1
|
Kim JK, Yun HY, Kim JS, Kim W, Lee CS, Kim BG, Jeong HJ. Development of fluorescence-linked immunosorbent assay for rapid detection of Staphylococcus aureus. Appl Microbiol Biotechnol 2024; 108:2. [PMID: 38153552 DOI: 10.1007/s00253-023-12836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 12/29/2023]
Abstract
Staphylococcus aureus is a major pathogen that causes infections and life-threatening diseases. Although antibiotics, such as methicillin, have been used, methicillin-resistant S. aureus (MRSA) causes high morbidity and mortality rates, and conventional detection methods are difficult to be used because of time-consuming process. To control the spread of S. aureus, a development of a rapid and simple detection method is required. In this study, we generated a fluorescent anti-S. aureus antibody, and established a novel fluorescence-linked immunosorbent assay (FLISA)-based S. aureus detection method. The method showed high sensitivity and low limit of detection toward MRSA detection. The assay time for FLISA was 5 h, which was faster than that of conventional enzyme-linked immunosorbent assay (ELISA) or rapid ELISA. Moreover, the FLISA-based detection method was applied to diagnose clinically isolated MRSA samples that required only 5.3 h of preincubation. The FLISA method developed in this study can be widely applied as a useful tool for convenient S. aureus detection. KEY POINTS: • A fluorescence-linked immunosorbent assay-based S. aureus detection method • Simultaneous quantification of a maximum of 96 samples within 5 h • Application of the novel system to diagnosis clinical isolates.
Collapse
Affiliation(s)
- Joo-Kyung Kim
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Hyun-Young Yun
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, South Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 05355, South Korea
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Byung-Gee Kim
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, South Korea.
| |
Collapse
|
2
|
Wang Y, Zhang P, Wu J, Chen S, Jin Y, Long J, Duan G, Yang H. Transmission of livestock-associated methicillin-resistant Staphylococcus aureus between animals, environment, and humans in the farm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86521-86539. [PMID: 37418185 DOI: 10.1007/s11356-023-28532-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Staphylococcus aureus (S. aureus) is a fearsome bacterial pathogen that can colonize and infect humans and animals. Depending on the different sources, MRSA is classified as hospital-associated methicillin-resistant S. aureus (HA-MRSA), community-associated MRSA (CA-MRSA), and livestock-associated MRSA (LA-MRSA). LA-MRSA is initially associated with livestock, and clonal complexes (CCs) were almost always 398. However, the continued development of animal husbandry, globalization, and the widespread use of antibiotics have increased the spread of LA-MRSA among humans, livestock, and the environment, and other clonal complexes such as CC9, CC5, and CC8 have gradually emerged in various countries. This may be due to frequent host switching between humans and animals, as well as between animals. Host-switching is typically followed by subsequent adaptation through acquisition and/or loss of mobile genetic elements (MGEs) such as phages, pathogenicity islands, and plasmids as well as further host-specific mutations allowing it to expand into new host populations. This review aimed to provide an overview of the transmission characteristics of S. aureus in humans, animals, and farm environments, and also to describe the main prevalent clones of LA-MRSA and the changes in MGEs during host switching.
Collapse
Affiliation(s)
- Ying Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Peihua Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jian Wu
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Chen X, Hu C, Shu Z, Wang X, Zhao Y, Song W, Chen X, Jin M, Xiu Y, Guo X, Kong X, Jiang Y, Guan J, Gongga L, Wang L, Wang B. Isovanillic acid protects mice against Staphylococcus aureus by targeting vWbp and Coa. Future Microbiol 2023; 18:735-749. [PMID: 37526178 DOI: 10.2217/fmb-2022-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
Aim: Our primary objective was to investigate the protective effects and mechanisms of isovanillic acid in mice infected with Staphylococcus aureus Newman. Methods: In vitro coagulation assays were used to validate vWbp and Coa as inhibitory targets of isovanillic acid. The binding mechanism of isovanillic acid to vWbp and Coa was investigated using molecular docking and point mutagenesis. Importantly, a lethal pneumonia mouse model was used to assess the effect of isovanillic acid on survival and pathological injury in mice. Results & Conclusion: Isovanillic acid reduced the virulence of S. aureus by directly binding to inhibit the clotting activity of vWbp and Coa, thereby reducing lung histopathological damage and improving the survival rate in mice with pneumonia.
Collapse
Affiliation(s)
- Xiangqian Chen
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chunjie Hu
- Changchun University of Chinese Medicine, Changchun, 130117, China
- Proctology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Zunhua Shu
- Changchun University of Chinese Medicine, Changchun, 130117, China
- The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130118, China
| | - Xingye Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, 130117, China
- Center for Pathogen Biology & Infectious Diseases, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun,130021, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiaoyu Chen
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengli Jin
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yang Xiu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xuerui Guo
- School of Pharmacy, Jilin University, Changchun, 130021, China
| | - Xiangri Kong
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yijing Jiang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lanzi Gongga
- Tibet University Medical College, Tibet, 850000, China
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| |
Collapse
|
4
|
Schwermann N, Winstel V. Functional diversity of staphylococcal surface proteins at the host-microbe interface. Front Microbiol 2023; 14:1196957. [PMID: 37275142 PMCID: PMC10232760 DOI: 10.3389/fmicb.2023.1196957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
Surface proteins of Gram-positive pathogens are key determinants of virulence that substantially shape host-microbe interactions. Specifically, these proteins mediate host invasion and pathogen transmission, drive the acquisition of heme-iron from hemoproteins, and subvert innate and adaptive immune cell responses to push bacterial survival and pathogenesis in a hostile environment. Herein, we briefly review and highlight the multi-facetted roles of cell wall-anchored proteins of multidrug-resistant Staphylococcus aureus, a common etiological agent of purulent skin and soft tissue infections as well as severe systemic diseases in humans. In particular, we focus on the functional diversity of staphylococcal surface proteins and discuss their impact on the variety of clinical manifestations of S. aureus infections. We also describe mechanistic and underlying principles of staphylococcal surface protein-mediated immune evasion and coupled strategies S. aureus utilizes to paralyze patrolling neutrophils, macrophages, and other immune cells. Ultimately, we provide a systematic overview of novel therapeutic concepts and anti-infective strategies that aim at neutralizing S. aureus surface proteins or sortases, the molecular catalysts of protein anchoring in Gram-positive bacteria.
Collapse
Affiliation(s)
- Nicoletta Schwermann
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Linz MS, Mattappallil A, Finkel D, Parker D. Clinical Impact of Staphylococcus aureus Skin and Soft Tissue Infections. Antibiotics (Basel) 2023; 12:557. [PMID: 36978425 PMCID: PMC10044708 DOI: 10.3390/antibiotics12030557] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The pathogenic bacterium Staphylococcus aureus is the most common pathogen isolated in skin-and-soft-tissue infections (SSTIs) in the United States. Most S. aureus SSTIs are caused by the epidemic clone USA300 in the USA. These infections can be serious; in 2019, SSTIs with S. aureus were associated with an all-cause, age-standardized mortality rate of 0.5 globally. Clinical presentations of S. aureus SSTIs vary from superficial infections with local symptoms to monomicrobial necrotizing fasciitis, which can cause systemic manifestations and may lead to serious complications or death. In order to cause skin infections, S. aureus employs a host of virulence factors including cytolytic proteins, superantigenic factors, cell wall-anchored proteins, and molecules used for immune evasion. The immune response to S. aureus SSTIs involves initial responders such as keratinocytes and neutrophils, which are supported by dendritic cells and T-lymphocytes later during infection. Treatment for S. aureus SSTIs is usually oral therapy, with parenteral therapy reserved for severe presentations; it ranges from cephalosporins and penicillin agents such as oxacillin, which is generally used for methicillin-sensitive S. aureus (MSSA), to vancomycin for methicillin-resistant S. aureus (MRSA). Treatment challenges include adverse effects, risk for Clostridioides difficile infection, and potential for antibiotic resistance.
Collapse
Affiliation(s)
- Matthew S. Linz
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Arun Mattappallil
- Department of Pharmaceutical Services, University Hospital, Newark, NJ 07103, USA
| | - Diana Finkel
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
6
|
Masters EA, Ricciardi BF, Bentley KLDM, Moriarty TF, Schwarz EM, Muthukrishnan G. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat Rev Microbiol 2022; 20:385-400. [PMID: 35169289 PMCID: PMC8852989 DOI: 10.1038/s41579-022-00686-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Osteomyelitis remains one of the greatest risks in orthopaedic surgery. Although many organisms are linked to skeletal infections, Staphylococcus aureus remains the most prevalent and devastating causative pathogen. Important discoveries have uncovered novel mechanisms of S. aureus pathogenesis and persistence within bone tissue, including implant-associated biofilms, abscesses and invasion of the osteocyte lacuno-canalicular network. However, little clinical progress has been made in the prevention and eradication of skeletal infection as treatment algorithms and outcomes have only incrementally changed over the past half century. In this Review, we discuss the mechanisms of persistence and immune evasion in S. aureus infection of the skeletal system as well as features of other osteomyelitis-causing pathogens in implant-associated and native bone infections. We also describe how the host fails to eradicate bacterial bone infections, and how this new information may lead to the development of novel interventions. Finally, we discuss the clinical management of skeletal infection, including osteomyelitis classification and strategies to treat skeletal infections with emerging technologies that could translate to the clinic in the future.
Collapse
Affiliation(s)
- Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
7
|
Galantini MPL, Leal LS, Rodrigues KB, Ribeiro IS, Pereira IS, Gonçalves CV, Calado SPM, Santos DPD, Muniz IPR, Silva RAADA. Physical activity reduces intradermal bacterial load in a murine model submitted to forced swim training - a pilot study. AN ACAD BRAS CIENC 2022; 94:e20200561. [PMID: 35703689 DOI: 10.1590/0001-3765202220200561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022] Open
Abstract
Regular exercise is beneficial to health. This study evaluated the effects of moderate and intense physical exercise modalities on intradermal infection by Staphylococcus aureus in a murine model. Mice that practiced moderate exercise had lower bacterial load on lymph nodes and less inflammatory infiltrate in dermis. They presented greater weight, however, less amount of epididymal fat: the weight was increased while they had fat diminished. A positive correlation was observed between lipid content and bacterial load in mice trained at moderate intensity. Animals that were under high intensity exercises presented superior bacterial load on the lymph nodes, increased neutrophil count and circulating lymphocytes, and had leukocyte recruitment to the dermis augmented, when compared to the ones in moderate exercise. These findings suggest that moderate physical activity modulates the immune response in dermal infection caused by S. aureus in a murine model.
Collapse
Affiliation(s)
- Maria P L Galantini
- Universidade Federal da Bahia (UFBA), Instituto Multidisciplinar em Saúde (IMS), Campus Anísio Teixeira (CAT), Rua Hormindo Barros, 58, 45029-094 Vitória da Conquista, BA, Brazil
| | - Lorena S Leal
- Universidade Federal da Bahia (UFBA), Instituto Multidisciplinar em Saúde (IMS), Campus Anísio Teixeira (CAT), Rua Hormindo Barros, 58, 45029-094 Vitória da Conquista, BA, Brazil
| | - Karine B Rodrigues
- Universidade Federal da Bahia (UFBA), Instituto Multidisciplinar em Saúde (IMS), Campus Anísio Teixeira (CAT), Rua Hormindo Barros, 58, 45029-094 Vitória da Conquista, BA, Brazil
| | - Israel S Ribeiro
- Universidade Federal da Bahia (UFBA), Instituto Multidisciplinar em Saúde (IMS), Campus Anísio Teixeira (CAT), Rua Hormindo Barros, 58, 45029-094 Vitória da Conquista, BA, Brazil
| | - Italo S Pereira
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto (FMRP), Departamento de Bioquímica e Imunologia, Avenida Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Caroline V Gonçalves
- Universidade Federal da Bahia (UFBA), Instituto Multidisciplinar em Saúde (IMS), Campus Anísio Teixeira (CAT), Rua Hormindo Barros, 58, 45029-094 Vitória da Conquista, BA, Brazil
| | - Stéfano P M Calado
- Universidade Federal da Bahia (UFBA), Instituto Multidisciplinar em Saúde (IMS), Campus Anísio Teixeira (CAT), Rua Hormindo Barros, 58, 45029-094 Vitória da Conquista, BA, Brazil
| | - Denisar P Dos Santos
- Universidade Federal da Bahia (UFBA), Instituto Multidisciplinar em Saúde (IMS), Campus Anísio Teixeira (CAT), Rua Hormindo Barros, 58, 45029-094 Vitória da Conquista, BA, Brazil
| | - Igor P R Muniz
- Universidade Federal da Bahia (UFBA), Instituto Multidisciplinar em Saúde (IMS), Campus Anísio Teixeira (CAT), Rua Hormindo Barros, 58, 45029-094 Vitória da Conquista, BA, Brazil
| | - Robson A A DA Silva
- Universidade Federal da Bahia (UFBA), Instituto Multidisciplinar em Saúde (IMS), Campus Anísio Teixeira (CAT), Rua Hormindo Barros, 58, 45029-094 Vitória da Conquista, BA, Brazil
| |
Collapse
|
8
|
Meyers S, Crescente M, Verhamme P, Martinod K. Staphylococcus aureus and Neutrophil Extracellular Traps: The Master Manipulator Meets Its Match in Immunothrombosis. Arterioscler Thromb Vasc Biol 2022; 42:261-276. [PMID: 35109674 PMCID: PMC8860219 DOI: 10.1161/atvbaha.121.316930] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past 10 years, neutrophil extracellular traps (NETs) have become widely accepted as an integral player in immunothrombosis, due to their complex interplay with both pathogens and components of the coagulation system. While the release of NETs is an attempt by neutrophils to trap pathogens and constrain infections, NETs can have bystander effects on the host by inducing uncontrolled thrombosis, inflammation, and tissue damage. From an evolutionary perspective, pathogens have adapted to bypass the host innate immune response. Staphylococcus aureus (S. aureus), in particular, proficiently overcomes NET formation using several virulence factors. Here we review mechanisms of NET formation and how these are intertwined with platelet activation, the release of endothelial von Willebrand factor, and the activation of the coagulation system. We discuss the unique ability of S. aureus to modulate NET formation and alter released NETs, which helps S. aureus to escape from the host's defense mechanisms. We then discuss how platelets and the coagulation system could play a role in NET formation in S. aureus-induced infective endocarditis, and we explain how targeting these complex cellular interactions could reveal novel therapies to treat this disease and other immunothrombotic disorders.
Collapse
Affiliation(s)
- Severien Meyers
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.)
| | - Marilena Crescente
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.).,Department of Life Sciences, Manchester Metropolitan University, United Kingdom (M.C.)
| | - Peter Verhamme
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.)
| | - Kimberly Martinod
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.)
| |
Collapse
|
9
|
So-In C, Sunthamala N. Treatment efficacy of Thunbergia laurifolia, Curcuma longa, Garcinia mangostana, and Andrographis paniculata extracts in Staphylococcus aureus-induced rabbit dermatitis model. Vet World 2022; 15:188-197. [PMID: 35369604 PMCID: PMC8924391 DOI: 10.14202/vetworld.2022.188-197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Dermatitis is a soft-tissue infection caused by Staphylococcus aureus. The recurrence of inflammatory skin is linked to clinical manifestations. Anti-inflammatory cytokines, which are essential for tissue damage, are released by bacteria through skin tissues. Oxidative stress causes inflammatory cells to necrotize and reduces their antioxidant profile, resulting in toxic damage to surrounding tissues. Although studies on the antibacterial effects of Thunbergia laurifolia Lindl., Curcuma longa L., Garcinia mangostana L., and Andrographis paniculata (Burm.). Bacterial infection of S. aureus have been conducted, most of these studies have been in vitro and were not related to the rabbit model. In addition, anti-inflammatory and antioxidant studies need to be evaluated. Thus, this study aims to compare the antibacterial, anti-inflammatory, and antioxidant properties of four local herbs with a standard antibiotic in S. aureus-induced rabbit dermatitis model. Materials and Methods: The skin of New Zealand white rabbits were artificially wounded using a sterile blade and then infected with S. aureus. The rabbits were divided into seven groups, each with three rabbits (Total 21 rabbits): The first group was the no infection group (no infection and no treatment with scarification), the second group was the no treatment group (S. aureus infection of the wound but no treatment), and the other five treated groups were T. laurifolia, C. longa, G. mangostana, A. paniculata, and bacitracin cream, all of which involved wound infection and treatments. The treatment lasted for 7 days. The antibacterial, anti-inflammatory, and antioxidant properties after treatment were measured. Results: The efficacy of T. laurifolia, C. longa, G. mangostana, and A. paniculata was similar to that of an antioxidant and free radical scavenging property. The bacterial infection process gradually reduced the activities of antioxidant systems (i.e., enzymatic levels and gene expressions) and total glutathione. However, the activities of the antioxidant system were steadily increased when treated with herbal extracts. During bacterial invasion of the skin, the concentration of thiobarbituric acid reactive molecules, the level of lipid peroxidation, and the expression of anti-inflammatory cytokine genes were increased. All these were decreased when herbal extracts were used to treat the lesion. Conclusion: It can be concluded that T. laurifolia, C. longa, G. mangostana, and A. paniculate extract have antibacterial, anti-inflammatory, and antioxidant properties and are effective antibacterial agents. G. mangostana is the most effective herbal extract for antidermatitis and has the potential to be used as an alternative topical treatment.
Collapse
Affiliation(s)
- Charinya So-In
- Department of Veterinary Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin 46000, Thailand
| | - Nuchsupha Sunthamala
- Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand
| |
Collapse
|
10
|
ALBA MARYILORENASEGURA, DURÁN-RODRIGUEZ ANDREATATIANA, PULIDO LUZMARYSALAZAR, ESCOBAR-PÉREZ JAVIER, GUTIÉRREZ SERGIOALEJANDRO, OSPINA JEANNETTENAVARRETE, BERMÚDEZ GLADYSPINILLA, MOLINA LILIANACONSTANZAMUÑOZ. Peptides DLL37-1 and LL37-1, an alternative to inhibit biofilm formation in clinical isolates of Staphylococcus aureus and Staphylococcus epidermidis. AN ACAD BRAS CIENC 2022; 94:e20210848. [DOI: 10.1590/0001-3765202220210848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
|
11
|
Recovery and virulence factors of sublethally injured Staphylococcus aureus after ohmic heating. Food Microbiol 2021; 102:103899. [PMID: 34809931 DOI: 10.1016/j.fm.2021.103899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022]
Abstract
Ohmic heating (OH) is an alternative thermal processing technique, which is widely used to pasteurize or sterilize food. However, sublethally injured Staphylococcus aureus induced by OH is a great concern to food safety. The recovery of injured S. aureus by OH and virulence factor changes during recovery were investigated in this study. The liquid media (phosphate-buffered saline, buffered peptone water and nutrient broth (NB)), temperature (4, 25 and 37 °C) and pH (6.0, 7.2 and 8.0) influenced the recovery rate and the injured cells completely repaired in NB at 37 °C, pH 7.2 with the shortest time of 2 h. The biofilm formation ability, mannitol fermentation, hemolysis, and coagulase activities decreased in injured S. aureus and recovered during repair process. Quantitative real-time PCR showed the expression of sek, clfB and lukH involved in virulence factors increased during recovery. The results indicated that the virulence factors of injured S. aureus recovered after repair.
Collapse
|
12
|
Kearney KJ, Ariëns RAS, Macrae FL. The Role of Fibrin(ogen) in Wound Healing and Infection Control. Semin Thromb Hemost 2021; 48:174-187. [PMID: 34428799 DOI: 10.1055/s-0041-1732467] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fibrinogen, one of the most abundant plasma proteins playing a key role in hemostasis, is an important modulator of wound healing and host defense against microbes. In the current review, we address the role of fibrin(ogen) throughout the process of wound healing and subsequent tissue repair. Initially fibrin(ogen) acts as a provisional matrix supporting incoming leukocytes and acting as reservoir for growth factors. It later goes on to support re-epithelialization, angiogenesis, and fibroplasia. Importantly, removal of fibrin(ogen) from the wound is essential for wound healing to progress. We also discuss how fibrin(ogen) functions through several mechanisms to protect the host against bacterial infection by providing a physical barrier, entrapment of bacteria in fibrin(ogen) networks, and by directing immune cell function. The central role of fibrin(ogen) in defense against bacterial infection has made it a target of bacterial proteins, evolved to interact with fibrin(ogen) to manipulate clot formation and degradation for the purpose of promoting microbial virulence and survival. Further understanding of the dual roles of fibrin(ogen) in wound healing and infection could provide novel means of therapy to improve recovery from surgical or chronic wounds and help to prevent infection from highly virulent bacterial strains, including those resistant to antibiotics.
Collapse
Affiliation(s)
- Katherine J Kearney
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Fraser L Macrae
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
13
|
Radical genome remodelling accompanied the emergence of a novel host-restricted bacterial pathogen. PLoS Pathog 2021; 17:e1009606. [PMID: 34015034 PMCID: PMC8171923 DOI: 10.1371/journal.ppat.1009606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/02/2021] [Accepted: 05/03/2021] [Indexed: 11/19/2022] Open
Abstract
The emergence of new pathogens is a major threat to public and veterinary health. Changes in bacterial habitat such as a switch in host or disease tropism are typically accompanied by genetic diversification. Staphylococcus aureus is a multi-host bacterial species associated with human and livestock infections. A microaerophilic subspecies, Staphylococcus aureus subsp. anaerobius, is responsible for Morel’s disease, a lymphadenitis restricted to sheep and goats. However, the evolutionary history of S. aureus subsp. anaerobius and its relatedness to S. aureus are unknown. Population genomic analyses of clinical S. aureus subsp. anaerobius isolates revealed a highly conserved clone that descended from a S. aureus progenitor about 1000 years ago before differentiating into distinct lineages that contain African and European isolates. S. aureus subsp. anaerobius has undergone limited clonal expansion, with a restricted population size, and an evolutionary rate 10-fold slower than S. aureus. The transition to its current restricted ecological niche involved acquisition of a pathogenicity island encoding a ruminant host-specific effector of abscess formation, large chromosomal re-arrangements, and the accumulation of at least 205 pseudogenes, resulting in a highly fastidious metabolism. Importantly, expansion of ~87 insertion sequences (IS) located largely in intergenic regions provided distinct mechanisms for the control of expression of flanking genes, including a novel mechanism associated with IS-mediated anti-anti-sense decoupling of ancestral gene repression. Our findings reveal the remarkable evolutionary trajectory of a host-restricted bacterial pathogen that resulted from extensive remodelling of the S. aureus genome through an array of diverse mechanisms in parallel. The emergence of new pathogens is a major threat to public and veterinary health. Some bacteria such as Staphylococcus aureus, have the capacity to infect many different host species including humans and livestock while others such as the closely-related S. aureus subsp. anaerobius, associated with a single type of pathology called Morel’s disease in small ruminants, are highly niche-restricted. However, our understanding of the genetic basis for such differences in bacterial host-tropism is very limited. Here, we discovered that S. aureus subsp. anaerobius evolved from an S. aureus ancestor and underwent an array of extensive changes to its genome that accompanied the transition to its current restricted lifestyle. We observed genome decay involving loss of function of hundreds of genes, large intra-chromosomal rearrangements affecting most of the genome, acquisition of a pathogenicity island, and expansion of large numbers of insertion sequences that are inserted at intergenic sites around the genome. Importantly, we found that IS elements affect the expression of neighbouring genes in different ways including a novel mechanism of IS-enabled disruption of ancestral gene repression. Taken together, we provide a remarkable example of radical genomic changes associated with evolutionary transition from a multi-host to highly restricted host ecology.
Collapse
|
14
|
Staphylococcus aureus lipoproteins promote abscess formation in mice, shielding bacteria from immune killing. Commun Biol 2021; 4:432. [PMID: 33785850 PMCID: PMC8010101 DOI: 10.1038/s42003-021-01947-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
Despite being a major bacterial factor in alerting the human immune system, the role of Staphylococcus aureus (S. aureus) lipoproteins (Lpp) in skin infections remains largely unknown. Here, we demonstrated that subcutaneous injection of S. aureus Lpp led to infiltration of neutrophils and monocytes/macrophages and induced skin lesions in mice. Lipid-moiety of S. aureus Lpp and host TLR2 was responsible for such effect. Lpp-deficient S. aureus strains exhibited smaller lesion size and reduced bacterial loads than their parental strains; the altered phenotype in bacterial loads was TLR2-independent. Lpp expression in skin infections contributed to imbalanced local hemostasis toward hypercoagulable state. Depletion of leukocytes or fibrinogen abrogated the effects induced by Lpp in terms of skin lesions and bacterial burden. Our data suggest that S. aureus Lpp induce skin inflammation and promote abscess formation that protects bacteria from innate immune killing. This suggests an intriguing bacterial immune evasion mechanism. Mohammad et al. show that subcutaneous injection of Staphylococcus aureus lipoproteins (Lpp) leads to the infiltration of neutrophils and monocytes/macrophages, inducing skin lesions in mice. They find that S. aureus Lpp promotes abscess formation, which protects bacteria from innate immune killing, suggesting an intriguing bacterial immune evasion mechanism.
Collapse
|
15
|
Na M, Hu Z, Mohammad M, Stroparo MDN, Ali A, Fei Y, Jarneborn A, Verhamme P, Schneewind O, Missiakas D, Jin T. The Expression of von Willebrand Factor-Binding Protein Determines Joint-Invading Capacity of Staphylococcus aureus, a Core Mechanism of Septic Arthritis. mBio 2020; 11:e02472-20. [PMID: 33203754 PMCID: PMC7683397 DOI: 10.1128/mbio.02472-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
Septic arthritis, one of the most dangerous joint diseases, is predominantly caused by Staphylococcus aureus In contrast, coagulase-negative staphylococci are rarely found in septic arthritis. We hypothesize that coagulases released by S. aureus, including coagulase (Coa) and von Willebrand factor-binding protein (vWbp), play potent roles in the induction of septic arthritis. Four isogenic S. aureus strains differing in expression of coagulases (wild-type [WT] Newman, Δcoa, Δvwb, and Δcoa Δvwb) were used to induce septic arthritis in both wild-type and von Willebrand factor (vWF)-deficient mice. Septic arthritis severity was greatly reduced when wild-type mice were infected with the Δcoa Δvwb and Δvwb variants compared to WT or Δcoa strains, suggesting that vWbp rather than Coa is a major virulence factor in S. aureus septic arthritis. vWF-deficient mice were more susceptible to bone damage in septic arthritis, especially when the Δvwb strain was used. Importantly, no difference in arthritis severity between the Δvwb and WT strains was observed in vWF-deficient mice. Collectively, we conclude that vWbp production by S. aureus enhances staphylococcal septic arthritis.IMPORTANCE Septic arthritis remains one of the most dangerous joint diseases with a rapidly progressive disease character. Despite advances in the use of antibiotics, permanent reductions in joint function due to joint deformation and deleterious contractures occur in up to 50% of patients with septic arthritis. So far, it is still largely unknown how S. aureus initiates and establishes joint infection. Here, we demonstrate that von Willebrand factor-binding protein expressed by S. aureus facilitates the initiation of septic arthritis. Such effect might be mediated through its interaction with a host factor (von Willebrand factor). Our finding contributes significantly to the full understanding of septic arthritis etiology and will pave the way for new therapeutic modalities for this devastating disease.
Collapse
Affiliation(s)
- Manli Na
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Zhicheng Hu
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Microbiology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Majd Mohammad
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Mariana do Nascimento Stroparo
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Abukar Ali
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ying Fei
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Microbiology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Anders Jarneborn
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
16
|
Bray MA, Sartain SE, Gollamudi J, Rumbaut RE. Microvascular thrombosis: experimental and clinical implications. Transl Res 2020; 225:105-130. [PMID: 32454092 PMCID: PMC7245314 DOI: 10.1016/j.trsl.2020.05.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023]
Abstract
A significant amount of clinical and research interest in thrombosis is focused on large vessels (eg, stroke, myocardial infarction, deep venous thrombosis, etc.); however, thrombosis is often present in the microcirculation in a variety of significant human diseases, such as disseminated intravascular coagulation, thrombotic microangiopathy, sickle cell disease, and others. Further, microvascular thrombosis has recently been demonstrated in patients with COVID-19, and has been proposed to mediate the pathogenesis of organ injury in this disease. In many of these conditions, microvascular thrombosis is accompanied by inflammation, an association referred to as thromboinflammation. In this review, we discuss endogenous regulatory mechanisms that prevent thrombosis in the microcirculation, experimental approaches to induce microvascular thrombi, and clinical conditions associated with microvascular thrombosis. A greater understanding of the links between inflammation and thrombosis in the microcirculation is anticipated to provide optimal therapeutic targets for patients with diseases accompanied by microvascular thrombosis.
Collapse
Key Words
- adamts13, a disintegrin-like and metalloproteinase with thrombospondin type 1 motif 13
- ap, alternate pathway
- apc, activated protein c
- aps, antiphospholipid syndrome
- caps, catastrophic aps
- asfa, american society for apheresis
- atp, adenosine triphosphate
- cfh, complement factor h
- con a, concavalin a
- cox, cyclooxygenase
- damp, damage-associated molecular pattern
- dic, disseminated intravascular coagulation
- gbm, glomerular basement membrane
- hellp, hemolysis, elevated liver enzymes, low platelets
- hitt, heparin-induced thrombocytopenia and thrombosis
- hlh, hemophagocytic lymphohistiocytosis
- hus, hemolytic-uremic syndrome
- isth, international society for thrombosis and haemostasis
- ivig, intravenous immunoglobulin
- ldh, lactate nos, nitric oxide synthase
- net, neutrophil extracellular trap
- pai-1, plasminogen activator inhibitor 1
- pf4, platelet factor 4
- prr, pattern recognition receptor
- rbc, red blood cell
- scd, sickle cell disease
- sle, systemic lupus erythematosus
- tlr, toll-like receptor
- tf, tissue factor
- tfpi, tissue factor pathway inhibitor
- tma, thrombotic microangiopathy
- tnf-α, tumor necrosis factor-α
- tpe, therapeutic plasma exchange
- ulc, ultra large heparin-pf4 complexes
- ulvwf, ultra-large von willebrand factor
- vwf, von willebrand factor
Collapse
Affiliation(s)
- Monica A Bray
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Sarah E Sartain
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Jahnavi Gollamudi
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Fibrin(ogen) is a multifunctional clotting protein that not only has critical roles in hemostasis but is also important in inflammatory processes that control bacterial infection. As a provisional extracellular matrix protein, fibrin(ogen) functions as a physical barrier, a scaffold for immune cell migration, or as a spatially-defined cue to drive inflammatory cell activation. These mechanisms contribute to overall host antimicrobial defense against infection. However, numerous bacterial species have evolved mechanisms to manipulate host fibrin(ogen) to promote microbial virulence and survival. Staphylococcal species, in particular, express numerous virulence factors capable of engaging fibrin(ogen), promoting fibrin formation, and driving the dissolution of fibrin matrices. RECENT FINDINGS Recent studies have highlighted both new insights into the molecular mechanisms involved in fibrin(ogen)-mediated host defense and pathogen-driven virulence. Of particular interest is the role of fibrin(ogen) in forming host protective biofilms versus pathogen protective barriers and biofilms as well as the role of fibrin(ogen) in mediating direct host antimicrobial responses. SUMMARY Current data suggest that the role of fibrin(ogen) in staphylococcal infection is highly context-dependent and that better defining the precise cellular and molecular pathways activated will provide unique opportunities of therapeutic intervention to better treat Staphylococcal disease.
Collapse
|
18
|
Zhang H, Luan Y, Jing S, Wang Y, Gao Z, Yang P, Ding Y, Wang L, Wang D, Wang T. Baicalein mediates protection against Staphylococcus aureus-induced pneumonia by inhibiting the coagulase activity of vWbp. Biochem Pharmacol 2020; 178:114024. [PMID: 32413427 DOI: 10.1016/j.bcp.2020.114024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
The emergence and spread of multidrug-resistant Staphylococcus aureus (S. aureus) necessitate the research on therapeutic tactics which are different from classical antibiotics in overcoming resistance andtreatinginfections. In S. aureus, von Willebrand factor-binding protein (vWbp) is one of the key virulence determinants because it mediates not only the activation of thrombin to convert fibrinogen to fibrin, thereby enabling S. aureus to escape from the host immune clearance, but also the adhesion of S. aureus to host cells. Thus, vWbp is regarded as a promising druggable target to treat S. aureus-associated infections. Here we identify that baicalein, a natural compound isolated from the Chinese herb Scutellaria baicalensis, can effectively block the coagulase activity of vWbp without inhibiting the growth of the bacteria. Through thermal shift and fluorescence quenching assays, we demonstrated that baicalein directly binds to vWbp. Molecular dynamics simulations and mutagenesis assays revealed that the Asp-75 and Lys-80 residues are necessary for baicalein binding to vWbp. Importantly, we demonstrated that baicalein treatment attenuates the virulence of S. aureus and protects mice from S. aureus-induced lethal pneumonia. In addition, baicalein can improve the therapeutic effect of penicillin G by 75% in vivo. These findings indicate that baicalein might be developed as a promising therapeutic agent against drug-resistant S. aureus infections.
Collapse
Affiliation(s)
- Haitao Zhang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yongxin Luan
- Department of Neurosurgery, First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Shisong Jing
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yanling Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Zeyuan Gao
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Panpan Yang
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Ying Ding
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun 130062, China.
| | - Tiedong Wang
- College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
19
|
Muñoz-Silvestre A, Penadés M, Selva L, Pérez-Fuentes S, Moreno-Grua E, García-Quirós A, Pascual JJ, Arnau-Bonachera A, Barragán A, Corpa JM, Viana D. Pathogenesis of Intradermal Staphylococcal Infections: Rabbit Experimental Approach to Natural Staphylococcus aureus Skin Infections. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1188-1210. [PMID: 32201266 DOI: 10.1016/j.ajpath.2020.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 10/24/2022]
Abstract
Despite the enormous efforts made to achieve effective tools that fight against Staphylococcus aureus, the results have not been successful. This failure may be due to the absence of truly representative experimental models. To overcome this deficiency, the present work describes and immunologically characterizes the infection for 28 days, in an experimental low-dose (300 colony-forming units) intradermal model of infection in rabbits, which reproduces the characteristic staphylococcal abscess. Surprisingly, when mutant strains in the genes involved in virulence (JΔagr, JΔcoaΔvwb, JΔhla, and JΔpsmα) were inoculated, no strong effect on the severity of lesions was observed, unlike other models that use high doses of bacteria. The inoculation of a human rabbitized (FdltBr) strain demonstrated its capacity to generate a similar inflammatory response to a wild-type rabbit strain and, therefore, validated this model for conducting these experimental studies with human strains. To conclude, this model proved reproducible and may be an option of choice to check both wild-type and mutant strains of different origins.
Collapse
Affiliation(s)
- Asunción Muñoz-Silvestre
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Mariola Penadés
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Laura Selva
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Sara Pérez-Fuentes
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Elena Moreno-Grua
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Ana García-Quirós
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Juan J Pascual
- Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain
| | - Alberto Arnau-Bonachera
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Agustín Barragán
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Juan M Corpa
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| | - David Viana
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| |
Collapse
|
20
|
Penadés M, Viana D, García-Quirós A, Muñoz-Silvestre A, Moreno-Grua E, Pérez-Fuentes S, Pascual JJ, Corpa JM, Selva L. Differences in virulence between the two more prevalent Staphylococcus aureus clonal complexes in rabbitries (CC121 and CC96) using an experimental model of mammary gland infection. Vet Res 2020; 51:11. [PMID: 32054530 PMCID: PMC7020377 DOI: 10.1186/s13567-020-0740-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/19/2020] [Indexed: 01/03/2023] Open
Abstract
Staphylococcal mastitis is a major health problem in humans and livestock that leads to economic loss running in millions. This process is currently one of the main reasons for culling adult rabbit does. Surprisingly, the two most prevalent S. aureus lineages isolated from non-differentiable natural clinical mastitis in rabbits (ST121 and ST96) generate different immune responses. This study aimed to genetically compare both types of strains to search for possible dissimilarities to explain differences in immune response, and to check whether they showed similar virulence in in vitro tests as in experimental intramammary in vivo infection. The main differences were observed in the enterotoxin gene cluster (egc) and the immune-evasion-cluster (IEC) genes. While isolate ST121 harboured all six egc cluster members (seg, sei, selm, seln, selo, selu), isolate ST96 lacked the egc cluster. Strain ST96 carried a phage integrase Sa3 (Sa3int), compatible with a phage integrated into the hlb gene (β-haemolysin-converting bacteriophages) with IEC type F, while isolate ST121 lacked IEC genes and the hlb gene was intact. Moreover, the in vitro tests confirmed a different virulence capacity between strains as ST121 showed greater cytotoxicity for erythrocytes, polymorphonuclear leukocytes and macrophages than strain ST96. Differences were also found 7 days after experimental intramammary infection with 100 colony-forming units. The animals inoculated with strain ST121 developed more severe gross and histological mastitis, higher counts of macrophages in tissue and of all the cell populations in peripheral blood, and a significantly larger total number of bacteria than those infected by strain ST96.
Collapse
Affiliation(s)
- Mariola Penadés
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. C/Tirant lo Blanc 7, Alfara del Patriarca, 46115, Valencia, Spain
| | - David Viana
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. C/Tirant lo Blanc 7, Alfara del Patriarca, 46115, Valencia, Spain
| | - Ana García-Quirós
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. C/Tirant lo Blanc 7, Alfara del Patriarca, 46115, Valencia, Spain
| | - Asunción Muñoz-Silvestre
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. C/Tirant lo Blanc 7, Alfara del Patriarca, 46115, Valencia, Spain
| | - Elena Moreno-Grua
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. C/Tirant lo Blanc 7, Alfara del Patriarca, 46115, Valencia, Spain
| | - Sara Pérez-Fuentes
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. C/Tirant lo Blanc 7, Alfara del Patriarca, 46115, Valencia, Spain
| | - Juan José Pascual
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera 14, 46071, Valencia, Spain
| | - Juan M Corpa
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. C/Tirant lo Blanc 7, Alfara del Patriarca, 46115, Valencia, Spain.
| | - Laura Selva
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. C/Tirant lo Blanc 7, Alfara del Patriarca, 46115, Valencia, Spain.
| |
Collapse
|
21
|
Chmagh AA, Abd Al-Abbas MJ. PCR-RFLP by AluI for coa gene of methicillin-resistant Staphylococcus aureus (MRSA) isolated from burn wounds, pneumonia and otitis media. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Abstract
Staphylococcus aureus has the ability to cause infections in a variety of niches, suggesting a robust metabolic capacity facilitating proliferation under various nutrient conditions. The mature skin abscess is glucose depleted, indicating that peptides and free amino acids are important sources of nutrients for S. aureus. Our studies have found that mutations in both pyruvate carboxykinase and glutamate dehydrogenase, enzymes that function in essential gluconeogenesis reactions when amino acids serve as the major carbon source, reduce bacterial burden in a murine skin abscess model. Moreover, peptides liberated from collagen by host protease MMP-9 as well as the staphylococcal protease aureolysin support S. aureus growth in an Opp3-dependent manner under nutrient-limited conditions. Additionally, the presence of peptides induces aureolysin expression. Overall, these studies define one pathway by which S. aureus senses a nutrient-limiting environment and induces factors that function to acquire and utilize carbon from host-derived sources. Staphylococcus aureus has the ability to cause infections in multiple organ systems, suggesting an ability to rapidly adapt to changing carbon and nitrogen sources. Although there is little information about the nutrients available at specific sites of infection, a mature skin abscess has been characterized as glucose depleted, indicating that peptides and free amino acids are an important source of nutrients for the bacteria. Our studies have found that mutations in enzymes necessary for growth on amino acids, including pyruvate carboxykinase (ΔpckA) and glutamate dehydrogenase (ΔgudB), reduced the ability of the bacteria to proliferate within a skin abscess, suggesting that peptides and free amino acids are important for S. aureus growth. Furthermore, we found that collagen, an abundant host protein that is present throughout a skin abscess, serves as a reservoir of peptides. To liberate peptides from the collagen, we identified that the host protease, MMP-9, as well as the staphylococcal proteases aureolysin and staphopain B function to cleave collagen into peptide fragments that can support S. aureus growth under nutrient-limited conditions. Moreover, the oligopeptide transporter Opp3 is the primary staphylococcal transporter responsible for peptide acquisition. Lastly, we observed that the presence of peptides (3-mer to 7-mer) induces the expression of aureolysin, suggesting that S. aureus has the ability to detect peptides in the environment.
Collapse
|
23
|
Rogolevich VV, Glushkova TV, Ponasenko AV, Ovcharenko EA. [Infective Endocarditis Causing Native and Prosthetic Heart Valve Dysfunction]. ACTA ACUST UNITED AC 2019; 59:68-77. [PMID: 30990144 DOI: 10.18087/cardio.2019.3.10245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 04/13/2019] [Indexed: 11/18/2022]
Abstract
Infective endocarditis (IE) is the disease that has high inhospital mortality. Heart valves dysfunction - both native and prosthetic - is the primary IE complication requiring a surgical intervention. The IE causes and its course have been discussed in this review. In particular, the role of concomitant infectious foci in the formation and development of IE have been considered, the mechanisms of mutual transition of subacute and acute clinical forms have been described. Modern diagnostic principles and methods based on the Duke criteria system have been mentioned, as well as the difficulties that follow the patient's clinical status evaluation. The normobiotic microbiota participation, as well as the possibilities for their identification using blood culture and PCR technique, have been closely reviewed. According to modern researches and publications, there have been made the conclusion about the contribution of obligate anaerobic bacteria, fungi and viruses to the development of endocarditis. There have been described the hypothesis about the presumptive strategy for the cardiac dysfunction formation as a result of the IE causative agents cells metabolic activity based on a literature data analysis in the article: vegetation formed by Staphylococcus aureus can lead to the heart valve stenosis, and the influence of hyaluronidases, collagenases on a heart valve structure can lead to regurgitation. The pathogens cells ability to avoid the human immune system response is caused by the biofilms, fibrin vegetations formation and the enzymes production - cytotoxins (streptolysins, leukocidin, etc.). It has been suggested that the mediators of inflammation and leukocyte cells participate in the destruction of native and prosthetic tissues due to an IE pathogens inaccessibility for immunocompetent cells.
Collapse
Affiliation(s)
- V V Rogolevich
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo
| | - T V Glushkova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo
| | - A V Ponasenko
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo
| | - E A Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo
| |
Collapse
|
24
|
Indrawattana N, Pumipuntu N, Suriyakhun N, Jangsangthong A, Kulpeanprasit S, Chantratita N, Sookrung N, Chaicumpa W, Buranasinsup S. Staphylococcus argenteus from rabbits in Thailand. Microbiologyopen 2019; 8:e00665. [PMID: 29931813 PMCID: PMC6460352 DOI: 10.1002/mbo3.665] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 11/11/2022] Open
Abstract
Staphylococcus argenteus, a novel species of the genus Staphylococcus or a member of the S. aureus complex, is closely related to S. aureus and is usually misidentified. In this study, the presence of S. argenteus in isolated S. aureus was investigated in 67 rabbits with abscess lesions during 2014-2016. Among 19 S. aureus complex isolates, three were confirmed to be S. argenteus by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, nonribosomal peptide synthetase gene amplification, and multilocus sequence type. All S. aureus complex isolates, including the S. aureus isolates, were examined for their antimicrobial resistance phenotype by disk diffusion and for their resistance genotype by PCR assays. Among the S. argenteus isolates, one was susceptible to all antimicrobial drugs and the other two were resistant to penicillin and doxycycline. In contrast, most S. aureus isolates were resistant to penicillin (37.5%), and gentamicin (12.5%). Moreover, S. aureus isolates harbored the blaZ, mecA, aacA-aphD, and mrs(A) as well as mutations of gyrA and grlA, but S. argenteus isolates carried solely the blaZ. S. argenteus isolates were investigated for enterotoxin (sea-sed) and virulence genes by PCR. One isolate carried sea, sec, and sed, whereas the other two isolates carried only sea or sed. No isolate carried seb and see. All three S. argenteus isolates carried hla, hlb, and clfA, followed by pvl, whereas coa, spa (IgG-binding region), and spa (x region) were not detected in the three isolates. This paper presents the first identification of S. argenteus from rabbits in Thailand. S. argenteus might be pathogenic because the isolates carried virulence genes. Moreover, antimicrobial resistance was observed. Investigations of this new bacterial species should be conducted in other animal species as well as in humans.
Collapse
Affiliation(s)
- Nitaya Indrawattana
- Department of Microbiology and ImmunologyFaculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Natapol Pumipuntu
- Office of Academic AffairsFaculty of Veterinary SciencesMahasarakham UniversityMaha SarakhamThailand
| | - Nawarat Suriyakhun
- Prasu‐Arthorn Animal HospitalFaculty of Veterinary ScienceMahidol UniversityNakhon PathomThailand
| | - Arunee Jangsangthong
- Department of Pre‐Clinic and Applied Animal ScienceFaculty of Veterinary ScienceMahidol UniversityNakornpathomThailand
| | - Suphang Kulpeanprasit
- Department of Microbiology and ImmunologyFaculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Narisara Chantratita
- Department of Microbiology and ImmunologyFaculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Nitat Sookrung
- Laboratory for Research and Technology DevelopmentFaculty of MedicineSiriraj HospitalMahidol UniversityBangkokThailand
| | - Wanpen Chaicumpa
- Center of Excellence on Therapeutic Proteins and Antibody EngineeringDepartment of ParasitologyFaculty of MedicineSiriraj HospitalMahidol UniversityBangkokThailand
| | - Shutipen Buranasinsup
- Department of Pre‐Clinic and Applied Animal ScienceFaculty of Veterinary ScienceMahidol UniversityNakornpathomThailand
| |
Collapse
|
25
|
The Effect of Whole Honey Bee Venom (Apismellifera) on Reducing Skin Infection of Rabbits Caused by Methicillin Resistant Staphylococcus aureus: An In vivo Study. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Richards AC, O'Shea M, Beard PM, Goncheva MI, Tuffs SW, Fitzgerald JR, Lengeling A. Staphylococcus pseudintermedius Surface Protein L (SpsL) Is Required for Abscess Formation in a Murine Model of Cutaneous Infection. Infect Immun 2018; 86:IAI.00631-18. [PMID: 30181348 PMCID: PMC6204706 DOI: 10.1128/iai.00631-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus pseudintermedius is the leading cause of pyoderma in dogs and is often associated with recurrent skin infections that require prolonged antibiotic therapy. High levels of antibiotic use have led to multidrug resistance, including the emergence of epidemic methicillin-resistant clones. Our understanding of the pathogenesis of S. pseudintermedius skin infection is very limited, and the identification of the key host-pathogen interactions underpinning infection could lead to the design of novel therapeutic or vaccine-based approaches for controlling disease. Here, we employ a novel murine cutaneous-infection model of S. pseudintermedius and investigate the role of the two cell wall-associated proteins (SpsD and SpsL) in skin disease pathogenesis. Experimental infection with wild-type S. pseudintermedius strain ED99 or a gene-deletion derivative deficient in expression of SpsD led to a focal accumulation of neutrophils and necrotic debris in the dermis and deeper tissues of the skin characteristic of a classical cutaneous abscess. In contrast, mice infected with mutants deficient in SpsL or both SpsD and SpsL developed larger cutaneous lesions with distinct histopathological features of regionally extensive cellulitis rather than focal abscessation. Furthermore, comparison of the bacterial loads in S. pseudintermedius-induced cutaneous lesions revealed a significantly increased burden of bacteria in the mice infected with SpsL-deficient mutants. These findings reveal a key role for SpsL in murine skin abscess formation and highlight a novel function for a bacterial surface protein in determining the clinical outcome and pathology of infection caused by a major canine pathogen.
Collapse
Affiliation(s)
- Amy C Richards
- The Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie O'Shea
- The Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Philippa M Beard
- The Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mariya I Goncheva
- The Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen W Tuffs
- The Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - J Ross Fitzgerald
- The Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andreas Lengeling
- The Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
27
|
Brandt SL, Wang S, Dejani NN, Klopfenstein N, Winfree S, Filgueiras L, McCarthy BP, Territo PR, Serezani CH. Excessive localized leukotriene B4 levels dictate poor skin host defense in diabetic mice. JCI Insight 2018; 3:120220. [PMID: 30185672 DOI: 10.1172/jci.insight.120220] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/26/2018] [Indexed: 11/17/2022] Open
Abstract
Poorly controlled diabetes leads to comorbidities and enhanced susceptibility to infections. While the immune components involved in wound healing in diabetes have been studied, the components involved in susceptibility to skin infections remain unclear. Here, we examined the effects of the inflammatory lipid mediator leukotriene B4 (LTB4) signaling through its receptor B leukotriene receptor 1 (BLT1) in the progression of methicillin-resistant Staphylococcus aureus (MRSA) skin infection in 2 models of diabetes. Diabetic mice produced higher levels of LTB4 in the skin, which correlated with larger nonhealing lesion areas and increased bacterial loads compared with nondiabetic mice. High LTB4 levels were also associated with dysregulated cytokine and chemokine production, excessive neutrophil migration but impaired abscess formation, and uncontrolled collagen deposition. Both genetic deletion and topical pharmacological BLT1 antagonism restored inflammatory response and abscess formation, followed by a reduction in the bacterial load and lesion area in the diabetic mice. Macrophage depletion in diabetic mice limited LTB4 production and improved abscess architecture and skin host defense. These data demonstrate that exaggerated LTB4/BLT1 responses mediate a derailed inflammatory milieu that underlies poor host defense in diabetes. Prevention of LTB4 production/actions could provide a new therapeutic strategy to restore host defense in diabetes.
Collapse
Affiliation(s)
- Stephanie L Brandt
- Department of Medicine, Division of Infectious Diseases.,Indiana University School of Medicine, Department of Microbiology & Immunology, Indiana University, Indianapolis, Indiana, USA
| | - Sue Wang
- Indiana University School of Medicine, Department of Microbiology & Immunology, Indiana University, Indianapolis, Indiana, USA
| | - Naiara N Dejani
- Indiana University School of Medicine, Department of Microbiology & Immunology, Indiana University, Indianapolis, Indiana, USA
| | - Nathan Klopfenstein
- Department of Medicine, Division of Infectious Diseases.,Department of Pathology, Microbiology, and Immunology, and
| | - Seth Winfree
- Indiana Center for Biological Microscopy, Indianapolis, Indiana, USA
| | - Luciano Filgueiras
- Indiana University School of Medicine, Department of Microbiology & Immunology, Indiana University, Indianapolis, Indiana, USA
| | - Brian P McCarthy
- Indiana Institute for Biomedical Imaging Sciences, Department of Radiology, Indianapolis, Indiana, USA
| | - Paul R Territo
- Indiana Institute for Biomedical Imaging Sciences, Department of Radiology, Indianapolis, Indiana, USA
| | - C Henrique Serezani
- Department of Medicine, Division of Infectious Diseases.,Department of Pathology, Microbiology, and Immunology, and.,Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Indiana University School of Medicine, Department of Microbiology & Immunology, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
28
|
Thomsen IP, Liu GY. Targeting fundamental pathways to disrupt Staphylococcus aureus survival: clinical implications of recent discoveries. JCI Insight 2018. [PMID: 29515041 DOI: 10.1172/jci.insight.98216] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The emergence of community-associated methicillin-resistant Staphylococcus aureus during the past decade along with an impending shortage of effective antistaphylococcal antibiotics have fueled impressive advances in our understanding of how S. aureus overcomes the host environment to establish infection. Backed by recent technologic advances, studies have uncovered elaborate metabolic, nutritional, and virulence strategies deployed by S. aureus to survive the restrictive and hostile environment imposed by the host, leading to a plethora of promising antimicrobial approaches that have potential to remedy the antibiotic resistance crisis. In this Review, we highlight some of the critical and recently elucidated bacterial strategies that are potentially amenable to intervention, discuss their relevance to human diseases, and address the translational challenges posed by current animal models.
Collapse
Affiliation(s)
- Isaac P Thomsen
- Department of Pediatrics, Division of Pediatric Infectious Diseases, and Vanderbilt Vaccine Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George Y Liu
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
29
|
Liesenborghs L, Verhamme P, Vanassche T. Staphylococcus aureus, master manipulator of the human hemostatic system. J Thromb Haemost 2018; 16:441-454. [PMID: 29251820 DOI: 10.1111/jth.13928] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 12/15/2022]
Abstract
The coagulation system does not only offer protection against bleeding, but also aids in our defense against invading microorganisms. The hemostatic system and innate immunity are strongly entangled, which explains why so many infections are complicated by either bleeding or thrombosis. Staphylococcus aureus (S. aureus), currently the most deadly infectious agent in the developed world, causes devastating intravascular infections such as sepsis and infective endocarditis. During these infections S. aureus comes in close contact with the host hemostatic system and proves to be a master in manipulating coagulation. The coagulases of S. aureus directly induce coagulation by activating prothrombin. S. aureus also manipulates fibrinolysis by triggering plasminogen activation via staphylokinase. Furthermore, S. aureus binds and activates platelets and interacts with key coagulation proteins such as fibrin(ogen), fibronectin and von Willebrand factor. By manipulating the coagulation system S. aureus gains a significant advantage over the host defense mechanisms. Studying the interplay between S. aureus and the hemostatic system can therefore lead to new innovative therapies for battling S. aureus infections.
Collapse
Affiliation(s)
- L Liesenborghs
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven - University Hospitals Leuven, Leuven, Belgium
| | - P Verhamme
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven - University Hospitals Leuven, Leuven, Belgium
| | - T Vanassche
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven - University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Kong C, Chee CF, Richter K, Thomas N, Abd Rahman N, Nathan S. Suppression of Staphylococcus aureus biofilm formation and virulence by a benzimidazole derivative, UM-C162. Sci Rep 2018; 8:2758. [PMID: 29426873 PMCID: PMC5807447 DOI: 10.1038/s41598-018-21141-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is a major cause of nosocomial infections and secretes a diverse spectrum of virulence determinants as well as forms biofilm. The emergence of antibiotic-resistant S. aureus highlights the need for alternative forms of therapeutics other than conventional antibiotics. One route to meet this need is screening small molecule derivatives for potential anti-infective activity. Using a previously optimized C. elegans – S. aureus small molecule screen, we identified a benzimidazole derivative, UM-C162, which rescued nematodes from a S. aureus infection. UM-C162 prevented the formation of biofilm in a dose-dependent manner without interfering with bacterial viability. To examine the effect of UM-C162 on the expression of S. aureus virulence genes, a genome-wide transcriptome analysis was performed on UM-C162-treated pathogen. Our data indicated that the genes associated with biofilm formation, particularly those involved in bacterial attachment, were suppressed in UM-C162-treated bacteria. Additionally, a set of genes encoding vital S. aureus virulence factors were also down-regulated in the presence of UM-C162. Further biochemical analysis validated that UM-C162-mediated disruption of S. aureus hemolysins, proteases and clumping factors production. Collectively, our findings propose that UM-C162 is a promising compound that can be further developed as an anti-virulence agent to control S. aureus infections.
Collapse
Affiliation(s)
- Cin Kong
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor, Malaysia.,Department of Biomedical Sciences, Faculty of Science, University of Nottingham Malaysia Campus, 43500, Semenyih, Selangor, Malaysia
| | - Chin-Fei Chee
- Nanotechnology & Catalysis Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Katharina Richter
- Department of Surgery, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Biofilm Test Facility, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Nicky Thomas
- Adelaide Biofilm Test Facility, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor, Malaysia.
| |
Collapse
|
31
|
Josse J, Laurent F, Diot A. Staphylococcal Adhesion and Host Cell Invasion: Fibronectin-Binding and Other Mechanisms. Front Microbiol 2017; 8:2433. [PMID: 29259603 PMCID: PMC5723312 DOI: 10.3389/fmicb.2017.02433] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/23/2017] [Indexed: 02/02/2023] Open
Abstract
Opportunistic bacteria from the genus Staphylococcus can cause life-threatening infections such as pneumonia, endocarditis, bone and joint infections, and sepsis. This pathogenicity is closely related to their capacity to bind directly to the extracellular matrix or to host cells. Adhesion is indeed the first step in the formation of biofilm or the invasion of host cells, which protect the bacteria from the host immune system and facilitate chronic infection. Adhesion relies on the expression of a repertoire of surface proteins called adhesins, notably microbial surface components recognizing adhesive matrix molecules. In this short review, we discuss the main pathway (FnBP-Fn-α5β1 integrin), as well as alternatives, through which Staphylococcus aureus adheres to and then invades non-professional phagocytic cells. We then examine the corresponding mechanisms for coagulase negative staphylococci. There is currently a little understanding of the molecular mechanisms that lead to internalization. Filling this gap in the literature would therefore be an important step toward limiting the duration of staphylococci infections in clinical practice.
Collapse
Affiliation(s)
- Jérôme Josse
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon 1 University, Lyon, France
| | - Frédéric Laurent
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon 1 University, Lyon, France.,Institute for Infectious Agents, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,French National Reference Centre for Staphylococci, Lyon, France.,Microbiology-Mycology Department, Institut des Sciences Pharmaceutiques et Biologiques de Lyon, Lyon, France
| | - Alan Diot
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon 1 University, Lyon, France
| |
Collapse
|
32
|
Abstract
Neutrophils are innate immune phagocytes that have a central role in immune defence. Our understanding of the role of neutrophils in pathogen clearance, immune regulation and disease pathology has advanced dramatically in recent years. Web-like chromatin structures known as neutrophil extracellular traps (NETs) have been at the forefront of this renewed interest in neutrophil biology. The identification of molecules that modulate the release of NETs has helped to refine our view of the role of NETs in immune protection, inflammatory and autoimmune diseases and cancer. Here, I discuss the key findings and concepts that have thus far shaped the field of NET biology.
Collapse
|
33
|
Warnatsch A, Tsourouktsoglou TD, Branzk N, Wang Q, Reincke S, Herbst S, Gutierrez M, Papayannopoulos V. Reactive Oxygen Species Localization Programs Inflammation to Clear Microbes of Different Size. Immunity 2017; 46:421-432. [PMID: 28314592 PMCID: PMC5965455 DOI: 10.1016/j.immuni.2017.02.013] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/22/2016] [Accepted: 01/13/2017] [Indexed: 12/12/2022]
Abstract
How the number of immune cells recruited to sites of infection is determined and adjusted to differences in the cellular stoichiometry between host and pathogen is unknown. Here, we have uncovered a role for reactive oxygen species (ROS) as sensors of microbe size. By sensing the differential localization of ROS generated in response to microbes of different size, neutrophils tuned their interleukin (IL)-1β expression via the selective oxidation of NF-κB, in order to implement distinct inflammatory programs. Small microbes triggered ROS intracellularly, suppressing IL-1β expression to limit neutrophil recruitment as each phagocyte eliminated numerous pathogens. In contrast, large microbes triggered ROS extracellularly, amplifying IL-1β expression to recruit numerous neutrophils forming cooperative clusters. Defects in ROS-mediated microbe size sensing resulted in large neutrophil infiltrates and clusters in response to small microbes that contribute to inflammatory disease. These findings highlight the impact of ROS localization on signal transduction.
Collapse
Affiliation(s)
- Annika Warnatsch
- Antimicrobial Defence Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | | | - Nora Branzk
- Antimicrobial Defence Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Qian Wang
- Antimicrobial Defence Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Susanna Reincke
- Antimicrobial Defence Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Susanne Herbst
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Maximiliano Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | | |
Collapse
|
34
|
Crosby HA, Kwiecinski J, Horswill AR. Staphylococcus aureus Aggregation and Coagulation Mechanisms, and Their Function in Host-Pathogen Interactions. ADVANCES IN APPLIED MICROBIOLOGY 2016; 96:1-41. [PMID: 27565579 DOI: 10.1016/bs.aambs.2016.07.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human commensal bacterium Staphylococcus aureus can cause a wide range of infections ranging from skin and soft tissue infections to invasive diseases like septicemia, endocarditis, and pneumonia. Muticellular organization almost certainly contributes to S. aureus pathogenesis mechanisms. While there has been considerable focus on biofilm formation and its role in colonizing prosthetic joints and indwelling devices, less attention has been paid to nonsurface-attached group behavior like aggregation and clumping. S. aureus is unique in its ability to coagulate blood, and it also produces multiple fibrinogen-binding proteins that facilitate clumping. Formation of clumps, which are large, tightly packed groups of cells held together by fibrin(ogen), has been demonstrated to be important for S. aureus virulence and immune evasion. Clumps of cells are able to avoid detection by the host's immune system due to a fibrin(ogen) coat that acts as a shield, and the size of the clumps facilitates evasion of phagocytosis. In addition, clumping could be an important early step in establishing infections that involve tight clusters of cells embedded in host matrix proteins, such as soft tissue abscesses and endocarditis. In this review, we discuss clumping mechanisms and regulation, as well as what is known about how clumping contributes to immune evasion.
Collapse
Affiliation(s)
- H A Crosby
- University of Iowa, Iowa City, IA, United States
| | - J Kwiecinski
- University of Iowa, Iowa City, IA, United States
| | - A R Horswill
- University of Iowa, Iowa City, IA, United States
| |
Collapse
|