1
|
Zhang Z, Huang H, Tao Y, Liu H, Fan Y. Sirt6 ameliorates high glucose-induced podocyte cytoskeleton remodeling via the PI3K/AKT signaling pathway. Ren Fail 2024; 46:2410396. [PMID: 39378103 PMCID: PMC11463017 DOI: 10.1080/0886022x.2024.2410396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Podocyte injury plays an important role in the occurrence and progression of diabetic kidney disease (DKD), which leads to albuminuria. Cytoskeletal remodeling is an early manifestation of podocyte injury in DKD. However, the underlying mechanism of cytoskeletal remodeling has not been clarified. Histone deacetylase sirtuin6 (Sirt6) has been found to play a key role in DKD progression, and the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) pathway directly regulates the cytoskeletal structure of podocytes. Whereas, the relationship between Sirt6, the PI3K/AKT pathway and DKD progression remains unclear. METHODS Renal injury of db/db mice was observed by PAS staining and transmission electron microscope. Expression of Sirt6 in the glomeruli of db/db mice was detected by immunofluorescence. UBCS039, a Sirt6 activator, was used to explore the renal effects of Sirt6 activation on diabetic mouse kidneys. We also downregulating Sirt6 expression in podocytes using the Sirt6 inhibitor, OSS_128167, and induced upregulation of Sirt6 using a recombinant plasmid, after which the effects of Sirt6 on high glucose (HG)-induced podocyte damage were assessed in vitro. Podocyte cytoskeletal structures were observed by phalloidin staining. The podocyte apoptotic rate was assessed by flow cytometry, and PI3K/AKT signaling activation was measured by Western blotting. RESULTS Db/db mice exhibited renal damage including elevated urine albumin-to-creatinine ratio (ACR), increased mesangial matrix, fused podocyte foot processes, and thickened glomerular basement membrane. The expression of Sirt6 and PI3K/AKT pathway components was decreased in db/db mice. UBCS039 increased the expressions of Sirt6 and PI3K/AKT pathway components and ameliorated renal damage in db/db mice. We also observed consistent Sirt6 expression was in HG-induced podocytes in vitro. Activation of the PI3K/AKT pathway via a Sirt6 recombinant plasmid ameliorated podocyte cytoskeletal remodeling and apoptosis in HG-treated immortalized human podocytes in vitro, whereas Sirt6 inhibition by OSS_128167 accelerated HG-induced podocyte damage in vitro. CONCLUSIONS Sirt6 protects podocytes against HG-induced cytoskeletal remodeling and apoptosis through activation of the PI3K/AKT signaling pathway. These findings provide evidence supporting the potential efficacy of Sirt6 activation as a promising therapeutic strategy for addressing podocyte injury in DKD.
Collapse
Affiliation(s)
- Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hao Huang
- Division of Rehabilitation, Tianmen First People’s Hospital, Tianmen, Hubei, China
| | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, USA
| | - Hongyan Liu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanqin Fan
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Ai D, Yin Y, Xia X, Yang S, Sun Y, Zhou J, Qin H, Xu X, Song J. Validation of a physiological type 2 diabetes model in human periodontal ligament stem cells. Oral Dis 2024; 30:3363-3375. [PMID: 37794779 DOI: 10.1111/odi.14766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVES Type 2 diabetes (T2DM), a recognized risk factor for periodontitis, is characterized by insulin resistance. However, the molecular mechanisms concerning the role of insulin resistance in linking T2DM and periodontitis remain poorly elucidated due to the absence of an appropriate T2DM cell model. We aimed to explore an appropriate model of T2DM in human periodontal ligament stem cells (hPDLSCs) and uncover the involved mechanisms. MATERIALS AND METHODS hPDLSCs were incubated with common reagents for recapitulating insulin resistance state including high glucose (HG) (15, 25, 35, 45 mM), glucosamine (0.8, 8, 18, 28, 38 mM), or palmitic acid (PA; 100, 200, 400, 800 μM), combined with LPS for 48 h. The insulin signaling pathway, inflammation, and pyroptosis were detected by western blots and quantitative real-time polymerase chain reaction (RT-qPCR). The effects on osteogenesis were evaluated by alkaline phosphatase staining, alizarin red S staining, RT-qPCR, and western blots. RESULTS HG failed to recapitulate insulin resistance. Glucosamine was sufficient to induce insulin resistance but failed to trigger inflammation. In total, 100 and 200 μM PA exhibited the most proinflammatory, insulin resistance, and pyroptosis induced role, and inhibited the osteogenic differentiation of hPDLSCs. CONCLUSION Palmitic acid is a promising candidate for developing T2DM model in hPDLSCs.
Collapse
Affiliation(s)
- Dongqing Ai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuanyuan Yin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xuyun Xia
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sihan Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yu Sun
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Han Qin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaohui Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
3
|
Suaifan GARY, Alkhawaja B, Shehadeh MB, Sharmaa M, Hor Kuan C, Okechukwu PN. Glucosamine substituted sulfonylureas: IRS-PI3K-PKC-AKT-GLUT4 insulin signalling pathway intriguing agent. RSC Med Chem 2024; 15:695-703. [PMID: 38389876 PMCID: PMC10880904 DOI: 10.1039/d3md00647f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/30/2023] [Indexed: 02/24/2024] Open
Abstract
Normally, skeletal muscle accounts for 70-80% of insulin-stimulated glucose uptake in the postprandial hyperglycemia state. Consequently, abnormalities in glucose uptake by skeletal muscle or insulin resistance (IR) are deemed as initial metabolic defects in the pathogenesis of type 2 diabetes mellitus (T2DM). Globally, T2DM is growing in exponential proportion. The majority of T2DM patients are treated with sulfonylureas in combination with other drugs to improve insulin sensitivity. Glycosylated sulfonylureas (sulfonylurea-glucosamine analogues) are modified analogues of sulfonylurea that have been previously reported to possess antidiabetic activity. The aim of this study was to evaluate the impact of glycosylated sulfonylureas on the insulin signalling pathway at the molecular level using L6 skeletal muscle cell (in vitro) and extracted soleus muscle (ex vivo) models. To create an in vitro model, insulin resistance was established utilizing a high insulin-glucose approach in differentiated L6 muscle cells from Rattus norvegicus. Additionally, for the ex vivo model, extracted soleus muscles, adult Sprague-Dawley rats were subjected to a solution containing 25 mmol L-1 glucose and 100 mmol L-1 insulin for 24 hours to induce insulin resistance. After insulin resistance, compounds under investigation and standard medicines (metformin and glimepiride) were tested. The differential expression of PI3K, IRS-1, PKC, AKT2, and GLUT4 genes involved in the insulin signaling pathway was evaluated using qPCR. The evaluated glycosylated sulfonylurea analogues exhibited a significant increase in the gene expression of insulin-dependent pathways both in vitro and ex vivo, confirming the rejuvenation of the impaired insulin signaling pathway genes. Altogether, glycosylated sulfonylurea analogues described in this study represent potential therapeutic anti-diabetic drugs.
Collapse
Affiliation(s)
- Ghadeer A R Y Suaifan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan Amman 11942 Jordan
| | - Bayan Alkhawaja
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 11196 Jordan
| | - Mayadah B Shehadeh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan Amman 11942 Jordan
| | - Mridula Sharmaa
- Department of Food and Nutrition, Faculty of Applied Sciences, UCSI University Kuala Lumpur 56000 Malaysia
| | - Chan Hor Kuan
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University Kuala Lumpur 56000 Malaysia
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 11196 Jordan
| | - Patrick Nwabueze Okechukwu
- Department of Food and Nutrition, Faculty of Applied Sciences, UCSI University Kuala Lumpur 56000 Malaysia
| |
Collapse
|
4
|
Liu C, Zeng H, Jiang R, Wang K, Ouyang J, Wen S, Peng L, Xu H, Huang J, Liu Z. Effects of Mulberry Leaf Fu Tea on the Intestines and Intestinal Flora of Goto-Kakizaki Type 2 Diabetic Rats. Foods 2023; 12:4006. [PMID: 37959125 PMCID: PMC10648540 DOI: 10.3390/foods12214006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Type 2 diabetes mellitus is a disease caused by hyperglycemia, an imbalance in the intestinal flora and disruption of the endocrine system. At present, it is primarily controlled through drug treatment and an improved diet. Mulberry leaf and fu brick tea were considered to have excellent hypoglycemic effects. This study used mulberry leaves and fu brick tea as raw materials to develop a dietary regulator that can assist in the prevention and alleviation of diabetes. The experiment used the Goto-Kakizaki (GK) rat model to investigate the hypoglycemic effect of mulberry leaf fu tea (MFT) and its influence on the intestinal flora of diabetic rats through methods including ELISA, tissue section observation and 16S RNA microbial sequencing. The results showed that, compared with the GK group, the intervention of mulberry leaf fu tea significantly reduced the activities of α-glucosidase (p < 0.05) and α-amylase (p < 0.05) in the duodenum of GK diabetic rats. The height of the duodenal villi was significantly reduced (p < 0.001), leading to decreased intestinal sugar absorption. At the same time, MFT alleviates the imbalance of intestinal flora caused by high blood sugar, promotes the growth of beneficial bacteria (Lactobacillus, Bifidobacterium, etc.), and inhibits the reproduction of harmful bacteria (Blautia, Klebsiella, Helicobacter, Alistipes, etc.). MFT helps reduce the secretion of toxic substances (lipopolysaccharide, p < 0.001), decreases oxidative stress and inflammation, mitigates organ damage, and improves symptoms of diabetes. Finally, the random blood glucose value of GK rats dropped from 22.79 mmol/L to 14.06 mmol/L. In summary, mulberry leaf fu tea can lower sugar absorption in diabetic rats, reduce the body's oxidative stress and inflammatory response, regulate intestinal flora, and reduce blood sugar levels in GK rats. It is hinted that mulberry leaf fu tea could be used as a functional drink to help prevent the occurrence of diabetes.
Collapse
Affiliation(s)
- Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Hongzhe Zeng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Ronggang Jiang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Kuofei Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jian Ouyang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Shuai Wen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Liyuan Peng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Hao Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Huang M, Yang Y, Chen Y, Li Y, Qin S, Xiao L, Long X, Hu K, Li Y, Ying H, Ding Y. Sweroside attenuates podocyte injury and proteinuria in part by activating Akt/BAD signaling in mice. J Cell Biochem 2023; 124:1749-1763. [PMID: 37796169 DOI: 10.1002/jcb.30484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
In this study, we investigated the effects of sweroside on podocyte injury in diabetic nephropathy (DN) mice and elucidated its molecular mechanisms. We conducted in vivo experiments using a C57BL/6 mice model of DN to explore the effects of sweroside on proteinuria and podocyte injury in DN mice. In in vitro experiments, conditionally immortalized mouse podocytes were treated with high glucose and sweroside, and the protective effects of sweroside on podocyte injury were analyzed. In vitro, Akt/BAD pathways were detected using gene siRNA silencing assays and found to be involved in the protective roles of sweroside in high glucose-mediated podocyte injury. In vivo, sweroside significantly decreased albuminuria in DN mice (p < 0.01). periodic acid-Schiff staining showed that sweroside alleviated the glomerular volume and mesangium expansion in DN mice. Consistently, western blot and reverse transcription-polymerase chain reaction analyses showed that the profibrotic molecule expression in the glomeruli declined in sweroside-treated DN mice. Immunofluorescent results showed that sweroside preserved nephrin and podocin expression, and transmission electron microscopy showed that sweroside attenuated podocyte injury. In DN mice, sweroside decreased podocyte apoptosis, and increased nephrin, podocin expression and decreased desmin and HIF1α expression. These results confirmed that sweroside ameliorated albuminuria, glomerulomegaly, and glomerulosclerosis in these mice. Experiments in vitro revealed that sweroside improved HG-induced podocyte injury and apoptosis. Sweroside stimulated activation of the Akt/BAD pathway and upregulated Bcl-2-associated death promoter (BAD) and p-Akt. Overall, sweroside protected podocytes from injury and prevented the progression of DN, providing a novel strategy for the treatment of DN.
Collapse
Affiliation(s)
- Minjiang Huang
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yang Yang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yuefu Chen
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yang Li
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Sitao Qin
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lijun Xiao
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Xuewen Long
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Ke Hu
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yuxian Li
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Huiming Ying
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Hunan University of Medicine, Huaihua, China
| | - Yan Ding
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| |
Collapse
|
6
|
Konadu B, Cox CK, Garrett MR, Gibert Y. Excess glucose or fat differentially affects metabolism and appetite-related gene expression during zebrafish embryogenesis. iScience 2023; 26:107063. [PMID: 37534154 PMCID: PMC10391732 DOI: 10.1016/j.isci.2023.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/28/2023] [Accepted: 06/02/2023] [Indexed: 08/04/2023] Open
Abstract
Zebrafish embryos use their yolk sac reserve as the sole nutrient source during embryogenesis. The two main forms of energy fuel can be found in the form of glucose or fat. Zebrafish embryos were exposed to glucose or injected with free fatty acid/Triacylglycerol (FFA/TAG) into the yolk sac at 24 hpf. At 72 hpf, glucose exposed or FFA/TAG injected had differential effects on gene expression in embryos, with fat activating lipolysis and β-oxidation and glucose activating the insulin pathway. Bulk RNA-seq revealed that more gene expression was affected by glucose exposure compared to FFA/TAGs injection. Appetite-controlling genes were also differently affected by glucose exposure or FFA/TAG injections. Because the embryo did not yet feed itself at the time of our analysis, gene expression changes occurred in absence of actual hunger and revealed how the embryo manages its nutrient intake before active feeding.
Collapse
Affiliation(s)
- Bridget Konadu
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Carol K. Cox
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Michael R. Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yann Gibert
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
7
|
Nwabueze OP, Sharma M, Balachandran A, Gaurav A, Abdul Rani AN, Małgorzata J, Beata MM, Lavilla CA, Billacura MP. Comparative Studies of Palmatine with Metformin and Glimepiride on the Modulation of Insulin Dependent Signaling Pathway In Vitro, In Vivo & Ex Vivo. Pharmaceuticals (Basel) 2022; 15:1317. [PMID: 36355489 PMCID: PMC9695187 DOI: 10.3390/ph15111317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
(1) Insulin resistance, a symptom of type 2 diabetes mellitus (T2DM), is caused by the inactivation of the insulin signaling pathway, which includes IRS-PI3K-IRS-1-PKC-AKT2 and GLUT4. Metformin (biguanide) and glimepiride (sulfonylurea) are both drugs that are derivatives of urea, and they are widely used as first-line drugs for the treatment of type 2 diabetes mellitus. Palmatine has been previously reported to possess antidiabetic and antioxidant properties. (2) The current study compared palmatine to metformin and glimepiride in a type 2 diabetes model for ADME and insulin resistance via the PI3K/Akt/GLUT4 signaling pathway: in vitro, in vivo, ex vivo, and in silico molecular docking. (3) Methods: Differentiated L6 skeletal muscle cells and soleus muscle tissue were incubated in standard tissue culture media supplemented with high insulin and high glucose as a cellular model of insulin resistance, whilst streptozotocin (STZ)-induced Sprague Dawley rats were used as the diabetic model. The cells/tissue/animals were treated with palmatine, while glimepiride and metformin were used as standard drugs. The differential gene expression of PI3K, IRS-1, PKC-α, AKT2, and GLUT4 was evaluated using qPCR. (4) Results: The results revealed that the genes IRS-PI3K-IRS-1-PKC-AKT2 were significantly down-regulated, whilst PKC-α was upregulated significantly in both insulin-resistant cells and tissue animals. Interestingly, palmatine-treated cells/tissue/animals were able to reverse these effects. (5) Conclusions: Palmatine appears to have rejuvenated the impaired insulin signaling pathway through upregulation of the gene expression of IRS-1, PI3K, AKT2, and GLUT4 and downregulation of PKC-expression, according to in vitro, in vivo, and ex vivo studies.
Collapse
Affiliation(s)
- Okechukwu Patrick Nwabueze
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Mridula Sharma
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Abbirami Balachandran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Anis Najwa Abdul Rani
- Faculty of Pharmaceutical Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Jeleń Małgorzata
- Faculty of Pharmaceutical Sciences, Department of Organic Chemistry, Medical University of Silesia, Jagiellonska Str. 4, 41-200 Sosnowiec, Poland
| | - Morak-Młodawska Beata
- Faculty of Pharmaceutical Sciences, Department of Organic Chemistry, Medical University of Silesia, Jagiellonska Str. 4, 41-200 Sosnowiec, Poland
| | - Charlie A. Lavilla
- Chemistry Department, College of Science & Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Merell P. Billacura
- Department of Chemistry, College of Natural Sciences and Mathematics, Mindanao State University-Main Campus, Marawi City 9700, Philippines
| |
Collapse
|
8
|
Alsagaff MY, Thaha M, Pikir BS, Susilo H, Wungu CDK, Suryantoro SD, Haryati MR, Ramadhani R, Agustin ED, Putra MRA, Maiguma M, Suzuki Y. The role of oxidative stress markers in Indonesian chronic kidney disease patients: a cross sectional study. F1000Res 2022. [DOI: 10.12688/f1000research.74985.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: Several aspects of chronic kidney disease (CKD) such as the incidence rate and mortality rate are concerning. Oxidative stress contributes to progression and mortality in patients with CKD; however, a specific correlation between several markers of oxidative stress and the estimated glomerular filtration rate (eGFR) and albumin-creatinine ratio (ACR) in the Indonesian population has not been sufficiently described yet. Methods: This study was an analytic observational study with a sample of 56 patients with CKD in Universitas Airlangga Hospital, Surabaya, Indonesia, from December 2019 – March 2020. The markers for oxidative stress investigated were urinary 8-hydroxy-2 deoxyguanosine (8-OHdG), serum symmetric dimethylarginine (SDMA) and asymmetric dimethylarginine (ADMA). The correlations between each variable of oxidative stress and CKD were analyzed using Pearson analysis. Results: There was a positive correlation between 8-OHdG and eGFR (p=0.00, r=0.51); however, there was a negative correlation between 8-OHdG and ACR (p=0.025, r=-0.30). SDMA and eGFR showed a negative correlation (p=0.00, r=-0.648), while SDMA and ACR showed a positive correlation (p=0.03, r=0.349). ADMA showed a negative correlation with eGFR (p=0.00, r=-0.476). There were significantly decreased 8-OHdG but increased ADMA and SDMA as the CKD stage progressed (p=0.001, p=0.00, and p = 0.00, respectively). Higher urine 8-OHdG was detected in patients without history of hemodialysis, whereas ADMA and SDMA showed higher value in patients with hemodialysis (p=0.00, p=0.00, and p=0.004, respectively), patients with history of diabetes mellitus (DM) had higher mean 8-OHdG (p 0.000) yet lower serum ADMA and SDMA (p=0.004 and p=0.003, respectively). Conclusions: In patients with CKD in Indonesia, the markers for oxidative stress 8-OHdG, SDMA, and ADMA are correlated with eGFR and ACR levels. There were also significant difference in 8-OHdG, SDMA, and ADMA levels among CKD stages, between dialysis vs non dialysis, and DM vs non DM patients.
Collapse
|
9
|
Kim DH, Bang E, Ha S, Jung HJ, Choi YJ, Yu BP, Chung HY. Organ-differential Roles of Akt/FoxOs Axis as a Key Metabolic Modulator during Aging. Aging Dis 2021; 12:1713-1728. [PMID: 34631216 PMCID: PMC8460295 DOI: 10.14336/ad.2021.0225] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
FoxOs and their post-translational modification by phosphorylation, acetylation, and methylation can affect epigenetic modifications and promote the expression of downstream target genes. Therefore, they ultimately affect cellular and biological functions during aging or occurrence of age-related diseases including cancer, diabetes, and kidney diseases. As known for its key role in aging, FoxOs play various biological roles in the aging process by regulating reactive oxygen species, lipid accumulation, and inflammation. FoxOs regulated by PI3K/Akt pathway modulate the expression of various target genes encoding MnSOD, catalases, PPARγ, and IL-1β during aging, which are associated with age-related diseases. This review highlights the age-dependent differential regulatory mechanism of Akt/FoxOs axis in metabolic and non-metabolic organs. We demonstrated that age-dependent suppression of Akt increases the activity of FoxOs (Akt/FoxOs axis upregulation) in metabolic organs such as liver and muscle. This Akt/FoxOs axis could be modulated and reversed by antiaging paradigm calorie restriction (CR). In contrast, hyperinsulinemia-mediated PI3K/Akt activation inhibited FoxOs activity (Akt/FoxOs axis downregulation) leading to decrease of antioxidant genes expression in non-metabolic organs such as kidneys and lungs during aging. These phenomena are reversed by CR. The results of studies on the process of aging and CR indicate that the Akt/FoxOs axis plays a critical role in regulating metabolic homeostasis, redox stress, and inflammation in various organs during aging process. The benefical actions of CR on the Akt/FoxOs axis in metabolic and non-metabolic organs provide further insights into the molecular mechanisms of organ-differential roles of Akt/FoxOs axis during aging.
Collapse
Affiliation(s)
- Dae Hyun Kim
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - EunJin Bang
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - Sugyeong Ha
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - Hee Jin Jung
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - Yeon Ja Choi
- 2Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Korea
| | - Byung Pal Yu
- 3Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Hae Young Chung
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| |
Collapse
|
10
|
Xu J, Kitada M, Koya D. NAD + Homeostasis in Diabetic Kidney Disease. Front Med (Lausanne) 2021; 8:703076. [PMID: 34368195 PMCID: PMC8333862 DOI: 10.3389/fmed.2021.703076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/29/2021] [Indexed: 01/07/2023] Open
Abstract
The redox reaction and energy metabolism status in mitochondria is involved in the pathogenesis of metabolic related disorder in kidney including diabetic kidney disease (DKD). Nicotinamide adenine dinucleotide (NAD+) is a cofactor for redox reactions and energy metabolism in mitochondria. NAD+ can be synthesized from four precursors through three pathways. The accumulation of NAD+ may ameliorate oxidative stress, inflammation and improve mitochondrial biosynthesis via supplementation of precursors and intermediates of NAD+ and activation of sirtuins activity. Conversely, the depletion of NAD+ via NAD+ consuming enzymes including Poly (ADP-ribose) polymerases (PARPs), cADPR synthases may contribute to oxidative stress, inflammation, impaired mitochondrial biosynthesis, which leads to the pathogenesis of DKD. Therefore, homeostasis of NAD+ may be a potential target for the prevention and treatment of kidney diseases including DKD. In this review, we focus on the regulation of the metabolic balance of NAD+ on the pathogenesis of kidney diseases, especially DKD, highlight benefits of the potential interventions targeting NAD+-boosting in the treatment of these diseases.
Collapse
Affiliation(s)
- Jing Xu
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
11
|
Vivero A, Ruz M, Rivera M, Miranda K, Sacristán C, Espinosa A, Codoceo J, Inostroza J, Vásquez K, Pérez Á, García-Díaz D, Arredondo M. Zinc Supplementation and Strength Exercise in Rats with Type 2 Diabetes: Akt and PTP1B Phosphorylation in Nonalcoholic Fatty Liver. Biol Trace Elem Res 2021; 199:2215-2224. [PMID: 32939643 DOI: 10.1007/s12011-020-02324-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes mellitus (T2D) is a metabolic disorder caused by chronic hyperglycemia due to a deficiency in the secretion and/or action of insulin. Zinc (Zn) supplementation and strength exercise increases insulin signaling. We evaluate the effect of Zn supplementation and strength exercise on insulin resistance in the liver of rats with diet-induced T2D through the study of phosphorylation of Akt and protein tyrosine phosphatase 1B (PTP1B). Rats were fed with a high-fat diet (HFD) for 18 weeks to induce T2D and then assigned in four experimental groups: HFD, HFD-Zn (Zn), HFD-strength exercise (Ex), and HFD-Zn/strength exercise (ZnEx) and treated during 12 weeks. Serum Zn, lipid profile, transaminases, glucose, and insulin were measured. In the liver with/without insulin stimuli, total and phosphorylated Akt (pAktSer473) and PTP1B (pPTP1BSer50) were determined by western blot. Hepatic steatosis was evaluated by histological staining with red oil and intrahepatic triglyceride (IHTG) content. There were no differences in biochemical and body-related variables. The ZnEx group showed a higher level of pAkt, both with/without insulin. The ZnEx group also showed higher levels of pPTP1B with respect to HFD and Zn groups. The ZnEx group had higher levels of pPTP1B than groups treated with insulin. Liver histology showed a better integrity and less IHTG in Ex and ZnEx with respect to the HFD group. The Ex and ZnEx groups had lower IHTG with respect to the HFD group. Our results showed that Zn supplementation and strength exercise together improved insulin signaling and attenuated nonalcoholic liver disease in a T2D rat model.
Collapse
Affiliation(s)
- Ariel Vivero
- Micronutrient Laboratory, Human Nutrition Unit, Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Manuel Ruz
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Matías Rivera
- Micronutrient Laboratory, Human Nutrition Unit, Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Karen Miranda
- Micronutrient Laboratory, Human Nutrition Unit, Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Camila Sacristán
- Medical Technology Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alejandra Espinosa
- Medical Technology Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juana Codoceo
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jorge Inostroza
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Karla Vásquez
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Álvaro Pérez
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Diego García-Díaz
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Miguel Arredondo
- Micronutrient Laboratory, Human Nutrition Unit, Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile.
| |
Collapse
|
12
|
Wang Y, He W. Improving the Dysregulation of FoxO1 Activity Is a Potential Therapy for Alleviating Diabetic Kidney Disease. Front Pharmacol 2021; 12:630617. [PMID: 33859563 PMCID: PMC8042272 DOI: 10.3389/fphar.2021.630617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
A substantial proportion of patients with diabetes will develop kidney disease. Diabetic kidney disease (DKD) is one of the most serious complications in diabetic patients and the leading cause of end-stage kidney disease worldwide. Although some mechanisms have been revealed to contribute to the understanding of the pathogenesis of DKD and some drugs currently in use have been shown to be beneficial, prevention and management of DKD remain tricky and challenging. FoxO1 transcriptional factor is a crucial regulator of cellular homeostasis and posttranslational modification is a major mechanism to alter FoxO1 activity. There is increasing evidence that FoxO1 is involved in the regulation of various cellular processes such as stress resistance, autophagy, cell cycle arrest, and apoptosis, thereby playing an important role in the pathogenesis of DKD. Improving the dysregulation of FoxO1 activity by natural compounds, synthetic drugs, or manipulation of gene expression may attenuate renal cell injury and kidney lesion in the cells cultured under a high-glucose environment and in diabetic animal models. The available data imply that FoxO1 may be a potential clinical target for the prevention and treatment of DKD.
Collapse
Affiliation(s)
- Yan Wang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Chen Y, Lin D, Shi C, Guo L, Liu L, Chen L, Li T, Liu Y, Zheng C, Chi X, Meng C, Xue Y. MiR-3138 deteriorates the insulin resistance of HUVECs via KSR2/AMPK/GLUT4 signaling pathway. Cell Cycle 2021; 20:353-368. [PMID: 33509040 DOI: 10.1080/15384101.2020.1870335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Insulin resistance (IR) is a complex pathological condition resulting from the dysregulation of cellular response to insulin hormone in insulin-dependent cells and is recognized as a pathogenic hallmark and strong risk factor for metabolic syndrome. The present study aims to elucidate the molecular mechanism of the pathogenesis of IR. Here, we used human umbilical vein endothelial cells (HUVECs) to establish the IR cell model induced by 1 × 10-6 mmol/L insulin. After 48 h, reactive oxygen species (ROS) and glucose consumption were measured by DCFH-DA and GOD-POD methods, respectively. The results of Microarray analysis demonstrated that there were 10 differentially expressed miRNAs (DEMs) selected based on Fold change (FC) and P value in the IR cell model compared with HUVECs. The enriched gene ontology (GO) terms analysis showed that the target genes of these 10 DEMs were significantly enriched in biological process, cellular component and molecular function, and the significantly enriched Kyoto Encyclopedia of Genes or Genomes (KEGG) pathways mainly include AMPK signaling pathway and PI3K signaling pathway. Amongst all, the expression level of miR-3138 was highest in the IR cell model evaluated by qRT-PCR. Through Targetscan, KSR2 mRNA was predicted as a target of miR-3138. And mRNA and protein expression levels of miR-3138, KSR2, GLUT4, AMPK, PI3K, Akt were examined using qRT-PCR and Western blotting, respectively. The interaction between miR-3138 and KSR2 was evaluated by dual-luciferase reporter assay. Our results showed that miR-3138 significantly deteriorated the IR of HUVECs via KSR2/AMPK/GLUT4 signaling pathway.
Collapse
Affiliation(s)
- Yan Chen
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong Province, China.,Department of Internal Medicine, South Branch of Fujian Provincial Hospital , Fuzhou, Fujian Province, China.,Provincial Clinic Medical College, Fujian Medical University , Fuzhou, Fujian Province, China
| | - Da Lin
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University , Fuzhou, Fujian Province, China
| | - Changxuan Shi
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University , Fuzhou, Fujian Province, China
| | - Liang Guo
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University , Fuzhou, Fujian Province, China
| | - Linhua Liu
- Department of Internal Medicine, South Branch of Fujian Provincial Hospital , Fuzhou, Fujian Province, China
| | - Lin Chen
- Department of Internal Medicine, South Branch of Fujian Provincial Hospital , Fuzhou, Fujian Province, China
| | - Ting Li
- Department of Internal Medicine, South Branch of Fujian Provincial Hospital , Fuzhou, Fujian Province, China
| | - Ying Liu
- Department of Internal Medicine, South Branch of Fujian Provincial Hospital , Fuzhou, Fujian Province, China
| | - Chengchao Zheng
- Provincial Clinic Medical College, Fujian Medical University , Fuzhou, Fujian Province, China
| | - Xintong Chi
- Provincial Clinic Medical College, Fujian Medical University , Fuzhou, Fujian Province, China
| | - Chun Meng
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University , Fuzhou, Fujian Province, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong Province, China
| |
Collapse
|
14
|
Wang Z, Liu Z, Yang Y, Kang L. Identification of biomarkers and pathways in hypertensive nephropathy based on the ceRNA regulatory network. BMC Nephrol 2020; 21:476. [PMID: 33176720 PMCID: PMC7659166 DOI: 10.1186/s12882-020-02142-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/30/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hypertensive nephropathy (HTN) is a kind of renal injury caused by chronic hypertension, which seriously affect people's life. The purpose of this study was to identify the potential biomarkers of HTN and understand its possible mechanisms. METHODS The dataset numbered GSE28260 related to hypertensive and normotensive was downloaded from NCBI Gene Expression Omnibus. Then, the differentially expressed RNAs (DERs) were screened using R limma package, and functional analyses of DE-mRNA were performed by DAVID. Afterwards, a ceRNA network was established and KEGG pathway was analyzed based on the Gene Set Enrichment Analysis (GSEA) database. Finally, a ceRNA regulatory network directly associated with HTN was proposed. RESULTS A total of 947 DERs were identified, including 900 DE-mRNAs, 20 DE-lncRNAs and 27 DE-miRNAs. Based on these DE-mRNAs, they were involved in biological processes such as fatty acid beta-oxidation, IRE1-mediated unfolded protein response, and transmembrane transport, and many KEGG pathways like glycine, serine and threonine metabolism, carbon metabolism. Subsequently, lncRNAs KCTD21-AS1, LINC00470 and SNHG14 were found to be hub nodes in the ceRNA regulatory network. KEGG analysis showed that insulin signaling pathway, glycine, serine and threonine metabolism, pathways in cancer, lysosome, and apoptosis was associated with hypertensive. Finally, insulin signaling pathway was screened to directly associate with HTN and was regulated by mRNAs PPP1R3C, PPKAR2B and AKT3, miRNA has-miR-107, and lncRNAs SNHG14, TUG1, ZNF252P-AS1 and MIR503HG. CONCLUSIONS Insulin signaling pathway was directly associated with HTN, and miRNA has-miR-107 and lncRNAs SNHG14, TUG1, ZNF252P-AS1 and MIR503HG were the biomarkers of HTN. These results would improve our understanding of the occurrence and development of HTN.
Collapse
Affiliation(s)
- Zhen Wang
- Nephrology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No.5 Haiyuncang Road, Dongcheng District, Beijing, 100700, China
| | - Zhongjie Liu
- Nephrology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No.5 Haiyuncang Road, Dongcheng District, Beijing, 100700, China
| | - Yingxia Yang
- Nephrology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No.5 Haiyuncang Road, Dongcheng District, Beijing, 100700, China
| | - Lei Kang
- Neurology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No.5 Haiyuncang Road, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
15
|
He M, Li Y, Wang L, Guo B, Mei W, Zhu B, Zhang J, Ding Y, Meng B, Zhang L, Xiang L, Dong J, Liu M, Xiang L, Xiang G. MYDGF attenuates podocyte injury and proteinuria by activating Akt/BAD signal pathway in mice with diabetic kidney disease. Diabetologia 2020; 63:1916-1931. [PMID: 32588068 DOI: 10.1007/s00125-020-05197-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Myeloid-derived growth factor (MYDGF), mainly secreted by bone marrow-derived cells, has been known to promote glucagon-like peptide-1 production and improve glucose/lipid metabolism in mouse models of diabetes, but little is known about the functions of MYDGF in diabetic kidney disease (DKD). Here, we investigated whether MYDGF can prevent the progression of DKD. METHODS In vivo experiments, both loss- and gain-of-function strategies were used to evaluate the effect of MYDGF on albuminuria and pathological glomerular lesions. We used streptozotocin-treated Mydgf knockout and wild-type mice on high fat diets to induce a model of DKD. Then, albuminuria, glomerular lesions and podocyte injury were evaluated in Mydgf knockout and wild-type DKD mice treated with adeno-associated virus-mediated Mydgf gene transfer. In vitro and ex vivo experiments, the expression of slit diaphragm protein nephrin and podocyte apoptosis were evaluated in conditionally immortalised mouse podocytes and isolated glomeruli from non-diabetic wild-type mice treated with recombinant MYDGF. RESULTS MYDGF deficiency caused more severe podocyte injury in DKD mice, including the disruption of slit diaphragm proteins (nephrin and podocin) and an increase in desmin expression and podocyte apoptosis, and subsequently caused more severe glomerular injury and increased albuminuria by 39.6% compared with those of wild-type DKD mice (p < 0.01). Inversely, MYDGF replenishment attenuated podocyte and glomerular injury in both wild-type and Mydgf knockout DKD mice and then decreased albuminuria by 36.7% in wild-type DKD mice (p < 0.01) and 34.9% in Mydgf knockout DKD mice (p < 0.01). Moreover, recombinant MYDGF preserved nephrin expression and inhibited podocyte apoptosis in vitro and ex vivo. Mechanistically, the renoprotection of MYDGF was attributed to the activation of the Akt/Bcl-2-associated death promoter (BAD) pathway. CONCLUSIONS/INTERPRETATION The study demonstrates that MYDGF protects podocytes from injury and prevents the progression of DKD, providing a novel strategy for the treatment of DKD. Graphical abstract.
Collapse
Affiliation(s)
- Mingjuan He
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
- Department of Endocrinology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yixiang Li
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Li Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Bei Guo
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Wen Mei
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Biao Zhu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Jiajia Zhang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Yan Ding
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Biying Meng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Liming Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Lin Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Jing Dong
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Min Liu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Lingwei Xiang
- ICF, 2635 Century Pkwy NE Unit 1000, Atlanta, GA, 30345, USA.
| | - Guangda Xiang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
16
|
Chen X, Liu W, Xiao J, Zhang Y, Chen Y, Luo C, Huang Q, Peng F, Gong W, Li S, He X, Zhuang Y, Wu N, Liu Y, Wang Y, Long H. FOXO3a accumulation and activation accelerate oxidative stress-induced podocyte injury. FASEB J 2020; 34:13300-13316. [PMID: 32786113 DOI: 10.1096/fj.202000783r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/08/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022]
Abstract
Podocyte injury is the primary cause of glomerular injury in diabetic nephropathy (DN). Advanced oxidation protein products (AOPPs), the triggers and markers of oxidative stress in DN, have been linked to podocyte damage. However, the underlying mechanism is not yet clear. Here, we investigated the potential role of FOXO3a, a key transcription factor in the response to stress, in mediating AOPPs-induced podocyte injury. We found that FOXO3a expression was increased in the glomeruli of kidney biopsies from patients with DN and it was positively correlated with proteinuria. The serum from patients with DN significantly increased FOXO3a and its downstream genes FasL and Bim, thereby inducing the high level of cleaved caspase3 and the loss of nephrin and podocin expressions in podocytes. Blockade of AOPPs signaling by a neutralizing antibody against the receptor of advanced glycation end products (αRAGE) abolished the effect of DN serum on podocytes, confirming the pathogenic role of AOPPs in DN serum. Downregulation of FOXO3a decreased AOPPs-induced podocyte apoptosis and restored the levels of podocyte markers nephrin and podocin, and upregulation of FOXO3a exacerbated these changes in podocytes after AOPPs treatment. Furthermore, FOXO3a specifically activated proapoptotic genes in podocytes only in the presence of AOPPs. Mechanistically, AOPPs increased the FOXO3a protein levels by inhibiting their autophagic degradation in a ROS/mTOR-dependent manner. Moreover AOPPs activated the accumulated FOXO3a by maintaining FOXO3a in the nucleus, and this process was dependent on ROS-mediated AKT signaling deactivation. These studies suggest that FOXO3a plays a critical role in mediating AOPPs-induced podocyte injury and reveal a new mechanistic linkage of oxidative stress, FOXO3a activation and podocyte injury in DN.
Collapse
Affiliation(s)
- Xiaowen Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenting Liu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Xiao
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Zhang
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yihua Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Congwei Luo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qianyin Huang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fenfen Peng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wangqiu Gong
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuting Li
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyang He
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyi Zhuang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Na Wu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanxia Liu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxian Wang
- Department of Gerontology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haibo Long
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Chen Y, Zhang F, Wang D, Li L, Si H, Wang C, Liu J, Chen Y, Cheng J, Lu Y. Mesenchymal Stem Cells Attenuate Diabetic Lung Fibrosis via Adjusting Sirt3-Mediated Stress Responses in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8076105. [PMID: 32089781 PMCID: PMC7024095 DOI: 10.1155/2020/8076105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/25/2019] [Accepted: 01/23/2020] [Indexed: 02/05/2023]
Abstract
Diabetes affects a variety of organs such as the kidneys, eyes, and liver, and there is increasing evidence that the lung is also one of the target organs of diabetes and imbalance of Sirt3-mediated stress responses such as inflammation, oxidative stress, apoptosis, autophagy, and ER stress may contribute to diabetic lung fibrosis. Although previous studies have reported that mesenchymal stem cells (MSCs) have beneficial effects on various diabetic complications, the effect and mechanisms of MSCs on diabetes-induced lung injury are not clear. In this study, the STZ-induced diabetes model was constructed in rats, and the effect and potential mechanisms of bone marrow MSCs on diabetic lung fibrosis were investigated. The results revealed that fibrotic changes in the lung were successfully induced in the diabetic rats, while MSCs significantly inhibited or even reversed the changes. Specifically, MSCs upregulated the expression levels of Sirt3 and SOD2 and then activated the Nrf2/ARE signaling pathway, thereby controlling MDA, GSH content, and iNOS and NADPH oxidase subunit p22phox expression levels in the lung tissue. Meanwhile, high levels of Sirt3 and SOD2 induced by MSCs reduced the expression levels of IL-1β, TNF-α, ICAM-1, and MMP9 by suppressing the NF-κB/HMGB1/NLRP3/caspase-1 signaling pathway, as well as regulating the expression levels of cleaved caspasese-3, Bax, and Bcl2 by upregulating the expression level of P-Akt, thereby inhibiting the apoptosis of the lung tissue. In addition, MSCs also regulated the expression levels of LC3, P62, BiP, Chop, and PERK, thereby enhancing autophagy and attenuating endoplasmic reticulum stress. Taken together, our results suggest that MSCs effectively attenuate diabetic lung fibrosis via adjusting Sirt3-mediated responses, including inflammation, oxidative stress, apoptosis, autophagy, and endoplasmic reticulum stress, providing a theoretical foundation for further exploration of MSC-based diabetic therapeutics.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Regenerative Medicine Research Center, Sichuan University, Chengdu 610041, China
| | - Fuping Zhang
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Regenerative Medicine Research Center, Sichuan University, Chengdu 610041, China
| | - Di Wang
- Research Core Facility, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Regenerative Medicine Research Center, Sichuan University, Chengdu 610041, China
| | - Haibo Si
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengshi Wang
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Regenerative Medicine Research Center, Sichuan University, Chengdu 610041, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Regenerative Medicine Research Center, Sichuan University, Chengdu 610041, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Regenerative Medicine Research Center, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Regenerative Medicine Research Center, Sichuan University, Chengdu 610041, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Regenerative Medicine Research Center, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Bigaeva E, Gore E, Simon E, Zwick M, Oldenburger A, de Jong KP, Hofker HS, Schlepütz M, Nicklin P, Boersema M, Rippmann JF, Olinga P. Transcriptomic characterization of culture-associated changes in murine and human precision-cut tissue slices. Arch Toxicol 2019; 93:3549-3583. [PMID: 31754732 DOI: 10.1007/s00204-019-02611-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Our knowledge of complex pathological mechanisms underlying organ fibrosis is predominantly derived from animal studies. However, relevance of animal models for human disease is limited; therefore, an ex vivo model of human precision-cut tissue slices (PCTS) might become an indispensable tool in fibrosis research and drug development by bridging the animal-human translational gap. This study, presented as two parts, provides comprehensive characterization of the dynamic transcriptional changes in PCTS during culture by RNA sequencing. Part I investigates the differences in culture-induced responses in murine and human PCTS derived from healthy liver, kidney and gut. Part II delineates the molecular processes in cultured human PCTS generated from diseased liver, kidney and ileum. We demonstrated that culture was associated with extensive transcriptional changes and impacted PCTS in a universal way across the organs and two species by triggering an inflammatory response and fibrosis-related extracellular matrix (ECM) remodelling. All PCTS shared mRNA upregulation of IL-11 and ECM-degrading enzymes MMP3 and MMP10. Slice preparation and culturing activated numerous pathways across all PCTS, especially those involved in inflammation (IL-6, IL-8 and HMGB1 signalling) and tissue remodelling (osteoarthritis pathway and integrin signalling). Despite the converging effects of culture, PCTS display species-, organ- and pathology-specific differences in the regulation of genes and canonical pathways. The underlying pathology in human diseased PCTS endures and influences biological processes like cytokine release. Our study reinforces the use of PCTS as an ex vivo fibrosis model and supports future studies towards its validation as a preclinical tool for drug development.
Collapse
Affiliation(s)
- Emilia Bigaeva
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Emilia Gore
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Eric Simon
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Matthias Zwick
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Anouk Oldenburger
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Koert P de Jong
- Department of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Hendrik S Hofker
- Department of Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Marco Schlepütz
- Respiratory Diseases, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Paul Nicklin
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Miriam Boersema
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Jörg F Rippmann
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands.
| |
Collapse
|
19
|
Obesity: Pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomed Pharmacother 2019; 111:503-516. [DOI: 10.1016/j.biopha.2018.12.108] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/13/2018] [Accepted: 12/23/2018] [Indexed: 02/08/2023] Open
|
20
|
Wasik AA, Lehtonen S. Glucose Transporters in Diabetic Kidney Disease-Friends or Foes? Front Endocrinol (Lausanne) 2018; 9:155. [PMID: 29686650 PMCID: PMC5900043 DOI: 10.3389/fendo.2018.00155] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/22/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes and a common cause of end-stage renal disease worldwide. DKD manifests as an increased urinary protein excretion (albuminuria). Multiple studies have shown that insulin resistance correlates with the development of albuminuria in non-diabetic and diabetic patients. There is also accumulating evidence that glomerular epithelial cells or podocytes are insulin sensitive and that insulin signaling in podocytes is essential for maintaining normal kidney function. At the cellular level, the mechanisms leading to the development of insulin resistance include mutations in the insulin receptor gene, impairments in the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway, or perturbations in the trafficking of glucose transporters (GLUTs), which mediate the uptake of glucose into cells. Podocytes express several GLUTs, including GLUT1, GLUT2, GLUT3, GLUT4, and GLUT8. Of these, the most studied ones are GLUT1 and GLUT4, both shown to be insulin responsive in podocytes. In the basal state, GLUT4 is preferentially located in perinuclear and cytosolic vesicular structures and to a lesser extent at the plasma membrane. After insulin stimulation, GLUT4 is sorted into GLUT4-containing vesicles (GCVs) that translocate to the plasma membrane. GCV trafficking consists of several steps, including approaching of the GCVs to the plasma membrane, tethering, and docking, after which the lipid bilayers of the GCVs and the plasma membrane fuse, delivering GLUT4 to the cell surface for glucose uptake into the cell. Studies have revealed novel molecular regulators of the GLUT trafficking in podocytes and unraveled unexpected roles for GLUT1 and GLUT4 in the development of DKD, summarized in this review. These findings pave the way for better understanding of the mechanistic pathways associated with the development and progression of DKD and aid in the development of new treatments for this devastating disease.
Collapse
|
21
|
|
22
|
Trohatou O, Tsilibary EF, Charonis A, Iatrou C, Drossopoulou G. Vitamin D3 ameliorates podocyte injury through the nephrin signalling pathway. J Cell Mol Med 2017; 21:2599-2609. [PMID: 28664547 PMCID: PMC5618699 DOI: 10.1111/jcmm.13180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/24/2017] [Indexed: 12/19/2022] Open
Abstract
Renal podocytes form the main filtration barrier possessing unique phenotype maintained by proteins including podocalyxin and nephrin, which are modulated in pathological conditions. In diabetic nephropathy (DN), podocytes become structurally and functionally compromised. Nephrin, a structural backbone protein of the slit diaphragm, acts as regulator of podocyte intracellular signalling with renoprotective role. Vitamin D3 through its receptor, VDR, provides renal protection in DN but limited data exist about its effect on podocytes. In this study, we used isolated rat glomeruli to assess podocalyxin and nephrin expression after treatment with the 1,25‐dihydroxyvitamin D3 analogue paricalcitol in the presence of normal and diabetic glucose levels. The role of 1,25‐dihydroxyvitamin D3 (calcitriol) and its analogue, paricalcitol, on podocyte morphology and survival was also investigated in the streptozotocin (STZ)‐diabetic animal model. In our ex vivo model, glomeruli exhibited high glucose‐mediated down‐regulation of podocalyxin, and nephrin, while paricalcitol reversed the high glucose‐induced decrease of nephrin and podocalyxin expression. Paricalcitol treatment enhanced VDR expression and promoted VDR and RXR co‐localization in the nucleus. Our data also indicated that hyperglycaemia impaired survival of cultured glomeruli and suggested that the implemented nephrin down‐regulation was reversed by paricalcitol treatment, initiating Akt signal transduction which may be involved in glomerular survival. Our findings were further verified in vivo, as in the STZ‐diabetic animal model, calcitriol and paricalcitol treatment resulted in significant amelioration of hyperglycaemia and restoration of nephrin signalling, suggesting that calcitriol and paricalcitol may provide molecular bases for protection against loss of the permselective renal barrier in DN.
Collapse
Affiliation(s)
- Ourania Trohatou
- Institute of Biosciences and Applications, NCSR 'Demokritos', Athens, Greece
| | | | - Aristidis Charonis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Christos Iatrou
- Center for Nephrology, G. Papadakis General Hospital of Nikea-Pireaus, Athens, Greece
| | | |
Collapse
|
23
|
Jiao X, Li Y, Zhang T, Liu M, Chi Y. Role of Sirtuin3 in high glucose-induced apoptosis in renal tubular epithelial cells. Biochem Biophys Res Commun 2016; 480:387-393. [PMID: 27773814 DOI: 10.1016/j.bbrc.2016.10.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 12/24/2022]
Abstract
The apoptosis of renal tubular epithelial cells contributes to the pathogenesis of diabetic nephropathy. High glucose-induced mitochondrial oxidative stress is considered to be an important mediator for renal tubular cell apoptosis. Sirtuin3(Sirt3), a kind of mitochondria-localized nicotinamide adenine dinucleotide(NAD+)-dependent protein deacetylase, has been reported to regulate the generation of ROS in mitochondria through regulating acetylation level and activity of several key mitochondrial enzymes. In this study, we investigated the role of Sirt3 on high glucose-induced apoptosis in HK-2 cells. High glucose decreased the protein and mRNA expression of Sirt3 in a time-dependent manner, along with increased cell apoptosis in HK-2 cells. Furthermore, high glucose-induced oxidative stress and apoptosis were reversed by Sirt3 overexpression or antioxidant treatment. Meanwhile, we also found that overexpression of Sirt3 or antioxidant could regulate the activity of Akt/FoxO signaling pathway associated with cell apoptosis in diabetic nephropathy. In conclusion, our data suggest that Sirt3 overexpression antagonize high glucose-induced apoptosis by controlling ROS accumulation and ROS-sensitive Akt/FoxO signaling pathway in HK-2 cells.
Collapse
Affiliation(s)
- Xiaocui Jiao
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, 050051, China
| | - Ying Li
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, 050051, China.
| | - Tao Zhang
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, 050051, China
| | - Maodong Liu
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, 050051, China
| | - Yanqing Chi
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, 050051, China
| |
Collapse
|