1
|
Gordon G, Greenshields-Watson A, Agarwal P, Wong A, Boyles F, Hummer A, Lujan Hernandez A, Deane C. PLAbDab-nano: a database of camelid and shark nanobodies from patents and literature. Nucleic Acids Res 2025; 53:D535-D542. [PMID: 39385626 PMCID: PMC11701533 DOI: 10.1093/nar/gkae881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
Nanobodies are essential proteins of the adaptive immune systems of camelid and shark species, complementing conventional antibodies. Properties such as their relatively small size, solubility and high thermostability make VHH (variable heavy domain of the heavy chain) and VNAR (variable new antigen receptor) modalities a promising therapeutic format and a valuable resource for a wide range of biological applications. The volume of academic literature and patents related to nanobodies has risen significantly over the past decade. Here, we present PLAbDab-nano, a nanobody complement to the Patent and Literature Antibody Database (PLAbDab). PLAbDab-nano is a self-updating, searchable repository containing ∼5000 annotated VHH and VNAR sequences. We describe the methods used to curate the entries in PLAbDab-nano, and highlight how PLAbDab-nano could be used to design diverse libraries, as well as find sequences similar to known patented or therapeutic entries. PLAbDab-nano is freely available as a searchable web server (https://opig.stats.ox.ac.uk/webapps/plabdab-nano/).
Collapse
Affiliation(s)
- Gemma L Gordon
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | | | - Parth Agarwal
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Ashley Wong
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Fergus Boyles
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Alissa Hummer
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | | | - Charlotte M Deane
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| |
Collapse
|
2
|
Ahmed FS, Aly S, Liu X. NABP-BERT: NANOBODY®-antigen binding prediction based on bidirectional encoder representations from transformers (BERT) architecture. Brief Bioinform 2024; 26:bbae518. [PMID: 39688476 DOI: 10.1093/bib/bbae518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024] Open
Abstract
Antibody-mediated immunity is crucial in the vertebrate immune system. Nanobodies, also known as VHH or single-domain antibodies (sdAbs), are emerging as promising alternatives to full-length antibodies due to their compact size, precise target selectivity, and stability. However, the limited availability of nanobodies (Nbs) for numerous antigens (Ags) presents a significant obstacle to their widespread application. Understanding the interactions between Nbs and Ags is essential for enhancing their binding affinities and specificities. Experimental identification of these interactions is often costly and time-intensive. To address this issue, we introduce NABP-BERT, a deep-learning model based on the BERT architecture, designed to predict NANOBODY®-Ag binding solely from sequence information. Furthermore, we have developed a general pretrained model with transfer capabilities suitable for protein-related tasks, including protein-protein interaction tasks. NABP-BERT focuses on the surrounding amino acid contexts and outperforms existing methods, achieving an AUROC of 0.986 and an AUPR of 0.985.
Collapse
Affiliation(s)
- Fatma S Ahmed
- Department of Computer Science and Technology, Xiamen University, Xiamen 361005, China
- Department of Electrical Engineering, Aswan University, Aswan 81542, Egypt
| | - Saleh Aly
- Department of Information Technology, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Xiangrong Liu
- Department of Computer Science and Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Wang X, Zhang L, Zhang Y, Li J, Xu W, Zhu W. Distinct types of VHHs in Alpaca. Front Immunol 2024; 15:1447212. [PMID: 39600702 PMCID: PMC11588638 DOI: 10.3389/fimmu.2024.1447212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction VHHs (VH of heavy-chain-only antibodies) represent a unique alternative to Q7 conventional antibodies because of their smaller size, comparable binding affinity and biophysical properties. Method In this study, we systematically analyzed VHH NGS sequences from 22 Alpacas and structure data from public database. Results VHHs in Alpaca can be grouped into five main types with multiple distinct sequence and structure features. Based on the existence of hallmark residues in FR2 region, VHHs can be classified into two groups: nonclassical VHHs (without hallmark residues) and classical VHHs (with hallmark residues). Based on VHH hallmark residues at 42 position (IMGT numbering, FR2 region) and number of cysteines, we found that Alpaca classical VHHs can be further separated into three main types: F_C2 VHHs with F (phenylalanine) at position 42 and having 2 cysteines within sequences, Y_C2 VHHs with Y (tyrosine) at position 42 and having 2 cysteines, and F_C4 with F at position 42 and having 4 cysteines. Non-classical VHHs can be further separated into 2 types based on germlines mapped: N_V3 for VHHs mapped to V3 germlines and N_V4 for V4 germlines. Based on whether FR2 residues are involved in binding, two kinds of paratopes can be identified. Different types of VHHs showed distinct associations with these two paratopes and displayed significant differences in paratope size, residue usage and other structure features. Discussion Such results will have significant implications in VHH discovery, engine e ring, and design for innovative therapeutics.
Collapse
Affiliation(s)
- Xinhao Wang
- Drug Discovery and Development, Chantibody Therapeutics, Menlo Park, CA, United States
| | - Lu Zhang
- Drug Discovery and Development, Shanghai Cell Therapy Group Co. Ltd, Shanghai, China
| | - Yao Zhang
- Drug Discovery and Development, Shanghai Cell Therapy Group Co. Ltd, Shanghai, China
| | - Jiaguo Li
- Drug Discovery and Development, Shanghai Cell Therapy Group Co. Ltd, Shanghai, China
| | - Wenfeng Xu
- Drug Discovery and Development, Chantibody Therapeutics, Menlo Park, CA, United States
| | - Weimin Zhu
- Drug Discovery and Development, Shanghai Cell Therapy Group Co. Ltd, Shanghai, China
| |
Collapse
|
4
|
Fernández‐Quintero ML, Guarnera E, Musil D, Pekar L, Sellmann C, Freire F, Sousa RL, Santos SP, Freitas MC, Bandeiras TM, Silva MMS, Loeffler JR, Ward AB, Harwardt J, Zielonka S, Evers A. On the humanization of VHHs: Prospective case studies, experimental and computational characterization of structural determinants for functionality. Protein Sci 2024; 33:e5176. [PMID: 39422475 PMCID: PMC11487682 DOI: 10.1002/pro.5176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
The humanization of camelid-derived variable domain heavy chain antibodies (VHHs) poses challenges including immunogenicity, stability, and potential reduction of affinity. Critical to this process are complementarity-determining regions (CDRs), Vernier and Hallmark residues, shaping the three-dimensional fold and influencing VHH structure and function. Additionally, the presence of non-canonical disulfide bonds further contributes to conformational stability and antigen binding. In this study, we systematically humanized two camelid-derived VHHs targeting the natural cytotoxicity receptor NKp30. Key structural positions in Vernier and Hallmark regions were exchanged with residues from the most similar human germline sequences. The resulting variants were characterized for binding affinities, yield, and purity. Structural binding modes were elucidated through crystal structure determination and AlphaFold2 predictions, providing insights into differences in binding affinity. Comparative structural and molecular dynamics characterizations of selected variants were performed to rationalize their functional properties and elucidate the role of specific sequence motifs in antigen binding. Furthermore, systematic analyses of next-generation sequencing (NGS) and Protein Data Bank (PDB) data was conducted, shedding light on the functional significance of Hallmark motifs and non-canonical disulfide bonds in VHHs in general. Overall, this study provides valuable insights into the structural determinants governing the functional properties of VHHs, offering a roadmap for their rational design, humanization, and optimization for therapeutic applications.
Collapse
Affiliation(s)
- Monica L. Fernández‐Quintero
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Enrico Guarnera
- Antibody Discovery and Protein EngineeringMerck Healthcare KGaADarmstadtGermany
| | - Djordje Musil
- Structural Biology and BiophysicsMerck Healthcare KGaADarmstadtGermany
| | - Lukas Pekar
- Antibody Discovery and Protein EngineeringMerck Healthcare KGaADarmstadtGermany
| | - Carolin Sellmann
- Antibody Discovery and Protein EngineeringMerck Healthcare KGaADarmstadtGermany
| | - Filipe Freire
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
| | - Raquel L. Sousa
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
| | - Sandra P. Santos
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
| | - Micael C. Freitas
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
| | | | | | - Johannes R. Loeffler
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Julia Harwardt
- Antibody Discovery and Protein EngineeringMerck Healthcare KGaADarmstadtGermany
| | - Stefan Zielonka
- Antibody Discovery and Protein EngineeringMerck Healthcare KGaADarmstadtGermany
- Institute for Organic Chemistry and BiochemistryTechnical University of DarmstadtDarmstadtGermany
| | - Andreas Evers
- Antibody Discovery and Protein EngineeringMerck Healthcare KGaADarmstadtGermany
| |
Collapse
|
5
|
Yu T, Zheng F, He W, Muyldermans S, Wen Y. Single domain antibody: Development and application in biotechnology and biopharma. Immunol Rev 2024; 328:98-112. [PMID: 39166870 PMCID: PMC11659936 DOI: 10.1111/imr.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Heavy-chain antibodies (HCAbs) are a unique type of antibodies devoid of light chains, and comprised of two heavy chains-only that recognize their cognate antigen by virtue of a single variable domain also referred to as VHH, single domain antibody (sdAb), or nanobody (Nb). These functional HCAbs, serendipitous discovered about three decades ago, are exclusively found in camelids, comprising dromedaries, camels, llamas, and vicugnas. Nanobodies have become an essential tool in biomedical research and medicine, both in diagnostics and therapeutics due to their beneficial properties: small size, high stability, strong antigen-binding affinity, low immunogenicity, low production cost, and straightforward engineering into more potent affinity reagents. The occurrence of HCAbs in camelids remains intriguing. It is believed to be an evolutionary adaptation, equipping camelids with a robust adaptive immune defense suitable to respond to the pressure from a pathogenic invasion necessitating a more profound antigen recognition and neutralization. This evolutionary innovation led to a simplified HCAb structure, possibly supported by genetic mutations and drift, allowing adaptive mutation and diversification in the heavy chain variable gene and constant gene regions. Beyond understanding their origins, the application of nanobodies has significantly advanced over the past 30 years. Alongside expanding laboratory research, there has been a rapid increase in patent application for nanobodies. The introduction of commercial nanobody drugs such as Cablivi, Nanozora, Envafolimab, and Carvykti has boosted confidence among in their potential. This review explores the evolutionary history of HCAbs, their ontogeny, and applications in biotechnology and pharmaceuticals, focusing on approved and ongoing medical research pipelines.
Collapse
Affiliation(s)
- Ting Yu
- Center for Microbiome Research of Med‐X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Wenbo He
- Center for Microbiome Research of Med‐X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular ImmunologyVrije Universiteit BrusselBrusselsBelgium
| | - Yurong Wen
- Center for Microbiome Research of Med‐X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science CenterXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
6
|
Martins C, Gardebien F, Nadaradjane AA, Diharce J, de Brevern AG. A Simple Analysis of the Second (Extra) Disulfide Bridge of V HHs. Molecules 2024; 29:4863. [PMID: 39459230 PMCID: PMC11509895 DOI: 10.3390/molecules29204863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Camelids produce a special type of antibody, known as VHHs, that has lost the VL domain, providing a more optimised VH domain. This particular highly stable antibody domain has interesting properties for biotechnological development. Ordinarily, those molecules possess only one disulphide bridge, but surprisingly, at least a quarter of these VHHs have a second one. Curiously, this does not seem to be essential for the stability and the function of this domain. In an attempt to characterise precisely the role and impact of this disulphide bridge at the molecular level, several in silico mutants of a VHH were created to disrupt this second disulphide bridge and those systems were submitted to molecular dynamics simulation. The loss of the second disulphide bridge leads to an increase in the flexibility of CDR1 and CDR3 and an unexpected rigidification of CDR2. Local conformational analysis shows local differences in the observed protein conformations. However, in fact, there is no exploration of new conformations but a change in the equilibrium between the different observed conformations. This explains why the interaction of VHHs is not really affected by the presence or absence of this second bridge, but their rigidity is slightly reduced. Therefore, the additional disulphide bridge does not seem to be an essential part of VHHs function.
Collapse
Affiliation(s)
- Carla Martins
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-75015 Paris, France;
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-97715 Saint Denis Messag, France; (F.G.); (A.A.N.)
| | - Fabrice Gardebien
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-97715 Saint Denis Messag, France; (F.G.); (A.A.N.)
| | - Aravindan Arun Nadaradjane
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-97715 Saint Denis Messag, France; (F.G.); (A.A.N.)
| | - Julien Diharce
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-75015 Paris, France;
| | - Alexandre G. de Brevern
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-75015 Paris, France;
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-97715 Saint Denis Messag, France; (F.G.); (A.A.N.)
| |
Collapse
|
7
|
Lee HE, Cho AH, Hwang JH, Kim JW, Yang HR, Ryu T, Jung Y, Lee S. Development, High-Throughput Profiling, and Biopanning of a Large Phage Display Single-Domain Antibody Library. Int J Mol Sci 2024; 25:4791. [PMID: 38732011 PMCID: PMC11083953 DOI: 10.3390/ijms25094791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Immunoglobulin G-based monoclonal antibodies (mAbs) have been effective in treating various diseases, but their large molecular size can limit their penetration of tissue and efficacy in multifactorial diseases, necessitating the exploration of alternative forms. In this study, we constructed a phage display library comprising single-domain antibodies (sdAbs; or "VHHs"), known for their small size and remarkable stability, using a total of 1.6 × 109 lymphocytes collected from 20 different alpacas, resulting in approximately 7.16 × 1010 colonies. To assess the quality of the constructed library, next-generation sequencing-based high-throughput profiling was performed, analyzing approximately 5.65 × 106 full-length VHH sequences, revealing 92% uniqueness and confirming the library's diverse composition. Systematic characterization of the library revealed multiple sdAbs with high affinity for three therapeutically relevant antigens. In conclusion, our alpaca sdAb phage display library provides a versatile resource for diagnostics and therapeutics. Furthermore, the library's vast natural VHH antibody repertoire offers insights for generating humanized synthetic sdAb libraries, further advancing sdAb-based therapeutics.
Collapse
Affiliation(s)
- Hee Eon Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Ah Hyun Cho
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Jae Hyeon Hwang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Ji Woong Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Taehoon Ryu
- ATG Lifetech Inc., Seoul 08507, Republic of Korea; (T.R.); (Y.J.)
| | - Yushin Jung
- ATG Lifetech Inc., Seoul 08507, Republic of Korea; (T.R.); (Y.J.)
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
- Department of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
8
|
Hadsund JT, Satława T, Janusz B, Shan L, Zhou L, Röttger R, Krawczyk K. nanoBERT: a deep learning model for gene agnostic navigation of the nanobody mutational space. BIOINFORMATICS ADVANCES 2024; 4:vbae033. [PMID: 38560554 PMCID: PMC10978573 DOI: 10.1093/bioadv/vbae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Motivation Nanobodies are a subclass of immunoglobulins, whose binding site consists of only one peptide chain, bestowing favorable biophysical properties. Recently, the first nanobody therapy was approved, paving the way for further clinical applications of this antibody format. Further development of nanobody-based therapeutics could be streamlined by computational methods. One of such methods is infilling-positional prediction of biologically feasible mutations in nanobodies. Being able to identify possible positional substitutions based on sequence context, facilitates functional design of such molecules. Results Here we present nanoBERT, a nanobody-specific transformer to predict amino acids in a given position in a query sequence. We demonstrate the need to develop such machine-learning based protocol as opposed to gene-specific positional statistics since appropriate genetic reference is not available. We benchmark nanoBERT with respect to human-based language models and ESM-2, demonstrating the benefit for domain-specific language models. We also demonstrate the benefit of employing nanobody-specific predictions for fine-tuning on experimentally measured thermostability dataset. We hope that nanoBERT will help engineers in a range of predictive tasks for designing therapeutic nanobodies. Availability and implementation https://huggingface.co/NaturalAntibody/.
Collapse
Affiliation(s)
| | | | | | - Lu Shan
- Alector Therapeutics, San Francisco, CA, 94080, United States
| | - Li Zhou
- Alector Therapeutics, San Francisco, CA, 94080, United States
| | - Richard Röttger
- Department Mathematics and Computer Science, University of Southern, Odense, 5230, Denmark
| | | |
Collapse
|
9
|
Islam Z, Vaikath NN, Hmila I, El‐Agnaf OMA, Kolatkar PR. Structural insights into the unique recognition module between α-synuclein peptide and nanobody. Protein Sci 2024; 33:e4875. [PMID: 38105512 PMCID: PMC10807187 DOI: 10.1002/pro.4875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Nanobodies are single-domain fragments of antibodies with comparable specificity and affinity to antibodies. They are emerging as versatile tools in biology due to their relatively small size. Here, we report the crystal structure of a specific nanobody Nbα-syn01, bound to a 14 amino acid long peptide of α-synuclein (αSyn), a 140-residue protein whose aggregation is associated with Parkinson's disease. The complex structure exhibits a unique binding pattern where the αSyn peptide replaces the N-terminal region of nanobody. Recognition is mediated principally by extended main chain interaction of the αSyn peptide and specificity of the interaction lies in the central 48-52 region of αSyn peptide. Structure-guided truncation of Nbα-syn01 shows tighter binding to αSyn peptide and improved inhibition of α-synuclein aggregation. The structure of the truncated complex was subsequently determined and was indistinguishable to full length complex as the full-length form had no visible electron density for the N-terminal end. These findings reveal the molecular basis for a previously unobserved binding mode for nanobody recognition of α-synuclein, providing an explanation for the enhanced binding, and potential for an alternate framework for structure-based protein engineering of nanobodies to develop better diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Zeyaul Islam
- Diabetes CenterQatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar FoundationDohaQatar
| | - Nishant N. Vaikath
- Neurological Disorder Research CenterQatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar FoundationDohaQatar
| | - Issam Hmila
- Neurological Disorder Research CenterQatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar FoundationDohaQatar
| | - Omar M. A. El‐Agnaf
- Neurological Disorder Research CenterQatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar FoundationDohaQatar
| | - Prasanna R. Kolatkar
- Diabetes CenterQatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar FoundationDohaQatar
| |
Collapse
|
10
|
Mullin M, McClory J, Haynes W, Grace J, Robertson N, van Heeke G. Applications and challenges in designing VHH-based bispecific antibodies: leveraging machine learning solutions. MAbs 2024; 16:2341443. [PMID: 38666503 PMCID: PMC11057648 DOI: 10.1080/19420862.2024.2341443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
The development of bispecific antibodies that bind at least two different targets relies on bringing together multiple binding domains with different binding properties and biophysical characteristics to produce a drug-like therapeutic. These building blocks play an important role in the overall quality of the molecule and can influence many important aspects from potency and specificity to stability and half-life. Single-domain antibodies, particularly camelid-derived variable heavy domain of heavy chain (VHH) antibodies, are becoming an increasingly popular choice for bispecific construction due to their single-domain modularity, favorable biophysical properties, and potential to work in multiple antibody formats. Here, we review the use of VHH domains as building blocks in the construction of multispecific antibodies and the challenges in creating optimized molecules. In addition to exploring traditional approaches to VHH development, we review the integration of machine learning techniques at various stages of the process. Specifically, the utilization of machine learning for structural prediction, lead identification, lead optimization, and humanization of VHH antibodies.
Collapse
|
11
|
Dorey-Robinson D, Maccari G, Hammond JA. IgMAT: immunoglobulin sequence multi-species annotation tool for any species including those with incomplete antibody annotation or unusual characteristics. BMC Bioinformatics 2023; 24:491. [PMID: 38129777 PMCID: PMC10740263 DOI: 10.1186/s12859-023-05624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The advent and continual improvement of high-throughput sequencing technologies has made immunoglobulin repertoire sequencing accessible and informative regardless of study species. However, to fully map dynamic changes in polyclonal responses precise framework and complementarity determining region annotation of rearranging genes is pivotal. Most sequence annotation tools are designed primarily for use with human and mouse antibody sequences which use databases with fixed species lists, applying very specific assumptions which select against unique structural characteristics. For this reason, data agnostic tools able to learn from presented data can be very useful with new species or with novel datasets. RESULTS We have developed IgMAT, which utilises a reduced amino acid alphabet, that incorporates multiple HMM alignments into a single consensus to automatically annotate immunoglobulin sequences from most organisms. Additionally, the software allows the incorporation of user defined databases to better represent the species and/or antibody class of interest. To demonstrate the accuracy and utility of IgMAT, we present analysis of sequences extracted from structural data and immunoglobulin sequence datasets from several different species. CONCLUSIONS IgMAT is fully open-sourced and freely available on GitHub ( https://github.com/TPI-Immunogenetics/igmat ) for download under GPLv3 license. It can be used as a CLI application or as a python module to be integrated in custom scripts.
Collapse
Affiliation(s)
| | - Giuseppe Maccari
- The Pirbright Institute, Pirbright, UK
- Anthony Nolan Research Institute, London, UK
| | | |
Collapse
|
12
|
Bahrami Dizicheh Z, Chen IL, Koenig P. VHH CDR-H3 conformation is determined by VH germline usage. Commun Biol 2023; 6:864. [PMID: 37598276 PMCID: PMC10439903 DOI: 10.1038/s42003-023-05241-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/11/2023] [Indexed: 08/21/2023] Open
Abstract
VHHs or nanobodies are single antigen binding domains originating from camelid heavy-chain antibodies. They are used as diagnostic and research tools and in a variety of therapeutic molecules. Analyzing variable domain structures from llama and alpaca we found that VHHs can be classified into two large structural clusters based on their CDR-H3 conformation. Extended CDR-H3 loops protrude into the solvent, whereas kinked CDR-H3 loops fold back onto framework regions. Both major families have distinct properties in terms of their CDR-H3 secondary structure, how their CDR-H3 interacts with the framework region and how they bind to antigens. We show that the CDR-H3 conformation of VHHs correlates with the germline from which the antibodies are derived: IGHV3-3 derived antibodies almost exclusively adopt a kinked CDR-H3 conformation while the CDR-H3 adopts an extended structure in most IGHV3S53 derived antibodies. We do not observe any bias stemming from V(D)J recombination in llama immune repertoires, suggesting that the correlation is the result of selection processes during B-cell development. Our findings demonstrate a previously undescribed impact of germline usage on antigen interaction and contribute to a better understanding on how properties of the antibody framework shape the immune repertoire.
Collapse
Affiliation(s)
- Zahra Bahrami Dizicheh
- 23andMe, Inc. Therapeutics, 349 Oyster Point Boulevard, South San Francisco, CA, 94080, USA
| | - I-Ling Chen
- 23andMe, Inc. Therapeutics, 349 Oyster Point Boulevard, South San Francisco, CA, 94080, USA
| | - Patrick Koenig
- 23andMe, Inc. Therapeutics, 349 Oyster Point Boulevard, South San Francisco, CA, 94080, USA.
| |
Collapse
|
13
|
Olsen TH, Abanades B, Moal IH, Deane CM. KA-Search, a method for rapid and exhaustive sequence identity search of known antibodies. Sci Rep 2023; 13:11612. [PMID: 37463925 DOI: 10.1038/s41598-023-38108-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Antibodies with similar amino acid sequences, especially across their complementarity-determining regions, often share properties. Finding that an antibody of interest has a similar sequence to naturally expressed antibodies in healthy or diseased repertoires is a powerful approach for the prediction of antibody properties, such as immunogenicity or antigen specificity. However, as the number of available antibody sequences is now in the billions and continuing to grow, repertoire mining for similar sequences has become increasingly computationally expensive. Existing approaches are limited by either being low-throughput, non-exhaustive, not antibody specific, or only searching against entire chain sequences. Therefore, there is a need for a specialized tool, optimized for a rapid and exhaustive search of any antibody region against all known antibodies, to better utilize the full breadth of available repertoire sequences. We introduce Known Antibody Search (KA-Search), a tool that allows for the rapid search of billions of antibody variable domains by amino acid sequence identity across either the variable domain, the complementarity-determining regions, or a user defined antibody region. We show KA-Search in operation on the [Formula: see text]2.4 billion antibody sequences available in the OAS database. KA-Search can be used to find the most similar sequences from OAS within 30 minutes and a representative subset of 10 million sequences in less than 9 seconds. We give examples of how KA-Search can be used to obtain new insights about an antibody of interest. KA-Search is freely available at https://github.com/oxpig/kasearch .
Collapse
Affiliation(s)
- Tobias H Olsen
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Brennan Abanades
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Iain H Moal
- GSK Medicines Research Centre, GlaxoSmithKline plc, Stevenage, SG1 2NY, UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK.
- Exscientia plc, Oxford, OX4 4GE, UK.
| |
Collapse
|
14
|
Gordon GL, Capel HL, Guloglu B, Richardson E, Stafford RL, Deane CM. A comparison of the binding sites of antibodies and single-domain antibodies. Front Immunol 2023; 14:1231623. [PMID: 37533864 PMCID: PMC10392943 DOI: 10.3389/fimmu.2023.1231623] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Abstract
Antibodies are the largest class of biotherapeutics. However, in recent years, single-domain antibodies have gained traction due to their smaller size and comparable binding affinity. Antibodies (Abs) and single-domain antibodies (sdAbs) differ in the structures of their binding sites: most significantly, single-domain antibodies lack a light chain and so have just three CDR loops. Given this inherent structural difference, it is important to understand whether Abs and sdAbs are distinguishable in how they engage a binding partner and thus, whether they are suited to different types of epitopes. In this study, we use non-redundant sequence and structural datasets to compare the paratopes, epitopes and antigen interactions of Abs and sdAbs. We demonstrate that even though sdAbs have smaller paratopes, they target epitopes of equal size to those targeted by Abs. To achieve this, the paratopes of sdAbs contribute more interactions per residue than the paratopes of Abs. Additionally, we find that conserved framework residues are of increased importance in the paratopes of sdAbs, suggesting that they include non-specific interactions to achieve comparable affinity. Furthermore, the epitopes of sdAbs are only marginally less accessible than those of Abs: we posit that this may be explained by differences in the orientation and compaction of sdAb and Ab CDR-H3 loops. Overall, our results have important implications for the engineering and humanization of sdAbs, as well as the selection of the best modality for targeting a particular epitope.
Collapse
Affiliation(s)
- Gemma L. Gordon
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Henriette L. Capel
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Bora Guloglu
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Eve Richardson
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | | | - Charlotte M. Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Li X, Li X, Hong J, Wang Y, Guo D, Liu J, Zhang Z, He W, Xue K, Wang Q. Comparative Analyses of Soil Bacterial Colonies of Two Types of Chinese Ginger after a Major Flood Disaster. Microbiol Spectr 2023; 11:e0435522. [PMID: 36744938 PMCID: PMC10100910 DOI: 10.1128/spectrum.04355-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
Ginger, an important cash crop, has been cultivated for thousands of years in China. However, comparative studies on soil bacterial communities of Chinese ginger varieties, especially after flooding, are lacking. Here, we comprehensively compared the bacterial communities of two types of ginger soils from four different locations. Surprisingly, the 100-year flood (20 July 2021, in Henan, China) did not significantly affect the soil bacterial composition compared with previous reports. In contrast, flooding may have brought in nutrients and promoted the propagation of eutrophic bacteria, and Alphaproteobacteria were the most abundant in the Zhangliang region (~25%). However, due to the most severe flooding and inundation, the Zhangliang region, also probably contaminated with polycyclic aromatic hydrocarbons and heavy metals, showed the lowest microbial diversity. Moreover, the geographical location influenced the microbial communities more than did the soil type or ginger variety. These findings help us understand the species and composition of bacteria and infection of ginger after flooding and soaking. Further, the interaction mechanisms underlying these emerging phenomena need to be further investigated. IMPORTANCE There are few comparative studies on the soil bacterial communities of Chinese ginger varieties after flooding. After a 100-year flood (20 July 2021, in Henan, China), we comprehensively compared the bacterial communities of two types of ginger soils from four different locations. Surprisingly, this flood did not significantly affect the soil bacterial composition compared with previous reports. In contrast, it was found that the flooding may have brought in nutrients and promoted the propagation of eutrophic bacteria for the Zhangliang region. However, the flooding had also brought in polycyclic aromatic hydrocarbon and heavy metal contamination. Moreover, we also verified that geographical location influenced the microbial communities more than did the soil type or ginger variety. These findings help us understand the species and composition of bacteria and infection of ginger after flooding and soaking.
Collapse
Affiliation(s)
- Xinyang Li
- Henan University of Urban Construction, Ping Dingshan, China
| | - Xiaokang Li
- Wuhan Jinxin Gynecology and Obstetrics Hospital of Integrative Medicine, Wuhan, China
| | - Jun Hong
- Henan University of Urban Construction, Ping Dingshan, China
| | - Yan Wang
- Henan University of Urban Construction, Ping Dingshan, China
| | - Duanqiang Guo
- Henan University of Urban Construction, Ping Dingshan, China
| | - Jinlong Liu
- Henan University of Urban Construction, Ping Dingshan, China
| | - Zewen Zhang
- Henan University of Urban Construction, Ping Dingshan, China
| | - Wenwei He
- Henan University of Urban Construction, Ping Dingshan, China
| | - Kaisheng Xue
- Henan University of Urban Construction, Ping Dingshan, China
| | - Qingqing Wang
- Henan University of Urban Construction, Ping Dingshan, China
| |
Collapse
|
16
|
Hu X, Fan J, Ma Q, Han L, Cao Z, Xu C, Luan J, Jing G, Nan Y, Wu T, Zhang Y, Wang H, Zhang Y, Ju D. A novel nanobody-heavy chain antibody against Angiopoietin-like protein 3 reduces plasma lipids and relieves nonalcoholic fatty liver disease. J Nanobiotechnology 2022; 20:237. [PMID: 35590366 PMCID: PMC9118633 DOI: 10.1186/s12951-022-01456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/07/2022] [Indexed: 11/29/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a metabolic disease mainly on account of hypercholesterolemia and may progress to cirrhosis and hepatocellular carcinoma. The discovery of effective therapy for NAFLD is an essential unmet need. Angiopoietin-like protein 3 (ANGPTL3), a critical lipid metabolism regulator, resulted in increased blood lipids and was elevated in NAFLD. Here, we developed a nanobody-heavy chain antibody (VHH-Fc) to inhibit ANGPTL3 for NAFLD treatment. Results In this study, we retrieved an anti-ANGPTL3 VHH and Fc fusion protein, C44-Fc, which exhibited high affinities to ANGPTL3 proteins and rescued ANGPLT3-mediated inhibition of lipoprotein lipase (LPL) activity. The C44-Fc bound a distinctive epitope within ANGPTL3 when compared with the approved evinacumab, and showed higher expression yield. Meanwhile, C44-Fc had significant reduction of the triglyceride (~ 44.2%), total cholesterol (~ 36.6%) and LDL-cholesterol (~ 54.4%) in hypercholesterolemic mice and ameliorated hepatic lipid accumulation and liver injury in NAFLD mice model. Conclusions We discovered a VHH-Fc fusion protein with high affinity to ANGPTL3, strong stability and also alleviated the progression of NAFLD, which might offer a promising therapy for NAFLD. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01456-z.
Collapse
Affiliation(s)
- Xiaozhi Hu
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Jiajun Fan
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Qianqian Ma
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China.,National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, 201203, China
| | - Lei Han
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Zhonglian Cao
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Caili Xu
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Jingyun Luan
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China.,Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, 60615, USA
| | - Guangjun Jing
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Yanyang Nan
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Tao Wu
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Yuting Zhang
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Hanqi Wang
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Yuanzhen Zhang
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Dianwen Ju
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
17
|
Deszyński P, Młokosiewicz J, Volanakis A, Jaszczyszyn I, Castellana N, Bonissone S, Ganesan R, Krawczyk K. INDI-integrated nanobody database for immunoinformatics. Nucleic Acids Res 2022; 50:D1273-D1281. [PMID: 34747487 PMCID: PMC8728276 DOI: 10.1093/nar/gkab1021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Nanobodies, a subclass of antibodies found in camelids, are versatile molecular binding scaffolds composed of a single polypeptide chain. The small size of nanobodies bestows multiple therapeutic advantages (stability, tumor penetration) with the first therapeutic approval in 2018 cementing the clinical viability of this format. Structured data and sequence information of nanobodies will enable the accelerated clinical development of nanobody-based therapeutics. Though the nanobody sequence and structure data are deposited in the public domain at an accelerating pace, the heterogeneity of sources and lack of standardization hampers reliable harvesting of nanobody information. We address this issue by creating the Integrated Database of Nanobodies for Immunoinformatics (INDI, http://naturalantibody.com/nanobodies). INDI collates nanobodies from all the major public outlets of biological sequences: patents, GenBank, next-generation sequencing repositories, structures and scientific publications. We equip INDI with powerful nanobody-specific sequence and text search facilitating access to >11 million nanobody sequences. INDI should facilitate development of novel nanobody-specific computational protocols helping to deliver on the therapeutic promise of this drug format.
Collapse
Affiliation(s)
| | | | - Adam Volanakis
- Harvard Medical School, 240 Longwood Ave, Boston, MA, USA
| | | | - Natalie Castellana
- Abterra Biosciences Inc. 3030 Bunker Hill Street Suite 218, San Diego, CA 92109, USA
| | - Stefano Bonissone
- Abterra Biosciences Inc. 3030 Bunker Hill Street Suite 218, San Diego, CA 92109, USA
| | | | | |
Collapse
|
18
|
Abstract
Deep learning applied to antibody development is in its adolescence. Low data volumes and biological platform differences make it challenging to develop supervised models that can predict antibody behavior in actual commercial development steps. But successes in modeling general protein behaviors and early antibody models give indications of what is possible for antibodies in general, particularly since antibodies share a common fold. Meanwhile, new methods of data collection and the development of unsupervised and self-supervised deep learning methods like generative models and masked language models give the promise of rich and deep data sets and deep learning architectures for better supervised model development. Together, these move the industry toward improved developability , lower costs, and broader access of biotherapeutics .
Collapse
Affiliation(s)
- Jeremy M Shaver
- Molecular Design/Data Science, Just - Evotec Biologics, Seattle, WA, USA.
| | - Joshua Smith
- Molecular Design/Data Science, Just - Evotec Biologics, Seattle, WA, USA
| | - Tileli Amimeur
- Molecular Design/Data Science, Just - Evotec Biologics, Seattle, WA, USA
| |
Collapse
|
19
|
Sevy AM, Chen MT, Castor M, Sylvia T, Krishnamurthy H, Ishchenko A, Hsieh CM. Structure- and sequence-based design of synthetic single-domain antibody libraries. Protein Eng Des Sel 2020; 33:6042250. [DOI: 10.1093/protein/gzaa028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/07/2020] [Accepted: 10/30/2020] [Indexed: 12/30/2022] Open
Abstract
Abstract
Single-domain antibody fragments known as VHH have emerged in the pharmaceutical industry as useful biotherapeutics. These molecules, which are naturally produced by camelids, share the characteristics of high affinity and specificity with traditional human immunoglobulins, while consisting of only a single heavy chain. Currently, the most common method for generating VHH is via animal immunization, which can be costly and time-consuming. Here we describe the development of a synthetic VHH library for in vitro selection of single domain binders. We combine structure-based design and next-generation sequencing analysis to build a library with characteristics that closely mimic the natural repertoire. To validate the performance of our synthetic library, we isolated VHH against three model antigens (soluble mouse PD-1 ectodomain, amyloid-β peptide, and MrgX1 GPCR) of different sizes and characteristics. We were able to isolate diverse binders targeting different epitopes with high affinity (as high as 5 nM) against all three targets. We then show that anti-mPD-1 binders have functional activity in a receptor blocking assay.
Collapse
Affiliation(s)
| | - Ming-Tang Chen
- Discovery Biologics, Merck & Co., Inc., Boston, MA 02115, USA
| | - Michelle Castor
- Discovery Biologics, Merck & Co., Inc., Boston, MA 02115, USA
| | - Tyler Sylvia
- Discovery Biologics, Merck & Co., Inc., Boston, MA 02115, USA
| | - Harini Krishnamurthy
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA 19486, USA
| | - Andrii Ishchenko
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA 19486, USA
| | | |
Collapse
|
20
|
Peyron I, Kizlik‐Masson C, Dubois M, Atsou S, Ferrière S, Denis CV, Lenting PJ, Casari C, Christophe OD. Camelid-derived single-chain antibodies in hemostasis: Mechanistic, diagnostic, and therapeutic applications. Res Pract Thromb Haemost 2020; 4:1087-1110. [PMID: 33134775 PMCID: PMC7590285 DOI: 10.1002/rth2.12420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/03/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022] Open
Abstract
Hemostasis is a complex process involving the concerted action of molecular and vascular components. Its basic understanding as well as diagnostic and therapeutic aspects have greatly benefited from the use of monoclonal antibodies. Interestingly, camelid-derived single-domain antibodies (sdAbs), also known as VHH or nanobodies, have become available during the previous 2 decades as alternative tools in this regard. Compared to classic antibodies, sdAbs are easier to produce and their small size facilitates their engineering and functionalization. It is not surprising, therefore, that sdAbs are increasingly used in hemostasis-related research. In addition, they have the capacity to recognize unique epitopes unavailable to full monoclonal antibodies. This property can be used to develop novel diagnostic tests identifying conformational variants of hemostatic proteins. Examples include sdAbs that bind active but not globular von Willebrand factor or free factor VIIa but not tissue factor-bound factor VIIa. Finally, sdAbs have a high therapeutic potential, exemplified by caplacizumab, a homodimeric sdAb targeting von Willebrand factor that is approved for the treatment of thrombotic thrombocytopenic purpura. In this review, the various applications of sdAbs in thrombosis and hemostasis-related research, diagnostics, and therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Ivan Peyron
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | | | - Marie‐Daniéla Dubois
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
- EA 7525 VPMCUniversité des AntillesSchoelcherMartiniqueFrance
| | - Sénadé Atsou
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Stephen Ferrière
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Cécile V. Denis
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Peter J. Lenting
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Caterina Casari
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | | |
Collapse
|
21
|
Tu Z, Huang X, Fu J, Hu N, Zheng W, Li Y, Zhang Y. Landscape of variable domain of heavy-chain-only antibody repertoire from alpaca. Immunology 2020; 161:53-65. [PMID: 32506493 DOI: 10.1111/imm.13224] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/05/2023] Open
Abstract
Heavy-chain-only antibodies (HCAbs), which are devoid of light chains, have been found naturally occurring in various species including camelids and cartilaginous fish. Because of their high thermostability, refoldability and capacity for cell permeation, the variable regions of the heavy chain of HCAbs (VHHs) have been widely used in diagnosis, bio-imaging, food safety and therapeutics. Most immunogenetic and functional studies of HCAbs are based on case studies or a limited number of low-throughput sequencing data. A complete picture derived from more abundant high-throughput sequencing (HTS) data can help us gain deeper insights. We cloned and sequenced the full-length coding region of VHHs in Alpaca (Vicugna pacos) via HTS in this study. A new pipeline was developed to conduct an in-depth analysis of the HCAb repertoires. Various critical features, including the length distribution of complementarity-determining region 3 (CDR3), V(D)J usage, VJ pairing, germline-specific mutation rate and germline-specific scoring profiles (GSSPs), were systematically characterized. The quantitative data show that V(D)J usage and VHH recombination are highly biased. Interestingly, we found that the average CDR3 length of classical VHHs is longer than that of non-classical ones, whereas the mutation rates are similar in both kinds of VHHs. Finally, GSSPs were built to quantitatively describe and compare sequences that originate from each VJ pair. Overall, this study presents a comprehensive landscape of the HCAb repertoire, which can provide useful guidance for the modeling of somatic hypermutation and the design of novel functional VHHs or VHH repertoires via evolutionary profiles.
Collapse
Affiliation(s)
- Zhui Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.,Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, China
| | - Xiaoqiang Huang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jinheng Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Jiangxi-OAI Joint Research Institution, Nanchang University, Nanchang, China
| | - Na Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, China.,Maternal and Child Medical Research Institute, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yanping Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, China.,Jiangxi-OAI Joint Research Institution, Nanchang University, Nanchang, China
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Bhardwaj V, Franceschetti M, Rao R, Pevzner PA, Safonova Y. Automated analysis of immunosequencing datasets reveals novel immunoglobulin D genes across diverse species. PLoS Comput Biol 2020; 16:e1007837. [PMID: 32339161 PMCID: PMC7295240 DOI: 10.1371/journal.pcbi.1007837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/15/2020] [Accepted: 04/01/2020] [Indexed: 12/30/2022] Open
Abstract
Immunoglobulin genes are formed through V(D)J recombination, which joins the variable (V), diversity (D), and joining (J) germline genes. Since variations in germline genes have been linked to various diseases, personalized immunogenomics focuses on finding alleles of germline genes across various patients. Although reconstruction of V and J genes is a well-studied problem, the more challenging task of reconstructing D genes remained open until the IgScout algorithm was developed in 2019. In this work, we address limitations of IgScout by developing a probabilistic MINING-D algorithm for D gene reconstruction, apply it to hundreds of immunosequencing datasets from multiple species, and validate the newly inferred D genes by analyzing diverse whole genome sequencing datasets and haplotyping heterozygous V genes. Antibodies provide specific binding to an enormous range of antigens and represent a key component of the adaptive immune system. Immunosequencing has emerged as a method of choice for generating millions of reads that sample antibody repertoires and provides insights into monitoring immune response to disease and vaccination. Most of the previous immunogenomics studies rely on the reference germline genes in the immunoglobulin locus rather than the germline genes in a specific patient. This approach is deficient since the set of known germline genes is incomplete (particularly for non-European humans and non-human species) and contains alleles that resulted from sequencing and annotation errors. The problem of de novo inference of diversity (D) genes from immunosequencing data remained open until the IgScout algorithm was developed in 2019. We address limitations of IgScout by developing a probabilistic MINING-D algorithm for D gene reconstruction and infer multiple D genes across multiple species that are not present in standard databases.
Collapse
Affiliation(s)
- Vinnu Bhardwaj
- Electrical and Computer Engineering Department, University of California San Diego, San Diego, California, United States of America
| | - Massimo Franceschetti
- Electrical and Computer Engineering Department, University of California San Diego, San Diego, California, United States of America
| | - Ramesh Rao
- Electrical and Computer Engineering Department, University of California San Diego, San Diego, California, United States of America
- Qualcomm Institute, University of California San Diego, San Diego, California, United States of America
| | - Pavel A. Pevzner
- Computer Science and Engineering Department, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| | - Yana Safonova
- Computer Science and Engineering Department, University of California San Diego, San Diego, California, United States of America
- Center for Information Theory and Applications, University of California San Diego, San Diego, California, United States of America
| |
Collapse
|
23
|
Li X, Wang M, Zhang X, Liu C, Xiang H, Huang M, Ma Y, Gao X, Jiang L, Liu X, Li B, Hou Y, Zhang X, Yang S, Yang N. The novel llama-human chimeric antibody has potent effect in lowering LDL-c levels in hPCSK9 transgenic rats. Clin Transl Med 2020; 9:16. [PMID: 32056048 PMCID: PMC7018876 DOI: 10.1186/s40169-020-0265-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/21/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The advent of proprotein convertase subtilisin/kexin type 9 (PCSK9)-inhibiting drugs have provided an effective, but extremely expensive treatment for the management of low density lipoprotein (LDL). Our aim was to explore a cost-effective application of camelid anti-PCSK9 single domain antibodies (sdAbs), which are high variable regions of the camelid heavy chain antibodies (VHHs), as a human PCSK9 (hPCSK9) inhibitor. One female llama was immunized with hPCSK9. Screening of high affinity anti-PCSK9 VHHs was carried out based on surface plasmon resonance (SPR) technology. We reported a lysate kinetic analysis method improving the screening efficiency. To increase the serum half-life and targeting properties, the constant region fragment of the human immunoglobulin gamma sub-type 4 (IgG4 Fc) was incorporated to form a novel llama-human chimeric molecule (VHH-hFc). RESULTS The PCSK9 inhibiting effects of the VHH proteins were analyzed in two human liver hepatocellular cells (HepG2 and Huh7) and in the hPCSK9 transgenic Sprague-Dawley (SD) rat model. The hPCSK9 antagonistic potency of the bivalent VHH-hFc exceeded the monovalent VHH (P < 0.001) in hepatocarcinoma cells. Furthermore, the llama-human chimeric VHH-Fc protein had a similar reduction (~ 40%) of the LDL-c and total cholesterol when compared to the approved evolocumab in transgenic SD rat model, but with low cost. More surprisingly, the chimeric heavy chain antibodies could be persevered for 3 months at room temperature with little loss of the affinity. CONCLUSIONS Due to the high yield and low cost of Pichia pastoris, lipid-lowering effect and strong stability, the llama-human chimeric antibody (VHH-Fc) offers a potent therapeutic candidate for the control of the serum lipid level.
Collapse
Affiliation(s)
- Xinyang Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Meiniang Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Xinhua Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Chuxin Liu
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Haitao Xiang
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Mi Huang
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
- BGI-Hubei, BGI-Shenzhen, Wuhan, 430074, China
| | - Yingying Ma
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
- BGI-Hubei, BGI-Shenzhen, Wuhan, 430074, China
| | - Xiaoyan Gao
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
- BGI-Hubei, BGI-Shenzhen, Wuhan, 430074, China
| | - Lin Jiang
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Xiaopan Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Xiuqing Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Shuang Yang
- BGI-Shenzhen, Shenzhen, 518083, China.
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.
| | - Naibo Yang
- BGI-Shenzhen, Shenzhen, 518083, China.
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.
- Complete Genomics, Inc., 2904 Orchard Parkway, San Jose, CA, 95134, USA.
| |
Collapse
|
24
|
Mendoza MN, Jian M, King MT, Brooks CL. Role of a noncanonical disulfide bond in the stability, affinity, and flexibility of a VHH specific for the Listeria virulence factor InlB. Protein Sci 2020; 29:1004-1017. [PMID: 31981247 DOI: 10.1002/pro.3831] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/29/2022]
Abstract
A distinguishing feature of camel (Camelus dromedarius) VHH domains are noncanonical disulfide bonds between CDR1 and CDR3. The disulfide bond may provide an evolutionary advantage, as one of the cysteines in the bond is germline encoded. It has been hypothesized that this additional disulfide bond may play a role in binding affinity by reducing the entropic penalty associated with immobilization of a long CDR3 loop upon antigen binding. To examine the role of a noncanonical disulfide bond on antigen binding and the biophysical properties of a VHH domain, we have used the VHH R303, which binds the Listeria virulence factor InlB as a model. Using site directed mutagenesis, we produced a double mutant of R303 (C33A/C102A) to remove the extra disulfide bond of the VHH R303. Antigen binding was not affected by loss of the disulfide bond, however the mutant VHH displayed reduced thermal stability (Tm = 12°C lower than wild-type), and a loss of the ability to fold reversibly due to heat induced aggregation. X-ray structures of the mutant alone and in complex with InlB showed no major changes in the structure. B-factor analysis of the structures suggested that the loss of the disulfide bond elicited no major change on the flexibility of the CDR loops, and revealed no evidence of loop immobilization upon antigen binding. These results suggest that the noncanonical disulfide bond found in camel VHH may have evolved to stabilize the biophysical properties of the domain, rather than playing a significant role in antigen binding.
Collapse
Affiliation(s)
- Matthew N Mendoza
- Department of Chemistry, California State University Fresno, Fresno, California
| | - Mike Jian
- Department of Chemistry, California State University Fresno, Fresno, California
| | - Moeko T King
- Department of Chemistry, California State University Fresno, Fresno, California
| | - Cory L Brooks
- Department of Chemistry, California State University Fresno, Fresno, California
| |
Collapse
|
25
|
Ma Y, Ding Y, Song X, Ma X, Li X, Zhang N, Song Y, Sun Y, Shen Y, Zhong W, Hu LA, Ma Y, Zhang MY. Structure-guided discovery of a single-domain antibody agonist against human apelin receptor. SCIENCE ADVANCES 2020; 6:eaax7379. [PMID: 31998837 PMCID: PMC6962038 DOI: 10.1126/sciadv.aax7379] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/29/2019] [Indexed: 06/01/2023]
Abstract
Developing antibody agonists targeting the human apelin receptor (APJ) is a promising therapeutic approach for the treatment of chronic heart failure. Here, we report the structure-guided discovery of a single-domain antibody (sdAb) agonist JN241-9, based on the cocrystal structure of APJ with an sdAb antagonist JN241, the first cocrystal structure of a class A G protein-coupled receptor (GPCR) with a functional antibody. As revealed by the structure, JN241 binds to the extracellular side of APJ, makes critical contacts with the second extracellular loop, and inserts the CDR3 into the ligand-binding pocket. We converted JN241 into a full agonist JN241-9 by inserting a tyrosine into the CDR3. Modeling and molecular dynamics simulation shed light on JN241-9-stimulated receptor activation, providing structural insights for finding agonistic antibodies against class A GPCRs.
Collapse
Affiliation(s)
- Yanbin Ma
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Yao Ding
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Xianqiang Song
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Xiaochuan Ma
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Xun Li
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Ning Zhang
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Yunpeng Song
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Yaping Sun
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Yuqing Shen
- Therapeutic Discovery, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Wenge Zhong
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Liaoyuan A. Hu
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Yingli Ma
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Mei-Yun Zhang
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| |
Collapse
|
26
|
Karadag M, Arslan M, Kaleli NE, Kalyoncu S. Physicochemical determinants of antibody-protein interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 121:85-114. [PMID: 32312427 DOI: 10.1016/bs.apcsb.2019.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Antibodies are specialized proteins generated by immune system for high specificity and affinity binding to target antigens. Because of their essential roles in immune system, antibodies have been successfully developed and engineered as biopharmaceuticals for treatment of various diseases. Analysis of antibody-protein interactions is always required to get detailed information on effectivity of such antibody-based therapeutics. Although physicochemical rules cannot be generalized for every antibody-protein interaction, there are some features which should be taken into account during antibody development and engineering efforts. In this chapter, physicochemical analysis of antibody paratope-protein epitope interactions will be discussed to highlight important characteristics. First, paratope and non-paratope regions of antibodies will be described and important roles of these regions on binding and biophysical features of antibodies will be discussed. Then, general features of epitope regions of protein antigens will be introduced along with several computational/experimental tools to identify them. Lastly, a rising star of antibody biopharmaceuticals, nanobodies, will be described to show importance of next-generation antibody fragment based biopharmaceuticals in drug development.
Collapse
Affiliation(s)
- Murat Karadag
- Izmir Biomedicine and Genome Center, İzmir, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | - Merve Arslan
- Izmir Biomedicine and Genome Center, İzmir, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | - Nazli Eda Kaleli
- Izmir Biomedicine and Genome Center, İzmir, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | | |
Collapse
|
27
|
Ciccarese S, Burger PA, Ciani E, Castelli V, Linguiti G, Plasil M, Massari S, Horin P, Antonacci R. The Camel Adaptive Immune Receptors Repertoire as a Singular Example of Structural and Functional Genomics. Front Genet 2019; 10:997. [PMID: 31681428 PMCID: PMC6812646 DOI: 10.3389/fgene.2019.00997] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/18/2019] [Indexed: 01/08/2023] Open
Abstract
The adaptive immune receptors repertoire is highly plastic, with its ability to produce antigen-binding molecules and select those with high affinity for their antigen. Species have developed diverse genetic and structural strategies to create their respective repertoires required for their survival in the different environments. Camelids, until now, considered as a case of evolutionary innovation because of their only heavy-chain antibodies, represent a new mammalian model particularly useful for understanding the role of diversity in the immune system function. Here, we review the structural and functional characteristics and the current status of the genomic organization of camel immunoglobulins (IG) or antibodies, α/ß and γ/δ T cell receptors (TR), and major histocompatibility complex (MHC). In camelid humoral response, in addition to the conventional antibodies, there are IG with “only-heavy-chain” (no light chain, and two identical heavy gamma chains lacking CH1 and with a VH domain designated as VHH). The unique features of these VHH offer advantages in biotechnology and for clinical applications. The TRG and TRD rearranged variable domains of Camelus dromedarius (Arabian camel) display somatic hypermutation (SHM), increasing the intrinsic structural stability in the γ/δ heterodimer and influencing the affinity maturation to a given antigen similar to immunoglobulin genes. The SHM increases the dromedary γ/δ repertoire diversity. In Camelus genus, the general structural organization of the TRB locus is similar to that of the other artiodactyl species, with a pool of TRBV genes positioned at the 5’ end of three in tandem D-J-C clusters, followed by a single TRBV gene with an inverted transcriptional orientation located at the 3’ end. At the difference of TRG and TRD, the diversity of the TRB variable domains is not shaped by SHM and depends from the classical combinatorial and junctional diversity. The MHC locus is located on chromosome 20 in Camelus dromedarius. Cytogenetic and comparative whole genome analyses revealed the order of the three major regions “Centromere-ClassII-ClassIII-ClassI”. Unexpectedly low extent of polymorphisms and haplotypes was observed in all Old World camels despite different geographic origins.
Collapse
Affiliation(s)
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro," Bari, Italy
| | - Vito Castelli
- Department of Biology, University of Bari "Aldo Moro," Bari, Italy
| | | | - Martin Plasil
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia.,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, RG Animal Immunogenomics, Brno, Czechia
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | - Petr Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia.,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, RG Animal Immunogenomics, Brno, Czechia
| | | |
Collapse
|
28
|
Safonova Y, Pevzner PA. De novo Inference of Diversity Genes and Analysis of Non-canonical V(DD)J Recombination in Immunoglobulins. Front Immunol 2019; 10:987. [PMID: 31134072 PMCID: PMC6516046 DOI: 10.3389/fimmu.2019.00987] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/16/2019] [Indexed: 12/03/2022] Open
Abstract
The V(D)J recombination forms the immunoglobulin genes by joining the variable (V), diversity (D), and joining (J) germline genes. Since variations in germline genes have been linked to various diseases, personalized immunogenomics aims at finding alleles of germline genes across various patients. Although recent studies described algorithms for de novo inference of V and J genes from immunosequencing data, they stopped short of solving a more difficult problem of reconstructing D genes that form the highly divergent CDR3 regions and provide the most important contribution to the antigen binding. We present the IgScout algorithm for de novo D gene reconstruction and apply it to reveal new alleles of human D genes and previously unknown D genes in camel, an important model organism in immunology. We further analyze non-canonical V(DD)J recombination that results in unusually long CDR3s with tandem fused IGHD genes and thus expands the diversity of the antibody repertoires. We demonstrate that tandem CDR3s represent a consistent and functional feature of all analyzed immunosequencing datasets, reveal ultra-long CDR3s, and shed light on the mechanism responsible for their formation.
Collapse
Affiliation(s)
- Yana Safonova
- Center for Information Theory and Applications, University of California, San Diego, San Diego, CA, United States
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
29
|
Henry KA, van Faassen H, Harcus D, Marcil A, Hill JJ, Muyldermans S, MacKenzie CR. Llama peripheral B-cell populations producing conventional and heavy chain-only IgG subtypes are phenotypically indistinguishable but immunogenetically distinct. Immunogenetics 2019; 71:307-320. [PMID: 30656359 DOI: 10.1007/s00251-018-01102-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/11/2018] [Indexed: 12/24/2022]
Abstract
Camelid ungulates produce homodimeric heavy chain-only antibodies (HCAbs) in addition to conventional antibodies consisting of paired heavy and light chains. In the llama, HCAbs are made up by at least two subclasses (long-hinge IgG2b and short-hinge IgG2c HCAbs vs. conventional heterotetrameric IgG1s). Here, we generated murine monoclonal antibodies (mAbs) specific for the hinge-CH2 boundary of llama IgG2b (mAb 1C10) and the Fc of llama IgG2c HCAbs (mAb 5E4). Flow cytometric analysis of llama peripheral blood lymphocytes revealed that IgG1+, IgG2b+ and IgG2c+ B cells could be distinguished using mAbs 1C10/5E4 but had equivalent expression of three other cell-surface markers. MiSeq sequencing of the peripheral B cell repertoires of three llamas showed that (i) IgG2b and IgG2c HCAbs were present in similar proportions in the repertoire, (ii) a subset of IgG2b and IgG2c HCAbs, but not IgG1s, entirely lacked a hinge exon and showed direct VHH-CH2 splicing; these "hingeless" HCAbs were clonally expanded, somatically mutated and derived from hinged HCAb precursors, (iii) substantial repertoire overlap existed between IgG subclasses, especially between IgG2b and IgG2c HCAbs, (iv) the complementarity-determining region (CDR)-H3 length distributions of IgG2b and IgG2c HCAbs were broader and biased towards longer lengths compared with IgG1s due to increased N-nucleotide addition, (v) IgG2b and IgG2c HCAbs used a more restricted set of IGHV genes compared with IgG1s, and (vi) IgG2b and IgG2c HCAbs had elevated somatic mutations rates of both CDRs and framework regions (FRs) compared with IgG1s, especially of CDR-H1 and FR3. The distinct molecular features of llama IgG1, IgG2b and IgG2c antibodies imply that these subclasses may have divergent immunological functions and suggest that specific mechanisms operate to diversify HCAb repertoires in the absence of a light chain.
Collapse
Affiliation(s)
- Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Doreen Harcus
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Anne Marcil
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Jennifer J Hill
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - C Roger MacKenzie
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.,School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
30
|
Zhang W, Li X, Wang L, Deng J, Lin L, Tian L, Wu J, Tang C, Yang H, Wang J, Qiu P, Fu TM, Saksena NK, Wang IM, Liu X. Identification of Variable and Joining Germline Genes and Alleles for Rhesus Macaque from B Cell Receptor Repertoires. THE JOURNAL OF IMMUNOLOGY 2019; 202:1612-1622. [DOI: 10.4049/jimmunol.1800342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022]
|
31
|
Feng M, Bian H, Wu X, Fu T, Fu Y, Hong J, Fleming BD, Flajnik MF, Ho M. Construction and next-generation sequencing analysis of a large phage-displayed V NAR single-domain antibody library from six naïve nurse sharks. Antib Ther 2019; 2:1-11. [PMID: 30627698 PMCID: PMC6312525 DOI: 10.1093/abt/tby011] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/27/2018] [Accepted: 11/01/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Shark new antigen receptor variable domain (VNAR) antibodies can bind restricted epitopes that may be inaccessible to conventional antibodies. Methods: Here, we developed a library construction method based on polymerase chain reaction (PCR)-Extension Assembly and Self-Ligation (named "EASeL") to construct a large VNAR antibody library with a size of 1.2 × 1010 from six naïve adult nurse sharks (Ginglymostoma cirratum). Results: The next-generation sequencing analysis of 1.19 million full-length VNARs revealed that this library is highly diversified because it covers all four classical VNAR types (Types I-IV) including 11% of classical Type I and 57% of classical Type II. About 30% of the total VNARs could not be categorized as any of the classical types. The high variability of complementarity determining region (CDR) 3 length and cysteine numbers are important for the diversity of VNARs. To validate the use of the shark VNAR library for antibody discovery, we isolated a panel of VNAR phage binders to cancer therapy-related antigens, including glypican-3, human epidermal growth factor receptor 2 (HER2), and programmed cell death-1 (PD1). Additionally, we identified binders to viral antigens that included the Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) spike proteins. The isolated shark single-domain antibodies including Type I and Type II VNARs were produced in Escherichia coli and validated for their antigen binding. A Type II VNAR (PE38-B6) has a high affinity (Kd = 10.1 nM) for its antigen. Conclusions: The naïve nurse shark VNAR library is a useful source for isolating single-domain antibodies to a wide range of antigens. The EASeL method may be applicable to the construction of other large diversity gene expression libraries.
Collapse
Affiliation(s)
- Mingqian Feng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hejiao Bian
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tianyun Fu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ying Fu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jessica Hong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Bryan D Fleming
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
32
|
Wang L, Zhang W, Lin L, Li X, Saksena NK, Wu J, Wang S, Joyce JG, Zhang X, Yang H, Wang J, Wang IM, Liu X. A Comprehensive Analysis of the T and B Lymphocytes Repertoire Shaped by HIV Vaccines. Front Immunol 2018; 9:2194. [PMID: 30319643 PMCID: PMC6168627 DOI: 10.3389/fimmu.2018.02194] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/05/2018] [Indexed: 01/05/2023] Open
Abstract
The exploitation of various human immunodeficiency virus type-1 (HIV-1) vaccines has posed great challenges for the researchers in precisely evaluating the vaccine-induced immune responses, however, the understanding of vaccination response suffers from the lack of unbiased characterization of the immune landscape. The rapid development of high throughput sequencing (HTS) makes it possible to scrutinize the extremely complicated immunological responses during vaccination. In the current study, three vaccines, namely N36, N51, and 5-Helix based on the HIV-1 gp41 pre-hairpin fusion intermediate were applied in rhesus macaques. We assessed the longitudinal vaccine responses using HTS, which delineated the evolutionary features of both T cell and B cell receptor repertoires with extreme diversities. Upon vaccination, we unexpectedly found significant discrepancies in the landscapes of T-cell and B-cell repertoires, together with the detection of significant class switching and the lineage expansion of the B cell receptor or immunoglobulin heavy chain (IGH) repertoire. The vaccine-induced expansions of lineages were further evaluated for mutation rate, lineage abundance, and lineage size features in their IGH repertoires. Collectively, these findings conclude that the N51 vaccine displayed superior performance in inducing the class-switch of B cell isotypes and promoting mutations of IgM B cells. In addition, the systematic HTS analysis of the immune repertoires demonstrates its wide applicability in enhancing the understanding of immunologic changes during pathogen challenge, and will guide the development, evaluation, and exploitation of new generation of diagnostic markers, immunotherapies, and vaccine strategies.
Collapse
Affiliation(s)
- Longlong Wang
- BGI-Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Wei Zhang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Liya Lin
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Xiao Li
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Nitin K. Saksena
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jinghua Wu
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Shiyu Wang
- BGI-Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | | | - Xiuqing Zhang
- BGI-Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - I-Ming Wang
- Merck & Co., Inc., Kenilworth, NJ, United States
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
33
|
Kovaltsuk A, Leem J, Kelm S, Snowden J, Deane CM, Krawczyk K. Observed Antibody Space: A Resource for Data Mining Next-Generation Sequencing of Antibody Repertoires. THE JOURNAL OF IMMUNOLOGY 2018; 201:2502-2509. [PMID: 30217829 DOI: 10.4049/jimmunol.1800708] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/19/2018] [Indexed: 11/19/2022]
Abstract
Abs are immune system proteins that recognize noxious molecules for elimination. Their sequence diversity and binding versatility have made Abs the primary class of biopharmaceuticals. Recently, it has become possible to query their immense natural diversity using next-generation sequencing of Ig gene repertoires (Ig-seq). However, Ig-seq outputs are currently fragmented across repositories and tend to be presented as raw nucleotide reads, which means nontrivial effort is required to reuse the data for analysis. To address this issue, we have collected Ig-seq outputs from 55 studies, covering more than half a billion Ab sequences across diverse immune states, organisms (primarily human and mouse), and individuals. We have sorted, cleaned, annotated, translated, and numbered these sequences and make the data available via our Observed Antibody Space (OAS) resource at http://antibodymap.org The data within OAS will be regularly updated with newly released Ig-seq datasets. We believe OAS will facilitate data mining of immune repertoires for improved understanding of the immune system and development of better biotherapeutics.
Collapse
Affiliation(s)
- Aleksandr Kovaltsuk
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| | - Jinwoo Leem
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| | | | | | - Charlotte M Deane
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| | - Konrad Krawczyk
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| |
Collapse
|
34
|
Abstract
Single-domain antibodies (sdAbs), the autonomous variable domains of heavy chain-only antibodies produced naturally by camelid ungulates and cartilaginous fishes, have evolved to bind antigen using only three complementarity-determining region (CDR) loops rather than the six present in conventional VH:VL antibodies. It has been suggested, based on limited evidence, that sdAbs may adopt paratope structures that predispose them to preferential recognition of recessed protein epitopes, but poor or non-recognition of protuberant epitopes and small molecules. Here, we comprehensively surveyed the evidence in support of this hypothesis. We found some support for a global structural difference in the paratope shapes of sdAbs compared with those of conventional antibodies: sdAb paratopes have smaller molecular surface areas and diameters, more commonly have non-canonical CDR1 and CDR2 structures, and have elongated CDR3 length distributions, but have similar amino acid compositions and are no more extended (interatomic distance measured from CDR base to tip) than conventional antibody paratopes. Comparison of X-ray crystal structures of sdAbs and conventional antibodies in complex with cognate antigens showed that sdAbs and conventional antibodies bury similar solvent-exposed surface areas on proteins and form similar types of non-covalent interactions, although these are more concentrated in the compact sdAb paratope. Thus, sdAbs likely have privileged access to distinct antigenic regions on proteins, but only owing to their small molecular size and not to general differences in molecular recognition mechanism. The evidence surrounding the purported inability of sdAbs to bind small molecules was less clear. The available data provide a structural framework for understanding the evolutionary emergence and function of autonomous heavy chain-only antibodies.
Collapse
Affiliation(s)
- Kevin A Henry
- a Human Health Therapeutics Research Centre , National Research Council Canada , Ottawa , Ontario , Canada
| | - C Roger MacKenzie
- a Human Health Therapeutics Research Centre , National Research Council Canada , Ottawa , Ontario , Canada.,b School of Environmental Sciences , University of Guelph , Guelph , Ontario , Canada
| |
Collapse
|
35
|
Mitchell LS, Colwell LJ. Comparative analysis of nanobody sequence and structure data. Proteins 2018; 86:697-706. [PMID: 29569425 PMCID: PMC6033041 DOI: 10.1002/prot.25497] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/25/2018] [Accepted: 03/20/2018] [Indexed: 02/04/2023]
Abstract
Nanobodies are a class of antigen‐binding protein derived from camelids that achieve comparable binding affinities and specificities to classical antibodies, despite comprising only a single 15 kDa variable domain. Their reduced size makes them an exciting target molecule with which we can explore the molecular code that underpins binding specificity—how is such high specificity achieved? Here, we use a novel dataset of 90 nonredundant, protein‐binding nanobodies with antigen‐bound crystal structures to address this question. To provide a baseline for comparison we construct an analogous set of classical antibodies, allowing us to probe how nanobodies achieve high specificity binding with a dramatically reduced sequence space. Our analysis reveals that nanobodies do not diversify their framework region to compensate for the loss of the VL domain. In addition to the previously reported increase in H3 loop length, we find that nanobodies create diversity by drawing their paratope regions from a significantly larger set of aligned sequence positions, and by exhibiting greater structural variation in their H1 and H2 loops.
Collapse
Affiliation(s)
- Laura S Mitchell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Lucy J Colwell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
36
|
Liu X, Wu J. History, applications, and challenges of immune repertoire research. Cell Biol Toxicol 2018; 34:441-457. [PMID: 29484527 DOI: 10.1007/s10565-018-9426-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 02/14/2018] [Indexed: 12/19/2022]
Abstract
The diversity of T and B cells in terms of their receptor sequences is huge in the vertebrate's immune system and provides broad protection against the vast diversity of pathogens. Immune repertoire is defined as the sum of T cell receptors and B cell receptors (also named immunoglobulin) that makes the organism's adaptive immune system. Before the emergence of high-throughput sequencing, the studies on immune repertoire were limited by the underdeveloped methodologies, since it was impossible to capture the whole picture by the low-throughput tools. The massive paralleled sequencing technology suits perfectly the researches on immune repertoire. In this article, we review the history of immune repertoire studies, in terms of technologies and research applications. Particularly, we discuss several aspects of challenges in this field and highlight the efforts to develop potential solutions, in the era of high-throughput sequencing of the immune repertoire.
Collapse
Affiliation(s)
- Xiao Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
| | | |
Collapse
|
37
|
Fu L, Li X, Zhang W, Wang C, Wu J, Yang H, Wang J, Liu X. A comprehensive profiling of T- and B-lymphocyte receptor repertoires from a Chinese-origin rhesus macaque by high-throughput sequencing. PLoS One 2017; 12:e0182733. [PMID: 28813462 PMCID: PMC5559085 DOI: 10.1371/journal.pone.0182733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/24/2017] [Indexed: 12/28/2022] Open
Abstract
Due to the close genetic background, high similarity of physiology, and susceptibility to infectious and metabolic diseases with humans, rhesus macaques have been widely used as an important animal model in biomedical research, especially in the study of vaccine development and human immune-related diseases. In recent years, high-throughput sequencing based immune repertoire sequencing (IR-SEQ) has become a powerful tool to study the dynamic adaptive immune responses. Several previous studies had analyzed the responses of B cells to HIV-1 trimer vaccine or T cell repertoire of rhesus macaques using this technique, however, there are little studies that had performed a comprehensive analysis of immune repertoire of rhesus macaques, including T and B lymphocytes. Here, we did a comprehensive analysis of the T and B cells receptor repertoires of a Chinese rhesus macaque based on the 5’—RACE and IR-SEQ. The detailed analysis includes the distribution of CDR3 length, the composition of amino acids and nucleotides of CDR3, V, J and V-J combination usage, the insertion and deletion length distribution and somatic hypermutation rates of the framework region 3 (FR3). In addition, we found that several positions of FR3 region have high mutation frequencies, which may indicate the existence of new genes/alleles that have not been discovered and/or collected into IMGT reference database. We believe that a comprehensive profiling of immune repertoire of rhesus macaque will facilitate the human immune-related diseases studies.
Collapse
Affiliation(s)
- Longfei Fu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Xinyang Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Wei Zhang
- BGI-Shenzhen, Shenzhen, China
- China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Changxi Wang
- BGI-Shenzhen, Shenzhen, China
- China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Jinghua Wu
- BGI-Shenzhen, Shenzhen, China
- China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Science, Hangzhou, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Science, Hangzhou, China
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen, China
- China National Genebank, BGI-Shenzhen, Shenzhen, China
- * E-mail:
| |
Collapse
|