1
|
Chaumeau V, Piarroux M, Kulabkeeree T, Sawasdichai S, Inta A, Watthanaworawit W, Nosten F, Piarroux R, Nabet C. Identification of Southeast Asian Anopheles mosquito species using MALDI-TOF mass spectrometry. PLoS One 2024; 19:e0305167. [PMID: 38968228 PMCID: PMC11226003 DOI: 10.1371/journal.pone.0305167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/24/2024] [Indexed: 07/07/2024] Open
Abstract
Malaria elimination in Southeast Asia remains a challenge, underscoring the importance of accurately identifying malaria mosquitoes to understand transmission dynamics and improve vector control. Traditional methods such as morphological identification require extensive training and cannot distinguish between sibling species, while molecular approaches are costly for extensive screening. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a rapid and cost-effective tool for Anopheles species identification, yet its current use is limited to few specialized laboratories. This study aimed to develop and validate an online reference database for MALDI-TOF MS identification of Southeast Asian Anopheles species. The database, constructed using the in-house data analysis pipeline MSI2 (Sorbonne University), comprised 2046 head mass spectra from 209 specimens collected at the Thailand-Myanmar border. Molecular identification via COI and ITS2 DNA barcodes enabled the identification of 20 sensu stricto species and 5 sibling species complexes. The high quality of the mass spectra was demonstrated by a MSI2 median score (min-max) of 61.62 (15.94-77.55) for correct answers, using the best result of four technical replicates of a test panel. Applying an identification threshold of 45, 93.9% (201/214) of the specimens were identified, with 98.5% (198/201) consistency with the molecular taxonomic assignment. In conclusion, MALDI-TOF MS holds promise for malaria mosquito identification and can be scaled up for entomological surveillance in Southeast Asia. The free online sharing of our database on the MSI2 platform (https://msi.happy-dev.fr/) represents an important step towards the broader use of MALDI-TOF MS in malaria vector surveillance.
Collapse
Affiliation(s)
- Victor Chaumeau
- Faculty of Tropical Medicine, Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Mahidol University, Mae Ramat, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Martine Piarroux
- Institut Pierre-Louis d’Epidémiologie et de Santé Publique, Inserm, IPLESP, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Sorbonne Université, Paris, France
| | - Thithiworada Kulabkeeree
- Faculty of Tropical Medicine, Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Mahidol University, Mae Ramat, Thailand
| | - Sunisa Sawasdichai
- Faculty of Tropical Medicine, Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Mahidol University, Mae Ramat, Thailand
| | - Aritsara Inta
- Faculty of Tropical Medicine, Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Mahidol University, Mae Ramat, Thailand
| | - Wanitda Watthanaworawit
- Faculty of Tropical Medicine, Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Mahidol University, Mae Ramat, Thailand
| | - François Nosten
- Faculty of Tropical Medicine, Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Mahidol University, Mae Ramat, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Renaud Piarroux
- Institut Pierre-Louis d’Epidémiologie et de Santé Publique, Inserm, IPLESP, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Sorbonne Université, Paris, France
| | - Cécile Nabet
- Institut Pierre-Louis d’Epidémiologie et de Santé Publique, Inserm, IPLESP, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Sorbonne Université, Paris, France
| |
Collapse
|
2
|
Nguetsa GC, Elanga-Ndille E, Essangui Same EG, Nganso Keptchouang T, Mandeng SE, Ekoko Eyisap W, Binyang JA, Fogang B, Nouage L, Piameu M, Ayong L, Etang J, Wanji S, Eboumbou Moukoko CE. Utility of plasma anti-gSG6-P1 IgG levels in determining changes in Anopheles gambiae bite rates in a rural area of Cameroon. Sci Rep 2024; 14:14294. [PMID: 38906949 PMCID: PMC11192751 DOI: 10.1038/s41598-024-58337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/27/2024] [Indexed: 06/23/2024] Open
Abstract
The applicability of the specific human IgG antibody response to Anopheles gambiae salivary Gland Protein-6 peptide 1 (gSG6-P1 salivary peptide) as a biomarker able to distinguish the level of exposure to mosquito bites according to seasonal variations has not yet been evaluated in Central African regions. The study aimed to provide the first reliable data on the IgG anti-gSG6-P1 response in rural area in Cameroon according to the dry- and rainy-season. Between May and December 2020, dry blood samples were collected from people living in the Bankeng village in the forest area of the Centre region of Cameroon. Malaria infection was determined by thick-blood smear microscopy and multiplex PCR. The level of IgG anti-gSG6-P1 response, was assessed by enzyme-linked immunosorbent assay. Anopheles density and aggressiveness were assessed using human landing catches. The prevalence of malaria infection remains significantly higher in the rainy season than in the dry season (77.57% vs 61.44%; p = 0.0001). The specific anti-gSG6-P1 IgG response could be detected in individuals exposed to few mosquito bites and showed inter-individual heterogeneity even when living in the same exposure area. In both seasons, the level of anti-gSG6-P1 IgG response was not significantly different between Plasmodium infected and non-infected individuals. Mosquito bites were more aggressive in the rainy season compared to the dry season (human biting rate-HBR of 15.05 b/p/n vs 1.5 b/p/n) where mosquito density was very low. Infected mosquitoes were found only during the rainy season (sporozoite rate = 10.63% and entomological inoculation rate-EIR = 1.42 ib/p/n). The level of IgG anti-gSG6-P1 response was significantly higher in the rainy season and correlated with HBR (p ˂ 0.0001). This study highlights the high heterogeneity of individual's exposure to the Anopheles gambiae s.l vector bites depending on the transmission season in the same area. These findings reinforce the usefulness of the anti-gSG6-P1 IgG response as an accurate immunological biomarker for detecting individual exposure to Anopheles gambiae s.l. bites during the low risk period of malaria transmission in rural areas and for the differentiating the level of exposure to mosquitoes.
Collapse
Affiliation(s)
- Glwadys Cheteug Nguetsa
- Malaria Research Unit, Centre Pasteur Cameroon, P.O. Box 1274, Yaoundé, Cameroon.
- Department of Microbiology and Parasitology, Faculty of Sciences, The University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Emmanuel Elanga-Ndille
- Department of Animal Biology, Faculty of Sciences, The University of Dschang, P.O. Box 96, Dschang, Cameroon
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
| | - Estelle Géraldine Essangui Same
- Malaria Research Unit, Centre Pasteur Cameroon, P.O. Box 1274, Yaoundé, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, P.O. Box 2701, Douala, Cameroon
| | - Tatiana Nganso Keptchouang
- Malaria Research Unit, Centre Pasteur Cameroon, P.O. Box 1274, Yaoundé, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, P.O. Box 2701, Douala, Cameroon
| | - Stanilas Elysée Mandeng
- Department of Animal Biology and Physiology, Faculty of Sciences, The University of Yaoundé, P.O. Box 337, Yaounde 1, Cameroon
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Wolfgang Ekoko Eyisap
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Jérome Achille Binyang
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Sciences, The University of Yaoundé, P.O. Box 337, Yaounde 1, Cameroon
| | - Balotin Fogang
- Malaria Research Unit, Centre Pasteur Cameroon, P.O. Box 1274, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Sciences, The University of Yaoundé, P.O. Box 337, Yaounde 1, Cameroon
| | - Lynda Nouage
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Sciences, The University of Yaoundé, P.O. Box 337, Yaounde 1, Cameroon
| | - Micheal Piameu
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Ecole des Sciences de La Santé, Université Catholique d'Afrique Centrale, P.O. Box 1110, Yaoundé, Cameroon
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur Cameroon, P.O. Box 1274, Yaoundé, Cameroon
| | - Josiane Etang
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, P.O. Box 2701, Douala, Cameroon
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Samuel Wanji
- Department of Microbiology and Parasitology, Faculty of Sciences, The University of Buea, P.O. Box 63, Buea, Cameroon
| | - Carole Else Eboumbou Moukoko
- Malaria Research Unit, Centre Pasteur Cameroon, P.O. Box 1274, Yaoundé, Cameroon.
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, P.O. Box 2701, Douala, Cameroon.
- Laboratory of Parasitology, Mycology and Virology, Postgraduate Training Unit for Health Sciences, Postgraduate School for Pure and Applied Sciences, The University of Douala, P.O. Box 2701, Douala, Cameroon.
| |
Collapse
|
3
|
Mshani IH, Siria DJ, Mwanga EP, Sow BB, Sanou R, Opiyo M, Sikulu-Lord MT, Ferguson HM, Diabate A, Wynne K, González-Jiménez M, Baldini F, Babayan SA, Okumu F. Key considerations, target product profiles, and research gaps in the application of infrared spectroscopy and artificial intelligence for malaria surveillance and diagnosis. Malar J 2023; 22:346. [PMID: 37950315 PMCID: PMC10638832 DOI: 10.1186/s12936-023-04780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Studies on the applications of infrared (IR) spectroscopy and machine learning (ML) in public health have increased greatly in recent years. These technologies show enormous potential for measuring key parameters of malaria, a disease that still causes about 250 million cases and 620,000 deaths, annually. Multiple studies have demonstrated that the combination of IR spectroscopy and machine learning (ML) can yield accurate predictions of epidemiologically relevant parameters of malaria in both laboratory and field surveys. Proven applications now include determining the age, species, and blood-feeding histories of mosquito vectors as well as detecting malaria parasite infections in both humans and mosquitoes. As the World Health Organization encourages malaria-endemic countries to improve their surveillance-response strategies, it is crucial to consider whether IR and ML techniques are likely to meet the relevant feasibility and cost-effectiveness requirements-and how best they can be deployed. This paper reviews current applications of IR spectroscopy and ML approaches for investigating malaria indicators in both field surveys and laboratory settings, and identifies key research gaps relevant to these applications. Additionally, the article suggests initial target product profiles (TPPs) that should be considered when developing or testing these technologies for use in low-income settings.
Collapse
Affiliation(s)
- Issa H Mshani
- Ifakara Health Institute, Environmental Health, and Ecological Sciences Department, Morogoro, United Republic of Tanzania.
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | - Doreen J Siria
- Ifakara Health Institute, Environmental Health, and Ecological Sciences Department, Morogoro, United Republic of Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Emmanuel P Mwanga
- Ifakara Health Institute, Environmental Health, and Ecological Sciences Department, Morogoro, United Republic of Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Bazoumana Bd Sow
- Department of Medical Biology and Public Health, Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Roger Sanou
- Department of Medical Biology and Public Health, Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Mercy Opiyo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Malaria Elimination Initiative (MEI), Institute for Global Health Sciences, University of California, San Francisco, USA
| | - Maggy T Sikulu-Lord
- Faculty of Science, School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Heather M Ferguson
- Ifakara Health Institute, Environmental Health, and Ecological Sciences Department, Morogoro, United Republic of Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Abdoulaye Diabate
- Department of Medical Biology and Public Health, Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Klaas Wynne
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mario González-Jiménez
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Francesco Baldini
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Simon A Babayan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | - Fredros Okumu
- Ifakara Health Institute, Environmental Health, and Ecological Sciences Department, Morogoro, United Republic of Tanzania.
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
- School of Life Sciences and Biotechnology, Nelson Mandela African Institution of Science and Technology, Arusha, United Republic of Tanzania.
- School of Public Health, The University of the Witwatersrand, Park Town, South Africa.
| |
Collapse
|
4
|
Chiuya T, Villinger J, Falzon LC, Alumasa L, Amanya F, Bastos ADS, Fèvre EM, Masiga DK. Molecular screening reveals non-uniform malaria transmission in western Kenya and absence of Rickettsia africae and selected arboviruses in hospital patients. Malar J 2022; 21:268. [PMID: 36115978 PMCID: PMC9482282 DOI: 10.1186/s12936-022-04287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
In sub-Saharan Africa, malaria is the common diagnosis for febrile illness and related clinical features, resulting in the under-diagnosis of other aetiologies, such as arboviruses and Rickettsia. While these may not be significant causes of mortality in malaria-endemic areas, they affect the daily life and performance of affected individuals. It is, therefore, important to have a clear picture of these other aetiologies to institute correct diagnoses at hospitals and improve patient outcomes.
Methods
Blood samples were collected from patients with fever and other clinical features associated with febrile illness at selected hospitals in the malaria-endemic counties of Busia, Bungoma, and Kakamega, and screened for Crimean-Congo haemorrhagic fever, Sindbis, dengue and chikungunya viruses, Rickettsia africae, and Plasmodium spp. using high-throughput real-time PCR techniques. A logistic regression was performed on the results to explore the effect of demographic and socio-economic independent variables on malaria infection.
Results
A total of 336 blood samples collected from hospital patients between January 2018 and February 2019 were screened, of which 17.6% (59/336) were positive for Plasmodium falciparum and 1.5% (5/336) for Plasmodium malariae. Two patients had dual P. falciparum/P. malariae infections. The most common clinical features reported by the patients who tested positive for malaria were fever and headache. None of the patients were positive for the arboviruses of interest or R. africae. Patients living in Busia (OR 5.2; 95% CI 2.46–11.79; p < 0.001) and Bungoma counties (OR 2.7; 95% CI 1.27–6.16; p = 0.013) had higher odds of being infected with malaria, compared to those living in Kakamega County.
Conclusions
The reported malaria prevalence is in line with previous studies. The absence of arboviral and R. africae cases in this study may have been due to the limited number of samples screened, low-level circulation of arboviruses during inter-epidemic periods, and/or the use of PCR alone as a detection method. Other sero-surveys confirming their circulation in the area indicate that further investigations are warranted.
Collapse
|
5
|
Chaumeau V, Kajeechiwa L, Kulabkeeree T, Sawasdichai S, Haohankhunnatham W, Inta A, Phanaphadungtham M, Girond F, Herbreteau V, Delmas G, Nosten F. Outdoor residual spraying for malaria vector-control in Kayin (Karen) state, Myanmar: A cluster randomized controlled trial. PLoS One 2022; 17:e0274320. [PMID: 36083983 PMCID: PMC9462579 DOI: 10.1371/journal.pone.0274320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Outdoor and early biting by mosquitoes challenge the efficacy of bed nets and indoor residual spraying against malaria in the Greater Mekong Subregion. The objective of this study was to assess the efficacy of outdoor residual spraying (ORS) for malaria vector-control in this region. A cluster randomized controlled trial was conducted between July 2018 and April 2019 in twelve villages in Karen (Kayin) state, Myanmar. Villages were randomly assigned to receive either a single round of ORS with a capsule suspension of lambda-cyhalothrin for two days in October or no intervention (six villages per group). The primary endpoint was the biting rate of malaria mosquitoes assessed with human-landing catch and cow-baited trap collection methods, and was analyzed with a Bayesian multi-level model. In the intervention villages, the proportion of households located within the sprayed area ranged between 42 and 100% and the application rate ranged between 63 and 559 g of active ingredient per hectare. At baseline, the median of Anopheles biting rate estimates in the twelve villages was 2 bites per person per night (inter-quartile range [IQR] 0–5, range 0–48) indoors, 6 bites per person per night (IQR 2–16, range 0–342) outdoors and 206 bites per cow per night (IQR 83–380, range 19–1149) in the cow-baited trap. In intention-to-treat analysis, it was estimated that ORS reduced biting rate by 72% (95% confidence interval [CI] 63–79) from Month 0 to Month 3 and by 79% (95% CI 62–88) from Month 4 to Month 6, considering control villages as the reference. In conclusion, ORS rapidly reduces the biting rates of malaria mosquitoes in a Southeast Asian setting where the vectors bite mostly outdoors and at a time when people are not protected by mosquito bed nets.
Collapse
Affiliation(s)
- Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Ladda Kajeechiwa
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Thithiworada Kulabkeeree
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Warat Haohankhunnatham
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Aritsara Inta
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Monthicha Phanaphadungtham
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Florian Girond
- Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- Institut de Recherche pour le Développement, UMR 228 Espace-Dev (IRD, UA, UG, UM, UR), Phnom Penh, Cambodia
| | - Vincent Herbreteau
- Institut de Recherche pour le Développement, UMR 228 Espace-Dev (IRD, UA, UG, UM, UR), Phnom Penh, Cambodia
| | - Gilles Delmas
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Kinya F, Mutero CM, Sang R, Owino EA, Rotich G, Ogola EO, Wondji CS, Torto B, Tchouassi DP. Outdoor malaria vector species profile in dryland ecosystems of Kenya. Sci Rep 2022; 12:7131. [PMID: 35505087 PMCID: PMC9065082 DOI: 10.1038/s41598-022-11333-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Outdoor biting by anopheline mosquitoes is one of the contributors to residual malaria transmission, but the profile of vectors driving this phenomenon is not well understood. Here, we studied the bionomics and genetically characterized populations of An. gambiae and An. funestus complexes trapped outdoors in three selected dryland areas including Kerio Valley, Nguruman and Rabai in Kenya. We observed a higher abundance of Anopheles funestus group members (n = 639, 90.6%) compared to those of the An. gambiae complex (n = 66, 9.4%) with An. longipalpis C as the dominant vector species with a Plasmodium falciparum sporozoite rate (Pfsp) of 5.2% (19/362). The known malaria vectors including An. funestus s.s. (8.7%, 2/23), An. gambiae (14.3%, 2/14), An. rivulorum (14.1%, 9/64), An. arabiensis (1.9%, 1/52) occurred in low densities and displayed high Pfsp rates, which varied with the site. Additionally, six cryptic species found associated with the An. funestus group harbored Pf sporozoites (cumulative Pfsp rate = 7.2%, 13/181). We detected low frequency of resistant 119F-GSTe2 alleles in An. funestus s.s. (15.6%) and An. longipalpis C (3.1%) in Kerio Valley only. Evidence of outdoor activity, emergence of novel and divergent vectors and detection of mutations conferring metabolic resistance to pyrethroid/DDT could contribute to residual malaria transmission posing a threat to effective malaria control.
Collapse
Affiliation(s)
- Fiona Kinya
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.,University of Nairobi, P.O. Box 30197-30100, Nairobi, Kenya
| | - Clifford M Mutero
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.,School of Health Systems and Public Health, University of Pretoria, Private Bag X323, Pretoria, 0001, South Africa
| | - Rosemary Sang
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Eunice A Owino
- University of Nairobi, P.O. Box 30197-30100, Nairobi, Kenya
| | - Gilbert Rotich
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Edwin O Ogola
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Charles S Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK.,LSTM Research Unit at the Centre for Research in Infectious Diseases (CRID), P.O. Box 1359, Yaoundé, Cameroon
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.,Department of Zoology and Entomology, University of Pretoria, Private Bag X323, Pretoria, 0001, South Africa
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
7
|
Cheteug G, Elanga-Ndille E, Donkeu C, Ekoko W, Oloume M, Essangui E, Nwane P, NSango SE, Etang J, Wanji S, Ayong L, Eboumbou Moukoko CE. Preliminary validation of the use of IgG antibody response to Anopheles gSG6-p1 salivary peptide to assess human exposure to malaria vector bites in two endemic areas of Cameroon in Central Africa. PLoS One 2020; 15:e0242510. [PMID: 33382730 PMCID: PMC7774847 DOI: 10.1371/journal.pone.0242510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/03/2020] [Indexed: 11/25/2022] Open
Abstract
The specific immune response to the Anopheles salivary peptide could be a pertinent and complementary tool to assess the risk of malaria transmission and the effectiveness of vector control strategies. This study aimed to obtain first reliable data on the current state of the Anopheles gSG6-P1 biomarker for assess the level of exposure to Anopheles bites in high malaria endemic areas in Cameroon. Blood smears were collected from people living in the neighborhoods of Youpwe (suburban area, continental) and Manoka (rural area, Island), both areas in the coastal region of Cameroon. Malaria infection was determined using thick blood smear microscopy, whereas the level of specific IgG response to gSG-P1 peptide was assessed by enzyme-linked immunosorbent assay from the dried blood spots. Of 266 (153 from Youpwe, 113 from Manoka) malaria endemic residents (mean age: 22.8±19.8 years, age range: 6 months–94 years, male/female sex ratio: 1/1.2, with Manoka mean age: 23.71±20.53, male/female sex ratio:1/1.13 and Youpwe mean age: 22.12±19.22, male/female sex ratio 1/0.67) randomly included in the study, Plasmodium infection prevalence was significantly higher in Manoka than in Youpwe (64.6% vs 12,4%, p = 0.0001). The anti-gSG6-P1 IgG response showed a high inter-individual heterogeneity and was significantly higher among individuals from Manoka than those from Youpwe (p = 0.023). Malaria infected individuals presented a higher anti-gSG6-P1 IgG antibody response than non-infected (p = 0.0004). No significant difference in the level of specific IgG response to gSG-P1 was observed according to long lasting insecticidal nets use. Taken together, the data revealed that human IgG antibody response to Anopheles gSG-P1 salivary peptide could be also used to assess human exposure to malaria vectors in Central African region. This finding strengthens the relevance of this candidate biomarker to be used for measuring human exposure to malaria vectors worldwide.
Collapse
Affiliation(s)
- Glwadys Cheteug
- Malaria Research Unit, Centre Pasteur Cameroon, Yaounde, Cameroon
- Department of Microbiology and Parasitology, Faculty of Sciences, University of Buea, Buea, Cameroon
| | | | - Christiane Donkeu
- Malaria Research Unit, Centre Pasteur Cameroon, Yaounde, Cameroon
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaounde, Yaounde, Cameroon
| | - Wolfgang Ekoko
- Parasitology and Entomology Research Unit, Department of Animal Biology and Organisms, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Martine Oloume
- Department of hematology, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| | - Estelle Essangui
- Malaria Research Unit, Centre Pasteur Cameroon, Yaounde, Cameroon
- Parasitology and Entomology Research Unit, Department of Animal Biology and Organisms, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Philippe Nwane
- Biological Sciences Department, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | - Sandrine Eveline NSango
- Malaria Research Unit, Centre Pasteur Cameroon, Yaounde, Cameroon
- Laboratory of Parasitology, Mycology and Virology, Postgraduate Training Unit for Health Sciences, Postgraduate School for Pure and Applied Sciences, University of Douala, Douala, Cameroon
| | - Josiane Etang
- Biological Sciences Department, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Organisation de Coordination pour la Lutte contre les Endemies en Afrique Central, Yaounde, Cameroon
| | - Samuel Wanji
- Department of Microbiology and Parasitology, Faculty of Sciences, University of Buea, Buea, Cameroon
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur Cameroon, Yaounde, Cameroon
| | - Carole Else Eboumbou Moukoko
- Malaria Research Unit, Centre Pasteur Cameroon, Yaounde, Cameroon
- Biological Sciences Department, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Laboratory of Parasitology, Mycology and Virology, Postgraduate Training Unit for Health Sciences, Postgraduate School for Pure and Applied Sciences, University of Douala, Douala, Cameroon
- * E-mail: ,
| |
Collapse
|
8
|
Impact of outdoor residual spraying on the biting rate of malaria vectors: A pilot study in four villages in Kayin state, Myanmar. PLoS One 2020; 15:e0240598. [PMID: 33119645 PMCID: PMC7595390 DOI: 10.1371/journal.pone.0240598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/29/2020] [Indexed: 11/19/2022] Open
Abstract
Outdoor and early mosquito biters challenge the efficacy of bed-nets and indoor residual spraying on the Thailand-Myanmar border. Outdoor residual spraying is proposed for the control of exophilic mosquito species. The objective of this study was to assess the impact of outdoor residual spraying on the biting rate of malaria vectors in Kayin state, Myanmar. Outdoor residual spraying using lambda-cyhalothrin was carried out in two villages in December 2016 (beginning of the dry season) and two villages were used as a control. Malaria mosquitoes were captured at baseline and monthly for four months after the intervention using human-landing catch and cow-baited trap collection methods. The impact of outdoor residual spraying on human-biting rate was estimated with propensity score adjusted generalized linear mixed-effect regressions. At baseline, mean indoor and outdoor human-biting rate estimates ranged between 2.12 and 29.16 bites /person /night, and between 0.20 and 1.72 bites /person /night in the intervention and control villages respectively. Using model output, we estimated that human-biting rate was reduced by 91% (95%CI = 88–96, P <0.0001) immediately after outdoor residual spraying. Human-biting rate remained low in all sprayed villages for 3 months after the intervention. Malaria vector populations rose at month 4 in the intervention villages but not in the controls. This coincided with the expected end of insecticide mist residual effects, thereby suggesting that residual effects are important determinants of intervention outcome. We conclude that outdoor residual spraying with a capsule suspension of lambda-cyhalothrin rapidly reduced the biting rate malaria vectors in this area where pyrethroid resistance has been documented.
Collapse
|
9
|
Sawasdichai S, Chaumeau V, Dah T, Kulabkeeree T, Kajeechiwa L, Phanaphadungtham M, Trakoolchengkaew M, Kittiphanakun P, Akararungrot Y, Oo K, Delmas G, White NJ, Nosten FH. Detection of diverse Wolbachia 16S rRNA sequences at low titers from malaria vectors in Kayin state, Myanmar. Wellcome Open Res 2019; 4:11. [PMID: 31828225 PMCID: PMC6892426 DOI: 10.12688/wellcomeopenres.15005.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2019] [Indexed: 01/02/2023] Open
Abstract
Background: Natural
Wolbachia infections in malaria mosquitoes were recently reported in Africa, and negatively correlated with the development of
Plasmodium falciparum in the vectors. The occurrence and effects of
Wolbachia infections outside Africa have not been described and may have been underestimated. Methods: Mosquitoes were collected by human-landing catch during May and June 2017 in ten villages in Kayin state, Myanmar. Closely related species of malaria vectors were identified with molecular assays. 16S rRNA
Wolbachia DNA sequences were detected with quantitative real-time PCR. Results: Low titer of
Wolbachia DNA was detected in 13/370 samples in six malaria vector species. Sequences were diverse and different from those described in the African malaria mosquitoes. Conclusion: The detection of
Wolbachia DNA in malaria mosquitoes from Kayin state warrants further investigations to understand better the ecology and biology of
Anopheles-
Wolbachia interactions in Southeast Asia.
Collapse
Affiliation(s)
- Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Tee Dah
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Thithiworada Kulabkeeree
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Ladda Kajeechiwa
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Monthicha Phanaphadungtham
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Muesuwa Trakoolchengkaew
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Praphan Kittiphanakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Yanada Akararungrot
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Kyi Oo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Gilles Delmas
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
10
|
Sawasdichai S, Chaumeau V, Dah T, Kulabkeeree T, Kajeechiwa L, Phanaphadungtham M, Trakoolchengkaew M, Kittiphanakun P, Akararungrot Y, Oo K, Delmas G, White NJ, Nosten FH. Low-density genetically diverse natural Wolbachia infections in malaria vectors in Kayin state, Myanmar. Wellcome Open Res 2019; 4:11. [DOI: 10.12688/wellcomeopenres.15005.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Natural Wolbachia infections in malaria mosquitoes were recently reported in Africa, and negatively correlated with the development of Plasmodium falciparum in the vectors. The occurrence and effects of Wolbachia infections outside Africa have not been described and may have been underestimated. Methods: Mosquitoes were collected by human-landing catch during May and June 2017 in ten villages in Kayin state, Myanmar. Closely related species of malaria vectors were identified with molecular assays. Wolbachia infection rates were assessed with quantitative real-time PCR. Results: Low titer of Wolbachia DNA was detected in 13/370 samples in six malaria vector species. Phylogenetic analysis based on 16S rRNA sequences revealed a high diversity of Wolbachia strains and identified lineages different from those described in the African malaria mosquitoes. Conclusion: These low-density genetically diverse natural Wolbachia infections question the ecology and biology of Wolbachia-Anopheles interactions in Southeast Asia. Their effects on malaria transmission and mosquito vectors are yet to be determined.
Collapse
|
11
|
Ramírez AL, van den Hurk AF, Mackay IM, Yang ASP, Hewitson GR, McMahon JL, Boddey JA, Ritchie SA, Erickson SM. Malaria surveillance from both ends: concurrent detection of Plasmodium falciparum in saliva and excreta harvested from Anopheles mosquitoes. Parasit Vectors 2019; 12:355. [PMID: 31319880 PMCID: PMC6639908 DOI: 10.1186/s13071-019-3610-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/08/2019] [Indexed: 12/03/2022] Open
Abstract
Background Malaria is the most important vector-borne disease in the world. Epidemiological and ecological studies of malaria traditionally utilize detection of Plasmodium sporozoites in whole mosquitoes or salivary glands by microscopy or serological or molecular assays. However, these methods are labor-intensive, and can over- or underestimate mosquito transmission potential. To overcome these limitations, alternative sample types have been evaluated for the study of malaria. It was recently shown that Plasmodium could be detected in saliva expectorated on honey-soaked cards by Anopheles stephensi, providing a better estimate of transmission risk. We evaluated whether excretion of Plasmodium falciparum nucleic acid by An. stephensi correlates with expectoration of parasites in saliva, thus providing an additional sample type for estimating transmission potential. Mosquitoes were exposed to infectious blood meals containing cultured gametocytes, and excreta collected at different time points post-exposure. Saliva was collected on honey-soaked filter paper cards, and salivary glands were dissected and examined microscopically for sporozoites. Excreta and saliva samples were tested by real time polymerase chain reaction (RT-rtPCR). Results Plasmodium falciparum RNA was detected in mosquito excreta as early as four days after ingesting a bloodmeal containing gametocytes. Once sporogony (the development of sporozoites) occurred, P. falciparum RNA was detected concurrently in both excreta and saliva samples. In the majority of cases, no difference was observed between the Ct values obtained from matched excreta and saliva samples, suggesting that both samples provide equally sensitive results. A positive association was observed between the molecular detection of the parasites in both samples and the proportion of mosquitoes with sporozoites in their salivary glands from each container. No distinguishable parasites were observed when excreta samples were stained and microscopically analyzed. Conclusions Mosquito saliva and excreta are easily collected and are promising for surveillance of malaria-causing parasites, especially in low transmission settings or in places where arboviruses co-circulate. Electronic supplementary material The online version of this article (10.1186/s13071-019-3610-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana L Ramírez
- College of Public Health, Medical and Veterinary Sciences, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia. .,Australian Institute of Tropical Health and Medicine, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia.
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, 4108, Australia
| | - Ian M Mackay
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, 4108, Australia
| | - Annie S P Yang
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia.,Department of Medical Microbiology Parasitology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB, Nijmegen, The Netherlands
| | - Glen R Hewitson
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, 4108, Australia
| | - Jamie L McMahon
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, 4108, Australia
| | - Justin A Boddey
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Scott A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia
| | - Sara M Erickson
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
12
|
Sawasdichai S, Chaumeau V, Dah T, Kulabkeeree T, Kajeechiwa L, Phanaphadungtham M, Trakoolchengkaew M, Kittiphanakun P, Akararungrot Y, Oo K, Delmas G, White NJ, Nosten FH. Low-density genetically diverse natural Wolbachia infections in malaria vectors in Kayin state, Myanmar. Wellcome Open Res 2019; 4:11. [DOI: 10.12688/wellcomeopenres.15005.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Natural Wolbachia infections in malaria mosquitoes were recently reported in Africa, and negatively correlated with the development of Plasmodium falciparum in the vectors. The occurrence and effects of Wolbachia infections outside Africa have not been described and may have been underestimated. Methods: Mosquitoes were collected by human-landing catch during May and June 2017 in ten villages in Kayin state, Myanmar. Closely related species of malaria vectors were identified with molecular assays. Wolbachia infection rates were assessed with quantitative real-time PCR. Results: Low titer of Wolbachia DNA was detected in 13/370 samples in six malaria vector species. Phylogenetic analysis based on 16S rRNA sequences revealed a high diversity of Wolbachia strains and identified lineages different from those described in the African malaria mosquitoes. Conclusion: These low-density genetically diverse natural Wolbachia infections question the ecology and biology of Wolbachia-Anopheles interactions in Southeast Asia. Their effects on malaria transmission and mosquito vectors are yet to be determined.
Collapse
|
13
|
Chaumeau V, Fustec B, Nay Hsel S, Montazeau C, Naw Nyo S, Metaane S, Sawasdichai S, Kittiphanakun P, Phatharakokordbun P, Kwansomboon N, Andolina C, Cerqueira D, Chareonviriyaphap T, Nosten FH, Corbel V. Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Res 2019; 3:109. [PMID: 31206035 PMCID: PMC6544137 DOI: 10.12688/wellcomeopenres.14761.4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The Thailand-Myanmar borderland is an area endemic for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on the entomological determinants of malaria transmission. Methods: Entomological investigations were conducted during 24 months in four villages located in Kayin state, on the Myanmar side of the Thailand-Myanmar border.
Anopheles mosquitoes were identified by morphology, and molecular assays were used in order to discriminate between closely related sibling species of malaria vectors.
Plasmodium infection rate was determined using quantitative real-time PCR. Results: The diversity of
Anopheles mosquitoes was very high and multiple species were identified as malaria vectors. The intensity of human-vector contact (mean human-biting rate= 369 bites/person/month) compensates for the low infection rate in naturally infected populations of malaria vectors (mean sporozoite index= 0.04 and 0.17 % for
P. falciparum and
P. vivax respectively), yielding intermediary level of transmission intensity (mean entomological inoculation rate= 0.13 and 0.64 infective bites/person/month for
P. falciparum and
P. vivax, respectively). Only 36% of the infected mosquitoes were collected indoors between 09:00 pm and 05:00 am, suggesting that mosquito bed-nets would fail to prevent most of the infective bites in the study area. Conclusion: This study provided a unique opportunity to describe the entomology of malaria in low transmission settings of Southeast Asia. Our data are important in the context of malaria elimination in the Greater Mekong Subregion.
Collapse
Affiliation(s)
- Victor Chaumeau
- Centre Hospitalier Universitaire de Montpellier, Montpellier, 34295, France.,Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Bénédicte Fustec
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | - Saw Nay Hsel
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Céline Montazeau
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | - Saw Naw Nyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Selma Metaane
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | - Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Prapan Kittiphanakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Phabele Phatharakokordbun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Nittipha Kwansomboon
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Dominique Cerqueira
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | | | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Vincent Corbel
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| |
Collapse
|
14
|
Chaumeau V, Fustec B, Nay Hsel S, Montazeau C, Naw Nyo S, Metaane S, Sawasdichai S, Kittiphanakun P, Phatharakokordbun P, Kwansomboon N, Andolina C, Cerqueira D, Chareonviriyaphap T, Nosten FH, Corbel V. Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Res 2019; 3:109. [DOI: 10.12688/wellcomeopenres.14761.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The Thailand-Myanmar borderland is an area endemic for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on the entomological determinants of malaria transmission. Methods: Entomological investigations were conducted during 24 months in four villages located in Kayin state, on the Myanmar side of the Thailand-Myanmar border. Anopheles mosquitoes were identified by morphology, and molecular assays were used in order to discriminate between closely related sibling species of malaria vectors. Plasmodium infection rate was determined using quantitative real-time PCR. Results: The diversity of Anopheles mosquitoes was very high and multiple species were identified as malaria vectors. The intensity of human-vector contact (mean human-biting rate= 369 bites/person/month) compensates for the low infection rate in naturally infected populations of malaria vectors (mean sporozoite index= 0.04 and 0.17 % for P. falciparum and P. vivax respectively), yielding intermediary level of transmission intensity (mean entomological inoculation rate= 0.13 and 0.64 infective bites/person/month for P. falciparum and P. vivax, respectively). Only 36% of the infected mosquitoes were collected indoors between 09:00 pm and 05:00 am, suggesting that mosquito bed-nets would fail to prevent most of the infective bites in the study area. Conclusion: This study provided a unique opportunity to describe the entomology of malaria in low transmission settings of Southeast Asia. Our data are important in the context of malaria elimination in the Greater Mekong Subregion.
Collapse
|
15
|
Chaumeau V, Kajeechiwa L, Fustec B, Landier J, Naw Nyo S, Nay Hsel S, Phatharakokordbun P, Kittiphanakun P, Nosten S, Thwin MM, Win Tun S, Wiladphaingern J, Cottrell G, Parker DM, Minh MC, Kwansomboon N, Metaane S, Montazeau C, Kunjanwong K, Sawasdichai S, Andolina C, Ling C, Haohankhunnatham W, Christiensen P, Wanyatip S, Konghahong K, Cerqueira D, Imwong M, Dondorp AM, Chareonviriyaphap T, White NJ, Nosten FH, Corbel V. Contribution of Asymptomatic Plasmodium Infections to the Transmission of Malaria in Kayin State, Myanmar. J Infect Dis 2019; 219:1499-1509. [PMID: 30500927 PMCID: PMC6467188 DOI: 10.1093/infdis/jiy686] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/27/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The objective of mass antimalarial drug administration (MDA) is to eliminate malaria rapidly by eliminating the asymptomatic malaria parasite reservoirs and interrupting transmission. In the Greater Mekong Subregion, where artemisinin-resistant Plasmodium falciparum is now widespread, MDA has been proposed as an elimination accelerator, but the contribution of asymptomatic infections to malaria transmission has been questioned. The impact of MDA on entomological indices has not been characterized previously. METHODS MDA was conducted in 4 villages in Kayin State (Myanmar). Malaria mosquito vectors were captured 3 months before, during, and 3 months after MDA, and their Plasmodium infections were detected by polymerase chain reaction (PCR) analysis. The relationship between the entomological inoculation rate, the malaria prevalence in humans determined by ultrasensitive PCR, and MDA was characterized by generalized estimating equation regression. RESULTS Asymptomatic P. falciparum and Plasmodium vivax infections were cleared by MDA. The P. vivax entomological inoculation rate was reduced by 12.5-fold (95% confidence interval [CI], 1.6-100-fold), but the reservoir of asymptomatic P. vivax infections was reconstituted within 3 months, presumably because of relapses. This was coincident with a 5.3-fold (95% CI, 4.8-6.0-fold) increase in the vector infection rate. CONCLUSION Asymptomatic infections are a major source of malaria transmission in Southeast Asia.
Collapse
Affiliation(s)
- Victor Chaumeau
- Centre hospitalier universitaire de Montpellier, Montpellier
- UMR 224 “Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle,” Institut de Recherche pour le Développement, Montpellier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Ladda Kajeechiwa
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Bénédicte Fustec
- UMR 224 “Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle,” Institut de Recherche pour le Développement, Montpellier
| | - Jordi Landier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
- Institut de Recherches pour le Développement, Aix Marseille Univ, INSERM, SESSTIM, Marseille
| | - Saw Naw Nyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Saw Nay Hsel
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Phabele Phatharakokordbun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Prapan Kittiphanakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Suphak Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - May Myo Thwin
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Saw Win Tun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Jacher Wiladphaingern
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Gilles Cottrell
- UMR 216 “Mère et enfant face aux infections tropicales,” Institut de Recherche pour le Développement, Université Paris Descartes, Paris, France
| | - Daniel M Parker
- Department of Population Health and Disease Prevention, University of California, Irvine
| | - Myo Chit Minh
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Nittpha Kwansomboon
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Selma Metaane
- UMR 224 “Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle,” Institut de Recherche pour le Développement, Montpellier
| | - Céline Montazeau
- UMR 224 “Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle,” Institut de Recherche pour le Développement, Montpellier
| | - Kitti Kunjanwong
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Clare Ling
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Warat Haohankhunnatham
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Peter Christiensen
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Sunaree Wanyatip
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Kamonchanok Konghahong
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Dominique Cerqueira
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University
| | - Arjen M Dondorp
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University
| | | | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Vincent Corbel
- UMR 224 “Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle,” Institut de Recherche pour le Développement, Montpellier
| |
Collapse
|
16
|
Ogola EO, Chepkorir E, Sang R, Tchouassi DP. A previously unreported potential malaria vector in a dry ecology of Kenya. Parasit Vectors 2019; 12:80. [PMID: 30744665 PMCID: PMC6369554 DOI: 10.1186/s13071-019-3332-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/31/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In Kenya, malaria remains a major public health menace equally affecting the semi-arid to arid ecologies. However, entomologic knowledge of malaria vectors in such areas remains poor. METHODS Morphologically-identified wild-caught Anopheles funestus (s.l.) specimens trapped outdoors from the semi-arid to arid area of Kacheliba, West Pokot County, Kenya, were analysed by PCR and sequencing for species identification, malaria parasite infection and host blood-meal sources. RESULTS Three hundred and thirty specimens were analysed to identify sibling species of the An. funestus group, none of which amplified using the available primers; two were infected with Plasmodium falciparum and Plasmodium ovale, separately, while 84% (n = 25) of the blood-fed specimens had fed on humans. Mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear ribosomal internal transcribed spacer 2 (ITS2) sequences of 55 specimens (Plasmodium-positive, blood-fed and Plasmodium-negative) did not match reference sequences, possibly suggesting a previously unreported species, resolving as two clades. CONCLUSIONS Our findings indicate the existence of yet-to-be identified and described anopheline species with a potential as malaria vectors in Kenya.
Collapse
Affiliation(s)
- Edwin O Ogola
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Edith Chepkorir
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Rosemary Sang
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
17
|
Chaumeau V, Fustec B, Nay Hsel S, Montazeau C, Naw Nyo S, Metaane S, Sawasdichai S, Kittiphanakun P, Phatharakokordbun P, Kwansomboon N, Andolina C, Cerqueira D, Chareonviriyaphap T, Nosten FH, Corbel V. Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Res 2019; 3:109. [DOI: 10.12688/wellcomeopenres.14761.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The Thailand-Myanmar borderland is an area endemic for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on the entomological determinants of malaria transmission. Methods: Entomological investigations were conducted during 24 months in four villages located in Kayin state, on the Myanmar side of the Thailand-Myanmar border. Anopheles mosquitoes were identified by morphology, and molecular assays were used in order to discriminate between closely related sibling species of malaria vectors. Plasmodium infection rate was determined using quantitative real-time PCR. Results: The diversity of Anopheles mosquitoes was very high and multiple species were identified as malaria vectors. The intensity of human-vector contact (mean human-biting rate= 369 bites/person/month) compensates for the low infection rate in naturally infected populations of malaria vectors (mean sporozoite index= 0.04 and 0.17 % for P. falciparum and P. vivax respectively), yielding intermediary level of transmission intensity (mean entomological inoculation rate= 0.13 and 0.64 infective bites/person/month for P. falciparum and P. vivax, respectively). Only 36% of the infected mosquitoes were collected indoors between 09:00 pm and 05:00 am, suggesting that mosquito bed-nets would fail to prevent most of the infective bites in the study area. Conclusion: This study provided a unique opportunity to describe the entomology of malaria in low transmission settings of Southeast Asia. Our data are important in the context of malaria elimination in the Greater Mekong Subregion.
Collapse
|
18
|
Sawasdichai S, Chaumeau V, Dah T, Kulabkeeree T, Kajeechiwa L, Phanaphadungtham M, Trakoolchengkaew M, Kittiphanakun P, Akararungrot Y, Oo K, Delmas G, White NJ, Nosten FH. Natural Wolbachia infections in malaria vectors in Kayin state, Myanmar. Wellcome Open Res 2019; 4:11. [DOI: 10.12688/wellcomeopenres.15005.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Natural Wolbachia infections in malaria mosquitoes were recently reported in Africa, and negatively correlated with the development of Plasmodium falciparum in the vectors. The occurrence and effects of Wolbachia infections outside Africa have not been described and may have been underestimated. Methods: Mosquitoes were collected by human-landing catch during May and June 2017 in ten villages in Kayin state, Myanmar. Closely related species of malaria vectors were identified with molecular assays. Wolbachia infection rates were assessed by quantitative real-time PCR. Results: Malaria vectors were identified in the Funestus, Maculatus and Leucosphyrus Groups. Wolbachia were detected in 6/6 Anopheles species and in 5/10 villages. Mean prevalence of Wolbachia infection was 2.7% (95%CI= [1.3; 4.9]). The median Wolbachia load was seven orders of magnitude less in naturally infected malaria vectors than in artificially infected laboratory-reared Aedes aegypti. Phylogenetic analysis based on 16S rRNA sequences revealed a high diversity of Wolbachia strains and identified lineages different from those described in Africa. Conclusion: Natural Wolbachia infections are common and widespread in malaria vectors in Kayin state, Myanmar. Their effects on Anopheles mosquitoes and malaria transmission is yet to be determined.
Collapse
|
19
|
Ogola EO, Odero JO, Mwangangi JM, Masiga DK, Tchouassi DP. Population genetics of Anopheles funestus, the African malaria vector, Kenya. Parasit Vectors 2019; 12:15. [PMID: 30621756 PMCID: PMC6323828 DOI: 10.1186/s13071-018-3252-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/03/2018] [Indexed: 11/10/2022] Open
Abstract
Background Anopheles funestus is among the major malaria vectors in Kenya and sub-Saharan Africa and has been recently implicated in persistent malaria transmission. However, its ecology and genetic diversity remain poorly understood in Kenya. Methods Using 16 microsatellite loci, we examined the genetic structure of An. funestus sampled from 11 locations (n = 426 individuals) across a wide geographical range in Kenya spanning coastal, western and Rift Valley areas. Results Kenyan An. funestus resolved as three genetically distinct clusters. The largest cluster (FUN1) broadly included samples from western and Rift Valley areas of Kenya with two clusters identified from coastal Kenya (FUN2 and FUN3), not previously reported. Geographical distance had no effect on population differentiation of An. funestus. We found a significant variation in the mean Plasmodium infectivity between the clusters (χ2 = 12.1, df = 2, P = 0.002) and proportional to the malaria prevalence in the different risk zones of Kenya. Notably, there was variation in estimated effective population sizes between the clusters, suggesting possible differential impact of anti-vector interventions in represented areas. Conclusions Heterogeneity among Kenyan populations of An. funestus will impact malaria vector control with practical implications for the development of gene-drive technologies. The difference in Plasmodium infectivity and effective population size between the clusters could suggest potential variation in phenotypic characteristics relating to competence or insecticide resistance. This is worth examining in future studies. Electronic supplementary material The online version of this article (10.1186/s13071-018-3252-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edwin O Ogola
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Joel O Odero
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Joseph M Mwangangi
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute (KEMRI), P.O. Box 42880-108, Kilifi, Kenya
| | - Daniel K Masiga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
20
|
Ogola EO, Fillinger U, Ondiba IM, Villinger J, Masiga DK, Torto B, Tchouassi DP. Insights into malaria transmission among Anopheles funestus mosquitoes, Kenya. Parasit Vectors 2018; 11:577. [PMID: 30400976 PMCID: PMC6219006 DOI: 10.1186/s13071-018-3171-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/25/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most malaria vectors belong to species complexes. Sibling species often exhibit divergent behaviors dictating the measures that can be deployed effectively in their control. Despite the importance of the Anopheles funestus complex in malaria transmission in sub-Saharan Africa, sibling species have rarely been identified in the past and their vectoring potential remains understudied. METHODS We analyzed 1149 wild-caught An. funestus (senso lato) specimens from 21 sites in Kenya, covering the major malaria endemic areas including western, central and coastal areas. Indoor and outdoor collection tools were used targeting host-seeking and resting mosquitoes. The identity of sibling species, infection with malaria Plasmodium parasites, and the host blood meal sources of engorged specimens were analyzed using PCR-based and sequencing methods. RESULTS The most abundant sibling species collected in all study sites were Anopheles funestus (59.8%) and Anopheles rivulorum (32.4%) among the 1062 successfully amplified specimens of the An. funestus complex. Proportionally, An. funestus dominated in indoor collections whilst An. rivulorum dominated in outdoor collections. Other species identified were Anopheles leesoni (4.6%), Anopheles parensis (2.4%), Anopheles vaneedeni (0.1%) and for the first time in Kenya, Anopheles longipalpis C (0.7%). Anopheles funestus had an overall Plasmodium infection rate of 9.7% (62/636), predominantly Plasmodium falciparum (59), with two infected with Plasmodium ovale and one with Plasmodium malariae. There was no difference in the infection rate between indoor and outdoor collections. Out of 344 An. rivulorum, only one carried P. falciparum. We also detected P. falciparum infection in two non-blood-fed An. longipalpis C (2/7) which is the first record for this species in Kenya. The mean human blood indices for An. funestus and An. rivulorum were 68% (93/136) and 64% (45/70), respectively, with feeding tendencies on a broad host range including humans and domestic animals such as cow, goat, sheep, chicken and pig. CONCLUSIONS Our findings underscore the importance of active surveillance through application of molecular approaches to unravel novel parasite-vector associations possibly contributed by cryptic species with important implications for effective malaria control and elimination.
Collapse
Affiliation(s)
- Edwin O Ogola
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Isabella M Ondiba
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Daniel K Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya.
| |
Collapse
|
21
|
Chaumeau V, Fustec B, Nay Hsel S, Montazeau C, Naw Nyo S, Metaane S, Sawasdichai S, Kittiphanakun P, Phatharakokordbun P, Kwansomboon N, Andolina C, Cerqueira D, Chareonviriyaphap T, Nosten FH, Corbel V. Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Res 2018; 3:109. [DOI: 10.12688/wellcomeopenres.14761.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2018] [Indexed: 11/20/2022] Open
Abstract
Background: The Thailand-Myanmar borderland is an area endemic for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on the entomological determinants of malaria transmission. Methods: As part of a pilot study on Targeted Malaria Elimination, entomological investigations were conducted during 24 months in four villages located in Kayin state, Myanmar. Anopheles mosquitoes were identified by morphology, and molecular assays were used in order to discriminate between closely related sibling species of malaria vectors. Plasmodium infection rate was determined using quantitative real-time PCR. Results: The biodiversity of Anopheles entomo-fauna was very high and multiple species were identified as malaria vectors. The intensity of human-vector contact (mean human-biting rate= 369 bites/person/month) compensates for the low infection rate in naturally infected populations of malaria vectors (mean sporozoite index= 0.4 and 1.7 /1,000 mosquitoes for P. falciparum and P. vivax respectively), yielding intermediary level of transmission intensity (mean entomological inoculation rate= 0.13 and 0.64 infective bites/person/month for P. falciparum and P. vivax, respectively). We estimated that 65% of the potential infective bites are not prevented by mosquito bed nets because of outdoor and early biters. Conclusion: This study provided a unique opportunity to describe the entomology of malaria in low transmission settings of Southeast Asia. Our data are important in the context of malaria elimination in the Greater Mekong Subregion.
Collapse
|
22
|
Brugman VA, Kristan M, Gibbins MP, Angrisano F, Sala KA, Dessens JT, Blagborough AM, Walker T. Detection of malaria sporozoites expelled during mosquito sugar feeding. Sci Rep 2018; 8:7545. [PMID: 29765136 PMCID: PMC5954146 DOI: 10.1038/s41598-018-26010-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022] Open
Abstract
Malaria is a severe disease of global importance transmitted by mosquitoes of the genus Anopheles. The ability to rapidly detect the presence of infectious mosquitoes able to transmit malaria is of vital importance for surveillance, control and elimination efforts. Current methods principally rely on large-scale mosquito collections followed by labour-intensive salivary gland dissections or enzyme-linked immunosorbent (ELISA) methods to detect sporozoites. Using forced salivation, we demonstrate here that Anopheles mosquitoes infected with Plasmodium expel sporozoites during sugar feeding. Expelled sporozoites can be detected on two sugar-soaked substrates, cotton wool and Whatman FTA cards, and sporozoite DNA is detectable using real-time PCR. These results demonstrate a simple and rapid methodology for detecting the presence of infectious mosquitoes with sporozoites and highlight potential laboratory applications for investigating mosquito-malaria interactions. Our results indicate that FTA cards could be used as a simple, effective and economical tool in enhancing field surveillance activities for malaria.
Collapse
Affiliation(s)
- V A Brugman
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
- Evolution Biotechnologies, Colworth Science Park, Sharnbrook, Bedford, MK44 1LZ, UK.
| | - M Kristan
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - M P Gibbins
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - F Angrisano
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London, SW7 2AZ, UK
| | - K A Sala
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London, SW7 2AZ, UK
| | - J T Dessens
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - A M Blagborough
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London, SW7 2AZ, UK
| | - T Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
23
|
Sumarnrote A, Corbel V, Overgaard HJ, Celhay O, Marasri N, Fustec B, Thanispong K, Chareonviriyaphap T. Plasmodium Infections in Anopheles Mosquitoes in Ubon Ratchathani Province, Northeastern Thailand During a Malaria Outbreak. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2018; 34:11-17. [PMID: 31442122 DOI: 10.2987/17-6715.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An unprecedented malaria outbreak occurred in Ubon Ratchathani Province, northeastern Thailand, in 2014. The province showed the highest number of malaria cases of all Thai provinces. Five entomological surveys were conducted at 8 sentinel sites from September 2013 to September 2015 to address the role of different Anopheles species in malaria transmission. Mosquito collections were conducted using human landing catches and cow bait. A total of 10,369 Anopheles mosquitoes were collected and 2,240 were morphologically identified as potential malaria vectors, including An. dirus (n = 78), An. minimus (n = 18), An. sawadwongporni (n = 4), An. barbirostris s.l. (n = 819), An. philippinensis (n = 612), An. nivipes (n = 676), An. annularis (n = 42), An. aconitus (n = 7), and An. rampae (n = 142). Real-time polymerase chain reaction was used to screen for the presence of Plasmodium spp. in salivary glands. The proportion of primary vectors of surveyed villages was very low (<1%), and no Plasmodium-infected specimens were detected among in the 2,240 Anopheles mosquitoes tested. The absence of positive Plasmodium samples during malaria outbreaks suggests that malaria transmission most likely occurred outside the villages, particularly in the deep-forested hilly areas that provided suitable habitats for competent malaria vectors. These results emphasize the need to develop vector control related to village community activities to reduce malaria transmission along Thailand border areas.
Collapse
|
24
|
Landier J, Kajeechiwa L, Thwin MM, Parker DM, Chaumeau V, Wiladphaingern J, Imwong M, Miotto O, Patumrat K, Duanguppama J, Cerqueira D, Malleret B, Rénia L, Nosten S, von Seidlein L, Ling C, Proux S, Corbel V, Simpson JA, Dondorp AM, White NJ, Nosten FH. Safety and effectiveness of mass drug administration to accelerate elimination of artemisinin-resistant falciparum malaria: A pilot trial in four villages of Eastern Myanmar. Wellcome Open Res 2017; 2:81. [PMID: 29062913 PMCID: PMC5635445 DOI: 10.12688/wellcomeopenres.12240.1] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2017] [Indexed: 01/26/2023] Open
Abstract
Background: Artemisinin and partner drug-resistant falciparum malaria is expanding over the Greater Mekong Sub-region (GMS). Eliminating falciparum malaria in the GMS while drugs still retain enough efficacy could prevent global spread of antimalarial resistance. Eliminating malaria rapidly requires targeting the reservoir of asymptomatic parasite carriers. This pilot trial aimed to evaluate the acceptability, safety, feasibility and effectiveness of mass-drug administration (MDA) in reducing malaria in four villages in Eastern Myanmar. Methods: Villages with ≥30% malaria prevalence were selected. Long-lasting insecticidal bednets (LLINs) and access to malaria early diagnosis and treatment (EDT) were provided. Two villages received MDA immediately and two were followed for nine months pre-MDA. MDA consisted of a 3-day supervised course of dihydroartemisinin-piperaquine and single low-dose primaquine administered monthly for three months. Adverse events (AE) were monitored by interviews and consultations. Malaria prevalence was assessed by ultrasensitive PCR quarterly for 24 months. Symptomatic malaria incidence,entomological indices, and antimalarial resistance markers were monitored. Results: MDA was well tolerated. There were no serious AE and mild to moderate AE were reported in 5.6%(212/3931) interviews. In the smaller villages, participation to three MDA courses was 61% and 57%, compared to 28% and 29% in the larger villages. Baseline prevalence was higher in intervention than in control villages (18.7% (95%CI=16.1-21.6) versus 6.8%(5.2-8.7), p<0.0001) whereas three months after starting MDA, prevalence was lower in intervention villages (0.4%(0.04-1.3) versus 2.7%(1.7-4.1), p=0.0014). After nine months the difference was no longer significant (2.0%(1.0-3.5) versus 0.9%(0.04-1.8), p=0.10). M0-M9 symptomatic falciparum incidence was similar between intervention and control. Before/after MDA comparisons showed that asymptomatic
P. falciparum carriage and anopheline vector positivity decreased significantly whereas prevalence of the artemisinin-resistance molecular marker remained stable. Conclusions: This MDA was safe and feasible, and, could accelerate elimination of
P. falciparum in addition to EDT and LLINs
when community participation was sufficient.
Collapse
Affiliation(s)
- Jordi Landier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Ladda Kajeechiwa
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - May Myo Thwin
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Daniel M Parker
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle (IRD 224-CNRS 4280 UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France.,Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France
| | - Jacher Wiladphaingern
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Mallika Imwong
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Olivo Miotto
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.,Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Krittaya Patumrat
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jureeporn Duanguppama
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Dominique Cerqueira
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Benoit Malleret
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore.,Singapore Immunology Network (SIgN), Agency for Science & Technology, Singapore, 138632, Singapore
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), Agency for Science & Technology, Singapore, 138632, Singapore
| | - Suphak Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Lorenz von Seidlein
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Clare Ling
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Stéphane Proux
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Vincent Corbel
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle (IRD 224-CNRS 4280 UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3053, Australia
| | - Arjen M Dondorp
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Nicholas J White
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
25
|
Kwansomboon N, Chaumeau V, Kittiphanakun P, Cerqueira D, Corbel V, Chareonviriyaphap T. Vector bionomics and malaria transmission along the Thailand-Myanmar border: a baseline entomological survey. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2017; 42:84-93. [PMID: 28504441 DOI: 10.1111/jvec.12242] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/16/2016] [Indexed: 06/07/2023]
Abstract
Baseline entomological surveys were conducted in four sentinel sites along the Thailand-Myanmar border to address vector bionomics and malaria transmission in the context of a study on malaria elimination. Adult Anopheles mosquitoes were collected using human-landing catch and cow-bait collection in four villages during the rainy season from May-June, 2013. Mosquitoes were identified to species level by morphological characters and by AS-PCR. Sporozoite indexes were determined on head/thoraces of primary and secondary malaria vectors using real-time PCR. A total of 4,301 anopheles belonging to 12 anopheline taxa were identified. Anopheles minimus represented >98% of the Minimus Complex members (n=1,683), whereas the An. maculatus group was composed of two dominant species, An. sawadwongporni and An. maculatus. Overall, 25 Plasmodium-positive mosquitoes (of 2,323) were found, representing a sporozoite index of 1.1% [95%CI 0.66-1.50]. The transmission intensity as measured by the EIR strongly varied according to the village (ANOVA, F=17.67, df=3, P<0.0001). Our findings highlight the diversity and complexity of the biting pattern of malaria vectors along the Thailand-Myanmar border that represent a formidable challenge for malaria control and elimination.
Collapse
Affiliation(s)
- N Kwansomboon
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - V Chaumeau
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
- Centre hospitalier universitaire de Montpellier, Montpellier, France
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - P Kittiphanakun
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - D Cerqueira
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - V Corbel
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - T Chareonviriyaphap
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
26
|
Chaumeau V, Cerqueira D, Zadrozny J, Kittiphanakun P, Andolina C, Chareonviriyaphap T, Nosten F, Corbel V. Insecticide resistance in malaria vectors along the Thailand-Myanmar border. Parasit Vectors 2017; 10:165. [PMID: 28359289 PMCID: PMC5374572 DOI: 10.1186/s13071-017-2102-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is a paucity of data about the susceptibility status of malaria vectors to Public Health insecticides along the Thailand-Myanmar border. This lack of data is a limitation to guide malaria vector-control in this region. The aim of this study was to assess the susceptibility status of malaria vectors to deltamethrin, permethrin and DDT and to validate a simple molecular assay for the detection of knock-down resistance (kdr) mutations in the study area. METHODS Anopheles mosquitoes were collected in four sentinel villages during August and November 2014 and July 2015 using human landing catch and cow bait collection methods. WHO susceptibility tests were carried out to measure the mortality and knock-down rates of female mosquitoes to deltamethrin (0.05%), permethrin (0.75%) and DDT (4%). DNA sequencing of a fragment of the voltage-gated sodium channel gene was carried out to identify knock-down resistance (kdr) mutations at position 1014 in mosquitoes surviving exposure to insecticides. RESULTS A total of 6295 Anopheles belonging to ten different species were bioassayed. Resistance or suspected resistance to pyrethroids was detected in An. barbirostris (s.l.) (72 and 84% mortality to deltamethrin (n = 504) and permethrin (n = 493) respectively), An. hyrcanus (s.l.) (33 and 48% mortality to deltamethrin (n = 172) and permethrin (n = 154), respectively), An. jamesii (87% mortality to deltamethrin, n = 111), An. maculatus (s.l.) (85 and 97% mortality to deltamethrin (n = 280) and permethrin (n = 264), respectively), An. minimus (s.l.) (92% mortality, n = 370) and An. vagus (75 and 95% mortality to deltamethrin (n =148) and permethrin (n = 178), respectively). Resistance or suspected resistance to DDT was detected in An. barbirostris (s.l.) (74% mortality, n = 435), An. hyrcanus (s.l.) (57% mortality, n = 91) and An. vagus (97% mortality, n = 133). The L1014S kdr mutation at both heterozygous and homozygous state was detected only in An. peditaeniatus (Hyrcanus Group). CONCLUSION Resistance to pyrethroids is present along the Thailand-Myanmar border, and it represents a threat for malaria vector control. Further investigations are needed to better understand the molecular basis of insecticide resistance in malaria vectors in this area.
Collapse
Affiliation(s)
- Victor Chaumeau
- Centre hospitalier universitaire de Montpellier, Montpellier, France. .,Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, France. .,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand. .,Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand.
| | - Dominique Cerqueira
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - John Zadrozny
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Praphan Kittiphanakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Vincent Corbel
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, France. .,Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand.
| |
Collapse
|
27
|
Ya-Umphan P, Cerqueira D, Parker DM, Cottrell G, Poinsignon A, Remoue F, Brengues C, Chareonviriyaphap T, Nosten F, Corbel V. Use of an Anopheles Salivary Biomarker to Assess Malaria Transmission Risk Along the Thailand-Myanmar Border. J Infect Dis 2017; 215:396-404. [PMID: 27932615 PMCID: PMC5853934 DOI: 10.1093/infdis/jiw543] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/15/2016] [Indexed: 11/13/2022] Open
Abstract
Background The modalities of malaria transmission along the Thailand-Myanmar border are poorly understood. Here we address the relevance of using a specific Anopheles salivary biomarker to measure the risk among humans of exposure to Anopheles bites. Methods Serologic surveys were conducted from May 2013 to December 2014 in 4 sentinel villages. More than 9400 blood specimens were collected in filter papers from all inhabitants at baseline and then every 3 months thereafter, for up to 18 months, for analysis by enzyme-linked immunosorbent assay. The relationship between the intensity of the human antibody response and entomological indicators of transmission (human biting rates and entomological inoculation rates [EIRs]) was studied using a multivariate 3-level mixed model analysis. Heat maps for human immunoglobulin G (IgG) responses for each village and survey time point were created using QGIS 2.4. Results The levels of IgG response among participants varied significantly according to village, season, and age (P<.001) and were positively associated with the abundance of total Anopheles species and primary malaria vectors and the EIR (P<.001). Spatial clusters of high-IgG responders were identified across space and time within study villages. Conclusions The gSG6-P1 biomarker has great potential to address the risk of transmission along the Thailand-Myanmar border and represents a promising tool to guide malaria interventions.
Collapse
Affiliation(s)
- Phubeth Ya-Umphan
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Montpellier, and
- Department of Entomology, Faculty of Agriculture, and
| | - Dominique Cerqueira
- Department of Entomology, Faculty of Agriculture, and
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; and
| | - Daniel M Parker
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; and
| | - Gilles Cottrell
- Institut de Recherche pour le Développement, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Poinsignon
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Montpellier, and
| | - Franck Remoue
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Montpellier, and
| | - Cecile Brengues
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Montpellier, and
| | - Theeraphap Chareonviriyaphap
- Department of Entomology, Faculty of Agriculture, and
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, and
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; and
- Nuffield Department of Medicine, Centre for Tropical Medicine, University of Oxford, United Kingdom
| | - Vincent Corbel
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Montpellier, and
- Institut de Recherche pour le Développement, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
28
|
Churcher TS, Sinden RE, Edwards NJ, Poulton ID, Rampling TW, Brock PM, Griffin JT, Upton LM, Zakutansky SE, Sala KA, Angrisano F, Hill AVS, Blagborough AM. Probability of Transmission of Malaria from Mosquito to Human Is Regulated by Mosquito Parasite Density in Naïve and Vaccinated Hosts. PLoS Pathog 2017; 13:e1006108. [PMID: 28081253 PMCID: PMC5230737 DOI: 10.1371/journal.ppat.1006108] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/02/2016] [Indexed: 11/19/2022] Open
Abstract
Over a century since Ronald Ross discovered that malaria is caused by the bite of an infectious mosquito it is still unclear how the number of parasites injected influences disease transmission. Currently it is assumed that all mosquitoes with salivary gland sporozoites are equally infectious irrespective of the number of parasites they harbour, though this has never been rigorously tested. Here we analyse >1000 experimental infections of humans and mice and demonstrate a dose-dependency for probability of infection and the length of the host pre-patent period. Mosquitoes with a higher numbers of sporozoites in their salivary glands following blood-feeding are more likely to have caused infection (and have done so quicker) than mosquitoes with fewer parasites. A similar dose response for the probability of infection was seen for humans given a pre-erythrocytic vaccine candidate targeting circumsporozoite protein (CSP), and in mice with and without transfusion of anti-CSP antibodies. These interventions prevented infection more efficiently from bites made by mosquitoes with fewer parasites. The importance of parasite number has widespread implications across malariology, ranging from our basic understanding of the parasite, how vaccines are evaluated and the way in which transmission should be measured in the field. It also provides direct evidence for why the only registered malaria vaccine RTS,S was partially effective in recent clinical trials. Malaria is transmitted to humans by the bite of an infectious mosquito though it is unclear whether a mosquito with a high number of parasites is more infectious than one with only a few. Here we show that the greater the number of parasites within the salivary gland of the mosquito following blood-feeding the more likely it is to have transmitted the disease. A clear dose-response is seen with highly infected mosquitoes being more likely to have caused infection (and to have done so quicker) than lightly infected mosquitoes. This suggesting that mosquito-based methods for measuring transmission in the field need to be refined as they currently only consider whether a mosquito is infected or not (and not how heavily infected the mosquito is). Novel transmission reducing drugs and vaccines are tested by experimentally infecting people using infectious mosquitoes. This work indicates that it is important to further standardise infectious dose in malaria experimental infections to enable the efficacy of new interventions to be accurately compared. The work also provides direct evidence to suggest that the world’s first licenced malaria vaccine may be partially effective because it fails to provide protection against highly infected mosquitoes.
Collapse
Affiliation(s)
- Thomas S. Churcher
- MRC Centre for Outbreak Analysis and Modelling, Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- * E-mail:
| | - Robert E. Sinden
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Ian D. Poulton
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Thomas W. Rampling
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Patrick M. Brock
- MRC Centre for Outbreak Analysis and Modelling, Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jamie T. Griffin
- MRC Centre for Outbreak Analysis and Modelling, Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Leanna M. Upton
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Sara E. Zakutansky
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Katarzyna A. Sala
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Fiona Angrisano
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Adrian V. S. Hill
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Andrew M. Blagborough
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| |
Collapse
|