1
|
Verma A, Poondi Krishnan V, Cecere F, D’Angelo E, Lullo V, Strazzullo M, Selig S, Angelini C, Matarazzo MR, Riccio A. ICF1-Syndrome-Associated DNMT3B Mutations Prevent De Novo Methylation at a Subset of Imprinted Loci during iPSC Reprogramming. Biomolecules 2023; 13:1717. [PMID: 38136588 PMCID: PMC10741953 DOI: 10.3390/biom13121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Parent-of-origin-dependent gene expression of a few hundred human genes is achieved by differential DNA methylation of both parental alleles. This imprinting is required for normal development, and defects in this process lead to human disease. Induced pluripotent stem cells (iPSCs) serve as a valuable tool for in vitro disease modeling. However, a wave of de novo DNA methylation during reprogramming of iPSCs affects DNA methylation, thus limiting their use. The DNA methyltransferase 3B (DNMT3B) gene is highly expressed in human iPSCs; however, whether the hypermethylation of imprinted loci depends on DNMT3B activity has been poorly investigated. To explore the role of DNMT3B in mediating de novo DNA methylation at imprinted DMRs, we utilized iPSCs generated from patients with immunodeficiency, centromeric instability, facial anomalies type I (ICF1) syndrome that harbor biallelic hypomorphic DNMT3B mutations. Using a whole-genome array-based approach, we observed a gain of methylation at several imprinted loci in control iPSCs but not in ICF1 iPSCs compared to their parental fibroblasts. Moreover, in corrected ICF1 iPSCs, which restore DNMT3B enzymatic activity, imprinted DMRs did not acquire control DNA methylation levels, in contrast to the majority of the hypomethylated CpGs in the genome that were rescued in the corrected iPSC clones. Overall, our study indicates that DNMT3B is responsible for de novo methylation of a subset of imprinted DMRs during iPSC reprogramming and suggests that imprinting is unstable during a specific time window of this process, after which the epigenetic state at these regions becomes resistant to perturbation.
Collapse
Affiliation(s)
- Ankit Verma
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (A.V.); (F.C.); (E.D.)
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy; (V.P.K.); (V.L.); (M.S.)
| | - Varsha Poondi Krishnan
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy; (V.P.K.); (V.L.); (M.S.)
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (A.V.); (F.C.); (E.D.)
| | - Emilia D’Angelo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (A.V.); (F.C.); (E.D.)
| | - Vincenzo Lullo
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy; (V.P.K.); (V.L.); (M.S.)
| | - Maria Strazzullo
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy; (V.P.K.); (V.L.); (M.S.)
| | - Sara Selig
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel;
- Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa 31096, Israel
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy;
| | - Maria R. Matarazzo
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy; (V.P.K.); (V.L.); (M.S.)
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (A.V.); (F.C.); (E.D.)
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy; (V.P.K.); (V.L.); (M.S.)
| |
Collapse
|
2
|
Maintenance of methylation profile in imprinting control regions in human induced pluripotent stem cells. Clin Epigenetics 2022; 14:190. [PMID: 36578048 PMCID: PMC9798676 DOI: 10.1186/s13148-022-01410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Parental imprinting is an epigenetic mechanism that leads to monoallelic expression of a subset of genes depending on their parental origin. Imprinting disorders (IDs), caused by disturbances of imprinted genes, are a set of rare congenital diseases that mainly affect growth, metabolism and development. To date, there is no accurate model to study the physiopathology of IDs or test therapeutic strategies. Human induced pluripotent stem cells (iPSCs) are a promising cellular approach to model human diseases and complex genetic disorders. However, aberrant hypermethylation of imprinting control regions (ICRs) may appear during the reprogramming process and subsequent culture of iPSCs. Therefore, we tested various conditions of reprogramming and culture of iPSCs and performed an extensive analysis of methylation marks at the ICRs to develop a cellular model that can be used to study IDs. RESULTS We assessed the methylation levels at seven imprinted loci in iPSCs before differentiation, at various passages of cell culture, and during chondrogenic differentiation. Abnormal methylation levels were found, with hypermethylation at 11p15 H19/IGF2:IG-DMR and 14q32 MEG3/DLK1:IG-DMR, independently of the reprogramming method and cells of origin. Hypermethylation at these two loci led to the loss of parental imprinting (LOI), with biallelic expression of the imprinted genes IGF2 and DLK1, respectively. The epiPS™ culture medium combined with culturing of the cells under hypoxic conditions prevented hypermethylation at H19/IGF2:IG-DMR (ICR1) and MEG3/DLK1:IG-DMR, as well as at other imprinted loci, while preserving the proliferation and pluripotency qualities of these iPSCs. CONCLUSIONS An extensive and quantitative analysis of methylation levels of ICRs in iPSCs showed hypermethylation of certain ICRs in human iPSCs, especially paternally methylated ICRs, and subsequent LOI of certain imprinted genes. The epiPS™ culture medium and culturing of the cells under hypoxic conditions prevented hypermethylation of ICRs in iPSCs. We demonstrated that the reprogramming and culture in epiPS™ medium allow the generation of control iPSCs lines with a balanced methylation and ID patient iPSCs lines with unbalanced methylation. Human iPSCs are therefore a promising cellular model to study the physiopathology of IDs and test therapies in tissues of interest.
Collapse
|
3
|
Horánszky A, Becker JL, Zana M, Ferguson-Smith AC, Dinnyés A. Epigenetic Mechanisms of ART-Related Imprinting Disorders: Lessons From iPSC and Mouse Models. Genes (Basel) 2021; 12:genes12111704. [PMID: 34828310 PMCID: PMC8620286 DOI: 10.3390/genes12111704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
The rising frequency of ART-conceived births is accompanied by the need for an improved understanding of the implications of ART on gametes and embryos. Increasing evidence from mouse models and human epidemiological data suggests that ART procedures may play a role in the pathophysiology of certain imprinting disorders (IDs), including Beckwith-Wiedemann syndrome, Silver-Russell syndrome, Prader-Willi syndrome, and Angelman syndrome. The underlying molecular basis of this association, however, requires further elucidation. In this review, we discuss the epigenetic and imprinting alterations of in vivo mouse models and human iPSC models of ART. Mouse models have demonstrated aberrant regulation of imprinted genes involved with ART-related IDs. In the past decade, iPSC technology has provided a platform for patient-specific cellular models of culture-associated perturbed imprinting. However, despite ongoing efforts, a deeper understanding of the susceptibility of iPSCs to epigenetic perturbation is required if they are to be reliably used for modelling ART-associated IDs. Comparing the patterns of susceptibility of imprinted genes in mouse models and IPSCs in culture improves the current understanding of the underlying mechanisms of ART-linked IDs with implications for our understanding of the influence of environmental factors such as culture and hormone treatments on epigenetically important regions of the genome such as imprints.
Collapse
Affiliation(s)
- Alex Horánszky
- BioTalentum Ltd., H-2100 Gödöllő, Hungary; (A.H.); (M.Z.)
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Jessica L. Becker
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; (J.L.B.); (A.C.F.-S.)
| | - Melinda Zana
- BioTalentum Ltd., H-2100 Gödöllő, Hungary; (A.H.); (M.Z.)
| | - Anne C. Ferguson-Smith
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; (J.L.B.); (A.C.F.-S.)
| | - András Dinnyés
- BioTalentum Ltd., H-2100 Gödöllő, Hungary; (A.H.); (M.Z.)
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
- HCEMM-USZ Stem Cell Research Group, Hungarian Centre of Excellence for Molecular Medicine, H-6723 Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-20-510-9632; Fax: +36-28-526-151
| |
Collapse
|
4
|
Changes in Methylation Patterns of Tumor Suppressor Genes during Extended Human Embryonic Stem Cell Cultures. Stem Cells Int 2021; 2021:5575185. [PMID: 34552632 PMCID: PMC8452414 DOI: 10.1155/2021/5575185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/23/2022] Open
Abstract
While studies on embryonic stem cells have been actively conducted, little is known about the epigenetic mechanisms in human embryonic stem cells (hESCs) in extended culture systems. Here, we investigated whether CpG island (CGI) methylation patterns of 24 tumor suppressor genes could be maintained during extended hESC cultures. In total, 10 hESC lines were analyzed. For each cell line, genomic DNA was extracted from early and late passages of cell cultures. CGI methylation levels of 24 tumor suppressor genes were analyzed using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA), pyrosequencing, and real-time polymerase chain reaction (PCR). Different CGI methylation patterns of CASP8, FHIT, and CHFR genes were identified in between early and late passages in some hESC lines. CGI methylation levels of CASP8 significantly increased at late passage in CHA-36, CHA-40, and CHA-42 cell lines compared to those at early passage. The CGI methylation of the FHIT gene was higher at late passage than at early passage in CHA-15, CHA-31, CHA-32, and iPS (FS)-1 cell lines but decreased at the late passage in CHA-20 and H1 cell lines. Different CGI methylation patterns were detected for the CHFR gene only in iPS (FS)-1, and the level significantly increased at late passage. Thus, our findings show that CGI methylation patterns could be altered during prolonged ESC cultures and examining these epigenetic changes is important to assess the maintenance, differentiation, and clinical usage of stem cells.
Collapse
|
5
|
Braverman-Gross C, Benvenisty N. Modeling Maturity Onset Diabetes of the Young in Pluripotent Stem Cells: Challenges and Achievements. Front Endocrinol (Lausanne) 2021; 12:622940. [PMID: 33692757 PMCID: PMC7937923 DOI: 10.3389/fendo.2021.622940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Maturity onset diabetes of the young (MODY), is a group of monogenic diabetes disorders. Rodent models for MODY do not fully recapitulate the human phenotypes, calling for models generated in human cells. Human pluripotent stem cells (hPSCs), capable of differentiation towards pancreatic cells, possess a great opportunity to model MODY disorders in vitro. Here, we review the models for MODY diseases in hPSCs to date and the molecular lessons learnt from them. We also discuss the limitations and challenges that these types of models are still facing.
Collapse
|
6
|
Lampert A, Bennett DL, McDermott LA, Neureiter A, Eberhardt E, Winner B, Zenke M. Human sensory neurons derived from pluripotent stem cells for disease modelling and personalized medicine. NEUROBIOLOGY OF PAIN 2020; 8:100055. [PMID: 33364527 PMCID: PMC7750732 DOI: 10.1016/j.ynpai.2020.100055] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022]
Abstract
New techniques emerge to study peripheral sensory neurons in iPS-cell derived models. Genetic pain syndromes, e.g. gain- and loss-of-function mutations in Nav-channels are helpful. Individualized treatment for neuropathic pain can be identified with iPS-cell derived nociceptors.
In this concise Mini-Review we will summarize ongoing developments of new techniques to study physiology and pathophysiology of the peripheral sensory nervous system in human stem cell derived models. We will focus on recent developments of reprogramming somatic cells into induced pluripotent stem cells, neural differentiation towards neuronal progenitors and human sensory neurons. We will sum up the high potential of this new technique for disease modelling of human neuropathies with a focus on genetic pain syndromes, such as gain- and loss-of-function mutations in voltage-gated sodium channels. The stem cell derived human sensory neurons are used for drug testing and we will summarize their usefulness for individualized treatment identification in patients with neuropathic pain. The review will give an outlook on potential application of this technique as companion diagnostics and for personalized medicine.
Collapse
Affiliation(s)
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Lucy A McDermott
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Wadham College, University of Oxford, UK
| | | | - Esther Eberhardt
- Department of Anesthesiology, FAU Erlangen-Nürnberg, Germany.,Department of Stem Cell Biology, FAU Erlangen-Nürnberg, Germany.,Department of Anesthesiology, RWTH Aachen University, Germany
| | - Beate Winner
- Department of Stem Cell Biology, FAU Erlangen-Nürnberg, Germany
| | | |
Collapse
|
7
|
Qiao Y, Agboola OS, Hu X, Wu Y, Lei L. Tumorigenic and Immunogenic Properties of Induced Pluripotent Stem Cells: a Promising Cancer Vaccine. Stem Cell Rev Rep 2020; 16:1049-1061. [PMID: 32939647 PMCID: PMC7494249 DOI: 10.1007/s12015-020-10042-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Induced pluripotent stem cells (iPSCs) are mainly characterized by their unlimited proliferation abilities and potential to develop into almost any cell type. The creation of this technology has been of great interest to many scientific fields, especially regenerative biology. However, concerns about the safety of iPSC application in transplantation have arisen due to the tumorigenic and immunogenic properties of iPSCs. This review will briefly introduce the developing history of somatic reprogramming and applications of iPSC technology in regenerative medicine. In addition, the review will highlight two challenges to the efficient usage of iPSCs and the underlying mechanisms of these challenges. Finally, the review will discuss the expanding application of iPSC technology in cancer immunotherapy as a potential cancer vaccine and its advantages in auxiliary treatment compared with oncofetal antigen-based and embryonic stem cell (ESC)-based vaccines.
Collapse
Affiliation(s)
- Yu Qiao
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Oluwafemi Solomon Agboola
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Xinglin Hu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Yanshuang Wu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Lei Lei
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China.
- Key laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China.
| |
Collapse
|
8
|
Epigenetic Features of Human Perinatal Stem Cells Redefine Their Stemness Potential. Cells 2020; 9:cells9051304. [PMID: 32456308 PMCID: PMC7290760 DOI: 10.3390/cells9051304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Human perinatal stem cells (SCs) can be isolated from fetal annexes without ethical or safety limitations. They are generally considered multipotent; nevertheless, their biological characteristics are still not fully understood. The aim of this study was to investigate the pluripotency potential of human perinatal SCs as compared to human induced pluripotent stem cells (hiPSCs). Despite the low expression of the pluripotent factors NANOG, OCT4, SOX2, and C-KIT in perinatal SC, we observed minor differences in the promoters DNA-methylation profile of these genes with respect to hiPSCs; we also demonstrated that in perinatal SCs miR-145-5p had an inverse trend in comparison to these stemness markers, suggesting that NANOG, OCT4, and SOX2 were regulated at the post-transcriptional level. The reduced expression of stemness markers was also associated with shorter telomere lengths and shift of the oxidative metabolism between hiPSCs and fetal annex-derived cells. Our findings indicate the differentiation ability of perinatal SCs might not be restricted to the mesenchymal lineage due to an epigenetic barrier, but other regulatory mechanisms such as telomere shortening or metabolic changes might impair their differentiation potential and challenge their clinical application.
Collapse
|
9
|
Farkas S, Simara P, Rehakova D, Veverkova L, Koutna I. Endothelial Progenitor Cells Produced From Human Pluripotent Stem Cells by a Synergistic Combination of Cytokines, Small Compounds, and Serum-Free Medium. Front Cell Dev Biol 2020; 8:309. [PMID: 32509776 PMCID: PMC7249886 DOI: 10.3389/fcell.2020.00309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are a promising source of autologous endothelial progenitor cells (EPCs) that can be used for the treatment of vascular diseases. However, this kind of treatment requires a large amount of EPCs. Therefore, a highly efficient, robust, and easily reproducible differentiation protocol is necessary. We present a novel serum-free differentiation protocol that exploits the synergy of multiple powerful differentiation effectors. Our protocol follows the proper physiological pathway by differentiating EPCs from hPSCs in three phases that mimic in vivo embryonic vascular development. Specifically, hPSCs are differentiated into (i) primitive streak, which is subsequently turned into (ii) mesoderm, which finally differentiates into (iii) EPCs. This differentiation process yields up to 15 differentiated cells per seeded hPSC in 5 days. Endothelial progenitor cells constitute up to 97% of these derived cells. The experiments were performed on the human embryonic stem cell line H9 and six human induced pluripotent stem cell lines generated in our laboratory. Therefore, robustness was verified using many hPSC lines. Two previously established protocols were also adapted and compared to our synergistic three-phase protocol. Increased efficiency and decreased variability were observed for our differentiation protocol in comparison to the other tested protocols. Furthermore, EPCs derived from hPSCs by our protocol expressed the high-proliferative-potential EPC marker CD157 on their surface in addition to the standard EPC surface markers CD31, CD144, CD34, KDR, and CXCR4. Our protocol enables efficient fully defined production of autologous endothelial progenitors for research and clinical applications.
Collapse
Affiliation(s)
- Simon Farkas
- Department of Histology and Embryology, Theoretical Departments, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Pavel Simara
- Department of Histology and Embryology, Theoretical Departments, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Daniela Rehakova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Lenka Veverkova
- I. Surgery Department, St. Anne's University Hospital Brno, Brno, Czechia
| | - Irena Koutna
- Department of Histology and Embryology, Theoretical Departments, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
10
|
Gordon A, Geschwind DH. Human in vitro models for understanding mechanisms of autism spectrum disorder. Mol Autism 2020; 11:26. [PMID: 32299488 PMCID: PMC7164291 DOI: 10.1186/s13229-020-00332-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Early brain development is a critical epoch for the development of autism spectrum disorder (ASD). In vivo animal models have, until recently, been the principal tool used to study early brain development and the changes occurring in neurodevelopmental disorders such as ASD. In vitro models of brain development represent a significant advance in the field. Here, we review the main methods available to study human brain development in vitro and the applications of these models for studying ASD and other psychiatric disorders. We discuss the main findings from stem cell models to date focusing on cell cycle and proliferation, cell death, cell differentiation and maturation, and neuronal signaling and synaptic stimuli. To be able to generalize the results from these studies, we propose a framework of experimental design and power considerations for using in vitro models to study ASD. These include both technical issues such as reproducibility and power analysis and conceptual issues such as the brain region and cell types being modeled.
Collapse
Affiliation(s)
- Aaron Gordon
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Bar S, Benvenisty N. Epigenetic aberrations in human pluripotent stem cells. EMBO J 2019; 38:embj.2018101033. [PMID: 31088843 DOI: 10.15252/embj.2018101033] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are being increasingly utilized worldwide in investigating human development, and modeling and discovering therapies for a wide range of diseases as well as a source for cellular therapy. Yet, since the first isolation of human embryonic stem cells (hESCs) 20 years ago, followed by the successful reprogramming of human-induced pluripotent stem cells (hiPSCs) 10 years later, various studies shed light on abnormalities that sometimes accumulate in these cells in vitro Whereas genetic aberrations are well documented, epigenetic alterations are not as thoroughly discussed. In this review, we highlight frequent epigenetic aberrations found in hPSCs, including alterations in DNA methylation patterns, parental imprinting, and X chromosome inactivation. We discuss the potential origins of these abnormalities in hESCs and hiPSCs, survey the different methods for detecting them, and elaborate on their potential consequences for the different utilities of hPSCs.
Collapse
Affiliation(s)
- Shiran Bar
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Nissim Benvenisty
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
12
|
Addressing Variability and Heterogeneity of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:1-29. [DOI: 10.1007/5584_2019_350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Hayashi Y, Ohnuma K, Furue MK. Pluripotent Stem Cell Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:71-94. [DOI: 10.1007/978-3-030-11096-3_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Laowtammathron C, Chingsuwanrote P, Choavaratana R, Phornwilardsiri S, Sitthirit K, Kaewjunun C, Makemaharn O, Terbto P, Waeteekul S, Lorthongpanich C, U-Pratya Y, Srisook P, Kheolamai P, Issaragrisil S. High-efficiency derivation of human embryonic stem cell lines using a culture system with minimized trophoblast cell proliferation. Stem Cell Res Ther 2018; 9:138. [PMID: 29751777 PMCID: PMC5948903 DOI: 10.1186/s13287-018-0866-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 01/29/2023] Open
Abstract
Background Due to their extensive self-renewal and multilineage differentiation capacity, human embryonic stem cells (hESCs) have great potential for studying developmental biology, disease modeling, and developing cell replacement therapy. The first hESC line was generated in 1998 by culturing inner cell mass (ICM) cells isolated from human blastocysts using an immunosurgery technique. Since then, many techniques including mechanical ICM isolation, laser dissection, and whole embryo culture have been used to derive hESC lines. However, the hESC derivation efficiency remains low, usually less than 50%, and it requires a large number of human embryos to derive a significant number of hESC lines. Due to a shortage of and restricted access to human embryos, a novel approach with better hESC derivation efficiency is badly needed to decrease the number of embryos used. Methods We hypothesized that the low hESC derivation efficiency might be due to extensive proliferation of trophoblast (TE) cells which could interfere with ICM proliferation. We therefore developed a methodology to minimize TE cell proliferation by culturing ICM in a feeder-free system for 3 days before transferring them onto feeder cells. Results This minimized trophoblast cell proliferation (MTP) technique could be successfully used to derive hESCs from normal, abnormal, and frozen–thawed embryos with better derivation efficiency of more than 50% (range 50–100%; median 70%). Conclusions We successfully developed a better hESC derivation methodology using the “MTP” culture system. This methodology can be effectively used to derive hESCs from both normal and abnormal embryos under feeder-free conditions with higher efficiency when compared with other methodologies. With this methodology, large-scale production of clinical-grade hESCs is feasible. Electronic supplementary material The online version of this article (10.1186/s13287-018-0866-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chuti Laowtammathron
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pimjai Chingsuwanrote
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Roungsin Choavaratana
- Division of Infertility and Reproductive Biology, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suphadtra Phornwilardsiri
- Division of Infertility and Reproductive Biology, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Ketsara Sitthirit
- Division of Infertility and Reproductive Biology, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chidchanok Kaewjunun
- Division of Infertility and Reproductive Biology, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Orawan Makemaharn
- Division of Infertility and Reproductive Biology, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Papussorn Terbto
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Supaporn Waeteekul
- Division of Medical Genetics, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Yaowalak U-Pratya
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pimonwan Srisook
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pakpoom Kheolamai
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand. .,Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
15
|
Ortmann D, Vallier L. Variability of human pluripotent stem cell lines. Curr Opin Genet Dev 2017; 46:179-185. [DOI: 10.1016/j.gde.2017.07.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022]
|
16
|
Weissbein U, Plotnik O, Vershkov D, Benvenisty N. Culture-induced recurrent epigenetic aberrations in human pluripotent stem cells. PLoS Genet 2017; 13:e1006979. [PMID: 28837588 PMCID: PMC5587343 DOI: 10.1371/journal.pgen.1006979] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/06/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are an important player in disease modeling and regenerative medicine. Nonetheless, multiple studies uncovered their inherent genetic instability upon prolonged culturing, where specific chromosomal aberrations provide cells with a growth advantage. These positively selected modifications have dramatic effects on multiple cellular characteristics. Epigenetic aberrations also possess the potential of changing gene expression and altering cellular functions. In the current study we assessed the landscape of DNA methylation aberrations during prolonged culturing of hPSCs, and defined a set of genes which are recurrently hypermethylated and silenced. We further focused on one of these genes, testis-specific Y-encoded like protein 5 (TSPYL5), and demonstrated that when silenced, differentiation-related genes and tumor-suppressor genes are downregulated, while pluripotency- and growth promoting genes are upregulated. This process is similar to the hypermethylation-mediated inactivation of certain genes during tumor development. Our analysis highlights the existence and importance of recurrent epigenetic aberrations in hPSCs during prolonged culturing.
Collapse
Affiliation(s)
- Uri Weissbein
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Omer Plotnik
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Dan Vershkov
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
17
|
Tumorigenic and Differentiation Potentials of Embryonic Stem Cells Depend on TGF β Family Signaling: Lessons from Teratocarcinoma Cells Stimulated to Differentiate with Retinoic Acid. Stem Cells Int 2017; 2017:7284872. [PMID: 28798778 PMCID: PMC5534322 DOI: 10.1155/2017/7284872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022] Open
Abstract
A significant challenge for the development of safe pluripotent stem cell-based therapies is the incomplete in vitro differentiation of the pluripotent stem cells and the presence of residual undifferentiated cells initiating teratoma development after transplantation in recipients. To understand the mechanisms of incomplete differentiation, a comparative study of retinoic acid-induced differentiation of mouse embryonic stem (ES) and teratocarcinoma (EC) cells was conducted. The present study identified differences in proliferative activity, differentiation, and tumorigenic potentials between ES and EC cells. Higher expression of Nanog and Mvh, as well as Activin A and BMP4, was found in undifferentiated ES cells than in EC cells. However, the expression levels of Activin A and BMP4 increased more sharply in the EC cells during retinoic acid-induced differentiation. Stimulation of the Activin/Nodal and BMP signaling cascades and inhibition of the MEK/ERK and PI3K/Act signaling pathways resulted in a significant decrease in the number of Oct4-expressing ES cells and a loss of tumorigenicity, similar to retinoic acid-stimulated EC cells. Thus, this study demonstrates that a differentiation strategy that modulates prodifferentiation and antiproliferative signaling in ES cells may be effective for eliminating tumorigenic cells and may represent a valuable tool for the development of safe stem cell therapeutics.
Collapse
|
18
|
Tesarova L, Simara P, Stejskal S, Koutna I. Hematopoietic Developmental Potential of Human Pluripotent Stem Cell Lines Is Accompanied by the Morphology of Embryoid Bodies and the Expression of Endodermal and Hematopoietic Markers. Cell Reprogram 2017. [PMID: 28632430 DOI: 10.1089/cell.2016.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The potential clinical applications of hematopoietic stem cells (HSCs) derived from human pluripotent stem cells (hPSCs) are limited by the difficulty of recapitulating embryoid hematopoiesis and by the unknown differentiation potential of hPSC lines. To evaluate their hematopoietic developmental potential, available hPSC lines were differentiated by an embryoid body (EB) suspension culture in serum-free medium supplemented with three different cytokine mixes (CMs). The hPSC differentiation status was investigated by the flow cytometry expression profiles of cell surface molecules, and the gene expression of pluripotency and differentiation markers over time was evaluated by real-time reverse transcription polymerase chain reaction (qRT-PCR). hPSC lines differed in several aspects of the differentiation process, including the absolute yield of hematopoietic progenitors, the proportion of hematopoietic progenitor populations, and the effect of various CMs. The ability to generate hematopoietic progenitors was then associated with the morphology of the developing EBs, the expression of the endodermal markers AFP and SOX17, and the hematopoietic transcription factor RUNX1. These findings deepen the knowledge about the hematopoietic propensity of hPSCs and identify its variability as an aspect that must be taken into account before the usage of hPSC-derived HSCs in downstream applications.
Collapse
Affiliation(s)
- Lenka Tesarova
- 1 Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University , Brno, Czech Republic .,2 International Clinical Research Center, St. Anne's University Hospital Brno , Brno, Czech Republic
| | - Pavel Simara
- 1 Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University , Brno, Czech Republic .,2 International Clinical Research Center, St. Anne's University Hospital Brno , Brno, Czech Republic
| | - Stanislav Stejskal
- 1 Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University , Brno, Czech Republic
| | - Irena Koutna
- 1 Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University , Brno, Czech Republic .,2 International Clinical Research Center, St. Anne's University Hospital Brno , Brno, Czech Republic
| |
Collapse
|