1
|
Ambalavanan N, Cotten CM, Erickson SW, Mathur R, Torgerson D, Ballard PL. Genomic Differences between Spontaneous versus Indicated Extreme Preterm Birth. Am J Perinatol 2025; 42:238-249. [PMID: 38889886 PMCID: PMC11693484 DOI: 10.1055/a-2347-3751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
OBJECTIVE Extremely preterm infants are at high risk of neonatal mortality and morbidity. Extreme preterm birth (PTB) may result from spontaneous preterm labor or preterm premature rupture of membranes or may be indicated due to preeclampsia, eclampsia, hypertension, or other causes. Our objective was to identify single nucleotide polymorphisms (SNPs) and biological pathways associated with spontaneous versus indicated extreme PTB using the neonatal genome. STUDY DESIGN We evaluated 523 spontaneous births and 134 indicated births weighing 401 to 1,000 g at birth from the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network's Genomics dataset by genome-wide association study (GWAS) and pathway analysis. The TOLSURF cohort was used to replicate the results. RESULTS In the NRN GWAS, no statistically significant results were found, although the Manhattan plot showed one almost significant peak (rs60854043 on chromosome 14 at p = 1.03E-07) along with many other modest peaks at p = 1-9E-06, for a total of 15 suggestive associations at this locus. In the NRN pathway analysis, multiple pathways were identified, with the most significant being "GO_mf:go_low_density_lipoprotein_particle_receptor_activity" at p = 1.14E-06. However, these results could not be replicated in the TOLSURF cohort. CONCLUSION Genomic differences are seen between infants born by spontaneous versus indicated extreme PTB. Due to the limited sample size, there is a need for larger studies. KEY POINTS · Genomic differences are seen between infants born by spontaneous versus indicated very PTB.. · Future studies with large sample sizes evaluating extreme PTB are necessary.. · Spontaneous PTB is more common than indicated extreme PTB..
Collapse
Affiliation(s)
| | | | | | - Ravi Mathur
- Genomics Research Center, RTI International, Research Triangle Park, NC
| | - Dara Torgerson
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
| | - Philip L. Ballard
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | | | | |
Collapse
|
2
|
Reforma L, Greenberg S, Ledyard R, Burris H. Equitable Representation of Race, Ethnicity, and Ancestry Among Genomic Studies of Preterm Birth: A Systematic Review. Cureus 2024; 16:e53757. [PMID: 38465134 PMCID: PMC10921821 DOI: 10.7759/cureus.53757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
We conducted a systematic review of representation of race, ethnicity, and ancestry among genomic studies of preterm birth. Our data sources included CINHAL, EMBASE, MEDLINE (PubMed), and Scopus. Studies were included if they were human, genomic studies of preterm birth that analyzed greater than 1,000 genes and included race, ethnicity, and/or ancestry information. Two authors independently reviewed all abstracts and full-text manuscripts. Twelve studies were included. Ancestry was reported for 139,189 (93.6%) participants. Race was reported for 4,841 (3.3%) participants and ethnicity was reported for 7,154 (5.0%) participants. Of the 148,644 births represented in this systematic review, over 90% were reported to be of European ancestry, and race and ethnicity were not further described. When examining the smaller subset of individuals described by race alone, 2,444 individuals were identified as Black or African American and 1,853 were identified as White. Race, ethnicity, and ancestry were not reported in a uniform manner, which makes ascertainment of the genetic contribution to population differences in preterm birth inequities impossible. When reported as race, ethnicity and ancestry, Black or African American populations were under-represented among the studies in this review. Research of the genomics of preterm birth not only requires increased representation of populations that are disproportionately affected, but it also requires standardized reporting of race, ethnicity, and ancestry.
Collapse
Affiliation(s)
- Liberty Reforma
- Obstetrics and Gynecology, Boston Medical Center, Boston, USA
| | - Simone Greenberg
- School of Public Health, Columbia University College of Physicians and Surgeons, New York, USA
| | - Rachel Ledyard
- Biostatistics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Heather Burris
- Neonatology, Children's Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
3
|
Mead EC, Wang CA, Phung J, Fu JY, Williams SM, Merialdi M, Jacobsson B, Lye S, Menon R, Pennell CE. The Role of Genetics in Preterm Birth. Reprod Sci 2023; 30:3410-3427. [PMID: 37450251 PMCID: PMC10692032 DOI: 10.1007/s43032-023-01287-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Preterm birth (PTB), defined as the birth of a child before 37 completed weeks gestation, affects approximately 11% of live births and is the leading cause of death in children under 5 years. PTB is a complex disease with multiple risk factors including genetic variation. Much research has aimed to establish the biological mechanisms underlying PTB often through identification of genetic markers for PTB risk. The objective of this review is to present a comprehensive and updated summary of the published data relating to the field of PTB genetics. A literature search in PubMed was conducted and English studies related to PTB genetics were included. Genetic studies have identified genes within inflammatory, immunological, tissue remodeling, endocrine, metabolic, and vascular pathways that may be involved in PTB. However, a substantial proportion of published data have been largely inconclusive and multiple studies had limited power to detect associations. On the contrary, a few large hypothesis-free approaches have identified and replicated multiple novel variants associated with PTB in different cohorts. Overall, attempts to predict PTB using single "-omics" datasets including genomic, transcriptomic, and epigenomic biomarkers have been mostly unsuccessful and have failed to translate to the clinical setting. Integration of data from multiple "-omics" datasets has yielded the most promising results.
Collapse
Affiliation(s)
- Elyse C Mead
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Carol A Wang
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Jason Phung
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, NSW, 2305, Australia
| | - Joanna Yx Fu
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mario Merialdi
- Maternal Newborn Health Innovations, Geneva, PBC, Switzerland
| | - Bo Jacobsson
- Department of Obstetrics and Gynaecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynaecology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Domain of Health Data and Digitalization, Institute of Public Health, Oslo, Norway
| | - Stephen Lye
- Lunenfeld Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Basic Science and Translational Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Craig E Pennell
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia.
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia.
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, NSW, 2305, Australia.
| |
Collapse
|
4
|
Jain VG, Monangi N, Zhang G, Muglia LJ. Genetics, epigenetics, and transcriptomics of preterm birth. Am J Reprod Immunol 2022; 88:e13600. [PMID: 35818963 PMCID: PMC9509423 DOI: 10.1111/aji.13600] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
Preterm birth contributes significantly to neonatal mortality and morbidity. Despite its global significance, there has only been limited progress in preventing preterm birth. Spontaneous preterm birth (sPTB) results from a wide variety of pathological processes. Although many non-genetic risk factors influence the timing of gestation and labor, compelling evidence supports the role of substantial genetic and epigenetic influences and their interactions with the environment contributing to sPTB. To investigate a common and complex disease such as sPTB, various approaches such as genome-wide association studies, whole-exome sequencing, transcriptomics, and integrative approaches combining these with other 'omics studies have been used. However, many of these studies were typically small or focused on a single ethnicity or geographic region with limited data, particularly in populations at high risk for sPTB, or lacked a robust replication. These studies found many genes involved in the inflammation and immunity-related pathways that may affect sPTB. Recent studies also suggest the role of epigenetic modifications of gene expression by the environmental signals as a potential contributor to the risk of sPTB. Future genetic studies of sPTB should continue to consider the contributions of both maternal and fetal genomes as well as their interaction with the environment.
Collapse
Affiliation(s)
- Viral G. Jain
- Division of Neonatology, Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nagendra Monangi
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ge Zhang
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Louis J. Muglia
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Burroughs Wellcome Fund, Research Triangle Park, North Carolina, USA
| |
Collapse
|
5
|
Gupta JK, Alfirevic A. Systematic review of preterm birth multi-omic biomarker studies. Expert Rev Mol Med 2022; 24:1-24. [PMID: 35379367 PMCID: PMC9884789 DOI: 10.1017/erm.2022.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/16/2022] [Accepted: 03/30/2022] [Indexed: 11/07/2022]
Abstract
Preterm birth (PTB) is one of the leading causes of deaths in infants under the age of five. Known risk factors of PTB include genetic factors, lifestyle choices or infection. Identification of omic biomarkers associated with PTB could aid clinical management of women at high risk of early labour and thereby reduce neonatal morbidity. This systematic literature review aimed to identify and summarise maternal omic and multi-omic (genomics, transcriptomics, proteomics and metabolites) biomarker studies of PTB. Original research articles were retrieved from three databases: PubMed, Web of Science and Science Direct, using specified search terms for each omic discipline. PTB studies investigating genomics, transcriptomics, proteomics or metabolomics biomarkers prior to onset of labour were included. Data were collected and reviewed independently. Pathway analyses were completed on the biomarkers from non-targeted omic studies using Reactome pathway analysis tool. A total of 149 omic studies were identified; most of the literature investigated proteomic biomarkers. Pathway analysis identified several cellular processes associated with the omic biomarkers reported in the literature. Study heterogeneity was observed across the research articles, including the use of different gestation cut-offs to define PTB. Infection/inflammatory biomarkers were identified across majority of papers using a range of targeted and non-targeted approaches.
Collapse
Affiliation(s)
- Juhi K. Gupta
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Harris-Wellbeing Research Centre, University Department, Liverpool Women's Hospital, Liverpool L8 7SS, UK
| | - Ana Alfirevic
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Harris-Wellbeing Research Centre, University Department, Liverpool Women's Hospital, Liverpool L8 7SS, UK
| |
Collapse
|
6
|
Gupta J, Care A, Goodfellow L, Alfirevic Z, Lian LY, Müller-Myhsok B, Alfirevic A, Phelan M. Metabolic profiling of maternal serum of women at high-risk of spontaneous preterm birth using NMR and MGWAS approach. Biosci Rep 2021; 41:BSR20210759. [PMID: 34402867 PMCID: PMC8415214 DOI: 10.1042/bsr20210759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
Preterm birth (PTB) is a leading global cause of infant mortality. Risk factors include genetics, lifestyle choices and infection. Understanding the mechanism of PTB could aid the development of novel approaches to prevent PTB. This study aimed to investigate the metabolic biomarkers of PTB in early pregnancy and the association of significant metabolites with participant genotypes. Maternal sera collected at 16 and 20 weeks of gestation, from women who previously experienced PTB (high-risk) and women who did not (low-risk controls), were analysed using 1H nuclear magnetic resonance (NMR) metabolomics and genome-wide screening microarray. ANOVA and probabilistic neural network (PNN) modelling were performed on the spectral bins. Metabolomics genome-wide association (MGWAS) of the spectral bins and genotype data from the same participants was applied to determine potential metabolite-gene pathways. Phenylalanine, acetate and lactate metabolite differences between PTB cases and controls were obtained by ANOVA and PNN showed strong prediction at week 20 (AUC = 0.89). MGWAS identified several metabolite bins with strong genetic associations. Cis-eQTL analysis highlighted TRAF1 (involved in the inflammatory pathway) local to a non-coding SNP associated with lactate at week 20 of gestation. MGWAS of a well-defined cohort of participants highlighted a lactate-TRAF1 relationship that could potentially contribute to PTB.
Collapse
Affiliation(s)
- Juhi K. Gupta
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GL, UK
- Harris-Wellbeing Research Centre, University Department, Liverpool Women’s Hospital, Liverpool, L8 7SS, UK
| | - Angharad Care
- Harris-Wellbeing Research Centre, University Department, Liverpool Women’s Hospital, Liverpool, L8 7SS, UK
| | - Laura Goodfellow
- Harris-Wellbeing Research Centre, University Department, Liverpool Women’s Hospital, Liverpool, L8 7SS, UK
| | - Zarko Alfirevic
- Harris-Wellbeing Research Centre, University Department, Liverpool Women’s Hospital, Liverpool, L8 7SS, UK
| | - Lu-Yun Lian
- NMR Centre for Structural Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Bertram Müller-Myhsok
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GL, UK
- Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Ana Alfirevic
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GL, UK
- Harris-Wellbeing Research Centre, University Department, Liverpool Women’s Hospital, Liverpool, L8 7SS, UK
| | - Marie M. Phelan
- NMR Centre for Structural Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| |
Collapse
|
7
|
York TP, Latendresse SJ, Jackson-Cook C, Lapato DM, Moyer S, Wolen AR, Roberson-Nay R, Do EK, Murphy SK, Hoyo C, Fuemmeler BF, Strauss JF. Replicated umbilical cord blood DNA methylation loci associated with gestational age at birth. Epigenetics 2020; 15:1243-1258. [PMID: 32448018 PMCID: PMC7595591 DOI: 10.1080/15592294.2020.1767277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 01/07/2023] Open
Abstract
DNA methylation is highly sensitive to in utero perturbations and has an established role in both embryonic development and regulation of gene expression. The foetal genetic component has been previously shown to contribute significantly to the timing of birth, yet little is known about the identity and behaviour of individual genes. The aim of this study was to test the extent genome-wide DNA methylation levels in umbilical cord blood were associated with gestational age at birth (GA). Findings were validated in an independent sample and evidence for the regulation of gene expression was evaluated for cis gene relationships in specimens with multi-omic data. Genome-wide DNA methylation, measured by the Illumina Infinium Human Methylation 450 K BeadChip, was associated with GA for 2,372 CpG probes (5% FDR) in both the Pregnancy, Race, Environment, Genes (PREG) and Newborn Epigenetic Study (NEST) cohorts. Significant probes mapped to 1,640 characterized genes and an association with nearby gene expression measures obtained by the Affymetrix HG-133A microarray was found for 11 genes. Differentially methylated positions were enriched for actively transcribed and enhancer chromatin states, were predominately located outside of CpG islands, and mapped to genes enriched for inflammation and innate immunity ontologies. In both PREG and NEST, the first principal component derived from these probes explained approximately one-half (58.1% and 47.8%, respectively) of the variation in GA. Gene pathways identified are consistent with the hypothesis of pathogen detection and response by the immune system to elicit premature labour as a consequence of unscheduled inflammation.
Collapse
Affiliation(s)
- Timothy P. York
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Colleen Jackson-Cook
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Dana M. Lapato
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Sara Moyer
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Aaron R. Wolen
- Transplant Research Institute, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Roxann Roberson-Nay
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Elizabeth K. Do
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA, USA
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Duke University, Durham, North Carolina, USA
| | - Catherine Hoyo
- Epidemiology and Environmental Epigenomics Laboratory, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Bernard F. Fuemmeler
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA, USA
| | - Jerome F. Strauss
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
8
|
Protein Concentrations of Thrombospondin-1, MIP-1β, and S100A8 Suggest the Reflection of a Pregnancy Clock in Mid-Trimester Amniotic Fluid. Reprod Sci 2020; 27:2146-2157. [PMID: 33026626 PMCID: PMC7593301 DOI: 10.1007/s43032-020-00229-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/28/2020] [Indexed: 11/27/2022]
Abstract
The development of immunoassays enables more sophisticated studies of the associations between protein concentrations and pregnancy outcomes, allowing early biomarker identification that can improve neonatal outcomes. The aim of this study was to explore associations between selected mid-trimester amniotic fluid proteins and (1) overall gestational duration and (2) spontaneous preterm delivery. A prospective cohort study, including women undergoing mid-trimester transabdominal genetic amniocentesis, was performed in Gothenburg, Sweden, 2008-2016 (n = 1072). A panel of 27 proteins related to inflammation was analyzed using Meso-Scale multiplex technology. Concentrations were adjusted for gestational age at sampling, experimental factors, year of sampling, and covariates (maternal age at sampling, parity (nulliparous/multiparous), smoking at first prenatal visit, and in vitro fertilization). Cox regression analysis of the entire cohort was performed to explore possible associations between protein concentrations and gestational duration. This was followed by Cox regression analysis censored at 259 days or longer, to investigate whether associations were detectable in women with spontaneous preterm delivery (n = 47). Finally, linear regression models were performed to analyze associations between protein concentrations and gestational duration in women with spontaneous onset of labor at term (n = 784). HMG-1, IGFBP-1, IL-18, MIP-1α, MIP-1β, S100A8, and thrombospondin-1 were significantly associated with gestational duration at term, but not preterm. Increased concentrations of thrombospondin-1, MIP-1β, and S100A8, respectively, were significantly associated with decreased gestational duration after the Holm-Bonferroni correction in women with spontaneous onset of labor at term. This adds to the concept of a pregnancy clock, where our findings suggest that such a clock is also reflected in the amniotic fluid at early mid-trimester, but further research is needed to confirm this.
Collapse
|
9
|
Hallingström M, Zedníková P, Tambor V, Barman M, Vajrychová M, Lenčo J, Viklund F, Tancred L, Rabe H, Jonsson D, Kachikis A, Nilsson S, Kacerovský M, Adams Waldorf KM, Jacobsson B. Mid-trimester amniotic fluid proteome's association with spontaneous preterm delivery and gestational duration. PLoS One 2020; 15:e0232553. [PMID: 32379834 PMCID: PMC7205297 DOI: 10.1371/journal.pone.0232553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/16/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Amniotic fluid is clinically accessible via amniocentesis and its protein composition may correspond to birth timing. Early changes in the amniotic fluid proteome could therefore be associated with the subsequent development of spontaneous preterm delivery. OBJECTIVE The main objective of this study was to perform unbiased proteomics analysis of the association between mid-trimester amniotic fluid proteome and spontaneous preterm delivery and gestational duration, respectively. A secondary objective was to validate and replicate the findings by enzyme-linked immunosorbent assay using a second independent cohort. METHODS Women undergoing a mid-trimester genetic amniocentesis at Sahlgrenska University Hospital/Östra between September 2008 and September 2011 were enrolled in this study, designed in three analytical stages; 1) an unbiased proteomic discovery phase using LC-MS analysis of 22 women with subsequent spontaneous preterm delivery (cases) and 37 women who delivered at term (controls), 2) a validation phase of proteins of interest identified in stage 1, and 3) a replication phase of the proteins that passed validation using a second independent cohort consisting of 20 cases and 40 matched controls. RESULTS Nine proteins were nominally significantly associated with both spontaneous preterm delivery and gestational duration, after adjustment for gestational age at sampling, but none of the proteins were significant after correction for multiple testing. Several of these proteins have previously been described as being associated with spontaneous PTD etiology and six of them were thus validated using enzyme linked immunosorbent assay. Two of the proteins passed validation; Neutrophil gelatinase-associated lipocalin and plasminogen activator inhibitor 1, but the results could not be replicated in a second cohort. CONCLUSIONS Neutrophil gelatinase-associated lipocalin and Plasminogen activator inhibitor 1 are potential biomarkers of spontaneous preterm delivery and gestational duration but the findings could not be replicated. The negative findings are supported by the fact that none of the nine proteins from the exploratory phase were significant after correction for multiple testing.
Collapse
Affiliation(s)
- Maria Hallingström
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Petra Zedníková
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Biological and Biochemical Science, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Vojtěch Tambor
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Malin Barman
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Marie Vajrychová
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic
| | - Juraj Lenčo
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Felicia Viklund
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Stockholm South General Hospital, Stockholm, Sweden
| | - Linda Tancred
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Biobank Väst, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hardis Rabe
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Jonsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alisa Kachikis
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Staffan Nilsson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marian Kacerovský
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Obstetrics and Gynecology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kristina M. Adams Waldorf
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Area of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| |
Collapse
|
10
|
Liu X, Helenius D, Skotte L, Beaumont RN, Wielscher M, Geller F, Juodakis J, Mahajan A, Bradfield JP, Lin FTJ, Vogelezang S, Bustamante M, Ahluwalia TS, Pitkänen N, Wang CA, Bacelis J, Borges MC, Zhang G, Bedell BA, Rossi RM, Skogstrand K, Peng S, Thompson WK, Appadurai V, Lawlor DA, Kalliala I, Power C, McCarthy MI, Boyd HA, Marazita ML, Hakonarson H, Hayes MG, Scholtens DM, Rivadeneira F, Jaddoe VWV, Vinding RK, Bisgaard H, Knight BA, Pahkala K, Raitakari O, Helgeland Ø, Johansson S, Njølstad PR, Fadista J, Schork AJ, Nudel R, Miller DE, Chen X, Weirauch MT, Mortensen PB, Børglum AD, Nordentoft M, Mors O, Hao K, Ryckman KK, Hougaard DM, Kottyan LC, Pennell CE, Lyytikainen LP, Bønnelykke K, Vrijheid M, Felix JF, Lowe WL, Grant SFA, Hyppönen E, Jacobsson B, Jarvelin MR, Muglia LJ, Murray JC, Freathy RM, Werge TM, Melbye M, Buil A, Feenstra B. Variants in the fetal genome near pro-inflammatory cytokine genes on 2q13 associate with gestational duration. Nat Commun 2019; 10:3927. [PMID: 31477735 PMCID: PMC6718389 DOI: 10.1038/s41467-019-11881-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
The duration of pregnancy is influenced by fetal and maternal genetic and non-genetic factors. Here we report a fetal genome-wide association meta-analysis of gestational duration, and early preterm, preterm, and postterm birth in 84,689 infants. One locus on chromosome 2q13 is associated with gestational duration; the association is replicated in 9,291 additional infants (combined P = 3.96 × 10-14). Analysis of 15,588 mother-child pairs shows that the association is driven by fetal rather than maternal genotype. Functional experiments show that the lead SNP, rs7594852, alters the binding of the HIC1 transcriptional repressor. Genes at the locus include several interleukin 1 family members with roles in pro-inflammatory pathways that are central to the process of parturition. Further understanding of the underlying mechanisms will be of great public health importance, since giving birth either before or after the window of term gestation is associated with increased morbidity and mortality.
Collapse
Affiliation(s)
- Xueping Liu
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Dorte Helenius
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Line Skotte
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Robin N Beaumont
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Julius Juodakis
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Jonathan P Bradfield
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Quantinuum Research, LLC, San Diego, CA, USA
| | - Frederick T J Lin
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Suzanne Vogelezang
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mariona Bustamante
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Tarunveer S Ahluwalia
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Niina Pitkänen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520, Turku, Finland
| | - Carol A Wang
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, NSW, Australia
| | - Jonas Bacelis
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria C Borges
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ge Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Bruce A Bedell
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Robert M Rossi
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kristin Skogstrand
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Statens Serum Institut, Center for Neonatal Screening, Department for Congenital Disorders, Copenhagen, Denmark
| | - Shouneng Peng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Wesley K Thompson
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Vivek Appadurai
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Debbie A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| | - Ilkka Kalliala
- Department of Surgery and Cancer, IRDB, Faculty of Medicine, Imperial College, London, W12 0NN, UK
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu, 200029 HUS, Finland
| | - Christine Power
- Population, Policy and Practice, Great Ormond Street Institute for Child Health, University College London, London, UK
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Heather A Boyd
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Anthropology, Northwestern University, Evanston, IL, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Denise M Scholtens
- Division of Biostatistics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Fernando Rivadeneira
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rebecca K Vinding
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bridget A Knight
- NIHR Exeter Clinical Research Facility, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520, Turku, Finland
- Paavo Nurmi Centre, Sports & Exercise Medicine Unit, Department of Health and Physical Activity, University of Turku, 20520, Turku, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, 20521, Turku, Finland
| | - Øyvind Helgeland
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
- Norwegian Institute of Public Health, Division of Health data and Digitalization, Department of Genetic Research and Bioinformatics, Oslo, Norway
| | - Stefan Johansson
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Pål R Njølstad
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - João Fadista
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Andrew J Schork
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Ron Nudel
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Daniel E Miller
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Preben Bo Mortensen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Anders D Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | - Merete Nordentoft
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Mental Health Center Copenhagen, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Kelli K Ryckman
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- Department of Epidemiology, University of Iowa, Iowa City, IA, USA
| | - David M Hougaard
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Statens Serum Institut, Center for Neonatal Screening, Department for Congenital Disorders, Copenhagen, Denmark
| | - Leah C Kottyan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Craig E Pennell
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, NSW, Australia
| | - Leo-Pekka Lyytikainen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, 33520, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, 33014, Tampere, Finland
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Martine Vrijheid
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - William L Lowe
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Struan F A Grant
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elina Hyppönen
- Population, Policy and Practice, Great Ormond Street Institute for Child Health, University College London, London, UK
- Australian Centre for Precision Health, University of South Australia Cancer Research Institute, Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Marjo-Riitta Jarvelin
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Medical Research Council-Health Protection Agency Centre for Environment and Health, Faculty of Medicine, Imperial College London, London, UK
| | - Louis J Muglia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Rachel M Freathy
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Thomas M Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alfonso Buil
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.
| |
Collapse
|
11
|
Tiensuu H, Haapalainen AM, Karjalainen MK, Pasanen A, Huusko JM, Marttila R, Ojaniemi M, Muglia LJ, Hallman M, Rämet M. Risk of spontaneous preterm birth and fetal growth associates with fetal SLIT2. PLoS Genet 2019; 15:e1008107. [PMID: 31194736 PMCID: PMC6563950 DOI: 10.1371/journal.pgen.1008107] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
Spontaneous preterm birth (SPTB) is the leading cause of neonatal death and morbidity worldwide. Both maternal and fetal genetic factors likely contribute to SPTB. We performed a genome-wide association study (GWAS) on a population of Finnish origin that included 247 infants with SPTB (gestational age [GA] < 36 weeks) and 419 term controls (GA 38-41 weeks). The strongest signal came within the gene encoding slit guidance ligand 2 (SLIT2; rs116461311, minor allele frequency 0.05, p = 1.6×10-6). Pathway analysis revealed the top-ranking pathway was axon guidance, which includes SLIT2. In 172 very preterm-born infants (GA <32 weeks), rs116461311 was clearly overrepresented (odds ratio 4.06, p = 1.55×10-7). SLIT2 variants were associated with SPTB in another European population that comprised 260 very preterm infants and 9,630 controls. To gain functional insight, we used immunohistochemistry to visualize SLIT2 and its receptor ROBO1 in placentas from spontaneous preterm and term births. Both SLIT2 and ROBO1 were located in villous and decidual trophoblasts of embryonic origin. Based on qRT-PCR, the mRNA levels of SLIT2 and ROBO1 were higher in the basal plate of SPTB placentas compared to those from term or elective preterm deliveries. In addition, in spontaneous term and preterm births, placental SLIT2 expression was correlated with variations in fetal growth. Knockdown of ROBO1 in trophoblast-derived HTR8/SVneo cells by siRNA indicated that it regulate expression of several pregnancy-specific beta-1-glycoprotein (PSG) genes and genes involved in inflammation. Our results show that the fetal SLIT2 variant and both SLIT2 and ROBO1 expression in placenta and trophoblast cells may be correlated with susceptibility to SPTB. SLIT2-ROBO1 signaling was linked with regulation of genes involved in inflammation, PSG genes, decidualization and fetal growth. We propose that this receptor-ligand couple is a component of the signaling network that promotes SPTB.
Collapse
Affiliation(s)
- Heli Tiensuu
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Antti M. Haapalainen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Minna K. Karjalainen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Anu Pasanen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Johanna M. Huusko
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, United States of America
| | - Riitta Marttila
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Marja Ojaniemi
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Louis J. Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, United States of America
| | - Mikko Hallman
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Mika Rämet
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
12
|
Hallman M, Haapalainen A, Huusko JM, Karjalainen MK, Zhang G, Muglia LJ, Rämet M. Spontaneous premature birth as a target of genomic research. Pediatr Res 2019; 85:422-431. [PMID: 30353040 DOI: 10.1038/s41390-018-0180-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 01/23/2023]
Abstract
Spontaneous preterm birth is a serious and common pregnancy complication associated with hormonal dysregulation, infection, inflammation, immunity, rupture of fetal membranes, stress, bleeding, and uterine distention. Heredity is 25-40% and mostly involves the maternal genome, with contribution of the fetal genome. Significant discoveries of candidate genes by genome-wide studies and confirmation in independent replicate populations serve as signposts for further research. The main task is to define the candidate genes, their roles, localization, regulation, and the associated pathways that influence the onset of human labor. Genomic research has identified some candidate genes that involve growth, differentiation, endocrine function, immunity, and other defense functions. For example, selenocysteine-specific elongation factor (EEFSEC) influences synthesis of selenoproteins. WNT4 regulates decidualization, while a heat-shock protein family A (HSP70) member 1 like, HSPAIL, influences expression of glucocorticoid receptor and WNT4. Programming of pregnancy duration starts before pregnancy and during placentation. Future goals are to understand the interactive regulation of the pathways in order to define the clocks that influence the risk of prematurity and the duration of pregnancy. Premature birth has a great impact on the duration and the quality of life. Intensification of focused research on causes, prediction and prevention of prematurity is justified.
Collapse
Affiliation(s)
- Mikko Hallman
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.
| | - Antti Haapalainen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Johanna M Huusko
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Minna K Karjalainen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Ge Zhang
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Louis J Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Mika Rämet
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
13
|
Šeda O, Šedová L, Včelák J, Vaňková M, Liška F, Bendlová B. ZBTB16 and metabolic syndrome: a network perspective. Physiol Res 2018; 66:S357-S365. [PMID: 28948820 DOI: 10.33549/physiolres.933730] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Metabolic syndrome is a prevalent, complex condition. The search for genetic determinants of the syndrome is currently undergoing a paradigm enhancement by adding systems genetics approaches to association studies. We summarize the current evidence on relations between an emergent new candidate, zinc finger and BTB domain containing 16 (ZBTB16) transcription factor and the major components constituting the metabolic syndrome. Information stemming from studies on experimental models with altered Zbtb16 expression clearly shows its effect on adipogenesis, cardiac hypertrophy and fibrosis, lipid levels and insulin sensitivity. Based on current evidence, we provide a network view of relations between ZBTB16 and hallmarks of metabolic syndrome in order to elucidate the potential functional links involving the ZBTB16 node. Many of the identified genes interconnecting ZBTB16 with all or most metabolic syndrome components are linked to immune function, inflammation or oxidative stress. In summary, ZBTB16 represents a promising pleiotropic candidate node for metabolic syndrome.
Collapse
Affiliation(s)
- O Šeda
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic, Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
14
|
Quinney SK, Gullapelli R, Haas DM. Translational Systems Pharmacology Studies in Pregnant Women. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 7:69-81. [PMID: 29239132 PMCID: PMC5824114 DOI: 10.1002/psp4.12269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022]
Abstract
Pregnancy involves rapid physiological adaptation and complex interplay between mother and fetus. New analytic technologies provide large amounts of genomic, proteomic, and metabolomics data. The integration of these data through bioinformatics, statistical, and systems pharmacology techniques can improve our understanding of the mechanisms of normal maternal physiologic changes and fetal development. New insights into the mechanisms of pregnancy‐related disorders, such as preterm birth (PTB), may lead to the development of new therapeutic interventions and novel biomarkers.
Collapse
Affiliation(s)
- Sara K Quinney
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rakesh Gullapelli
- School of Informatics and Computing, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - David M Haas
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
15
|
Modi BP, Teves ME, Pearson LN, Parikh HI, Haymond‐Thornburg H, Tucker JL, Chaemsaithong P, Gomez‐Lopez N, York TP, Romero R, Strauss JF. Mutations in fetal genes involved in innate immunity and host defense against microbes increase risk of preterm premature rupture of membranes (PPROM). Mol Genet Genomic Med 2017; 5:720-729. [PMID: 29178652 PMCID: PMC5702565 DOI: 10.1002/mgg3.330] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Twin studies have revealed a significant contribution of the fetal genome to risk of preterm birth. Preterm premature rupture of membranes (PPROM) is the leading identifiable cause of preterm delivery. Infection and inflammation of the fetal membranes is commonly found associated with PPROM. METHODS We carried out whole exome sequencing (WES) of genomic DNA from neonates born of African-American mothers whose pregnancies were complicated by PPROM (76) or were normal term pregnancies (N = 43) to identify mutations in 35 candidate genes involved in innate immunity and host defenses against microbes. Targeted genotyping of mutations in the candidates discovered by WES was conducted on an additional 188 PPROM cases and 175 controls. RESULTS We identified rare heterozygous nonsense and frameshift mutations in several of the candidate genes, including CARD6, CARD8, DEFB1, FUT2, MBL2, NLP10, NLRP12, and NOD2. We discovered that some mutations (CARD6, DEFB1, FUT2, MBL2, NLRP10, NOD2) were present only in PPROM cases. CONCLUSIONS We conclude that rare damaging mutations in innate immunity and host defense genes, the majority being heterozygous, are more frequent in neonates born of pregnancies complicated by PPROM. These findings suggest that the risk of preterm birth in African-Americans may be conferred by mutations in multiple genes encoding proteins involved in dampening the innate immune response or protecting the host against microbial infection and microbial products.
Collapse
Affiliation(s)
- Bhavi P. Modi
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVirginia
| | - Maria E. Teves
- Department of Obstetrics and GynecologyVirginia Commonwealth UniversityRichmondVirginia
| | - Laurel N. Pearson
- Department of AnthropologyPennsylvania State UniversityUniversity ParkPennsylvania
| | - Hardik I. Parikh
- Department of Microbiology and ImmunologyVirginia Commonwealth UniversityRichmondVirginia
| | | | - John L. Tucker
- Department of Obstetrics and GynecologyVirginia Commonwealth UniversityRichmondVirginia
| | - Piya Chaemsaithong
- Perinatology Research BranchEunice Kennedy Shriver National Institute for Child Health and Human DevelopmentNIHDetroitMichigan
| | - Nardhy Gomez‐Lopez
- Perinatology Research BranchEunice Kennedy Shriver National Institute for Child Health and Human DevelopmentNIHDetroitMichigan
- Department of Obstetrics and GynecologyUniversity of MichiganAnn ArborMichigan
- Department of Epidemiology and BiostatisticsMichigan State UniversityEast LansingMichigan
- Center for Molecular Medicine and GeneticsWayne State UniversityDetroitMichigan
| | - Timothy P. York
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVirginia
- Department of Obstetrics and GynecologyVirginia Commonwealth UniversityRichmondVirginia
| | - Roberto Romero
- Perinatology Research BranchEunice Kennedy Shriver National Institute for Child Health and Human DevelopmentNIHDetroitMichigan
- Department of Obstetrics and GynecologyUniversity of MichiganAnn ArborMichigan
- Department of Epidemiology and BiostatisticsMichigan State UniversityEast LansingMichigan
- Center for Molecular Medicine and GeneticsWayne State UniversityDetroitMichigan
| | - Jerome F. Strauss
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVirginia
- Department of Obstetrics and GynecologyVirginia Commonwealth UniversityRichmondVirginia
| |
Collapse
|
16
|
Time-Variant Genetic Effects as a Cause for Preterm Birth: Insights from a Population of Maternal Cousins in Sweden. G3-GENES GENOMES GENETICS 2017; 7:1349-1356. [PMID: 28250013 PMCID: PMC5386882 DOI: 10.1534/g3.116.038612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Preterm delivery (PTD) is the leading cause of neonatal mortality worldwide, yet its etiology remains largely unexplained. We propose that the genetic factors controlling this trait could act in a nonuniform manner during pregnancy, with each factor having a unique “window of sensitivity.” We test this hypothesis by modeling the distribution of gestational ages (GAs) observed in maternal cousins from the Swedish Medical Birth Register (MBR) (n = 35,541 pairs). The models were built using a time-to-event framework, with simulated genetic factors that increase the hazard of birth either uniformly across the pregnancy (constant effect) or only in particular windows (varying effect). By including various combinations of these factors, we obtained four models that were then optimized and compared. Best fit to the clinical data was observed when most of the factors had time-variant effects, independently of the number of loci simulated. Finally, power simulations were performed to assess the ability to discover varying-effect loci by usual methods for genome-wide association testing. We believe that the tools and concepts presented here should prove useful for the design of future studies of PTD and provide new insights into the genetic architecture determining human GA.
Collapse
|
17
|
Correction: Literature-Informed Analysis of a Genome-Wide Association Study of Gestational Age in Norwegian Women and Children Suggests Involvement of Inflammatory Pathways. PLoS One 2016; 11:e0165328. [PMID: 27760235 PMCID: PMC5070847 DOI: 10.1371/journal.pone.0165328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0160335.].
Collapse
|