1
|
Ye J, Suizu F, Yamakawa K, Mukai Y, Yoneyama H, Kondo J, Kato M, Nishiyama A, Yahagi N, Kadota K. Intra-tumoral administration of CHST15 siRNA remodels tumor microenvironment and augments tumor-infiltrating T cells in pancreatic cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200812. [PMID: 38799652 PMCID: PMC11127163 DOI: 10.1016/j.omton.2024.200812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/24/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
The dense stroma is one cause of poor efficacy of T cell-mediated immunotherapy in pancreatic ductal adenocarcinoma (PDAC). Carbohydrate sulfotransferase 15 (CHST15) is a proteoglycan-synthetic enzyme responsible for remodeling tumor stroma. Intra-tumoral injection of CHST15 small interfering RNA (siRNA) has been shown to increase the tumor-infiltrating T cells (TILs) in patients with unresectable PDAC. However, the mechanism underlying the enhanced accumulation of TILs is not fully explored. Here, we demonstrate that intra-tumoral injection of CHST15 siRNA locally and remotely diminishes myeloid-derived suppressor cells (MDSCs) and enhances TILs in mice. CHST15 was expressed by tumor cells and MDSCs in both tumor and tumor-draining lymph nodes (TDLNs), and CHST15 siRNA repressed stromal density, neutrophil extracellular traps, and Ly6C/G+ MDSCs in vivo. Remarkably, tumor growth inhibition was only observed in the immunocompetent KPC model, which is associated with enhanced TILs. In vitro, CHST15 siRNA significantly downregulated the levels of CHST15 and indoleamine 2,3-dioxygenase mRNA in CD33+ MDSCs derived from human peripheral blood mononuclear cells. These results suggest a dual role for intra-tumorally injected CHST15 siRNA on modulating the tumor immune microenvironment for T cell entry and remotely diminishing CHST15+ MDSCs, decreasing T cell suppression and expanding T cells in the TDLN, ultimately leading to an enhanced accumulation of TILs.
Collapse
Affiliation(s)
- Juanjuan Ye
- Molecular Oncologic Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun 761-0793, Kagawa, Japan
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Futoshi Suizu
- Molecular Oncologic Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun 761-0793, Kagawa, Japan
| | - Keiko Yamakawa
- Molecular Oncologic Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun 761-0793, Kagawa, Japan
| | - Yuri Mukai
- Molecular Oncologic Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun 761-0793, Kagawa, Japan
| | | | - Jiro Kondo
- Department of Materials and Life Sciences, Sophia University, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Motohiko Kato
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Naohisa Yahagi
- Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kyuichi Kadota
- Molecular Oncologic Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun 761-0793, Kagawa, Japan
| |
Collapse
|
2
|
Francis KL, Zheng HB, Suskind DL, Murphree TA, Phan BA, Quah E, Hendrickson AS, Zhou X, Nuding M, Hudson AS, Guttman M, Morton GJ, Schwartz MW, Alonge KM, Scarlett JM. Characterizing the human intestinal chondroitin sulfate glycosaminoglycan sulfation signature in inflammatory bowel disease. Sci Rep 2024; 14:11839. [PMID: 38782973 PMCID: PMC11116513 DOI: 10.1038/s41598-024-60959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
The intestinal extracellular matrix (ECM) helps maintain appropriate tissue barrier function and regulate host-microbial interactions. Chondroitin sulfate- and dermatan sulfate-glycosaminoglycans (CS/DS-GAGs) are integral components of the intestinal ECM, and alterations in CS/DS-GAGs have been shown to significantly influence biological functions. Although pathologic ECM remodeling is implicated in inflammatory bowel disease (IBD), it is unknown whether changes in the intestinal CS/DS-GAG composition are also linked to IBD in humans. Our aim was to characterize changes in the intestinal ECM CS/DS-GAG composition in intestinal biopsy samples from patients with IBD using mass spectrometry. We characterized intestinal CS/DS-GAGs in 69 pediatric and young adult patients (n = 13 control, n = 32 active IBD, n = 24 IBD in remission) and 6 adult patients. Here, we report that patients with active IBD exhibit a significant decrease in the relative abundance of CS/DS isomers associated with matrix stability (CS-A and DS) compared to controls, while isomers implicated in matrix instability and inflammation (CS-C and CS-E) were significantly increased. This imbalance of intestinal CS/DS isomers was restored among patients in clinical remission. Moreover, the abundance of pro-stabilizing CS/DS isomers negatively correlated with clinical disease activity scores, whereas both pro-inflammatory CS-C and CS-E content positively correlated with disease activity scores. Thus, pediatric patients with active IBD exhibited increased pro-inflammatory and decreased pro-stabilizing CS/DS isomer composition, and future studies are needed to determine whether changes in the CS/DS-GAG composition play a pathogenic role in IBD.
Collapse
Affiliation(s)
- Kendra L Francis
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
| | - Hengqi B Zheng
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA
| | - David L Suskind
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Bao Anh Phan
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
| | - Emily Quah
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
| | - Aarun S Hendrickson
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
| | - Xisheng Zhou
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Mason Nuding
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA
| | - Alexandra S Hudson
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Gregory J Morton
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
| | - Michael W Schwartz
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
| | - Kimberly M Alonge
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Jarrad M Scarlett
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA.
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA.
| |
Collapse
|
3
|
Suzuki K, Sameshima Y, Yokoyama J, Terai S, Yoneyama H, Atreya R, Neurath MF, Hibi T, Asakura H. Add-on multiple submucosal injections of the RNA oligonucleotide GUT-1 to anti-TNF antibody treatment in patients with moderate-to-severe ulcerative colitis: an open-label, proof-of concept study. Inflamm Regen 2024; 44:22. [PMID: 38664814 PMCID: PMC11044299 DOI: 10.1186/s41232-024-00332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Carbohydrate sulfotransferase 15 (CHST15) is an enzyme biosynthesizing matrix glycosaminoglycan that modulates tissue remodeling. We evaluated the efficacy of add-on submucosal injections of GUT-1, the RNA oligonucleotide inhibitor of CHST15, to ongoing anti-tumor necrosis factor (TNF) antibody treatment in patients with moderate-to-severe ulcerative colitis (UC). METHODS This was an open-label study of 250 nM of GUT-1 by endoscopic submucosal injections at weeks 0, 2, 4 in five UC patients who lost response during maintenance treatment to anti-TNF antibodies. The primary endpoint was the rate of endoscopic improvement at week 6 and secondary endpoints included the rates of clinical remission by modified Mayo Score (mMS). Patients received follow-up observation with continuous maintenance treatment by the same anti-TNF antibody till the time of clinical recurrence or for overall 52 weeks. RESULTS At week 6, rates of endoscopic improvement and clinical remission were 80% (n = 4/5) and 60% (n = 3/5), respectively. The mean Endoscopy Subscore was reduced from 2.4 (95%CI: 1.7 to 3.1) at baseline, to 1.0 (95%CI: 0.1 to 1.9) at week 6. The mean mMS was reduced from 7.8 (95%CI: 6.2 to 9.4) to 1.3 (95%CI: 2.9 to 4.3). GUT-1 was well tolerated. Three patients did not show clinical recurrence for 52 weeks. All three corticosteroid-dependent patients showed no corticosteroid exposure for at least 24 weeks after achieving clinical remission. Multiple dosing was also well tolerated. CONCLUSIONS Add-on multiple injections of GUT-1 to ongoing anti-TNF antibody was able to induce rapid and durable clinical responses in UC patients who lost response to anti-TNF therapy. TRIAL REGISTRATION Clinical trial Registration Number (Japan): UMIN000020900.
Collapse
Affiliation(s)
- Kenji Suzuki
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, 2-746 Asahimach-Dori, Chuo-Ku, Niigata-Shi, Niigata, 951-8518, Japan.
- Department of Health Informatics, Niigata University of Health and Welfare, 1398 Shimami-Cho, Kita-Ku, Niigata-Shi, Niigata, 950-3198, Japan.
| | - Yukinori Sameshima
- Sameshima Hospital, 9-8 Kajiya-Cho, Kagoshima-Shi, Kagoshima, 892-0846, Japan
| | - Junji Yokoyama
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, 2-746 Asahimach-Dori, Chuo-Ku, Niigata-Shi, Niigata, 951-8518, Japan
| | - Shuji Terai
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, 2-746 Asahimach-Dori, Chuo-Ku, Niigata-Shi, Niigata, 951-8518, Japan
| | | | - Raja Atreya
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 90154, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 90154, Erlangen, Germany
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato Institute Hospital, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8642, Japan
| | - Hitoshi Asakura
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, 2-746 Asahimach-Dori, Chuo-Ku, Niigata-Shi, Niigata, 951-8518, Japan
| |
Collapse
|
4
|
Atreya R, Kühbacher T, Waldner MJ, Hirschmann S, Drvarov O, Abu Hashem R, Maaser C, Kucharzik T, Dinter J, Mertens J, Schramm C, Holler B, Mössner J, Suzuki K, Yokoyama J, Terai S, Uter W, Yoneyama H, Asakura H, Hibi T, Neurath MF. Submucosal Injection of the RNA Oligonucleotide GUT-1 in Active Ulcerative Colitis Patients: A Randomized, Double-Blind, Placebo-Controlled Phase 2a Induction Trial. J Crohns Colitis 2024; 18:406-415. [PMID: 37777210 DOI: 10.1093/ecco-jcc/jjad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/11/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND AND AIMS Carbohydrate sulfotransferase 15 [CHST15] biosynthesizes sulphated matrix glycosaminoglycans and is implicated in intestinal inflammation and fibrosis. Here, we evaluate the efficacy and safety of the double-stranded RNA oligonucleotide GUT-1, a specific blocker of CHST15, as induction therapy in patients with ulcerative colitis [UC]. METHODS In this randomized, double-blind, placebo-controlled, phase 2a study, we enrolled endoscopically active UC patients, refractory to conventional therapy, in five hospital centres across Germany. Patients were randomized 1:1:1 using a block randomized technique to receive a single dosing of 25 nM GUT-1, 250 nM GUT-1, or placebo by endoscopic submucosal injections. The primary outcome measure was improvement of endoscopic lesions at weeks 2 or 4. The secondary outcome measures included clinical and histological responses. Safety was assessed in all patients who received treatment. RESULTS Twenty-eight patients were screened, 24 were randomized, and 21 were evaluated. Endoscopic improvement at weeks 2 or 4 was achieved by 71.4% in the GUT-1 250 nM, 0% in the GUT-1 25 nM, and 28.6% in the placebo group. Clinical remission was shown by 57.1% in the GUT-1 250 nM, 0% in the GUT-1 25 nM, and 14.3% in the placebo groups. Histological improvement was shown by 42.9% in the GUT-1 250 nM, 0% in the GUT-1 25 nM, and 0% in the placebo groups. GUT-1 250 nM reduced CHST15 expression significantly and suppressed mucosal inflammation and fibrosis. GUT-1 application was well tolerated. CONCLUSION Single dosing by submucosal injection of GUT-1 repressed CHST15 mucosal expression and may represent a novel induction therapy by modulating tissue remodelling in UC.
Collapse
Affiliation(s)
- Raja Atreya
- Department of Medicine 1, University of Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, DZI, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tanja Kühbacher
- Department of Internal Medicine/Gastroenterology, Asklepios Westklinikum, Hamburg, Germany
| | - Maximilian J Waldner
- Department of Medicine 1, University of Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, DZI, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Simon Hirschmann
- Department of Medicine 1, University of Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, DZI, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Drvarov
- Department of Internal Medicine/Gastroenterology, Asklepios Westklinikum, Hamburg, Germany
| | - Raed Abu Hashem
- Department of Internal Medicine/Gastroenterology, Asklepios Westklinikum, Hamburg, Germany
| | - Christian Maaser
- Klinik für Allgemeine Innere Medizin und Gastroenterologie, Klinikum Lüneburg, Lüneburg, Germany
| | - Torsten Kucharzik
- Klinik für Allgemeine Innere Medizin und Gastroenterologie, Klinikum Lüneburg, Lüneburg, Germany
| | - Johanna Dinter
- Klinik für Gastroenterologie und Hepatologie, Uniklinik Köln, Köln, Germany
| | - Jessica Mertens
- Klinik für Gastroenterologie und Hepatologie, Uniklinik Köln, Köln, Germany
| | - Christoph Schramm
- Klinik für Gastroenterologie und Hepatologie, Uniklinik Köln, Köln, Germany
| | - Babett Holler
- Klinik und Poliklinik für Gastroenterologie und Rheumatologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Joachim Mössner
- Klinik und Poliklinik für Gastroenterologie und Rheumatologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Kenji Suzuki
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, Niigata city, Niigata, Japan
| | - Junji Yokoyama
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, Niigata city, Niigata, Japan
| | - Shuji Terai
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, Niigata city, Niigata, Japan
| | - Wolfgang Uter
- Institut für Medizininformatik, Biometrie und Epidemiologie, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Hitoshi Asakura
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, Niigata city, Niigata, Japan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato Institute Hospital, Kitasato University, Minato-city, Tokyo, Japan
| | - Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, DZI, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Bhattacharyya S, Tobacman JK. SARS-CoV-2 spike protein-ACE2 interaction increases carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-sulfatase by p38 MAPK. Signal Transduct Target Ther 2024; 9:39. [PMID: 38355690 PMCID: PMC10866996 DOI: 10.1038/s41392-024-01741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
Immunostaining in lungs of patients who died with COVID-19 infection showed increased intensity and distribution of chondroitin sulfate and decline in N-acetylgalactostamine-4-sulfatase (Arylsulfatase B; ARSB). To explain these findings, human small airway epithelial cells were exposed to the SARS-CoV-2 spike protein receptor binding domain (SPRBD) and transcriptional mechanisms were investigated. Phospho-p38 MAPK and phospho-SMAD3 increased following exposure to the SPRBD, and their inhibition suppressed the promoter activation of the carbohydrate sulfotransferases CHST15 and CHST11, which contributed to chondroitin sulfate biosynthesis. Decline in ARSB was mediated by phospho-38 MAPK-induced N-terminal Rb phosphorylation and an associated increase in Rb-E2F1 binding and decline in E2F1 binding to the ARSB promoter. The increases in chondroitin sulfotransferases were inhibited when treated with phospho-p38-MAPK inhibitors, SMAD3 (SIS3) inhibitors, as well as antihistamine desloratadine and antibiotic monensin. In the mouse model of carrageenan-induced systemic inflammation, increases in phospho-p38 MAPK and expression of CHST15 and CHST11 and declines in DNA-E2F binding and ARSB expression occurred in the lung, similar to the observed effects in this SPRBD model of COVID-19 infection. Since accumulation of chondroitin sulfates is associated with fibrotic lung conditions and diffuse alveolar damage, increased attention to p38-MAPK inhibition may be beneficial in ameliorating Covid-19 infections.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Jesse Brown VA Medical Center and University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Joanne K Tobacman
- Jesse Brown VA Medical Center and University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
Singh N, Singh AK. A comprehensive review on structural and therapeutical insight of Cerebroside sulfotransferase (CST) - An important target for development of substrate reduction therapy against metachromatic leukodystrophy. Int J Biol Macromol 2024; 258:128780. [PMID: 38104688 DOI: 10.1016/j.ijbiomac.2023.128780] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
This review is an effort towards the development of substrate reduction therapy using cerebroside sulfotransferase (CST) as a target protein for the development of inhibitors intended to treat pathophysiological condition resulting from the accumulation of sulfatide, a product from the catalytic action of CST. Accumulation of sulfatides leads to progressive impairment and destruction of the myelin structure, disruption of normal physiological transmission of electrical impulse between nerve cells, axonal loss in the central and peripheral nervous system and cumulatively gives a clinical manifestation of metachromatic leukodystrophy. Thus, there is a need to develop specific and potent CST inhibitors to positively control sulfatide accumulation. Structural similarity and computational studies revealed that LYS85, SER172 and HIS141 are key catalytic residues that determine the catalytic action of CST through the transfer of sulfuryl group from the donor PAPS to the acceptor galactosylceramide. Computational studies revealed catalytic site of CST consists two binding site pocket including PAPS binding pocket and substrate binding pocket. Specific substrate site residues in CST can be targeted to develop specific CST inhibitors. This review also explores the challenges of CST-directed substrate reduction therapy as well as the opportunities available in natural products for inhibitor development.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Anil Kumar Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
7
|
Macias-Ceja DC, Mendoza-Ballesteros MT, Ortega-Albiach M, Barrachina MD, Ortiz-Masià D. Role of the epithelial barrier in intestinal fibrosis associated with inflammatory bowel disease: relevance of the epithelial-to mesenchymal transition. Front Cell Dev Biol 2023; 11:1258843. [PMID: 37822869 PMCID: PMC10562728 DOI: 10.3389/fcell.2023.1258843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
In inflammatory bowel disease (IBD), chronic inflammation in the gastrointestinal tract can lead to tissue damage and remodelling, which can ultimately result in fibrosis. Prolonged injury and inflammation can trigger the activation of fibroblasts and extracellular matrix (ECM) components. As fibrosis progresses, the tissue becomes increasingly stiff and less functional, which can lead to complications such as intestinal strictures, obstructive symptoms, and eventually, organ dysfunction. Epithelial cells play a key role in fibrosis, as they secrete cytokines and growth factors that promote fibroblast activation and ECM deposition. Additionally, epithelial cells can undergo a process called epithelial-mesenchymal transition, in which they acquire a more mesenchymal-like phenotype and contribute directly to fibroblast activation and ECM deposition. Overall, the interactions between epithelial cells, immune cells, and fibroblasts play a critical role in the development and progression of fibrosis in IBD. Understanding these complex interactions may provide new targets for therapeutic interventions to prevent or treat fibrosis in IBD. In this review, we have collected and discussed the recent literature highlighting the contribution of epithelial cells to the pathogenesis of the fibrotic complications of IBD, including evidence of EMT, the epigenetic control of the EMT, the potential influence of the intestinal microbiome in EMT, and the possible therapeutic strategies to target EMT. Finally we discuss the pro-fibrotic interactions epithelial-immune cells and epithelial-fibroblasts cells.
Collapse
Affiliation(s)
- Dulce C. Macias-Ceja
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | | | - M. Dolores Barrachina
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Dolores Ortiz-Masià
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
8
|
Haque MA, Alam MZ, Iqbal A, Lee YM, Dang CG, Kim JJ. Genome-Wide Association Studies for Body Conformation Traits in Korean Holstein Population. Animals (Basel) 2023; 13:2964. [PMID: 37760364 PMCID: PMC10526087 DOI: 10.3390/ani13182964] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The objective of this study was to identify quantitative trait loci (QTL) and nearby candidate genes that influence body conformation traits. Phenotypic data for 24 body conformation traits were collected from a population of 2329 Korean Holstein cattle, and all animals were genotyped using the 50 K Illumina bovine SNP chip. A total of 24 genome-wide significant SNPs associated with 24 body conformation traits were identified by genome-wide association analysis. The selection of the most promising candidate genes was based on gene ontology (GO) terms and the previously identified functions that influence various body conformation traits as determined in our study. These genes include KCNA1, RYBP, PTH1R, TMIE, and GNAI3 for body traits; ANGPT1 for rump traits; MALRD1, INHBA, and HOXA13 for feet and leg traits; and CDK1, RHOBTB1, and SLC17A1 for udder traits, respectively. These findings contribute to our understanding of the genetic basis of body conformation traits in this population and pave the way for future breeding strategies aimed at enhancing desirable traits in dairy cattle.
Collapse
Affiliation(s)
- Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (M.A.H.); (M.Z.A.); (A.I.); (Y.-M.L.)
| | - Mohammad Zahangir Alam
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (M.A.H.); (M.Z.A.); (A.I.); (Y.-M.L.)
| | - Asif Iqbal
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (M.A.H.); (M.Z.A.); (A.I.); (Y.-M.L.)
| | - Yun-Mi Lee
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (M.A.H.); (M.Z.A.); (A.I.); (Y.-M.L.)
| | - Chang-Gwon Dang
- Animal Breeding and Genetics Division, National Institute of Animal Science, Cheonan 31000, Chungcheongnam-do, Republic of Korea
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (M.A.H.); (M.Z.A.); (A.I.); (Y.-M.L.)
| |
Collapse
|
9
|
Ye J, Suizu F, Yamakawa K, Mukai Y, Kato M, Yoneyama H, Yahagi N, Matsuda Y. Silencing of tumoral carbohydrate sulfotransferase 15 reactivates lymph node pancreatic cancer T cells in mice. Eur J Immunol 2023; 53:e2250160. [PMID: 37248998 DOI: 10.1002/eji.202250160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Limited intratumoral T-cell infiltration in pancreatic ductal adenocarcinoma (PDAC) is an obstacle to immunotherapy, yet the efficient approach to enhance tumor-infiltrating T cells is not fully established. Here, we show that tumor-specific knockdown of carbohydrate sulfotransferase 15 (CHST15), a tumor stromal proteoglycan-synthetic enzyme, suppresses tumor growth in a T-cell-dependent manner in a murine model of PDAC. Silencing of tumoral CHST15 unexpectedly expanded CD4+ and CD8+ T cells in tumor draining LN (TDLN), leading to accelerated accumulation of EdU+ proliferating CD4+ and CD8+ T cells and granzyme B+ CD8+ T cells in the tumor. RNA expression analysis indicated that tumoral CHST15 knockdown (KD) downregulated matrix remodeling-related genes, while upregulated anti-tumor T-cell activity-related genes in both tumor and TDLN. CHST15 KD significantly diminished intratumoral and TDLN Ly6C/G+ myeloid-derived suppressor cells prior to TDLN T-cell expansion, suggesting that tumoral CHST15 remotely regulated myeloid-derived suppressor cell mediated T-cell suppression in the TDLN. Our findings illustrate a novel immunotherapeutic potential of tumoral CHST15 blockage by reactivating T cells in immune suppressive TDLN of PDAC.
Collapse
Affiliation(s)
- Juanjuan Ye
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Futoshi Suizu
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Keiko Yamakawa
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yuri Mukai
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Motohiko Kato
- Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | | | - Naohisa Yahagi
- Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Matsuda
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
10
|
Yang J, Li D, Zhang M, Lin G, Hu S, Xu H. From the updated landscape of the emerging biologics for IBDs treatment to the new delivery systems. J Control Release 2023; 361:568-591. [PMID: 37572962 DOI: 10.1016/j.jconrel.2023.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
Inflammatory bowel diseases (IBDs) treatments have shifted from small-molecular therapeutics to the oncoming biologics. The first-line biologics against the moderate-to-severe IBDs are mainly involved in antibodies against integrins, cytokines and cell adhesion molecules. Besides, other biologics including growth factors, antioxidative enzyme, anti-inflammatory peptides, nucleic acids, stem cells and probiotics have also been explored at preclinical or clinical studies. Biologics with variety of origins have their unique potentials in attenuating immune inflammation or gut mucosa healing. Great advances in use of biologics for IBDs treatments have been archived in recent years. But delivering issues for biologic have also been confronted due to their liable nature. In this review, we will focus on biologics for IBDs treatments in the recent publications; summarize the current landscapes of biologics and their promise to control disease progress. Alternatively, the confronted challenges for delivering biologics will also be analyzed. To combat these drawbacks, some new delivering strategies are provided: firstly, designing the functional materials with high affinity toward biologics; secondly, the delivering vehicle systems to encapsulate the liable biologics; thirdly, the topical adhering delivery systems as enema. To our knowledge, this review is the first study to summarize the updated usage of the oncoming biologics for IBDs, their confronted challenges in term of delivery and the potential combating strategies.
Collapse
Affiliation(s)
- Jiaojiao Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Dingwei Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Mengjiao Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Gaolong Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Sunkuan Hu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China
| | - Helin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
11
|
Datta N, Johnson C, Kao D, Gurnani P, Alexander C, Polytarchou C, Monaghan TM. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis. Pharmacol Res 2023; 194:106870. [PMID: 37499702 DOI: 10.1016/j.phrs.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
An emerging but less explored shared pathophysiology across microbiota-gut-brain axis disorders is aberrant miRNA expression, which may represent novel therapeutic targets. miRNAs are small, endogenous non-coding RNAs that are important transcriptional repressors of gene expression. Most importantly, they regulate the integrity of the intestinal epithelial and blood-brain barriers and serve as an important communication channel between the gut microbiome and the host. A well-defined understanding of the mode of action, therapeutic strategies and delivery mechanisms of miRNAs is pivotal in translating the clinical applications of miRNA-based therapeutics. Accumulating evidence links disorders of the microbiota-gut-brain axis with a compromised gut-blood-brain-barrier, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. This has the potential to affect all organs, including the brain, causing central inflammation and the development of neurodegenerative and neuropsychiatric diseases. In this review, we have examined in detail miRNA biogenesis, strategies for therapeutic application, delivery mechanisms, as well as their pathophysiology and clinical applications in inflammatory gut-brain disorders. The research data in this review was drawn from the following databases: PubMed, Google Scholar, and Clinicaltrials.gov. With increasing evidence of the pathophysiological importance for miRNAs in microbiota-gut-brain axis disorders, therapeutic targeting of cross-regulated miRNAs in these disorders displays potentially transformative and translational potential. Further preclinical research and human clinical trials are required to further advance this area of research.
Collapse
Affiliation(s)
- Neha Datta
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Charlotte Johnson
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pratik Gurnani
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, UK.
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
12
|
Di Vincenzo F, Yadid Y, Petito V, Emoli V, Masi L, Gerovska D, Araúzo-Bravo MJ, Gasbarrini A, Regenberg B, Scaldaferri F. Circular and Circulating DNA in Inflammatory Bowel Disease: From Pathogenesis to Potential Molecular Therapies. Cells 2023; 12:1953. [PMID: 37566032 PMCID: PMC10417561 DOI: 10.3390/cells12151953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's Disease (CD) and Ulcerative Colitis (UC) are chronic multifactorial disorders which affect the gastrointestinal tract with variable extent. Despite extensive research, their etiology and exact pathogenesis are still unknown. Cell-free DNAs (cfDNAs) are defined as any DNA fragments which are free from the origin cell and able to circulate into the bloodstream with or without microvescicles. CfDNAs are now being increasingly studied in different human diseases, like cancer or inflammatory diseases. However, to date it is unclear how IBD etiology is linked to cfDNAs in plasma. Extrachromosomal circular DNA (eccDNA) are non-plasmidic, nuclear, circular and closed DNA molecules found in all eukaryotes tested. CfDNAs appear to play an important role in autoimmune diseases, inflammatory processes, and cancer; recently, interest has also grown in IBD, and their role in the pathogenesis of IBD has been suggested. We now suggest that eccDNAs also play a role in IBD. In this review, we have comprehensively collected available knowledge in literature regarding cfDNA, eccDNA, and structures involving them such as neutrophil extracellular traps and exosomes, and their role in IBD. Finally, we focused on old and novel potential molecular therapies and drug delivery systems, such as nanoparticles, for IBD treatment.
Collapse
Affiliation(s)
- Federica Di Vincenzo
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Ylenia Yadid
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Valentina Petito
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
| | - Valeria Emoli
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Letizia Masi
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (M.J.A.-B.)
| | - Marcos Jesus Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (M.J.A.-B.)
- IKERBASQUE, Basque Foundation for Science, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Antonio Gasbarrini
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Birgitte Regenberg
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 13, Room 426, DK-2100 Copenhagen, Denmark;
| | - Franco Scaldaferri
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| |
Collapse
|
13
|
Wang T, Zhang Y, Wu J, Feng H, Wang R, Yuan H. Association of genetic variants of CircCHST15 with oral squamous cell carcinoma in the Chinese Han population. Head Neck 2023; 45:806-815. [PMID: 36608057 DOI: 10.1002/hed.27293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/22/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most common cancer in the oral cavity. The relationship between the genetic susceptibility of circCHST15 and OSCC remains unclear. METHODS Genetic variants of circCHST15 were screened using a genotyping analysis from 1044 patients with OSCC and 3199 healthy participants. The circCHST15 expression was detected in 32 pairs of OSCC tissues. The circular RNA quantitative trait locus analysis and the reporter gene assay were performed for verification. RESULTS The circCHST15 expression was upregulated in OSCC (Wilcoxon p < 1e-3). The genotyping analysis screened out 61 loci in circCHST15 associated with the risk of OSCC. After adjustment and annotation, rs28707473 (A > C, odds ratio = 1.21, 95% CI: 1.076-1.361, p = 1.453e-3) was selected. This genetic variation could elevate the circCHST15 expression level possibly by altering the structure of circular RNAs and affecting transcription factor binding. CONCLUSIONS The results of this study suggested that genetic variants of circCHST15 may contribute to OSCC susceptibility.
Collapse
Affiliation(s)
- Tianxiao Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yehao Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Jia Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Hongjie Feng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Ruixia Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
14
|
Fujisawa T, Tsuchiya T, Kato M, Mizuide M, Takakura K, Nishimura M, Kutsumi H, Matsuda Y, Arai T, Ryozawa S, Itoi T, Isayama H, Saya H, Yahagi N. STNM01, the RNA oligonucleotide targeting carbohydrate sulfotransferase 15, as second-line therapy for chemotherapy-refractory patients with unresectable pancreatic cancer: An open label, phase I/IIa trial. EClinicalMedicine 2023; 55:101731. [PMID: 36425867 PMCID: PMC9678806 DOI: 10.1016/j.eclinm.2022.101731] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The impact of stroma-targeting therapy on tumor immune suppression is largely unexplored. An RNA oligonucleotide, STNM01, has been shown to repress carbohydrate sulfotransferase 15 (CHST15) responsible for tumor proteoglycan synthesis and matrix remodeling. This phase I/IIa study aimed to evaluate the safety and efficacy of STNM01 in patients with unresectable pancreatic ductal adenocarcinoma (PDAC). METHODS This was an open-label, dose-escalation study of STNM01 as second-line therapy in gemcitabine plus nab-paclitaxel-refractory PDAC. A cycle comprised three 2-weekly endoscopic ultrasound-guided locoregional injections of STNM01 at doses of 250, 1,000, 2,500, or 10,000 nM in combination with S-1 (80-120 mg twice a day for 14 days every 3 weeks). The primary outcome was the incidence of dose-liming toxicity (DLT). The secondary outcomes included overall survival (OS), tumor response, changes in tumor microenvironment on immunohistopathology, and safety (jRCT2031190055). FINDINGS A total of 22 patients were enrolled, and 3 cycles were repeated at maximum; no DLT was observed. The median OS was 7.8 months. The disease control rate was 77.3%; 1 patient showed complete disappearance of visible lesions in the pancreas and tumor-draining lymph nodes. Higher tumoral CHST15 expression was associated with poor CD3+ and CD8+ T cell infiltration at baseline. STNM01 led to a significant reduction in CHST15, and increased tumor-infiltrating CD3+ and CD8+ T cells in combination with S-1 at the end of cycle 1. Higher fold increase in CD3+ T cells correlated with longer OS. There were 8 grade 3 adverse events. INTERPRETATION Locoregional injection of STNM01 was well tolerated in patients with unresectable PDAC as combined second-line therapy. It prolonged survival by enhancing T cell infiltration in tumor microenvironment. FUNDING The present study was supported by the Japan Agency for Medical Research and Development (AMED).
Collapse
Key Words
- 5-FU, fluorouracil
- AMED, Japan Agency for Medical Research and Development
- CHST15, carbohydrate sulfotransferase 15
- CI, confidence interval
- CS-E, chondroitin sulfate E
- CTCAE, Common Terminology Criteria for Adverse Events
- Carbohydrate sulfotransferase 15 (CHST15)
- DCR, disease control rate
- DLT, dose-liming toxicity
- ECM, extracellular matrix
- EMT, epithelial mesenchymal transition
- EUS-FNI, endoscopic ultrasound-guided fine needle injection
- Endoscopic ultrasound-guided fine needle injection
- FAS, full analysis set
- GM-CSF, Granulocyte-macrophage colony-stimulating factor
- IQR, interquartile range
- IRB, Institutional Review Board
- LV, leucovorin
- MTD, maximum tolerated dose
- OS, overall survival
- PDAC, pancreatic ductal adenocarcinoma
- PFS, progression free survival
- STNM01
- TEAE, treatment emergent adverse event
- TGF, transforming growth factor
- Tumor-infiltrating CD3+ and CD8+ T cells
- Unresectable pancreatic cancer
- nal-IRI, nanoliposomal irinotecan
- sCD44v6, soluble CD44 variant 6
Collapse
Affiliation(s)
- Toshio Fujisawa
- Department of Gastroenterology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Takayoshi Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Motohiko Kato
- Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masafumi Mizuide
- Department of Gastroenterology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Kazuki Takakura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Makoto Nishimura
- Department of Gastroenterology, Hepatology and Nutrition, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Hiromu Kutsumi
- Center for Clinical Research and Advanced Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yoko Matsuda
- Oncology Pathology, Department of Pathology and Host-Defense, Kagawa University, Takamastu, Kagawa, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Shomei Ryozawa
- Department of Gastroenterology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Hiroyuki Isayama
- Department of Gastroenterology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Naohisa Yahagi
- Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Corresponding author. Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8542, Japan.
| |
Collapse
|
15
|
Ji Y, Yang Y, Sun S, Dai Z, Ren F, Wu Z. Insights into diet-associated oxidative pathomechanisms in inflammatory bowel disease and protective effects of functional amino acids. Nutr Rev 2022; 81:95-113. [PMID: 35703919 DOI: 10.1093/nutrit/nuac039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There has been a substantial rise in the incidence and prevalence of clinical patients presenting with inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis. Accumulating evidence has corroborated the view that dietary factors (particularly diets with high levels of saturated fat or sugar) are involved in the development and progression of IBD, which is predominately associated with changes in the composition of the gut microbiota and an increase in the generation of reactive oxygen species. Notably, the ecological imbalance of the gut microbiome exacerbates oxidative stress and inflammatory responses, leading to perturbations of the intestinal redox balance and immunity, as well as mucosal integrity. Recent findings have revealed that functional amino acids, including L-glutamine, glycine, L-arginine, L-histidine, L-tryptophan, and hydroxyproline, are effectively implicated in the maintenance of intestinal redox and immune homeostasis. These amino acids and their metabolites have oxygen free-radical scavenging and inflammation-relieving properties, and they participate in modulation of the microbial community and the metabolites in the gut. The principal focus of this article is a review of recent advances in the oxidative pathomechanisms of IBD development and progression in relation to dietary factors, with a particular emphasis on the redox and signal transduction mechanisms of host cells in response to unbalanced diets and enterobacteria. In addition, an update on current understanding of the protective effects of functional amino acids against IBD, together with the underlying mechanisms for this protection, have been provided.
Collapse
Affiliation(s)
- Yun Ji
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ying Yang
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Shiqiang Sun
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, ChinaChina
| | - Fazheng Ren
- are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Chen Y, Zhang Y, Wang Z, Wang Y, Luo Y, Sun N, Zheng S, Yan W, Xiao X, Liu S, Li J, Peng H, Xu Y, Hu G, Cheng Z, Zhang G. CHST15 gene germline mutation is associated with the development of familial myeloproliferative neoplasms and higher transformation risk. Cell Death Dis 2022; 13:586. [PMID: 35798703 PMCID: PMC9263130 DOI: 10.1038/s41419-022-05035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 01/21/2023]
Abstract
Herein, we describe the clinical and hematological features of three genetically related families predisposed to myeloproliferative neoplasms (MPNs). Using whole-exome sequencing, we identified a c.1367delG mutation(p.Arg456fs) in CHST15 (NM_001270764), a gene encoding a type II transmembraneglycoproteinthat acts as a sulfotransferase and participates in the biosynthesis of chondroitin sulfate E, in germline and somatic cells in familial MPN. CHST15defects caused an increased JAK2V617F allele burden and upregulated p-Stat3 activity,leading to an increase in the proliferative and prodifferentiation potential of transgenic HEL cells. We demonstrated that mutant CHST15 is able to coimmmunoprecipitate the JAK2 protein,suggesting the presence of a CHST15-JAK2-Stat3 signaling axis in familial MPN. Gene expression profiling showed that the FREM1, IFI27 and C4B_2 genes are overexpressed in familial MPN, suggesting the activation of an "inflammatory response-extracellular matrix-immune regulation" signaling network in the CHST15 mutation background.We thus concluded that CHST15 is a novel gene that predisposes to familial MPN and increases the probability of disease development or transformation.
Collapse
Affiliation(s)
- Yi Chen
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Yang Zhang
- Department of Oncology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Zhihua Wang
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Yewei Wang
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Yujiao Luo
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Nannan Sun
- Department of Hematology, The First affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Shasha Zheng
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Wenzhe Yan
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Xiao
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Sufang Liu
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Ji Li
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Yunxiao Xu
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Guoyu Hu
- Department of Hematology, The Affiliated ZhuZhou Hospital of XiangYa Medical College, Central South University, Zhuzhou, Hunan, China
| | - Zhao Cheng
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China.
| | - Guangsen Zhang
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
17
|
Blake MR, Parrish DC, Staffenson MA, Sueda S, Woodward WR, Habecker BA. Chondroitin sulfate proteoglycan 4,6 sulfation regulates sympathetic nerve regeneration after myocardial infarction. eLife 2022; 11:e78387. [PMID: 35604022 PMCID: PMC9197393 DOI: 10.7554/elife.78387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/22/2022] [Indexed: 11/13/2022] Open
Abstract
Sympathetic denervation of the heart following ischemia/reperfusion induced myocardial infarction (MI) is sustained by chondroitin sulfate proteoglycans (CSPGs) in the cardiac scar. Denervation predicts risk of sudden cardiac death in humans. Blocking CSPG signaling restores sympathetic axon outgrowth into the cardiac scar, decreasing arrhythmia susceptibility. Axon growth inhibition by CSPGs can depend on the sulfation status of the glycosaminoglycan (CS-GAG) side chains. Tandem sulfation of CS-GAGs at the 4th (4S) and 6th (6S) positions of n-acetyl-galactosamine inhibits outgrowth in several types of central neurons, but we don't know if sulfation is similarly critical during peripheral nerve regeneration. We asked if CSPG sulfation prevented sympathetic axon outgrowth after MI. Reducing 4S with the 4-sulfatase enzyme Arylsulfatase-B (ARSB) enhanced outgrowth of dissociated rat sympathetic neurons over CSPGs. Likewise, reducing 4S with ARSB restored axon outgrowth from mouse sympathetic ganglia co-cultured with cardiac scar tissue. We quantified enzymes responsible for adding and removing sulfation, and found that CHST15 (4S dependent 6-sulfotransferase) was upregulated, and ARSB was downregulated after MI. This suggests a mechanism for production and maintenance of sulfated CSPGs in the cardiac scar. We decreased 4S,6S CS-GAGs in vivo by transient siRNA knockdown of Chst15 after MI, and found that reducing 4S,6S restored tyrosine hydroxylase (TH) positive sympathetic nerve fibers in the cardiac scar. Reinnervation reduced isoproterenol induced arrhythmias. Our results suggest that modulating CSPG-sulfation after MI may be a therapeutic target to promote sympathetic nerve regeneration in the cardiac scar and reduce post-MI cardiac arrhythmias.
Collapse
Affiliation(s)
- Matthew R Blake
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science UniversityPortlandUnited States
| | - Diana C Parrish
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science UniversityPortlandUnited States
| | - Melanie A Staffenson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science UniversityPortlandUnited States
| | - Shanice Sueda
- Portland State University EXITO Scholars Program, Portland State UniversityPortlandUnited States
| | - William R Woodward
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science UniversityPortlandUnited States
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science UniversityPortlandUnited States
| |
Collapse
|
18
|
Habuchi O. Functions of chondroitin/dermatan sulfate containing GalNAc4,6-disulfate. Glycobiology 2022; 32:664-678. [PMID: 35552694 DOI: 10.1093/glycob/cwac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) containing GalNAc4,6-disulfate (GalNAc4S6S) were initially discovered in marine animals. Following the discovery, these glycosaminoglycans have been found in various animals including human. In the biosynthesis of CS/DS containing GalNAc4S6S, three groups of sulfotransferases are involved; chondroitin 4-sulfotransferases (C4STs), dermatan 4-sulfotransferase-1 (D4ST-1) and GalNAc 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST). GalNAc4S-6ST and its products have been shown to play important roles in the abnormal pathological conditions such as central nervous system injury, cancer development, abnormal tissue fibrosis, development of osteoporosis, and infection with viruses or nematodes. CS/DS containing GalNAc4S6S has been shown to increase with the functional differentiation of mast cells, macrophages and neutrophils. Genetic approaches using knockout or knockdown of GalNAc4S-6ST, blocking of the epitopes containing GalNAc4S6S by specific antibodies and chemical technology that enabled the synthesis of oligosaccharides with defined sulfation patterns have been applied successfully to these investigations. These studies contributed significantly to the basic understanding of the functional roles of CS/DS containing GalNAc4S6S in various abnormal conditions, and appear to provide promising clues to the development of possible measures to treat them.
Collapse
Affiliation(s)
- Osami Habuchi
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi 480-1195, Japan.,Department of Chemistry, Aichi University of Education, Igayacho, Kariya, Aichi 448-8542, Japan
| |
Collapse
|
19
|
Rawat PS, Seyed Hameed AS, Meng X, Liu W. Utilization of glycosaminoglycans by the human gut microbiota: participating bacteria and their enzymatic machineries. Gut Microbes 2022; 14:2068367. [PMID: 35482895 PMCID: PMC9067506 DOI: 10.1080/19490976.2022.2068367] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glycosaminoglycans (GAGs) are consistently present in the human colon in free forms and as part of proteoglycans. Their utilization is critical for the colonization and proliferation of gut bacteria and also the health of hosts. Hence, it is essential to determine the GAG-degrading members of the gut bacteria and their enzymatic machinery for GAG depolymerization. In this review, we have summarized the reported GAG utilizers from Bacteroides and presented their polysaccharide utilization loci (PUL) and related enzymatic machineries for the degradation of chondroitin and heparin/heparan sulfate. Although similar comprehensive knowledge of GAG degradation is not available for other gut phyla, we have specified recently isolated GAG degraders from gut Firmicutes and Proteobacteria, and analyzed their genomes for the presence of putative GAG PULs. Deciphering the precise GAG utilization mechanism for various phyla will augment our understanding of their effects on human health.
Collapse
Affiliation(s)
- Parkash Singh Rawat
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao266237, P. R. China
| | - Ahkam Saddam Seyed Hameed
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao266237, P. R. China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao266237, P. R. China,CONTACT Xiangfeng Meng State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao266237, P. R. China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao266237, P. R. China
| |
Collapse
|
20
|
Watanabe I. Properties of Monoclonal Antibodies Recognizing Chondroitin Sulfate E. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2120.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Watanabe I. Properties of Monoclonal Antibodies Recognizing Chondroitin Sulfate E. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2120.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Sun Y, Xiao F, Sun H, Zhang L, Chen W, Du L, Sun C, Zhang W, Xu Q, Miao C, Wang L. Transcriptome analysis of tumor-derived mesenchymal progenitor cells shows that CHST15 is a fibrosis regulator of retroperitoneal liposarcoma. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:360. [PMID: 35434026 PMCID: PMC9011283 DOI: 10.21037/atm-22-963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
Background Retroperitoneal liposarcoma (RPLS) is a rare, biologically heterogeneous tumor with distinct clinical characteristics, such as frequent local recurrence, repeated relapse, and rare distant metastasis. No effective targeted therapy is available for RPLS. Here, we aim to determine the pathological functions and therapeutic potential of carbohydrate sulfotransferase 15 (CHST15) in RPLS. Methods Tumor-derived mesenchymal progenitor cells (MPCs) and normal adipose derived mesenchymal stem cells (MSCs) were obtained from patients with RPLS. MPCs and MSCs were isolated and characterized based on surface markers, proliferation, and differentiation using flow cytometry and molecular staining. Transcriptome analysis was performed to decipher expression profile of differentiation-related genes in 3 paired MSCs and MPCs. Further confirmation of genes were performed using quantitative real-time polymerase chain reaction (qRT-PCR). Plasmids overexpressing CHST15 were transfected into adipose MSCs to examine fibrosis-related gene expression at mRNA level by real-time PCR. Results The tumor stromal-derived MPCs expressed CD105, CD73, and CD90, and exhibited osteogenic and adipogenic differentiation potential in vitro. The proliferation of tumor-derived MPCs was significantly lower than that of normal adipose-derived MSCs (P<0.001). Transcriptome analysis revealed upregulation of IL-7R, ALPL, PKNOX2, and CHST15 in tumor-derived MPCs. CHST15 was highly expressed in tumor-derived MPCs (P<0.001). CHST15 mediated fibrosis-related FGF2 gene expression in MSCs (P<0.05) and MPCs (P<0.001). Conclusions CHST15 is upregulated in tumor-derived MPCs and regulates fibrosis in RPLS. This provides clues for development of novel therapeutic strategies by targeting CHST15-induced MPC activation in RPLS.
Collapse
Affiliation(s)
- Yang Sun
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.,Laboratory of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fengjun Xiao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Huiyan Sun
- Yanda Medical Research Institute, Hebei Yanda Hospital, Sanhe, China
| | - Lin Zhang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Weida Chen
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Beijing, China
| | - Li Du
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Chengfeng Sun
- Yanda Medical Research Institute, Hebei Yanda Hospital, Sanhe, China
| | - Weiyuan Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.,Laboratory of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining, China
| | - Chengli Miao
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Beijing, China
| | - Lisheng Wang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Yamamoto-Furusho JK, Parra-Holguín NN. Emerging therapeutic options in inflammatory bowel disease. World J Gastroenterol 2021; 27:8242-8261. [PMID: 35068868 PMCID: PMC8717021 DOI: 10.3748/wjg.v27.i48.8242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease that requires chronic treatment throughout the evolution of the disease, with a complex physiopathology that entails great challenges for the development of new and specific treatments for ulcerative colitis and Crohn´s disease. The anti-tumor necrosis factor alpha therapy has impacted the clinical course of IBD in those patients who do not respond to conventional treatment, so there is a need to develop new therapies and markers of treatment response. Various pathways involved in the development of the disease are known and the new therapies have focused on blocking the inflammatory process at the gastrointestinal level by oral, intravenous, subcutaneous, and topical route. All these new therapies can lead to more personalized treatments with higher success rates and fewer relapses. These treatments have not only focused on clinical remission, but also on achieving macroscopic changes at the endoscopic level and microscopic changes by achieving mucosal healing. These treatments are mainly based on modifying signaling pathways, by blocking receptors or ligands, reducing cell migration and maintaining the integrity of the epithelial barrier. Therefore, this review presents the efficacy and safety of the new treatments that are currently under study and the advances that have been made in this area in recent years.
Collapse
Affiliation(s)
- Jesus K Yamamoto-Furusho
- Gastroenterology Unit, Inflammatory Bowel Disease Clinic, Instituto Nacional de Ciencias Medicas y Nutricion, Mexico City 14080, Mexico
| | - Norma N Parra-Holguín
- Gastroenterology Unit, Inflammatory Bowel Disease Clinic, Instituto Nacional de Ciencias Medicas y Nutricion, Mexico City 14080, Mexico
| |
Collapse
|
24
|
Abstract
Mouse models are essential for investigation of underlying disease mechanisms that drive intestinal fibrosis, as well as assessment of potential therapeutic approaches to either prevent or resolve fibrosis. Here we describe several common mouse models of intestinal inflammation and fibrosis, including chemically driven colitis models, a bacterially triggered colitis model, and spontaneous intestinal inflammation in genetically susceptible mouse strains. Detailed protocols are provided for dextran sodium sulfate (DSS) colitis, 2,4,6-trinitro-benzene sulfonic acid (TNBS) colitis, adherent-invasive Escherichia coli (AIEC)-triggered colitis, the interleukin-10 knockout (IL-10KO) mouse model of spontaneous colitis, and the SAMP/YitFc model of spontaneous ileocolitis.
Collapse
|
25
|
De A, Chen W, Li H, Wright JR, Lamendella R, Lukin DJ, Szymczak WA, Sun K, Kelly L, Ghosh S, Kearns DB, He Z, Jobin C, Luo X, Byju A, Chatterjee S, San Yeoh B, Vijay-Kumar M, Tang JX, Prajapati M, Bartnikas TB, Mani S. Bacterial Swarmers Enriched During Intestinal Stress Ameliorate Damage. Gastroenterology 2021; 161:211-224. [PMID: 33741315 PMCID: PMC8601393 DOI: 10.1053/j.gastro.2021.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Bacterial swarming, a collective movement on a surface, has rarely been associated with human pathophysiology. This study aims to define a role for bacterial swarmers in amelioration of intestinal stress. METHODS We developed a polymicrobial plate agar assay to detect swarming and screened mice and humans with intestinal stress and inflammation. From chemically induced colitis in mice, as well as humans with inflammatory bowel disease, we developed techniques to isolate the dominant swarmers. We developed swarm-deficient but growth and swim-competent mutant bacteria as isogenic controls. We performed bacterial reinoculation studies in mice with colitis, fecal 16S, and meta-transcriptomic analyses, as well as in vitro microbial interaction studies. RESULTS We show that bacterial swarmers are highly predictive of intestinal stress in mice and humans. We isolated a novel Enterobacter swarming strain, SM3, from mouse feces. SM3 and other known commensal swarmers, in contrast to their mutant strains, abrogated intestinal inflammation in mice. Treatment of colitic mice with SM3, but not its mutants, enriched beneficial fecal anaerobes belonging to the family of Bacteroidales S24-7. We observed SM3 swarming associated pathways in the in vivo fecal meta-transcriptomes. In vitro growth of S24-7 was enriched in presence of SM3 or its mutants; however, because SM3, but not mutants, induced S24-7 in vivo, we concluded that swarming plays an essential role in disseminating SM3 in vivo. CONCLUSIONS Overall, our work identified a new but counterintuitive paradigm in which intestinal stress allows for the emergence of swarming bacteria; however, these bacteria act to heal intestinal inflammation.
Collapse
Affiliation(s)
- Arpan De
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Weijie Chen
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York; Department of Physics, Brown University, Providence, Rhode Island
| | - Hao Li
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | | | | | - Dana J Lukin
- Jill Roberts Center for Inflammatory Bowel Disease, New York, New York
| | - Wendy A Szymczak
- Department of Pathology, Montefiore Medical Center, Bronx, New York
| | - Katherine Sun
- Department of Pathology, New York University Langone Health, New York, New York
| | - Libusha Kelly
- Department of Systems & Computational Biology, and Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Subho Ghosh
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Daniel B Kearns
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana
| | - Zhen He
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Xiaoping Luo
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Arjun Byju
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Shirshendu Chatterjee
- Department of Mathematics, The City University of New York, City College & Graduate Center, New York, New York
| | - Beng San Yeoh
- The University of Toledo-Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo, College of Medicine & Life Sciences, Toledo, Ohio
| | - Matam Vijay-Kumar
- The University of Toledo-Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo, College of Medicine & Life Sciences, Toledo, Ohio
| | - Jay X Tang
- Department of Physics, Brown University, Providence, Rhode Island
| | - Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Thomas B Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Sridhar Mani
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
26
|
Kai Y, Yoneyama H, Yoshikawa M, Kimura H, Muro S. Chondroitin sulfate in tissue remodeling: Therapeutic implications for pulmonary fibrosis. Respir Investig 2021; 59:576-588. [PMID: 34176780 DOI: 10.1016/j.resinv.2021.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Fibrosis is characterized by the deposition of extracellular matrix (ECM) proteins, while idiopathic pulmonary fibrosis (IPF) is a chronic respiratory disease characterized by dysregulated tissue repair and remodeling. Anti-inflammatory drugs, such as corticosteroids and immunosuppressants, and antifibrotic drugs, like pirfenidone and nintedanib, are used in IPF therapy. However, their limited effects suggest that single mediators are inadequate to control IPF. Therefore, therapies targeting the multifactorial cascades that regulate tissue remodeling in fibrosis could provide alternate solutions. ECM molecules have been shown to modulate various biological functions beyond tissue structure support and thus, could be developed into novel therapeutic targets for modulating tissue remodeling. Among ECM molecules, glycosaminoglycans (GAG) are linear polysaccharides consisting of repeated disaccharides, which regulate cell-matrix interactions. Chondroitin sulfate (CS), one of the major GAGs, binds to multifactorial mediators in the ECM and reportedly participates in tissue remodeling in various diseases; however, to date, its biological functions have drawn considerably less attention than other GAGs, like heparan sulfate. In the present review, we discuss the involvement and regulation of CS in tissue remodeling and pulmonary fibrotic diseases, its role in pulmonary fibrosis, and the therapeutic approaches targeting CS.
Collapse
Affiliation(s)
- Yoshiro Kai
- Department of Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara, 634-8522, Japan; Department of Respiratory Medicine, Minami-Nara General Medical Center, 8-1 Fukugami, Oyodo-cho, Yoshino-gun, Nara, 638-8551, Japan.
| | - Hiroyuki Yoneyama
- TME Therapeutics Inc., 2-16-1 Higashi-shinbashi, Minato-ku, Tokyo, 105-0021, Japan.
| | - Masanori Yoshikawa
- Department of Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara, 634-8522, Japan.
| | - Hiroshi Kimura
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose-city, Tokyo, 204-8522, Japan.
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara, 634-8522, Japan.
| |
Collapse
|
27
|
Lu H, Zhang J, Jiang Z, Zhang M, Wang T, Zhao H, Zeng P. Detection of Genetic Overlap Between Rheumatoid Arthritis and Systemic Lupus Erythematosus Using GWAS Summary Statistics. Front Genet 2021; 12:656545. [PMID: 33815486 PMCID: PMC8012913 DOI: 10.3389/fgene.2021.656545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/01/2021] [Indexed: 01/04/2023] Open
Abstract
Background Clinical and epidemiological studies have suggested systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are comorbidities and common genetic etiologies can partly explain such coexistence. However, shared genetic determinations underlying the two diseases remain largely unknown. Methods Our analysis relied on summary statistics available from genome-wide association studies of SLE (N = 23,210) and RA (N = 58,284). We first evaluated the genetic correlation between RA and SLE through the linkage disequilibrium score regression (LDSC). Then, we performed a multiple-tissue eQTL (expression quantitative trait loci) weighted integrative analysis for each of the two diseases and aggregated association evidence across these tissues via the recently proposed harmonic mean P-value (HMP) combination strategy, which can produce a single well-calibrated P-value for correlated test statistics. Afterwards, we conducted the pleiotropy-informed association using conjunction conditional FDR (ccFDR) to identify potential pleiotropic genes associated with both RA and SLE. Results We found there existed a significant positive genetic correlation (rg = 0.404, P = 6.01E-10) via LDSC between RA and SLE. Based on the multiple-tissue eQTL weighted integrative analysis and the HMP combination across various tissues, we discovered 14 potential pleiotropic genes by ccFDR, among which four were likely newly novel genes (i.e., INPP5B, OR5K2, RP11-2C24.5, and CTD-3105H18.4). The SNP effect sizes of these pleiotropic genes were typically positively dependent, with an average correlation of 0.579. Functionally, these genes were implicated in multiple auto-immune relevant pathways such as inositol phosphate metabolic process, membrane and glucagon signaling pathway. Conclusion This study reveals common genetic components between RA and SLE and provides candidate associated loci for understanding of molecular mechanism underlying the comorbidity of the two diseases.
Collapse
Affiliation(s)
- Haojie Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jinhui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Zhou Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Meng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ting Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Huashuo Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
28
|
Bhattacharyya S, Feferman L, Han X, Xia K, Zhang F, Linhardt RJ, Tobacman JK. Increased CHST15 follows decline in arylsulfatase B (ARSB) and disinhibition of non-canonical WNT signaling: potential impact on epithelial and mesenchymal identity. Oncotarget 2020; 11:2327-2344. [PMID: 32595831 PMCID: PMC7299535 DOI: 10.18632/oncotarget.27634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Expression of CHST15 (carbohydrate sulfotransferase 15; chondroitin 4-sulfate-6-sulfotransferase; BRAG), the sulfotransferase enzyme that adds 6-sulfate to chondroitin 4-sulfate (C4S) to make chondroitin 4,6-disulfate (chondroitin sulfate E, CSE), was increased in malignant prostate epithelium obtained by laser capture microdissection and following arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) silencing in human prostate epithelial cells. Experiments in normal and malignant human prostate epithelial and stromal cells and tissues, in HepG2 cells, and in the ARSB-null mouse were performed to determine the pathway by which CHST15 expression is up-regulated when ARSB expression is reduced. Effects of Wnt-containing prostate stromal cell spent media and selective inhibitors of WNT, JNK, p38, SHP2, β-catenin, Rho, and Rac-1 signaling pathways were determined. Activation of WNT signaling followed declines in ARSB and Dickkopf WNT Signaling Pathway Inhibitor (DKK)3 and was required for increased CHST15 expression. The increase in expression of CHST15 followed activation of non-canonical WNT signaling and involved Wnt3A, Rac-1 GTPase, phospho-p38 MAPK, and nuclear DNA-bound GATA-3. Inhibition of JNK, Sp1, β-catenin nuclear translocation, or Rho kinase had no effect. Consistent with higher expression of CHST15 in prostate epithelium, disaccharide analysis showed higher levels of CSE and chondroitin 6-sulfate (C6S) disaccharides in prostate epithelial cells. In contrast, chondroitin 4-sulfate (C4S) disaccharides were greater in prostate stromal cells. CSE may contribute to increased C4S in malignant epithelium when GALNS (N-aceytylgalactosamine-6-sulfate sulfatase) is increased and ARSB is reduced. These effects increase chondroitin 4-sulfates and reduce chondroitin 6-sulfates, consistent with enhanced stromal characteristics and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VAMC, Chicago, IL, USA
| | - Leo Feferman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VAMC, Chicago, IL, USA
| | - Xiaorui Han
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Joanne K Tobacman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VAMC, Chicago, IL, USA
| |
Collapse
|
29
|
Marafini I, Monteleone G. Therapeutic Oligonucleotides for Patients with Inflammatory Bowel Diseases. Biologics 2020; 14:47-51. [PMID: 32606588 PMCID: PMC7305016 DOI: 10.2147/btt.s257638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/30/2020] [Indexed: 12/19/2022]
Abstract
Introduction The better understanding of the molecular mechanisms, which drive the pathological process in the gut of patients with Crohn's disease (CD) and patients with ulcerative colitis (UC), the major forms of inflammatory bowel diseases (IBD) in humans, has facilitated the development of novel therapeutic compounds. Among these, antisense oligonucleotides (ASOs) have been used to inhibit the expression of molecules, which sustain the IBD-associated mucosal inflammation. Areas Covered In this short review, we summarize experimental and clinical data on the use of ASOs in IBD. Expert Opinion Preclinical work indicates that the modulation of specific inflammatory pathways through the use of ASOs is highly effective and associates with low risk of adverse events. Initial clinical studies have confirmed the benefit of some ASOs even though no compound has yet reached the market. Further experimentation is warranted to establish the optimal route of administration for each ASO, ascertain whether and how long ASOs maintain their activity following administration, and identify which patient can benefit from specific ASO treatment.
Collapse
Affiliation(s)
- Irene Marafini
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
30
|
Zhao JF, Ling FM, Li JR, Chen YD, Huang L, Zhu LR. Role of non-inflammatory factors in intestinal fibrosis. J Dig Dis 2020; 21:315-318. [PMID: 32406603 DOI: 10.1111/1751-2980.12883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Intestinal fibrosis is a common complication of inflammatory bowel disease (IBD), resulting in strictures and ultimately obstruction, which is a significant clinical problem. Fibrosis is mainly triggered by local chronic inflammation and occurs when excessive extracellular matrix deposition is caused by activated mesenchymal cells. Despite the advance of anti-inflammatory therapies in IBD, the incidence and preventive strategies of intestinal fibrosis and strictures in IBD have not significantly changed over time. This shows that inflammation is necessary for fibrosis, but it does not necessarily affect the fibrotic progression. This review summarizes current knowledge about the non-inflammatory mechanisms implicated in the gut fibrotic process of IBD, which may pave the way for new mechanisms and anti-fibrotic therapies.
Collapse
Affiliation(s)
- Jin Fang Zhao
- Comprehensive AIDS Research Center and Research Center for Public Health, School of Medicine, Tsinghua University, Beijing, China.,Research Center for Biological Therapy, Beijing Institute of Infectious Diseases, Beijing, China
| | - Fang Mei Ling
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jun Rong Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yi Dong Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Liang Huang
- Division of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Liang Ru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
31
|
Wang X, Cheng G, Zhang T, Deng L, Xu K, Xu X, Wang W, Zhou Z, Feng Q, Chen D, Bi N, Wang L. CHST15 promotes the proliferation of TE‑1 cells via multiple pathways in esophageal cancer. Oncol Rep 2019; 43:75-86. [PMID: 31746400 PMCID: PMC6908928 DOI: 10.3892/or.2019.7395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common type of esophageal cancer and is prevalent worldwide. Understanding the mechanisms underlying its formation and the search for more effective therapeutic strategies are critical due to the occurrence of chemotherapeutic drug resistance. The aim of the present study was to determine the functional relevance and therapeutic potential of carbohydrate sulfotransferase 15 (CHST15) in ESCC. CHST15 levels were measured in different ESCC cell lines and evaluated in ESCC tissues using tissue chip immunohistochemistry. Cell growth and apoptosis assays, 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assays, and clonogenic assays were conducted using TE‑1 cells and lenti‑shCHST15 virus constructs were used to investigate the function of CHST15 in cell proliferation and apoptosis. mRNA microarray analysis was performed to determine the underlying mechanism of CHST15 regulation in TE‑1 cell proliferation and apoptosis. The results showed that knockdown of CHST15 inhibited TE‑1 cell growth and proliferation, but induced cell apoptosis. CHST15 was more frequently detected in ESCC tissue compared with that in normal esophageal tissue. Microarray data analysis indicated that the inhibition of cell proliferation and activation of cell apoptosis in CHST15‑knockdown cells may be caused by altered CHST15/ILKAP/CCND1 and CHST15/RABL6/PMAIP1 signaling axes, respectively.
Collapse
Affiliation(s)
- Xin Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Guowei Cheng
- Department of Radiotherapy, Huanxing Tumor Hospital, Beijing 100023, P.R. China
| | - Tao Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Lei Deng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Kunpeng Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xin Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wenqing Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Zongmei Zhou
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Qinfu Feng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Dongfu Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Luhua Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| |
Collapse
|
32
|
Matsuda Y, Fujii Y, Matsukawa M, Ishiwata T, Nishimura M, Arai T. Overexpression of carbohydrate sulfotransferase 15 in pancreatic cancer stroma is associated with worse prognosis. Oncol Lett 2019; 18:4100-4105. [PMID: 31516610 PMCID: PMC6732957 DOI: 10.3892/ol.2019.10764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
Carbohydrate sulfotransferase 15 (CHST15) synthesizes matrix proteoglycan that regulates various pathogenic mediators and contributes to tissue remodeling and fibrosis during injury. CHST15 has been reported to promote tumor growth and invasion in various types of cancer. Our previous study reported the safety and efficacy of EUS-guided fine-needle injection (EUS-FNI) of STNM01, a double-stranded RNA oligonucleotide that specifically represses CHST15, for use in patients with pancreatic cancer. The present study aimed to determine the expression and clinicopathological characteristics of CHST15 in pancreatic cancer. Immunohistochemical staining was performed for CHST15 using pancreatic tissues from 64 patients (28 males and 36 females; age, 69.0±9.6 years) with pancreatic cancer who underwent surgery. For the evaluation of fibrosis, two categories were defined (mature and immature), based on the existence of collagen, myxoid stroma and fibroblasts, using hematoxylin and eosin specimens. The positive percentage of CHST15 was quantified, patients were divided into two groups according to high and low CHST15 expression in both the cancer and stroma tissues, and the association between CHST15 expression in cancer cells and the stroma was analyzed. Additionally, the present study analyzed the association between CHST15 expression and clinicopathological information, including overall and disease-free survival. The expression levels of CHST15 were detected in the cytoplasm of pancreatic cancer cells and fibroblasts in the cancer stroma. CHST15 expression in cancer cells was not identified to be associated with overall survival (P=0.52). However, patients with high CHST15 expression in the stroma exhibited worse overall survival compared with patients with low CHST15 expression (P=0.02). CHST15 expression in the stroma exhibited a positive association with that in cancer cells (P=0.01). High CHST15 expression in the stroma group was associated with a higher incidence of immature fibrosis (P=0.02) compared with mature fibrosis. CHST15 expression in cancer cells was associated with Union for International Cancer Control stage (P=0.02) and invasive front. Age and sex were not associated with CHST15 expression. The present study revealed that overexpression of CHST15 in stroma was associated with worse overall survival and immature fibrosis. Overexpression of CHST15 in cancer cells was associated with tumor stage. These results suggested that targeting therapy for CHST15 may be useful for stroma fibroblasts and cancer cells.
Collapse
Affiliation(s)
- Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Itabashi, Tokyo 173-0015, Japan.,Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita, Kagawa 761-0793, Japan
| | - Yuko Fujii
- Department of Endoscopy, Tokyo Metropolitan Geriatric Hospital, Itabashi, Tokyo 173-0015, Japan
| | - Miho Matsukawa
- Department of Endoscopy, Tokyo Metropolitan Geriatric Hospital, Itabashi, Tokyo 173-0015, Japan
| | - Toshiyuki Ishiwata
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Makoto Nishimura
- Department of Endoscopy, Tokyo Metropolitan Geriatric Hospital, Itabashi, Tokyo 173-0015, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Itabashi, Tokyo 173-0015, Japan
| |
Collapse
|
33
|
Scarozza P, Schmitt H, Monteleone G, Neurath MF, Atreya R. Oligonucleotides-A Novel Promising Therapeutic Option for IBD. Front Pharmacol 2019; 10:314. [PMID: 31068803 PMCID: PMC6491809 DOI: 10.3389/fphar.2019.00314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammatory Bowel Diseases (IBD), whose denomination comprehends Crohn's Disease (CD) and Ulcerative Colitis (UC), are intestinal chronic diseases that often require lifelong medical therapy. In the last two decades monoclonal antibodies against the cytokine TNF have become integral parts in the treatment of IBD patients, however there are unwanted side-effects and one third of patients show primary non-response while another subgroup loses response over time. Finding novel drugs which could act as therapies against precise pro-inflammatory molecular targets to avoid unwanted systemic side effects and additionally the process of immunization, represents an important aim for subsequent therapeutic approaches. Oligonucleotide based therapies represent a promising novel concept for the treatment of IBD. The molecular action of oligonucleotides ranges from inhibition of the translational process of mRNA transcripts of pro-inflammatory molecules, to mimicking bacterial DNA which can activate cellular targets for immunomodulation. Alicaforsen, selectively targets ICAM-1 mRNA. ICAM-1 is an adhesion molecule which is upregulated on endothelial cells during IBD, thereby mediating the adhesion and migration of leucocytes from blood to sites of active inflammation. In CD parenteral application of alicaforsen did not show therapeutic efficacy in phase II trials, but it demonstrated an improved efficacy as a topical enema in distal UC. Topical application of alicaforsen might represent a therapeutic perspective for refractory pouchitis as well. SMAD7 is a protein that inhibits the signaling of TGFβ, which is the mainstay of a regulatory counterpart in cellular immune responses. An antisense oligonucleotide against SMAD7 mRNA (mongersen) demonstrated pre-clinical and phase II efficacy in CD, but a phase III clinical trial was stopped due to lack of efficacy. Cobitolimod is a single strand oligonucleotide, which mimics bacterial DNA as its CpG dinucleotide sequences can be recognized by the Toll-like receptor 9 on different immune cells thereby causing induction of different cytokines, for example IL10 and IFNα. Topical application of cobitolimod was studied in UC patients. We will also discuss two other novel oligonucleotides which act on the GATA3 transcription factor (SB012) and on carbohydrate sulfotransferase 15 (STNM01), which could both represent novel promising therapeutic options for the treatment of UC.
Collapse
Affiliation(s)
- Patrizio Scarozza
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
- Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Heike Schmitt
- Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Giovanni Monteleone
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
| | - Markus F. Neurath
- Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
34
|
Di Fusco D, Dinallo V, Marafini I, Figliuzzi MM, Romano B, Monteleone G. Antisense Oligonucleotide: Basic Concepts and Therapeutic Application in Inflammatory Bowel Disease. Front Pharmacol 2019; 10:305. [PMID: 30983999 PMCID: PMC6450224 DOI: 10.3389/fphar.2019.00305] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/12/2019] [Indexed: 12/17/2022] Open
Abstract
Several molecular technologies aimed at regulating gene expression that have been recently developed as a strategy to combat inflammatory and neoplastic diseases. Among these, antisense technology is a specific, rapid, and potentially high-throughput approach for inhibiting gene expression through recognition of cellular RNAs. Advances in the understanding of the molecular mechanisms that drive tissue damage in different inflammatory diseases, including Crohn's disease (CD) and ulcerative colitis (UC), the two major inflammatory bowel diseases (IBDs) in humans, have facilitated the identification of novel druggable targets and offered interesting therapeutic perspectives for the treatment of patients. This short review provides a comprehensive understanding of the basic concepts underlying the mechanism of action of the oligonucleotide therapeutics, and summarizes the available pre-clinical and clinical data for oligonucleotide-based therapy in IBD.
Collapse
Affiliation(s)
- Davide Di Fusco
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
| | - Vincenzo Dinallo
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
| | - Michele M Figliuzzi
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
| | - Barbara Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
| |
Collapse
|
35
|
Abstract
The growing understanding of the immunopathogenesis of inflammatory bowel diseases (IBDs) has contributed to the identification of new targets whose expression/activity can be modulated for therapeutic purposes. Several approaches have been employed to develop selective pharmaceutical compounds; among these, antisense oligonucleotides (ASOs) or synthetic oligonucleotides represent a valid option for inhibiting or enhancing, respectively, the expression/function of molecules that have been implicated in the control of IBD-related inflammation. In this context, data have been accumulated for the following compounds: alicaforsen, an ASO targeting intercellular adhesion molecule-1, a transmembrane glycoprotein that regulates rolling and adhesion of leukocytes to inflamed intestine; DIMS0150 and BL-7040, two oligonucleotides that enhance Toll-like receptor-9 activity; Mongersen, an ASO that inhibits Smad7, thereby restoring transforming growth factor-β1/Smad-associated signaling; STNM01, a double-stranded RNA oligonucleotide silencing carbohydrate sulfotransferase, an enzyme involved in fibrogenic processes, and hgd40, a specific DNAzyme inhibiting expression of the transcription factor GATA3. In this article, we review the rationale and the available data relative to the use of these agents in IBD. Although pre-clinical and phase II trials in IBD support the use of oligonucleotide-based therapies for treating the pathogenic process occurring in the gut of patients with these disorders, further work is needed to establish whether and which patients can benefit from specific ASOs and identify biomarkers that could help optimize treatment.
Collapse
|
36
|
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract encompassing two main clinical entities: Crohn's disease (CD) and ulcerative colitis (UC). These disorders are characterized by various grades of tissue damage and development of local complications and extra-intestinal manifestations. The cause of IBD remains unknown but accumulating evidence indicates that both CD and UC arise in genetically predisposed individuals as a result of the action of multiple environmental factors, which ultimately trigger excessive and poorly controlled immune response against antigens of the luminal flora. Despite this realization, a full understanding of IBD pathogenesis is still out of reach and, consequently, treatment is far from optimal. However, in recent years, several pathways of intestinal damage have been delineated and the improved knowledge has contributed to the development of new therapies. Various approaches have been used to either inhibit the expression and/or function of inflammatory molecules or enhance counter-regulatory mechanisms. This review summarizes the available pre-clinical and clinical data for antisense oligonucleotides and oligonucleotide-based therapy to provide a comprehensive understanding of the rationale and mechanism of action of these compounds in IBD. Key messages Preclinical studies and clinical trials show that antisense oligonucleotide (ASO)-based therapy could be of benefit in inflammatory bowel diseases. ASOs have an excellent safety profile. Technical issues emerged from clinical trials suggest that changes in drug formulation and/or route of administration could improve ASO efficacy.
Collapse
Affiliation(s)
- Irene Marafini
- a Department of Systems Medicine , University of Rome Tor Vergata , Rome, Italy
| | - Giovanni Monteleone
- a Department of Systems Medicine , University of Rome Tor Vergata , Rome, Italy
| |
Collapse
|
37
|
Abstract
Various therapeutic advances have led to a paradigm shift in the clinical management of patients with IBD. The introduction of immunosuppressive (such as azathioprine) and biologic agents (such as TNF blockers) has markedly reduced the need to use corticosteroids for therapy. Furthermore, the α4β7 integrin blocker vedolizumab has been introduced for clinical IBD therapy. Moreover, various new inhibitors of cytokines (for example, IL-6-IL-6R and IL-12-IL-23 blockers or apremilast), modulators of cytokine signalling events (for example, JAK inhibitors or SMAD7 blocker), inhibitors of transcription factors (for example, GATA3 or RORγt) and new anti-adhesion and anti-T-cell-activation and migration strategies (for example, β7 integrin, sphingosine 1-phosphate receptors and MAdCAM1 inhibitors, regulatory T-cell therapy and stem cells) are currently being evaluated in controlled clinical trials. This Review aims to provide a comprehensive overview about current and future therapeutic approaches for IBD therapy. Furthermore, potential mechanisms of action of these therapeutic approaches and their implications for clinical therapy in IBD are discussed.
Collapse
Affiliation(s)
- Markus F Neurath
- Department of Medicine 1, Kussmaul Campus for Medical Research, Ludwig Demling Endoscopy Center of Excellence, Ulmenweg 18, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
38
|
Suzuki K, Yoneyama H. New endoscopic approach of anti-fibrotic therapy for inflammatory bowel disease. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:191. [PMID: 28616406 DOI: 10.21037/atm.2017.03.65] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fibrosis continues to be paid a great attention in not only basic research but also clinical practice, especially for the development of novel therapeutics in various fibrotic diseases. However, there remain several obstacles to translation in developing anti-fibrosis therapy. The present review documents our translational practice from target discovery to first-in-patient studies in the development of anti-fibrosis therapy for inflammatory bowel disease (IBD). First topic is a target selection. We have focused on the target that has an ability to regulate multifactorial cascades of fibrosis. Carbohydrate sulfotransferase 15 (CHST15) synthesizes matrix proteoglycan that regulates various pathogenic mediators and contributes to tissue remodeling during injury. Small interfering RNA (siRNA) targeting CHST15 inhibited activation of fibroblasts in vitro and reduced fibrosis in vivo. Second topic is a clinically feasible application. We established a safe and novel pancolonic delivery of siRNA, which is achieved by direct injection to extracellular matrix (ECM) through endoscope. Third topic is an endpoint for both nonclinical and clinical studies. We have focused on tissue-specific findings for co-existence of fibrosis in ulcerative lesions in IBD and investigated whether the balance of mucosal healing (MH) and fibrosis, which is evaluated by endoscopy and histology respectively, can be used for study endpoints. Phase 1 clinical trial of STNM01, a synthesized CHST15 siRNA, by a single dose endoscopic submucosal injection for non-healer patients with Crohn's disease showed high rates of MH. Analyses of biopsy specimens revealed that STNM01 reduced CHST15 expression at local lesions, repressed pre-existing fibrosis and repaired the damaged crypts. Thus, blockade of multifactorial modulator CHST15 in ECM showed a potential to treat tissue remodeling and skew fibrosis toward mucosal repair. Our practice suggests that target- and tissue-specific findings-based strategy would be a key to translation in developing anti-fibrosis therapy.
Collapse
Affiliation(s)
- Kenji Suzuki
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, Niigata, Japan.,Niigata University Health and Welfare, Niigata, Japan
| | | |
Collapse
|
39
|
Suzuki K, Yokoyama J, Kawauchi Y, Honda Y, Sato H, Aoyagi Y, Terai S, Okazaki K, Suzuki Y, Sameshima Y, Fukushima T, Sugahara K, Atreya R, Neurath MF, Watanabe K, Yoneyama H, Asakura H. Phase 1 Clinical Study of siRNA Targeting Carbohydrate Sulphotransferase 15 in Crohn's Disease Patients with Active Mucosal Lesions. J Crohns Colitis 2017; 11:221-228. [PMID: 27484097 DOI: 10.1093/ecco-jcc/jjw143] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/27/2016] [Accepted: 07/17/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Carbohydrate sulphotransferase 15 [CHST15] is a specific enzyme biosynthesizing chondroitin sulphate E that binds various pathogenic mediators and is known to create local fibrotic lesions. We evaluated the safety of STNM01, a synthetic double-stranded RNA oligonucleotide directed against CHST15, in Crohn's disease [CD] patients whose mucosal lesions were refractory to conventional therapy. METHODS This was a randomized, double-blind, placebo-controlled, concentration-escalation study of STNM01 by a single-dose endoscopic submucosal injection in 18 CD patients. Cohorts of increasing concentration of STNM01 were enrolled sequentially as 2.5nM [n = 3], 25nM [n = 3], and 250nM [n = 3] were applied. A cohort of placebo [n = 3] was included in each concentration. Safety was monitored for 30 days. Pharmacokinetics was monitored for 24h. The changes from baseline in the segmental Simple Endoscopic Score for CD [SES-CD] as well as the histological fibrosis score were evaluated. RESULTS STNM01 was well tolerated and showed no drug-related adverse effects in any cohort of treated patients. There were no detectable plasma concentrations of STNM01 at all measured time points in all treatment groups. Seven of nine subjects who received STNM01 showed reduction in segmental SES-CD at Day 30, when compared with those who received placebo. Histological analyses of biopsy specimens revealed that STNM01 reduced the extent of fibrosis. CONCLUSION Local application of STNM01 is safe and well tolerated in CD patients with active mucosal lesions.
Collapse
Affiliation(s)
- Kenji Suzuki
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, Niigata, Niigata, Japan
| | - Junji Yokoyama
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, Niigata, Niigata, Japan
| | - Yusuke Kawauchi
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, Niigata, Niigata, Japan
| | - Yutaka Honda
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, Niigata, Niigata, Japan
| | - Hiroki Sato
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, Niigata, Niigata, Japan
| | - Yutaka Aoyagi
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, Niigata, Niigata, Japan
| | - Shuji Terai
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, Niigata, Niigata, Japan
| | - Kazuichi Okazaki
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yasuo Suzuki
- Internal Medicine, Toho University, Sakura Medical Center, Sakura, Chiba, Japan
| | | | | | - Kazuyuki Sugahara
- Laboratory of Proteoglycan Signaling and Therapeutics, Hokkaido University, Sapporo, Hokkaido, and Department of Pathobiochemistry, Meijo University, Nagoya, Aichi, Japan
| | - Raja Atreya
- Department of Medicine a, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine a, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kenichi Watanabe
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Science, Niigata, Niigata, Japan
| | | | - Hitoshi Asakura
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, Niigata, Niigata, Japan
| |
Collapse
|
40
|
Silencing of Carbohydrate Sulfotransferase 15 Hinders Murine Pulmonary Fibrosis Development. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 6:163-172. [PMID: 28325283 PMCID: PMC5363499 DOI: 10.1016/j.omtn.2016.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 01/05/2023]
Abstract
Pulmonary fibrosis is a progressive lung disorder characterized by interstitial fibrosis, for which no effective treatments are available. Chondroitin sulfate proteoglycan (CSPG) has been shown to be a mediator, but the specific component of glycosaminoglycan chains of CSPG has not been explored. We show that chondroitin sulfate E-type (CS-E) is involved in fibrogenesis. Small interfering RNA (siRNA) targeting carbohydrate sulfotransferase 15 (CHST15) was designed to inhibit CHST15 mRNA and its product, CS-E. CS-E augments cell contraction and CHST15 siRNA inhibits collagen production. We found that bleomycin treatment increased CHST15 expression in interstitial fibroblasts at day 14. CHST15 siRNA was injected intranasally on days 1, 4, 8, and 11, and CHST15 mRNA was significantly suppressed by day 14. CHST15 siRNA reduced lung CSPG and the grade of fibrosis. CHST15 siRNA repressed the activation of fibroblasts, as evidenced by suppressed expression of α smooth muscle actin (αSMA), connective tissue growth factor (CTGF), lysyl oxidase like 2 (LOXL2), and CC-chemokine ligand 2 (CCL2)/monocyte chemoattractant protein-1 (MCP-1). Inflammatory infiltrates in the bronchoalveolar lavage fluid (BALF) and interstitium were diminished by CHST15 siRNA. These results indicate a pivotal role for CHST15 in fibroblast-mediated lung fibrosis and suggest a possible new therapeutic role for CHST15 siRNA in pulmonary fibrosis.
Collapse
|