative effects of an ER stress alleviator, 4-phenylbutyric acid (4-PBA), which is a chemical chaperone that reduces ER stress, on the body temperature response, energy metabolic state, and cellular ER stress in HS-exposed birds. 4-PBA supplementation did not negatively affect the growth rate. In addition, 4-PBA suppressed the HS-induced ER stress response in skeletal muscle. Surprisingly, 4-PBA significantly decreased body temperature elevation in HS birds. The present study showed that the ER stress, alleviated by 4-PBA, might contribute to the induction of heat tolerance in broiler chickens. Abstract Hot, humid weather causes heat stress (HS) in broiler chickens, which can lead to high mortality. A recent study found that HS causes endoplasmic reticulum (ER) stress. However, the possible involvement of ER stress in HS-induced physiological alterations in broiler chickens is unclear. This study aimed to evaluate the effect of the dietary supplementation of 4-phenylbutyric acid (4-PBA), an alleviator of ER stress, in acute HS-exposed young broiler chickens. Twenty-eight 14-day-old male broiler chickens (ROSS 308) were divided into two groups and fed either a control diet or a diet containing 4-PBA (5.25 g per kg of diet feed) for 10 days. At 24 days old, each group of chickens was kept in thermoneutral (24 ± 0.5 °C) or acute HS (36 ± 0.5 °C) conditions for 2 h. The results showed that thermoneutral birds supplemented with 4-PBA exhibited no negative effects in terms of broiler body weight gain and tissue weight compared to non-supplemental birds. HS increased body temperature in both the control and 4-PBA groups, but the elevation was significantly lower in the 4-PBA group than in the control group. The plasma non-esterified fatty acid concentration was significantly increased by HS treatment in non-supplemental groups, while the increase was partially attenuated in the 4-PBA group. Moreover, 4-PBA prevented HS-induced gene elevation of the ER stress markers GRP78 and GRP94 in the skeletal muscle. These findings suggest that the 4-PBA effect may be specific to the skeletal muscle in HS-exposed birds and that 4-PBA supplementation attenuated HS-induced muscle ER stress, which could be associated with a supplementation of the body temperature elevation and lipolysis.
Collapse
|
10
|
Chen J, Luo J, Qiu H, Tang Y, Yang X, Chen Y, Li Z, Li J. Apolipoprotein A5 ameliorates MCT induced pulmonary hypertension by inhibiting ER stress in a GRP78 dependent mechanism. Lipids Health Dis 2022; 21:69. [PMID: 35941581 PMCID: PMC9358849 DOI: 10.1186/s12944-022-01680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a chronic, progressive lung vascular disease accompanied by elevated pulmonary vascular pressure and resistance, and it is characterized by increased pulmonary artery smooth muscle cell (PASMC) proliferation. Apolipoprotein A5 (ApoA5) improves monocrotaline (MCT)-induced PAH and right heart failure; however, the underlying mechanism remains unknown. Here we speculate that ApoA5 has a protective effect in pulmonary vessels and aim to evaluate the mechanism. Methods ApoA5 is overexpressed in an MCT-induced PAH animal model and platelet-derived growth factor (PDGF)-BB-induced proliferating PASMCs. Lung vasculature remodeling was measured by immunostaining, and PASMC proliferation was determined by cell counting kit‐8 and 5‐ethynyl‐2'‐deoxyuridine5‐ethynyl‐2'‐deoxyuridine incorporation assays. Coimmunoprecipitation-mass spectrometry was used to investigate the probable mechanism. Next, its role and mechanism were further verified by knockdown studies. Results ApoA5 level was decreased in MCT-induced PAH lung as well as PASMCs. Overexpression of ApoA5 could help to inhibit the remodeling of pulmonary artery smooth muscle. ApoA5 could inhibit PDGF-BB-induced PASMC proliferation and endoplasmic reticulum stress by increasing the expression of glucose-regulated protein 78 (GRP78). After knocking down GRP78, the protecting effects of ApoA5 have been blocked. Conclusion ApoA5 ameliorates MCT-induced PAH by inhibiting endoplasmic reticulum stress in a GRP78 dependent mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01680-4.
Collapse
Affiliation(s)
- Jingyuan Chen
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha City, Hunan Province, 410011, China
| | - Jun Luo
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha City, Hunan Province, 410011, China
| | - Haihua Qiu
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha City, Hunan Province, 410011, China
| | - Yi Tang
- Department of Cardiology, Clinical Medicine Research Center of Heart Failure of Hunan Province, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
| | - Xiaojie Yang
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha City, Hunan Province, 410011, China
| | - Yusi Chen
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha City, Hunan Province, 410011, China
| | - Zilu Li
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha City, Hunan Province, 410011, China
| | - Jiang Li
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha City, Hunan Province, 410011, China.
| |
Collapse
|
11
|
Identifying Potential Mitochondrial Proteome Signatures Associated with the Pathogenesis of Pulmonary Arterial Hypertension in the Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8401924. [PMID: 35237384 PMCID: PMC8885180 DOI: 10.1155/2022/8401924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/12/2022] [Accepted: 02/05/2022] [Indexed: 01/09/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a severe and progressive disease that affects the heart and lungs and a global health concern that impacts individuals and society. Studies have reported that some proteins related to mitochondrial metabolic functions could play an essential role in the pathogenesis of PAH, and their specific expression and biological function are still unclear. We successfully constructed a monocrotaline- (MCT-) induced PAH rat model in the present research. Then, the label-free quantification proteomic technique was used to determine mitochondrial proteins between the PAH group (n = 6) and the normal group (n = 6). Besides, we identified 1346 mitochondrial differentially expressed proteins (DEPs) between these two groups. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the mainly mitochondrial DEPs' biological functions and the signal pathways. Based on the protein-protein interaction (PPI) network construction and functional enrichment, we screened 19 upregulated mitochondrial genes (Psmd1, Psmc4, Psmd13, Psmc2, etc.) and 123 downregulated mitochondrial genes (Uqcrfs1, Uqcrc1, Atp5c1, Atp5a1, Uqcrc2, etc.) in rats with PAH. Furthermore, in an independent cohort dataset and experiments with rat lung tissue using qPCR, validation results consistently showed that 6 upregulated mitochondrial genes (Psmd2, Psmc4, Psmc3, Psmc5, Psmd13, and Psmc2) and 3 downregulated mitochondrial genes (Lipe, Cat, and Prkce) were significantly differentially expressed in the lung tissue of PAH rats. Using the RNAInter database, we predict potential miRNA target hub mitochondrial genes at the transcriptome level. We also identified bortezomib and carfilzomib as the potential drugs for treatment in PAH. Finally, this study provides us with a new perspective on critical biomarkers and treatment strategies in PAH.
Collapse
|
12
|
Zhao F, Zhou R, Wang JL, Liu H, Jing ZC. 18β-glycyrrhetinic acid ameliorates endoplasmic reticulum stress-induced inflammation in pulmonary arterial hypertension through PERK/eIF2α/NF-κB signaling. CHINESE J PHYSIOL 2022; 65:187-198. [DOI: 10.4103/0304-4920.354801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Jiang H, Niu Y, He Y, Li X, Xu Y, Liu X. Proteomic analysis reveals that Xbp1s promotes hypoxic pulmonary hypertension through the p-JNK MAPK pathway. J Cell Physiol 2021; 237:1948-1963. [PMID: 34964131 DOI: 10.1002/jcp.30664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 01/02/2023]
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by elevated pulmonary artery resistance and vascular remodeling. Endoplasmic reticulum stress (ERS) is reported to be involved in HPH, but the underlying mechanisms remain uncertain. We found that Xbp1s, a potent transcription factor during ERS, was elevated in hypoxic-cultured rat PASMCs and lung tissues from HPH rats. Our in vitro experiments demonstrated that overexpressing Xbp1s can promote proliferation, cell viability, and migration and inhibit the apoptosis of PASMCs, while silencing Xbp1s led to the opposite. Through data-independent acquisition (DIA) mass spectrometry, we identified extensive proteomic alterations regulated by hypoxia and Xbp1s. Further validation revealed that p-JNK, rather than p-ERK or p-p38, was the downstream effector of Xbp1s. p-JNK inhibition reversed the biological effects of Xbp1s overexpression in vitro. In the animal HPH model, rats were randomly assigned to five groups: normoxia, hypoxia, hypoxia+AAV-CTL (control), hypoxia+AAV-Xbp1s (prevention), and hypoxia+AAV-Xbp1s (therapy). Adeno-associated virus (AAV) serotype 1-mediated Xbp1s knockdown in the prevention and therapy groups significantly reduced right ventricular systolic pressure, total pulmonary resistance, right ventricular hypertrophy, and the medial wall thickness of muscularized distal pulmonary arterioles; AAV-Xbp1s also decreased proliferating cell nuclear antigen expression and increased apoptosis in pulmonary arterioles. Collectively, our findings demonstrated that the Xbp1s-p-JNK pathway is important in hypoxic vascular remodeling and that targeting this pathway could be an effective strategy to prevent and alleviate HPH development.
Collapse
Affiliation(s)
- Hongxia Jiang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yang Niu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yuanzhou He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| |
Collapse
|
14
|
Jiang H, Ding D, He Y, Li X, Xu Y, Liu X. Xbp1s-Ddit3 promotes MCT-induced pulmonary hypertension. Clin Sci (Lond) 2021; 135:2467-2481. [PMID: 34676402 PMCID: PMC8564003 DOI: 10.1042/cs20210612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension (PH) is a life-threatening disease characterized by vascular remodeling. Exploring new therapy target is urgent. The purpose of the present study is to investigate whether and how spliced x-box binding protein 1 (xbp1s), a key component of endoplasmic reticulum stress (ERS), contributes to the pathogenesis of PH. Forty male SD rats were randomly assigned to four groups: Control, Monocrotaline (MCT), MCT+AAV-CTL (control), and MCT+AAV-xbp1s. The xbp1s protein levels were found to be elevated in lung tissues of the MCT group. Intratracheal injection of adeno-associated virus serotype 1 carrying xbp1s shRNA (AAV-xbp1s) to knock down the expression of xbp1s effectively ameliorated the MCT-induced elevation of right ventricular systolic pressure (RVSP), total pulmonary resistance (TPR), right ventricular hypertrophy and medial wall thickness of muscularized distal pulmonary arterioles. The abnormally increased positive staining rates of proliferating cell nuclear antigen (PCNA) and Ki67 and decreased positive staining rates of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) in pulmonary arterioles were also reversed in the MCT+AAV-xbp1s group. For mechanistic exploration, bioinformatics prediction of the protein network was performed on the STRING database, and further verification was performed by qRT-PCR, Western blots and co-immunoprecipitation (Co-IP). DNA damage-inducible transcript 3 (Ddit3) was identified as a downstream protein that interacted with xbp1s. Overexpression of Ddit3 restored the decreased proliferation, migration and cell viability caused by silencing of xbp1s. The protein level of Ddit3 was also highly consistent with xbp1s in the animal model. Taken together, our study demonstrated that xbp1s-Ddit3 may be a potential target to interfere with vascular remodeling in PH.
Collapse
MESH Headings
- Animals
- Apoptosis
- Arterial Pressure
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/chemically induced
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Male
- Monocrotaline
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Rats, Sprague-Dawley
- Signal Transduction
- Transcription Factor CHOP/genetics
- Transcription Factor CHOP/metabolism
- Vascular Remodeling
- Ventricular Dysfunction, Right/chemically induced
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Function, Right
- X-Box Binding Protein 1/genetics
- X-Box Binding Protein 1/metabolism
- Rats
Collapse
Affiliation(s)
- Hongxia Jiang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Dandan Ding
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yuanzhou He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| |
Collapse
|
15
|
Karoor V, Strassheim D, Sullivan T, Verin A, Umapathy NS, Dempsey EC, Frank DN, Stenmark KR, Gerasimovskaya E. The Short-Chain Fatty Acid Butyrate Attenuates Pulmonary Vascular Remodeling and Inflammation in Hypoxia-Induced Pulmonary Hypertension. Int J Mol Sci 2021; 22:9916. [PMID: 34576081 PMCID: PMC8467617 DOI: 10.3390/ijms22189916] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive cardiovascular disorder in which local vascular inflammation leads to increased pulmonary vascular remodeling and ultimately to right heart failure. The HDAC inhibitor butyrate, a product of microbial fermentation, is protective in inflammatory intestinal diseases, but little is known regarding its effect on extraintestinal diseases, such as PH. In this study, we tested the hypothesis that butyrate is protective in a Sprague-Dawley (SD) rat model of hypoxic PH. Treatment with butyrate (220 mg/kg intake) prevented hypoxia-induced right ventricular hypertrophy (RVH), hypoxia-induced increases in right ventricular systolic pressure (RVSP), pulmonary vascular remodeling, and permeability. A reversal effect of butyrate (2200 mg/kg intake) was observed on elevated RVH. Butyrate treatment also increased the acetylation of histone H3, 25-34 kDa, and 34-50 kDa proteins in the total lung lysates of butyrate-treated animals. In addition, butyrate decreased hypoxia-induced accumulation of alveolar (mostly CD68+) and interstitial (CD68+ and CD163+) lung macrophages. Analysis of cytokine profiles in lung tissue lysates showed a hypoxia-induced upregulation of TIMP-1, CINC-1, and Fractalkine and downregulation of soluble ICAM (sICAM). The expression of Fractalkine and VEGFα, but not CINC-1, TIMP-1, and sICAM was downregulated by butyrate. In rat microvascular endothelial cells (RMVEC), butyrate (1 mM, 2 and 24 h) exhibited a protective effect against TNFα- and LPS-induced barrier disruption. Butyrate (1 mM, 24 h) also upregulated tight junctional proteins (occludin, cingulin, claudin-1) and increased the acetylation of histone H3 but not α-tubulin. These findings provide evidence of the protective effect of butyrate on hypoxic PH and suggest its potential use as a complementary treatment for PH and other cardiovascular diseases.
Collapse
Affiliation(s)
- Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (V.K.); (D.S.); (T.S.); (E.C.D.); (K.R.S.)
| | - Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (V.K.); (D.S.); (T.S.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (V.K.); (D.S.); (T.S.); (E.C.D.); (K.R.S.)
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; (A.V.); (N.S.U.)
| | - Nagavedi S. Umapathy
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; (A.V.); (N.S.U.)
- Center for Blood Disorders, Augusta University, Augusta, GA 30912, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (V.K.); (D.S.); (T.S.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Center, Aurora, CO 80045, USA
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Denver, Denver, CO 80204, USA;
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (V.K.); (D.S.); (T.S.); (E.C.D.); (K.R.S.)
- Division of Critical Care Medicine, Department of Pediatrics, University of Colorado Denver, Denver, CO 80204, USA
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (V.K.); (D.S.); (T.S.); (E.C.D.); (K.R.S.)
- Division of Critical Care Medicine, Department of Pediatrics, University of Colorado Denver, Denver, CO 80204, USA
| |
Collapse
|
16
|
Hypoxia and the integrated stress response promote pulmonary hypertension and preeclampsia: Implications in drug development. Drug Discov Today 2021; 26:2754-2773. [PMID: 34302972 DOI: 10.1016/j.drudis.2021.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/31/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022]
Abstract
Chronic hypoxia is a common cause of pulmonary hypertension, preeclampsia, and intrauterine growth restriction (IUGR). The molecular mechanisms underlying these diseases are not completely understood. Chronic hypoxia may induce the generation of reactive oxygen species (ROS) in mitochondria, promote endoplasmic reticulum (ER) stress, and result in the integrated stress response (ISR) in the pulmonary artery and uteroplacental tissues. Numerous studies have implicated hypoxia-inducible factors (HIFs), oxidative stress, and ER stress/unfolded protein response (UPR) in the development of pulmonary hypertension, preeclampsia and IUGR. This review highlights the roles of HIFs, mitochondria-derived ROS and UPR, as well as their interplay, in the pathogenesis of pulmonary hypertension and preeclampsia, and their implications in drug development.
Collapse
|
17
|
Zhou Y, Murugan DD, Khan H, Huang Y, Cheang WS. Roles and Therapeutic Implications of Endoplasmic Reticulum Stress and Oxidative Stress in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10081167. [PMID: 34439415 PMCID: PMC8388996 DOI: 10.3390/antiox10081167] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
In different pathological states that cause endoplasmic reticulum (ER) calcium depletion, altered glycosylation, nutrient deprivation, oxidative stress, DNA damage or energy perturbation/fluctuations, the protein folding process is disrupted and the ER becomes stressed. Studies in the past decade have demonstrated that ER stress is closely associated with pathogenesis of obesity, insulin resistance and type 2 diabetes. Excess nutrients and inflammatory cytokines associated with metabolic diseases can trigger or worsen ER stress. ER stress plays a critical role in the induction of endothelial dysfunction and atherosclerosis. Signaling pathways including AMP-activated protein kinase and peroxisome proliferator-activated receptor have been identified to regulate ER stress, whilst ER stress contributes to the imbalanced production between nitric oxide (NO) and reactive oxygen species (ROS) causing oxidative stress. Several drugs or herbs have been proved to protect against cardiovascular diseases (CVD) through inhibition of ER stress and oxidative stress. The present article reviews the involvement of ER stress and oxidative stress in cardiovascular dysfunction and the potential therapeutic implications.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| | - Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
- Correspondence: ; Tel.: +853-8822-4914
| |
Collapse
|
18
|
Redox and Inflammatory Signaling, the Unfolded Protein Response, and the Pathogenesis of Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:333-373. [PMID: 34019276 DOI: 10.1007/978-3-030-68748-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein folding overload and oxidative stress disrupt endoplasmic reticulum (ER) homeostasis, generating reactive oxygen species (ROS) and activating the unfolded protein response (UPR). The altered ER redox state induces further ROS production through UPR signaling that balances the cell fates of survival and apoptosis, contributing to pulmonary microvascular inflammation and dysfunction and driving the development of pulmonary hypertension (PH). UPR-induced ROS production through ER calcium release along with NADPH oxidase activity results in endothelial injury and smooth muscle cell (SMC) proliferation. ROS and calcium signaling also promote endothelial nitric oxide (NO) synthase (eNOS) uncoupling, decreasing NO production and increasing vascular resistance through persistent vasoconstriction and SMC proliferation. C/EBP-homologous protein further inhibits eNOS, interfering with endothelial function. UPR-induced NF-κB activity regulates inflammatory processes in lung tissue and contributes to pulmonary vascular remodeling. Conversely, UPR-activated nuclear factor erythroid 2-related factor 2-mediated antioxidant signaling through heme oxygenase 1 attenuates inflammatory cytokine levels and protects against vascular SMC proliferation. A mutation in the bone morphogenic protein type 2 receptor (BMPR2) gene causes misfolded BMPR2 protein accumulation in the ER, implicating the UPR in familial pulmonary arterial hypertension pathogenesis. Altogether, there is substantial evidence that redox and inflammatory signaling associated with UPR activation is critical in PH pathogenesis.
Collapse
|
19
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
20
|
Guignabert C, Humbert M. Targeting transforming growth factor-β receptors in pulmonary hypertension. Eur Respir J 2021; 57:2002341. [PMID: 32817256 DOI: 10.1183/13993003.02341-2020] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
The transforming growth factor-β (TGF-β) superfamily includes several groups of multifunctional proteins that form two major branches, namely the TGF-β-activin-nodal branch and the bone morphogenetic protein (BMP)-growth differentiation factor (GDF) branch. The response to the activation of these two branches, acting through canonical (small mothers against decapentaplegic (Smad) 2/3 and Smad 1/5/8, respectively) and noncanonical signalling pathways, are diverse and vary for different environmental conditions and cell types. An extensive body of data gathered in recent years has demonstrated a central role for the cross-talk between these two branches in a number of cellular processes, which include the regulation of cell proliferation and differentiation, as well as the transduction of signalling cascades for the development and maintenance of different tissues and organs. Importantly, alterations in these pathways, which include heterozygous germline mutations and/or alterations in the expression of several constitutive members, have been identified in patients with familial/heritable pulmonary arterial hypertension (PAH) or idiopathic PAH (IPAH). Consequently, loss or dysfunction in the delicate, finely-tuned balance between the TGF-β-activin-nodal branch and the BMP-GDF branch are currently viewed as the major molecular defect playing a critical role in PAH predisposition and disease progression. Here we review the role of the TGF-β-activin-nodal branch in PAH and illustrate how this knowledge has not only provided insight into understanding its pathogenesis, but has also paved the way for possible novel therapeutic approaches.
Collapse
Affiliation(s)
- Christophe Guignabert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 (Pulmonary Hypertension: Pathophysiology and Novel Therapies), Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 (Pulmonary Hypertension: Pathophysiology and Novel Therapies), Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Dept of Respiratory and Intensive Care Medicine, French Pulmonary Hypertension Reference Center, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| |
Collapse
|
21
|
Pu X, Lin X, Duan X, Wang J, Shang J, Yun H, Chen Z. Oxidative and Endoplasmic Reticulum Stress Responses to Chronic High-Altitude Exposure During the Development of High-Altitude Pulmonary Hypertension. High Alt Med Biol 2020; 21:378-387. [DOI: 10.1089/ham.2019.0143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Xiaoyan Pu
- School of Life Science, Qinghai Normal University, Xining, China
- Medical College, Qinghai University, Xining, China
| | - Xue Lin
- Medical College, Qinghai University, Xining, China
| | - Xianglan Duan
- School of Life Science, Qinghai Normal University, Xining, China
| | - Junjie Wang
- School of Life Science, Qinghai Normal University, Xining, China
| | - Jun Shang
- School of Life Science, Qinghai Normal University, Xining, China
| | - Haixia Yun
- School of Life Science, Qinghai Normal University, Xining, China
| | - Zhi Chen
- School of Life Science, Qinghai Normal University, Xining, China
| |
Collapse
|
22
|
Manaud G, Nossent EJ, Lambert M, Ghigna MR, Boët A, Vinhas MC, Ranchoux B, Dumas SJ, Courboulin A, Girerd B, Soubrier F, Bignard J, Claude O, Lecerf F, Hautefort A, Florio M, Sun B, Nadaud S, Verleden SE, Remy S, Anegon I, Bogaard HJ, Mercier O, Fadel E, Simonneau G, Vonk Noordegraaf A, Grünberg K, Humbert M, Montani D, Dorfmüller P, Antigny F, Perros F. Comparison of Human and Experimental Pulmonary Veno-Occlusive Disease. Am J Respir Cell Mol Biol 2020; 63:118-131. [PMID: 32209028 DOI: 10.1165/rcmb.2019-0015oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pulmonary veno-occlusive disease (PVOD) occurs in humans either as a heritable form (hPVOD) due to biallelic inactivating mutations of EIF2AK4 (encoding GCN2) or as a sporadic form in older age (sPVOD). The chemotherapeutic agent mitomycin C (MMC) is a potent inducer of PVOD in humans and in rats (MMC-PVOD). Here, we compared human hPVOD and sPVOD, and MMC-PVOD pathophysiology at the histological, cellular, and molecular levels to unravel common altered pathomechanisms. MMC exposure in rats was associated primarily with arterial and microvessel remodeling, and secondarily by venous remodeling, when PVOD became symptomatic. In all forms of PVOD tested, there was convergent GCN2-dependent but eIF2α-independent pulmonary protein overexpression of HO-1 (heme oxygenase 1) and CHOP (CCAAT-enhancer-binding protein [C/EBP] homologous protein), two downstream effectors of GCN2 signaling and endoplasmic reticulum stress. In human PVOD samples, CHOP immunohistochemical staining mainly labeled endothelial cells in remodeled veins and arteries. Strong HO-1 staining was observed only within capillary hemangiomatosis foci, where intense microvascular proliferation occurs. HO-1 and CHOP stainings were not observed in control and pulmonary arterial hypertension lung tissues, supporting the specificity for CHOP and HO-1 involvement in PVOD pathobiology. In vivo loss of GCN2 (EIF2AK4 mutations carriers and Eif2ak4-/- rats) or in vitro GCN2 inhibition in cultured pulmonary artery endothelial cells using pharmacological and siRNA approaches demonstrated that GCN2 loss of function negatively regulates BMP (bone morphogenetic protein)-dependent SMAD1/5/9 signaling. Exogenous BMP9 was still able to reverse GCN2 inhibition-induced proliferation of pulmonary artery endothelial cells. In conclusion, we identified CHOP and HO-1 inhibition, and BMP9, as potential therapeutic options for PVOD.
Collapse
Affiliation(s)
- Grégoire Manaud
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Esther J Nossent
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Mélanie Lambert
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | | | - Angèle Boët
- Department of Research, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | | | - Benoit Ranchoux
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Sébastien J Dumas
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Audrey Courboulin
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Barbara Girerd
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Florent Soubrier
- INSERM UMR_S 956, Pierre and Marie Curie Université (Paris 06), Paris, France
| | - Juliette Bignard
- INSERM UMR_S 956, Pierre and Marie Curie Université (Paris 06), Paris, France
| | - Olivier Claude
- INSERM UMR_S 956, Pierre and Marie Curie Université (Paris 06), Paris, France
| | - Florence Lecerf
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Aurélie Hautefort
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Monica Florio
- Cardio-Metabolic Disorders, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Banghua Sun
- Cardio-Metabolic Disorders, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Sophie Nadaud
- INSERM UMR_S 956, Pierre and Marie Curie Université (Paris 06), Paris, France
| | - Stijn E Verleden
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing KU Leuven, Leuven, Belgium
| | - Séverine Remy
- INSERM UMR 1064, Center for Research in Transplantation and Immunology-ITUN et Transgenic Rats and Immunophenomic Platform, Nantes, France; and
| | - Ignacio Anegon
- INSERM UMR 1064, Center for Research in Transplantation and Immunology-ITUN et Transgenic Rats and Immunophenomic Platform, Nantes, France; and
| | - Harm Jan Bogaard
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Olaf Mercier
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and.,Service de Chirurgie Thoracique, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Elie Fadel
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and.,Service de Chirurgie Thoracique, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Gérald Simonneau
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Anton Vonk Noordegraaf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Katrien Grünberg
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Marc Humbert
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - David Montani
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Peter Dorfmüller
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and.,Department of Pathology and.,Department of Pathology, University of Giessen and Marburg Lung Center, Justus-Liebig University Giessen, German Center for Lung Research, Giessen, Germany
| | - Fabrice Antigny
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Frédéric Perros
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| |
Collapse
|
23
|
Ma S, Wang Y, Yao J, Cao Q, Zuo X. The etiological role of endoplasmic reticulum stress in acute lung injury-related right ventricular dysfunction in a rat model. Am J Transl Res 2020; 12:4371-4383. [PMID: 32913512 PMCID: PMC7476135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to ascertain whether endoplasmic reticulum (ER) stress participates in acute lung injury (ALI) and related right ventricular dysfunction (RVD) as well as to explore the underlying mechanisms of these conditions. A single intratracheal instillation of lipopolysaccharide (LPS) (10 mg/kg) was used to establish the RVD model. The ER stress inhibitor, 4-PBA (500 mg/kg), was administered using a gavage 2 hours before and after the LPS treatment for prevention and treatment, respectively. At 12 hours post-LPS exposure, mRNA and protein expressions of ER stress-specific biomarkers, glucose regulating protein 78 (GRP78) and CCAAT/enhancer binding protein homology (CHOP), were significantly upregulated. This effect was inhibited by both 4-PBA prevention and treatment. In addition, echocardiography showed that 4-PBA improved the LPS-induced abnormality in the tricuspid annular plane systolic excursion (TAPSE) and the right ventricular end-diastolic diameter (RVEDD), however not in the pulmonary artery acceleration time (PAAT). Furthermore, hematoxylin and eosin staining (HE) and terminal transferase dUTP nick end labeling (TUNEL) assays revealed that the proportion of proapoptotic cells was higher in RVD rats. This was prominently ameliorated by 4-PBA treatment. Moreover, 4-PBA had a similar reverse effect on the LPS-induced increase in the Bax/Bcl-2 ratio, caspase-12, and caspase-3 expressions as revealed by western blotting. Furthermore, 4-PBA improved LPS-induced right ventricle (RV) myeloperoxidase (MPO)-positive neutrophil infiltration percentage, inhibited nuclear factor kappa B (NF-κB) activity, and reduced the expressions of inflammatory cytokines, TNF-α, IL-1β, and IL-6, in serum and RV. Taken together, our results indicated that ER stress-mediated apoptosis and inflammation might contribute to the development of ALI-related RVD induced by intratracheal LPS instillation. Gavage-administered 4-PBA could improve right ventricle (RV) systolic dysfunction and dilation, plausibly by blocking ER stress.
Collapse
Affiliation(s)
- Shaolei Ma
- Department of Emergency and Critical Care Medicine, Zhongda Hospital Affiliated to Southeast UniversityNanjing, China
| | - Yujie Wang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Suzhou Medical UniversityChangzhou, China
| | - Jing Yao
- Department of Echocardiography, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Quan Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Xiangrong Zuo
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| |
Collapse
|
24
|
Pan T, Zhang L, Miao K, Wang Y. A crucial role of endoplasmic reticulum stress in cellular responses during pulmonary arterial hypertension. Am J Transl Res 2020; 12:1481-1490. [PMID: 32509157 PMCID: PMC7269988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/22/2020] [Indexed: 06/11/2023]
Abstract
Pulmonary arterial hypertension (PAH), a chronic and progressive disease of the lung vascular system, is characterized by vasculopathy in the pulmonary arterioles, especially in endothelial cells and pulmonary vascular smooth cells. Several mechanisms are involved in PAH occurrence and development, and all are characterized by excessive pulmonary vasoconstriction and abnormal vascular remodeling, which leads to a progressive resistance to blood flow and an increase in pulmonary artery pressure. Recent studies have shown that endoplasmic reticulum (ER) stress is implicated in the pathophysiology of PAH. In this review, we highlight the effect of ER stress on the proliferation and apoptosis of endothelial cells and pulmonary vascular smooth muscle cells, and discuss the feasibility of targeting unfolded protein response components as a strategy to reverse or alleviate the progression of PAH.
Collapse
Affiliation(s)
- Ting Pan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| | - Kang Miao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| |
Collapse
|
25
|
Hu Y, Yang W, Xie L, Liu T, Liu H, Liu B. Endoplasmic reticulum stress and pulmonary hypertension. Pulm Circ 2020; 10:2045894019900121. [PMID: 32110387 PMCID: PMC7000863 DOI: 10.1177/2045894019900121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Pulmonary hypertension is a fatal disease of which pulmonary vasculopathy is the main pathological feature resulting in the mean pulmonary arterial pressure higher than 25 mmHg. Moreover, pulmonary hypertension remains a tough problem with unclear molecular mechanisms. There have been dozens of studies about endoplasmic reticulum stress during the onset of pulmonary hypertension in patients, suggesting that endoplasmic reticulum stress may have a critical effect on the pathogenesis of pulmonary hypertension. The review aims to summarize the rationale to elucidate the role of endoplasmic reticulum stress in pulmonary hypertension. Started by reviewing the mechanisms responsible for the unfolded protein response following endoplasmic reticulum stress, the potential link between endoplasmic reticulum stress and pulmonary hypertension were introduced, and the contributions of endoplasmic reticulum stress to different vascular cells, mitochondria, and inflammation were described, and finally the potential therapies of attenuating endoplasmic reticulum stress for pulmonary hypertension were discussed.
Collapse
Affiliation(s)
- Yanan Hu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenhao Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang Xie
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tao Liu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hanmin Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Bin Liu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
26
|
Protein Misfolding and Endoplasmic Reticulum Stress in Chronic Lung Disease: Will Cell-Specific Targeting Be the Key to the Cure? Chest 2019; 157:1207-1220. [PMID: 31778676 DOI: 10.1016/j.chest.2019.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic lung disease accounts for a significant global burden with respect to death, disability, and health-care costs. Due to the heterogeneous nature and limited treatment options for these diseases, it is imperative that the cellular and molecular mechanisms underlying the disease pathophysiology are further understood. The lung is a complex organ with a diverse cell population, and each cell type will likely have different roles in disease initiation, progression, and resolution. The effectiveness of a given therapeutic agent may depend on the net effect on each of these cell types. Over the past decade, it has been established that endoplasmic reticulum stress and the unfolded protein response are involved in the development of several chronic lung diseases. These conserved cellular pathways are important for maintaining cellular proteostasis, but their aberrant activation can result in pathology. This review discusses the current understanding of endoplasmic reticulum stress and the unfolded protein response at the cellular level in the development and progression of various chronic lung diseases. We highlight the need for increased understanding of the specific cellular contributions of unfolded protein response activation to these pathologies and suggest that the development of cell-specific targeted therapies is likely required to further decrease disease progression and to promote resolution of chronic lung disease.
Collapse
|
27
|
Chen CH, Shih PC, Lin HY, Wang PK, Pan PT, Chuang CW, Kao MC. 4-Phenylbutyric acid protects against vasculitic peripheral neuropathy induced by ischaemia–reperfusion through attenuating endoplasmic reticulum stress. Inflammopharmacology 2019; 27:713-722. [DOI: 10.1007/s10787-019-00604-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/11/2019] [Indexed: 12/19/2022]
|
28
|
Zhang M, Chang Z, Zhao F, Zhang P, Hao YJ, Yan L, Liu N, Wang JL, Bo L, Ma P, Zhou W, Ma X, Xu QB, Zhou R. Protective Effects of 18β-Glycyrrhetinic Acid on Monocrotaline-Induced Pulmonary Arterial Hypertension in Rats. Front Pharmacol 2019; 10:13. [PMID: 30723409 PMCID: PMC6349717 DOI: 10.3389/fphar.2019.00013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/07/2019] [Indexed: 12/30/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a destructive and rare disorder characterized by a progressive increase in pulmonary artery pressure and vasoconstriction, ultimately leading to right ventricular failure and death. 18β-Glycyrrhetinic acid (18β-GA) is an active ingredient in the commonly used Chinese herbal medicine radix glycyrrhizae, and it possesses antioxidant, anti-inflammatory, anti-tumor, and other pharmacological properties. This study aimed to determine whether 18β-GA has protective effects against monocrotaline (MCT)-induced PAH and whether it is associated with oxidative stress. The PAH of rats was induced by MCT (60 mg/kg) and oral administration of 18β-GA (100, 50, or 25 mg/kg/day), sildenafil (30 mg/kg), or saline for 21 consecutive days. The development of PAH was evaluated by hemodynamic parameters and right ventricular hypertrophy index. Hematoxylin and eosin staining, Masson trichrome staining, and electron microscopy were used to determine the degree of vascular remodeling and proliferation in lung tissue. Moreover, the antioxidant capacity and malondialdehyde levels in the lungs were measured according to the instructions provided by the test kits, and the expression levels of nicotinamide adenine dinucleotide phosphate oxidase-2 (Nox2) and Nox4 were detected through Western blot analysis. Results of our study indicated that 18β-GA treatment significantly improved the hemodynamic and pathomorphological data of the rats, reduced the changes in oxidative stress biomarkers, and inhibited Nox2 and Nox4 expression. Our research indicated that 18β-GA has a protective effect against MCT-induced PAH by inhibiting oxidative stress in rats.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhi Chang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Fang Zhao
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Peng Zhang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yin-Ju Hao
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Lin Yan
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ning Liu
- Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, China
| | - Jun-Li Wang
- Foreign Language Teaching Department, Ningxia Medical University, Yinchuan, China
| | - Lei Bo
- Foreign Language Teaching Department, Ningxia Medical University, Yinchuan, China
| | - Ping Ma
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wei Zhou
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xuan Ma
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Qing-Bin Xu
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China.,Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
29
|
Camargo LL, Harvey AP, Rios FJ, Tsiropoulou S, Da Silva RDNO, Cao Z, Graham D, McMaster C, Burchmore RJ, Hartley RC, Bulleid N, Montezano AC, Touyz RM. Vascular Nox (NADPH Oxidase) Compartmentalization, Protein Hyperoxidation, and Endoplasmic Reticulum Stress Response in Hypertension. Hypertension 2018; 72:235-246. [PMID: 29844144 DOI: 10.1161/hypertensionaha.118.10824] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/21/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022]
Abstract
Vascular Nox (NADPH oxidase)-derived reactive oxygen species and endoplasmic reticulum (ER) stress have been implicated in hypertension. However, relationships between these processes are unclear. We hypothesized that Nox isoforms localize in a subcellular compartment-specific manner, contributing to oxidative and ER stress, which influence the oxidative proteome and vascular function in hypertension. Nox compartmentalization (cell fractionation), O2- (lucigenin), H2O2 (amplex red), reversible protein oxidation (sulfenylation), irreversible protein oxidation (protein tyrosine phosphatase, peroxiredoxin oxidation), and ER stress (PERK [protein kinase RNA-like endoplasmic reticulum kinase], IRE1α [inositol-requiring enzyme 1], and phosphorylation/oxidation) were studied in spontaneously hypertensive rat (SHR) vascular smooth muscle cells (VSMCs). VSMC proliferation was measured by fluorescence-activated cell sorting, and vascular reactivity assessed in stroke-prone SHR arteries by myography. Noxs were downregulated by short interfering RNA and pharmacologically. In SHR, Noxs were localized in specific subcellular regions: Nox1 in plasma membrane and Nox4 in ER. In SHR, oxidative stress was associated with increased protein sulfenylation and hyperoxidation of protein tyrosine phosphatases and peroxiredoxins. Inhibition of Nox1 (NoxA1ds), Nox1/4 (GKT137831), and ER stress (4-phenylbutyric acid/tauroursodeoxycholic acid) normalized SHR vascular reactive oxygen species generation. GKT137831 reduced IRE1α sulfenylation and XBP1 (X-box binding protein 1) splicing in SHR. Increased VSMC proliferation in SHR was normalized by GKT137831, 4-phenylbutyric acid, and STF083010 (IRE1-XBP1 disruptor). Hypercontractility in the stroke-prone SHR was attenuated by 4-phenylbutyric acid. We demonstrate that protein hyperoxidation in hypertension is associated with oxidative and ER stress through upregulation of plasmalemmal-Nox1 and ER-Nox4. The IRE1-XBP1 pathway of the ER stress response is regulated by Nox4/reactive oxygen species and plays a role in the hyperproliferative VSMC phenotype in SHR. Our study highlights the importance of Nox subcellular compartmentalization and interplay between cytoplasmic reactive oxygen species and ER stress response, which contribute to the VSMC oxidative proteome and vascular dysfunction in hypertension.
Collapse
Affiliation(s)
- Livia L Camargo
- From the Institute of Cardiovascular and Medical Sciences (L.L.C., A.P.H., F.J.R., S.T., D.G., A.C.M., R.M.T.)
| | - Adam P Harvey
- From the Institute of Cardiovascular and Medical Sciences (L.L.C., A.P.H., F.J.R., S.T., D.G., A.C.M., R.M.T.)
| | - Francisco J Rios
- From the Institute of Cardiovascular and Medical Sciences (L.L.C., A.P.H., F.J.R., S.T., D.G., A.C.M., R.M.T.)
| | - Sofia Tsiropoulou
- From the Institute of Cardiovascular and Medical Sciences (L.L.C., A.P.H., F.J.R., S.T., D.G., A.C.M., R.M.T.)
| | | | - Zhenbo Cao
- The Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences (Z.C., N.B.)
| | - Delyth Graham
- From the Institute of Cardiovascular and Medical Sciences (L.L.C., A.P.H., F.J.R., S.T., D.G., A.C.M., R.M.T.)
| | - Claire McMaster
- WestCHEM School of Chemistry (C.M., R.C.H.), University of Glasgow, Scotland, United Kingdom
| | - Richard J Burchmore
- Institute of Infection, Immunity and Inflammation, Polyomics Facility (R.J.B.)
| | - Richard C Hartley
- WestCHEM School of Chemistry (C.M., R.C.H.), University of Glasgow, Scotland, United Kingdom
| | - Neil Bulleid
- The Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences (Z.C., N.B.)
| | - Augusto C Montezano
- From the Institute of Cardiovascular and Medical Sciences (L.L.C., A.P.H., F.J.R., S.T., D.G., A.C.M., R.M.T.)
| | - Rhian M Touyz
- From the Institute of Cardiovascular and Medical Sciences (L.L.C., A.P.H., F.J.R., S.T., D.G., A.C.M., R.M.T.)
| |
Collapse
|
30
|
Chen A, Liu J, Zhu J, Wang X, Xu Z, Cui Z, Yao D, Huang Z, Xu M, Chen M, Wu P, Li M, Wang L, Huang X. FGF21 attenuates hypoxia‑induced dysfunction and apoptosis in HPAECs through alleviating endoplasmic reticulum stress. Int J Mol Med 2018; 42:1684-1694. [PMID: 29845288 DOI: 10.3892/ijmm.2018.3705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/18/2018] [Indexed: 11/05/2022] Open
Abstract
Vascular endothelial apoptosis and dysfunction have a crucial role in triggering pathological vascular remodeling of hypoxia‑induced pulmonary arterial hypertension (PAH). Fibroblast growth factor (FGF)21, an endocrine regulator, has recently been reported to protect cardiac endothelial cells from damage and suppress inflammatory responses. In addition, FGF21 is reported to be involved in endoplasmic reticulum stress (ERS). Previous studies have suggested that ERS participates in the development of PAH, and attenuation of ERS could be an effective therapeutic strategy for the protection of pulmonary arteries. However, whether FGF21 has a protective function via suppression of ERS in pulmonary arterial endothelial cells in hypoxia remains unclear. The present study aimed to explore whether FGF21 could reduce the hypoxia‑induced apoptosis of human pulmonary arterial endothelial cells (HPAECs) and prevent endothelial dysfunction via the inhibition of ERS. HPAECs were divided into six groups: Normoxia, hypoxia, hypoxia plus FGF21, hypoxia plus salubrinal (an ERS inhibitor), hypoxia plus tunicamycin (an ERS agonist), and hypoxia plus tunicamycin plus FGF21. The endoplasmic reticulum ultrastructure in HPAECs was assessed by transmission electron microscopy, and proliferation and apoptosis were examined by cell counting kit‑8 and terminal deoxyribonucleotide transferase‑mediated dUTP nick end‑labelling assays, respectively. The expression levels of ERS‑related proteins, including binding immunoglobulin protein (BiP), protein kinase R‑like endoplasmic reticulum kinase (PERK), phosphorylated (p‑) PERK, transcription factor C/EBP homologous protein (CHOP), B‑cell lymphoma-2 (Bcl‑2) and caspase‑4 were detected by western blotting. Transwell migration chamber assays were performed, and the concentration of nitric oxide (NO)/endothelin‑1 (ET‑1) in the culture medium was determined to examine endothelial function. The results revealed that hypoxia increased the % of apoptotic cells and diminished the viability of HPAECs, accompanied by an upregulation of ERS‑dependent apoptosis by increasing the expression of the proapoptotic caspase‑4 and decreasing the antiapoptotic Bcl‑2. Additionally, hypoxia upregulated the expression of representative proteins in the PERK branch of ERS, including BiP, p‑PERK and CHOP, while it downregulated the expression of PERK. Furthermore, the secretion of NO/ET‑1 and the migration rate of HPAECs were downregulated under conditions of hypoxia. FGF21 significantly attenuated the hypoxia‑induced apoptosis and dysfunction of HPAECs through alleviating the aforementioned changes in ERS‑dependent signaling pathways. In conclusion, ERS may be a crucial mechanism in the hypoxia‑induced apoptosis and endothelial dysfunction of HPAECs. FGF21 may attenuate the hypoxia‑induced apoptosis and dysfunction of HPAECs through alleviating ERS, via the PERK/CHOP signaling pathway and inhibition of caspase‑4 expression.
Collapse
Affiliation(s)
- Ali Chen
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Jingjing Liu
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Jianfeng Zhu
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Xuetao Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhaona Xu
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhimin Cui
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Dan Yao
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhifeng Huang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Min Xu
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Mayun Chen
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Peiliang Wu
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Manxiang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Liangxing Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
31
|
Duan Q, Song P, Ding Y, Zou MH. Activation of AMP-activated protein kinase by metformin ablates angiotensin II-induced endoplasmic reticulum stress and hypertension in mice in vivo. Br J Pharmacol 2017; 174:2140-2151. [PMID: 28436023 DOI: 10.1111/bph.13833] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/29/2017] [Accepted: 04/16/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Metformin, one of the most frequently prescribed medications for type 2 diabetes, reportedly exerts BP-lowering effects in patients with diabetes. However, the effects and underlying mechanisms of metformin on BP in non-diabetic conditions remain to be determined. The aim of the present study was to determine the effects of metformin on angiotensin II (Ang II) infusion-induced hypertension in vivo. EXPERIMENTAL APPROACH The effects of metformin on BP were investigated in wild-type (WT) C57BL/6J mice and in mice lacking AMP-activated protein kinase α2 (AMPKα2) mice with or without Ang II infusion. Also, the effect of metformin on Ang II-induced endoplasmic reticulum (ER) stress was explored in cultured human vascular smooth muscle cells (hVSMCs). KEY RESULTS Metformin markedly reduced BP in Ang II-infused WT mice but not in AMPKα2-deficient mice. In cultured hVSMCs, Ang II treatment resulted in inactivation of AMPK, as well as the subsequent induction of spliced X-box binding protein-1, phosphorylation of eukaryotic translation initiation factor 2α and expression of glucose-regulated protein 78 kDa, representing three well-characterized ER stress biomarkers. Moreover, AMPK activation by metformin ablated Ang II-induced ER stress in hVSMCs. Mechanistically, metformin-activated AMPKα2 suppressed ER stress by increasing phospholamban phosphorylation. CONCLUSION AND IMPLICATIONS Metformin alleviates Ang II-triggered hypertension in mice by activating AMPKα2, which mediates phospholamban phosphorylation and inhibits Ang II-induced ER stress in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Quanlu Duan
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA.,Division of Cardiology, Department Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Ye Ding
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
32
|
Li Y, Lu G, Sun D, Zuo H, Wang DW, Yan J. Inhibition of endoplasmic reticulum stress signaling pathway: A new mechanism of statins to suppress the development of abdominal aortic aneurysm. PLoS One 2017; 12:e0174821. [PMID: 28369137 PMCID: PMC5378361 DOI: 10.1371/journal.pone.0174821] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/15/2017] [Indexed: 12/02/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a potentially lethal disease with extremely poor survival rates once the aneurysm ruptures. Statins may exert beneficial effects on the progression of AAA. However, the underlying mechanism is still not known. The purpose of the present study is to investigate whether statin could inhibit AAA formation by inhibiting the endoplasmic reticulum (ER) stress signal pathway. Methods A clinically relevant AAA model was induced in Apolipoprotein E-deficient (ApoE−/−) mice, which were infused with angiotensin II (Ang II) for 28 days. These mice were randomly divided into following 4 groups: saline infusion alone; Ang II infusion alone; Ang II infusion plus Atorvastatin (20mg/kg/d); and Ang II infusion plus Atorvastatin (30mg/kg/d). Besides, another AAA model was induced in C57 mice with extraluminal CaCl2, which were divided into 3 groups: sham group, CaCl2-induced AAA group, and CaCl2-induced AAA plus atorvastatin (20mg/kg/d) group. Then, aortic tissue was excised for further examinations, respectively. In vitro studies, Ang II with or without simvastatin treatment were applied to the vascular smooth muscle cells (VSMCS) and Raw 264.7 cells. The ER stress signal pathway, apoptosis and inflammatory response were evaluated by in vivo and in vitro assays. Results We found that higher dose of atorvastatin can effectively suppress the development and progression of AAA induced by Ang II or CaCl2. Mechanistically, the activation of ER stress and inflammatory response were found involved in Ang II-induced AAA formation. The atorvastatin infusion significantly reduced ER stress signaling proteins, the number of apoptotic cells, and the activation of Caspase12 and Bax in the Ang II-induced ApoE−/− mice, compared with mice treated by Ang II alone. Furthermore, proinflammatory cytokines such as IL-6, IL-8, IL-1β were all remarkably inhibited after atorvastatin treatment. In vitro, the inhibitory effect of simvastatin on the ER stress signal pathway could be observed in both vascular smooth muscle cells and macrophages, and these inhibitory effects of statin were in a dose-dependent manner. In addition, apoptosis was induced with Ang II treatment. The maximal inhibitory effect of simvastatin on apoptosis was observed at 10 μmol/l. Conclusions We conclude that higher dose of statin can effectively suppress the development of AAA, and reduce ER stress, ER stress-associated apoptosis signaling pathways, and inflammatory response. These findings reveal a new mechanism underlying the inhibitory effect of statin on AAA formation/progression.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Apoptosis/drug effects
- Apoptosis/physiology
- Atorvastatin/pharmacology
- Calcium Chloride
- Cell Line
- Cytokines/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Endoplasmic Reticulum Stress/drug effects
- Endoplasmic Reticulum Stress/physiology
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Random Allocation
Collapse
Affiliation(s)
- Yuanyuan Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gangsheng Lu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dating Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Houjuan Zuo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (DWW); (JY)
| | - Jiangtao Yan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (DWW); (JY)
| |
Collapse
|