1
|
Han D, Xiong B, Zhang X, Chen C, Yao Z, Wu H, Cao J, Li J, Li P, Wang Z, Tian J. Knockdown of AMIGO2 suppresses proliferation and migration through regulating PPAR-γ in bladder cancer. Hereditas 2024; 161:21. [PMID: 38978149 PMCID: PMC11229346 DOI: 10.1186/s41065-024-00325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
PURPOSE This study aims to reveal the relationship between AMIGO2 and proliferation, migration and tumorigenicity of bladder cancer, and explore the potential molecular mechanisms. METHODS The expression level of AMIGO2 is measured by qRT-PCR and immunohistochemistry (IHC). Stable AMIGO2 knockdown cell lines T24 and 5637 were established by lentivirus transfection. Cell Counting Kit (CCK-8 assay) was produced to determine cell proliferation, flow cytometry analysis was utilized to detect cell cycle, and wound healing assay was proceeded to test migration ability of bladder cancer cells. Xenograft mouse model was established for investigating the effect of AMIGO2 on tumor formation in vivo. The RNA Sequencing technology was applied to explore the underlying mechanisms. The expression level of PPAR-γ was measured by Western Blot. RESULTS AMIGO2 was upregulated in bladder cancer cells and tissues. Inhibited expression of AMIGO2 suppresses cell proliferation and migration. Low AMIGO2 expression inhibited tumorigenicity of 5637 in nude mice. According to RNA-Seq and bioinformatics analysis, 917 DEGs were identified. The DEGs were mainly enriched in cell-cell adhesion, peroxisome proliferators-activated receptors (PPARs) signaling pathway and some other pathways. PPAR-γ is highly expressed in bladder cancer cell lines T24 and 5637, but when AMIGO2 is knocked down in T24 and 5637, the expression level of PPAR-γ is also decreased, and overexpression of PPAR-γ could reverse the suppression effect of cell proliferation and migration caused by the inhibition of AMIGO2. CONCLUSION AMIGO2 is overexpressed in bladder cancer cells and tissues. Knockdown of AMIGO2 suppresses bladder cancer cell proliferation and migration. These processes might be regulated by PPAR-γ signaling pathway.
Collapse
Affiliation(s)
- Dali Han
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Clinical Center of Gansu Province for Nephro-Urology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Bin Xiong
- Department of Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Xiangxiang Zhang
- Department of Urology, Gansu Provincial Hospital, Lanzhou, Gansu Province, China
| | - Chaohu Chen
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Clinical Center of Gansu Province for Nephro-Urology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Zhiqiang Yao
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Clinical Center of Gansu Province for Nephro-Urology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Hao Wu
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Clinical Center of Gansu Province for Nephro-Urology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jinlong Cao
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Clinical Center of Gansu Province for Nephro-Urology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jianpeng Li
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Clinical Center of Gansu Province for Nephro-Urology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Pan Li
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Clinical Center of Gansu Province for Nephro-Urology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Zhiping Wang
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Clinical Center of Gansu Province for Nephro-Urology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Junqiang Tian
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Clinical Center of Gansu Province for Nephro-Urology, Lanzhou University, Lanzhou, Gansu Province, China.
| |
Collapse
|
2
|
Held M, Kozmar A, Sestan M, Turudic D, Kifer N, Srsen S, Gagro A, Frkovic M, Jelusic M. Insight into the Interplay of Gd-IgA1, HMGB1, RAGE and PCDH1 in IgA Vasculitis (IgAV). Int J Mol Sci 2024; 25:4383. [PMID: 38673968 PMCID: PMC11050592 DOI: 10.3390/ijms25084383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The pathogenesis of IgAV, the most common systemic vasculitis in childhood, appears to be complex and requires further elucidation. We aimed to investigate the potential role of galactose-deficient immunoglobulin A1 (Gd-IgA1), high-mobility group box 1 (HMGB1), receptor for advanced glycation end products (RAGE) and protocadherin 1 (PCDH1) in the pathogenesis of IgAV. Our prospective study enrolled 86 patients with IgAV and 70 controls. HMGB1, RAGE, Gd-IgA1 and PCDH1 in serum and urine were determined by the enzyme-linked immunosorbent assay (ELISA) method at the onset of the disease and after a six-month interval in patients and once in the control group. Serum concentrations of HMGB1, RAGE and PCDH1 and urinary concentrations of HMGB1, RAGE, Gd-IgA1 and PCDH1 were significantly higher in patients with IgAV than in the control group (p < 0.001). Concentrations of HMGB1 (5573 pg/mL vs. 3477 pg/mL vs. 1088 pg/mL, p < 0.001) and RAGE (309 pg/mL vs. 302.4 pg/mL vs. 201.3 pg/mL, p = 0.012) in the serum of patients remained significantly elevated when the disease onset was compared with the six-month follow-up interval, and thus could be a potential marker of disease activity. Urinary concentration of HMGB1 measured in the follow-up period was higher in patients with nephritis compared to IgAV without nephritis (270.9 (146.7-542.7) ng/mmol vs. 133.2 (85.9-318.6) ng/mmol, p = 0.049) and significantly positively correlated with the urine albumine to creatinine ratio (τ = 0.184, p < 0.05), the number of erythrocytes in urine samples (τ = 0.193, p < 0.05) and with the outcome of nephritis (τ = 0.287, p < 0.05); therefore, HMGB1 could be a potential tool for monitoring patients with IgAV who develop nephritis. Taken together, our results imply a possible interplay of Gd-IgA1, HMGB1, RAGE and PCDH1 in the development of IgAV. The identification of sensitive biomarkers in IgAV may provide disease prevention and future therapeutics.
Collapse
Affiliation(s)
- Martina Held
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (M.H.); (M.S.); (D.T.); (N.K.); (M.F.)
| | - Ana Kozmar
- Department of Laboratory Diagnostics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Mario Sestan
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (M.H.); (M.S.); (D.T.); (N.K.); (M.F.)
| | - Daniel Turudic
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (M.H.); (M.S.); (D.T.); (N.K.); (M.F.)
| | - Nastasia Kifer
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (M.H.); (M.S.); (D.T.); (N.K.); (M.F.)
| | - Sasa Srsen
- Department of Pediatrics, University of Split School of Medicine, University Hospital Centre Split, 21000 Split, Croatia;
| | - Alenka Gagro
- Children’s Hospital Zagreb, Medical Faculty Osijek, Josip Juraj Strossmayer University of Osijek, 10000 Zagreb, Croatia;
| | - Marijan Frkovic
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (M.H.); (M.S.); (D.T.); (N.K.); (M.F.)
| | - Marija Jelusic
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (M.H.); (M.S.); (D.T.); (N.K.); (M.F.)
| |
Collapse
|
3
|
Mincheva-Tasheva S, Pfitzner C, Kumar R, Kurtsdotter I, Scherer M, Ritchie T, Muhr J, Gecz J, Thomas PQ. Mapping combinatorial expression of non-clustered protocadherins in the developing brain identifies novel PCDH19-mediated cell adhesion properties. Open Biol 2024; 14:230383. [PMID: 38629124 PMCID: PMC11037505 DOI: 10.1098/rsob.230383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Non-clustered protocadherins (ncPcdhs) are adhesive molecules with spatio-temporally regulated overlapping expression in the developing nervous system. Although their unique role in neurogenesis has been widely studied, their combinatorial role in brain physiology and pathology is poorly understood. Using probabilistic cell typing by in situ sequencing, we demonstrate combinatorial inter- and intra-familial expression of ncPcdhs in the developing mouse cortex and hippocampus, at single-cell resolution. We discovered the combinatorial expression of Protocadherin-19 (Pcdh19), a protein involved in PCDH19-clustering epilepsy, with Pcdh1, Pcdh9 or Cadherin 13 (Cdh13) in excitatory neurons. Using aggregation assays, we demonstrate a code-specific adhesion function of PCDH19; mosaic PCDH19 absence in PCDH19+9 and PCDH19 + CDH13, but not in PCDH19+1 codes, alters cell-cell interaction. Interestingly, we found that PCDH19 as a dominant protein in two heterophilic adhesion codes could promote trans-interaction between them. In addition, we discovered increased CDH13-mediated cell adhesion in the presence of PCDH19, suggesting a potential role of PCDH19 as an adhesion mediator of CDH13. Finally, we demonstrated novel cis-interactions between PCDH19 and PCDH1, PCDH9 and CDH13. These observations suggest that there is a unique combinatorial code with a cell- and region-specific characteristic where a single molecule defines the heterophilic cell-cell adhesion properties of each code.
Collapse
Affiliation(s)
- Stefka Mincheva-Tasheva
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| | - Chandran Pfitzner
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| | - Raman Kumar
- School of Medicine and Robinson Research Institute, University
of Adelaide, Adelaide, South Australia5005, Australia
| | - Idha Kurtsdotter
- Department of Cell and Molecular Biology, Karolinska
Institute, Stockholm, Sweden
| | - Michaela Scherer
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| | - Tarin Ritchie
- School of Medicine and Robinson Research Institute, University
of Adelaide, Adelaide, South Australia5005, Australia
| | - Jonas Muhr
- Department of Cell and Molecular Biology, Karolinska
Institute, Stockholm, Sweden
| | - Jozef Gecz
- School of Medicine and Robinson Research Institute, University
of Adelaide, Adelaide, South Australia5005, Australia
- South Australian Health and Medical Research
Institute, Adelaide, 5000 ,
Australia
| | - Paul Q. Thomas
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| |
Collapse
|
4
|
Barrier Impairment and Type 2 Inflammation in Allergic Diseases: The Pediatric Perspective. CHILDREN (BASEL, SWITZERLAND) 2021; 8:children8121165. [PMID: 34943362 PMCID: PMC8700706 DOI: 10.3390/children8121165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/02/2023]
Abstract
Allergic diseases represent a global burden. Although the patho-physiological mechanisms are still poorly understood, epithelial barrier dysfunction and Th2 inflammatory response play a pivotal role. Barrier dysfunction, characterized by a loss of differentiation, reduced junctional integrity, and altered innate defence, underpins the pathogenesis of allergic diseases. Epithelial barrier impairment may be a potential therapeutic target for new treatment strategies Up now, monoclonal antibodies and new molecules targeting specific pathways of the immune response have been developed, and others are under investigation, both for adult and paediatric populations, which are affected by atopic dermatitis (AD), asthma, allergic rhinitis (AR), chronic rhinosinusitis with nasal polyps (CRSwNP), or eosinophilic esophagitis (EoE). In children affected by severe asthma biologics targeting IgE, IL-5 and against IL-4 and IL-13 receptors are already available, and they have also been applied in CRSwNP. In severe AD Dupilumab, a biologic which inhibits both IL-4 and IL-13, the most important cytokines involved in inflammation response, has been approved for treatment of patients over 12 years. While a biological approach has already shown great efficacy on the treatment of severe atopic conditions, early intervention to restore epithelial barrier integrity, and function may prevent the inflammatory response and the development of the atopic march.
Collapse
|
5
|
Alobaidi A, Alsamarai A, Alsamarai MA. Inflammation in Asthma Pathogenesis: Role of T cells, Macrophages, Epithelial Cells and Type 2 Inflammation. Antiinflamm Antiallergy Agents Med Chem 2021; 20:317-332. [PMID: 34544350 DOI: 10.2174/1871523020666210920100707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Asthma is a chronic disease with abnormal inflammatory and immunological responses. The disease initiated by antigens in subjects with genetic susceptibility. However, environmental factors play a role in the initiation and exacerbation of asthma attack. Asthma is T helper 2 (Th2)-cell-mediated disease. Recent studies indicated that asthma is not a single disease entity, but it is with multiple phenotypes and endotypes. The pathophysiological changes in asthma included a series of subsequent continuous vicious circle of cellular activation contributed to induction of chemokines and cytokines that potentiate inflammation. The heterogeneity of asthma influenced the treatment response. The asthma pathogenesis driven by varied set of cells such as eosinophils, basophils, neutrophils, mast cells, macrophages, epithelial cells and T cells. In this review the role of T cells, macrophage, and epithelial cells are discussed.
Collapse
Affiliation(s)
- Amina Alobaidi
- Kirkuk University College of Veterinary Medicine, Kirkuk. Iraq
| | - Abdulghani Alsamarai
- Aalborg Academy College of Medicine [AACOM], Denmark. Tikrit University College of Medicine, [TUCOM], Tikrit. Iraq
| | | |
Collapse
|
6
|
ter Ellen BM, Dinesh Kumar N, Bouma EM, Troost B, van de Pol DP, van der Ende-Metselaar HH, Apperloo L, van Gosliga D, van den Berge M, Nawijn MC, van der Voort PH, Moser J, Rodenhuis-Zybert IA, Smit JM. Resveratrol and Pterostilbene Inhibit SARS-CoV-2 Replication in Air-Liquid Interface Cultured Human Primary Bronchial Epithelial Cells. Viruses 2021; 13:v13071335. [PMID: 34372541 PMCID: PMC8309965 DOI: 10.3390/v13071335] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
The current COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has an enormous impact on human health and economy. In search for therapeutic options, researchers have proposed resveratrol, a food supplement with known antiviral, anti-inflammatory, and antioxidant properties as an advantageous antiviral therapy for SARS-CoV-2 infection. Here, we provide evidence that both resveratrol and its metabolically more stable structural analog, pterostilbene, exhibit potent antiviral properties against SARS-CoV-2 in vitro. First, we show that resveratrol and pterostilbene antiviral activity in African green monkey kidney cells. Both compounds actively inhibit virus replication within infected cells as reduced virus progeny production was observed when the compound was added at post-inoculation conditions. Without replenishment of the compound, antiviral activity was observed up to roughly five rounds of replication, demonstrating the long-lasting effect of these compounds. Second, as the upper respiratory tract represents the initial site of SARS-CoV-2 replication, we also assessed antiviral activity in air-liquid interface (ALI) cultured human primary bronchial epithelial cells, isolated from healthy volunteers. Resveratrol and pterostilbene showed a strong antiviral effect in these cells up to 48 h post-infection. Collectively, our data indicate that resveratrol and pterostilbene are promising antiviral compounds to inhibit SARS-CoV-2 infection. Because these results represent laboratory findings in cells, we advocate evaluation of these compounds in clinical trials before statements are made whether these drugs are advantageous for COVID-19 treatment.
Collapse
Affiliation(s)
- Bram M. ter Ellen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (B.M.t.E.); (N.D.K.); (E.M.B.); (B.T.); (D.P.I.v.d.P.); (H.H.v.d.E.-M.); (I.A.R.-Z.)
| | - Nilima Dinesh Kumar
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (B.M.t.E.); (N.D.K.); (E.M.B.); (B.T.); (D.P.I.v.d.P.); (H.H.v.d.E.-M.); (I.A.R.-Z.)
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Ellen M. Bouma
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (B.M.t.E.); (N.D.K.); (E.M.B.); (B.T.); (D.P.I.v.d.P.); (H.H.v.d.E.-M.); (I.A.R.-Z.)
| | - Berit Troost
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (B.M.t.E.); (N.D.K.); (E.M.B.); (B.T.); (D.P.I.v.d.P.); (H.H.v.d.E.-M.); (I.A.R.-Z.)
| | - Denise P.I. van de Pol
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (B.M.t.E.); (N.D.K.); (E.M.B.); (B.T.); (D.P.I.v.d.P.); (H.H.v.d.E.-M.); (I.A.R.-Z.)
| | - Heidi H. van der Ende-Metselaar
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (B.M.t.E.); (N.D.K.); (E.M.B.); (B.T.); (D.P.I.v.d.P.); (H.H.v.d.E.-M.); (I.A.R.-Z.)
| | - Leonie Apperloo
- Department of Pathology and Medical Biology, GRIAC Research Institute, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.A.); (M.C.N.)
| | - Djoke van Gosliga
- Department of Pediatrics, Beatrix Children’s Hospital, GRIAC Research Institute, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Maarten van den Berge
- Department of Pulmonary Diseases, GRIAC Research Institute, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Martijn C. Nawijn
- Department of Pathology and Medical Biology, GRIAC Research Institute, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.A.); (M.C.N.)
| | - Peter H.J. van der Voort
- Department of Critical Care, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (P.H.J.v.d.V.); (J.M.)
| | - Jill Moser
- Department of Critical Care, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (P.H.J.v.d.V.); (J.M.)
| | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (B.M.t.E.); (N.D.K.); (E.M.B.); (B.T.); (D.P.I.v.d.P.); (H.H.v.d.E.-M.); (I.A.R.-Z.)
| | - Jolanda M. Smit
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (B.M.t.E.); (N.D.K.); (E.M.B.); (B.T.); (D.P.I.v.d.P.); (H.H.v.d.E.-M.); (I.A.R.-Z.)
- Correspondence:
| |
Collapse
|
7
|
Han L, Luo H, Huang W, Zhang J, Wu D, Wang J, Pi J, Liu C, Qu X, Liu H, Qin X, Xiang Y. Modulation of the EMT/MET Process by E-Cadherin in Airway Epithelia Stress Injury. Biomolecules 2021; 11:biom11050669. [PMID: 33946207 PMCID: PMC8144967 DOI: 10.3390/biom11050669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Persistent injury and the following improper repair in bronchial epithelial cells are involved in the pathogenesis of airway inflammation and airway remodeling of asthma. E-cadherin (ECAD) has been shown to be involved in airway epithelium injury repair, but its underlying mechanisms to this process is poorly understood. Here, we describe a previously undetected function of ECAD in regulating the balance of EMT and MET during injury repair. Injury in mice and human bronchial epithelial cells (HBECs) was induced by successive ozone stress for 4 days at 30 min per day. ECAD overexpression in HBECs was induced by stable transfection. EMT features, transforming growth factor beta1 (TGF-β1) secretion, transcriptional repressor Snail expression, and β-catenin expression were assayed. Ozone exposure and then removal successfully induced airway epithelium injury repair during which EMT and MET occurred. The levels of TGF-β1 secretion and Snail expression increased in EMT process and decreased in MET process. While ECAD overexpression repressed EMT features; enhanced MET features; and decreased TGF-β1 secretion, Snail mRNA level, and β-catenin protein expression. Moreover, activating β-catenin blocked the effects of ECAD on EMT, MET and TGF-β1 signaling. Our results demonstrate that ECAD regulates the balance between EMT and MET, by preventing β-catenin to inhibit TGFβ1 and its target genes, and finally facilitates airway epithelia repair.
Collapse
Affiliation(s)
- Li Han
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410007, China; (L.H.); (W.H.); (J.Z.); (D.W.); (J.W.); (J.P.); (C.L.); (X.Q.); (H.L.)
- Department of Physiology, School of Basic Medicine, Changsha Medical University, Changsha 410219, China;
| | - Huaiqing Luo
- Department of Physiology, School of Basic Medicine, Changsha Medical University, Changsha 410219, China;
| | - Wenjie Huang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410007, China; (L.H.); (W.H.); (J.Z.); (D.W.); (J.W.); (J.P.); (C.L.); (X.Q.); (H.L.)
| | - Jiang Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410007, China; (L.H.); (W.H.); (J.Z.); (D.W.); (J.W.); (J.P.); (C.L.); (X.Q.); (H.L.)
| | - Di Wu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410007, China; (L.H.); (W.H.); (J.Z.); (D.W.); (J.W.); (J.P.); (C.L.); (X.Q.); (H.L.)
| | - Jinmei Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410007, China; (L.H.); (W.H.); (J.Z.); (D.W.); (J.W.); (J.P.); (C.L.); (X.Q.); (H.L.)
| | - Jiao Pi
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410007, China; (L.H.); (W.H.); (J.Z.); (D.W.); (J.W.); (J.P.); (C.L.); (X.Q.); (H.L.)
| | - Chi Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410007, China; (L.H.); (W.H.); (J.Z.); (D.W.); (J.W.); (J.P.); (C.L.); (X.Q.); (H.L.)
| | - Xiangping Qu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410007, China; (L.H.); (W.H.); (J.Z.); (D.W.); (J.W.); (J.P.); (C.L.); (X.Q.); (H.L.)
| | - Huijun Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410007, China; (L.H.); (W.H.); (J.Z.); (D.W.); (J.W.); (J.P.); (C.L.); (X.Q.); (H.L.)
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410007, China; (L.H.); (W.H.); (J.Z.); (D.W.); (J.W.); (J.P.); (C.L.); (X.Q.); (H.L.)
- Correspondence: (X.Q.); (Y.X.)
| | - Yang Xiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410007, China; (L.H.); (W.H.); (J.Z.); (D.W.); (J.W.); (J.P.); (C.L.); (X.Q.); (H.L.)
- Correspondence: (X.Q.); (Y.X.)
| |
Collapse
|
8
|
Hellings PW, Steelant B. Epithelial barriers in allergy and asthma. J Allergy Clin Immunol 2021; 145:1499-1509. [PMID: 32507228 PMCID: PMC7270816 DOI: 10.1016/j.jaci.2020.04.010] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022]
Abstract
The respiratory epithelium provides a physical, functional, and immunologic barrier to protect the host from the potential harming effects of inhaled environmental particles and to guarantee maintenance of a healthy state of the host. When compromised, activation of immune/inflammatory responses against exogenous allergens, microbial substances, and pollutants might occur, rendering individuals prone to develop chronic inflammation as seen in allergic rhinitis, chronic rhinosinusitis, and asthma. The airway epithelium in asthma and upper airway diseases is dysfunctional due to disturbed tight junction formation. By putting the epithelial barrier to the forefront of the pathophysiology of airway inflammation, different approaches to diagnose and target epithelial barrier defects are currently being developed. Using single-cell transcriptomics, novel epithelial cell types are being unraveled that might play a role in chronicity of respiratory diseases. We here review and discuss the current understandings of epithelial barrier defects in type 2-driven chronic inflammation of the upper and lower airways, the estimated contribution of these novel identified epithelial cells to disease, and the current clinical challenges in relation to diagnosis and treatment of allergic rhinitis, chronic rhinosinusitis, and asthma.
Collapse
Affiliation(s)
- Peter W Hellings
- Clinical Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, Leuven, Belgium; Department of Otorhinolaryngology, University Hospital Ghent, Laboratory of Upper Airway Research, Ghent, Belgium.
| | - Brecht Steelant
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University of Crete School of Medicine, Heraklion, Crete, Greece
| |
Collapse
|
9
|
Cidem A, Bradbury P, Traini D, Ong HX. Modifying and Integrating in vitro and ex vivo Respiratory Models for Inhalation Drug Screening. Front Bioeng Biotechnol 2020; 8:581995. [PMID: 33195144 PMCID: PMC7644812 DOI: 10.3389/fbioe.2020.581995] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/06/2020] [Indexed: 01/03/2023] Open
Abstract
For the past 50 years, the route of inhalation has been utilized to administer therapies to treat a variety of respiratory and pulmonary diseases. When compared with other drug administration routes, inhalation offers a targeted, non-invasive approach to deliver rapid onset of drug action to the lung, minimizing systemic drug exposure and subsequent side effects. However, despite advances in inhaled therapies, there is still a need to improve the preclinical screening and the efficacy of inhaled therapeutics. Innovative in vitro models of respiratory physiology to determine therapeutic efficacy of inhaled compounds have included the use of organoids, micro-engineered lung-on-chip systems and sophisticated bench-top platforms to enable a better understanding of pulmonary mechanisms at the molecular level, rapidly progressing inhaled therapeutic candidates to the clinic. Furthermore, the integration of complementary ex vivo models, such as precision-cut lung slices (PCLS) and isolated perfused lung platforms have further advanced preclinical drug screening approaches by providing in vivo relevance. In this review, we address the challenges and advances of in vitro models and discuss the implementation of ex vivo inhaled drug screening models. Specifically, we address the importance of understanding human in vivo pulmonary mechanisms in assessing strategies of the preclinical screening of drug efficacy, toxicity and delivery of inhaled therapeutics.
Collapse
Affiliation(s)
- Aylin Cidem
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Peta Bradbury
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Heijink IH, Kuchibhotla VNS, Roffel MP, Maes T, Knight DA, Sayers I, Nawijn MC. Epithelial cell dysfunction, a major driver of asthma development. Allergy 2020; 75:1902-1917. [PMID: 32460363 PMCID: PMC7496351 DOI: 10.1111/all.14421] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
Airway epithelial barrier dysfunction is frequently observed in asthma and may have important implications. The physical barrier function of the airway epithelium is tightly interwoven with its immunomodulatory actions, while abnormal epithelial repair responses may contribute to remodelling of the airway wall. We propose that abnormalities in the airway epithelial barrier play a crucial role in the sensitization to allergens and pathogenesis of asthma. Many of the identified susceptibility genes for asthma are expressed in the airway epithelium, supporting the notion that events at the airway epithelial surface are critical for the development of the disease. However, the exact mechanisms by which the expression of epithelial susceptibility genes translates into a functionally altered response to environmental risk factors of asthma are still unknown. Interactions between genetic factors and epigenetic regulatory mechanisms may be crucial for asthma susceptibility. Understanding these mechanisms may lead to identification of novel targets for asthma intervention by targeting the airway epithelium. Moreover, exciting new insights have come from recent studies using single‐cell RNA sequencing (scRNA‐Seq) to study the airway epithelium in asthma. This review focuses on the role of airway epithelial barrier function in the susceptibility to develop asthma and novel insights in the modulation of epithelial cell dysfunction in asthma.
Collapse
Affiliation(s)
- Irene H. Heijink
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
- Department of Pulmonology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Virinchi N. S. Kuchibhotla
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
- School of Biomedical Sciences and Pharmacy University of Newcastle Callaghan NSW Australia
| | - Mirjam P. Roffel
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent University Ghent Belgium
| | - Tania Maes
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent University Ghent Belgium
| | - Darryl A. Knight
- School of Biomedical Sciences and Pharmacy University of Newcastle Callaghan NSW Australia
- UBC Providence Health Care Research Institute Vancouver BC Canada
- Department of Anesthesiology, Pharmacology and Therapeutics University of British Columbia Vancouver BC Canada
| | - Ian Sayers
- Division of Respiratory Medicine National Institute for Health Research Nottingham Biomedical Research Centre University of Nottingham Biodiscovery Institute University of Nottingham Nottingham UK
| | - Martijn C. Nawijn
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
| |
Collapse
|
11
|
Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at the Crossroad of Signaling Pathways. Front Mol Neurosci 2020; 13:117. [PMID: 32694982 PMCID: PMC7339444 DOI: 10.3389/fnmol.2020.00117] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Protocadherins (Pcdhs) are cell adhesion molecules that belong to the cadherin superfamily, and are subdivided into clustered (cPcdhs) and non-clustered Pcdhs (ncPcdhs) in vertebrates. In this review, we summarize their discovery, expression mechanisms, and roles in neuronal development and cancer, thereby highlighting the context-dependent nature of their actions. We furthermore provide an extensive overview of current structural knowledge, and its implications concerning extracellular interactions between cPcdhs, ncPcdhs, and classical cadherins. Next, we survey the known molecular action mechanisms of Pcdhs, emphasizing the regulatory functions of proteolytic processing and domain shedding. In addition, we outline the importance of Pcdh intracellular domains in the regulation of downstream signaling cascades, and we describe putative Pcdh interactions with intracellular molecules including components of the WAVE complex, the Wnt pathway, and apoptotic cascades. Our overview combines molecular interaction data from different contexts, such as neural development and cancer. This comprehensive approach reveals potential common Pcdh signaling hubs, and points out future directions for research. Functional studies of such key factors within the context of neural development might yield innovative insights into the molecular etiology of Pcdh-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anna Pancho
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D Mitsogiannis
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Modak D, Sotomayor M. Identification of an adhesive interface for the non-clustered δ1 protocadherin-1 involved in respiratory diseases. Commun Biol 2019; 2:354. [PMID: 31583286 PMCID: PMC6769022 DOI: 10.1038/s42003-019-0586-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/21/2019] [Indexed: 12/29/2022] Open
Abstract
Cadherins form a large family of calcium-dependent adhesive proteins involved in morphogenesis, cell differentiation, and neuronal connectivity. Non-clustered δ1 protocadherins form a cadherin subgroup of proteins with seven extracellular cadherin (EC) repeats and cytoplasmic domains distinct from those of classical cadherins. Non-clustered δ1 protocadherins mediate homophilic adhesion and have been implicated in various diseases including asthma, autism, and cancer. Here we present X-ray crystal structures of human Protocadherin-1 (PCDH1), a δ1-protocadherin member essential for New World Hantavirus infection that is typically expressed in the brain, airway epithelium, skin keratinocytes, and lungs. The structures suggest a binding mode that involves antiparallel overlap of repeats EC1 to EC4. Mutagenesis combined with binding assays and biochemical experiments validated this mode of adhesion. Overall, these results reveal the molecular mechanism underlying adhesiveness of PCDH1 and δ1-protocadherins, also shedding light on PCDH1's role in maintaining airway epithelial integrity, the loss of which causes respiratory diseases.
Collapse
Affiliation(s)
- Debadrita Modak
- Department of Chemistry and Biochemistry, The Ohio State University, 484 W 12th Avenue, Columbus, OH 43210 USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, 484 W 12th Avenue, Columbus, OH 43210 USA
| |
Collapse
|
13
|
Mittler E, Dieterle ME, Kleinfelter LM, Slough MM, Chandran K, Jangra RK. Hantavirus entry: Perspectives and recent advances. Adv Virus Res 2019; 104:185-224. [PMID: 31439149 DOI: 10.1016/bs.aivir.2019.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hantaviruses are important zoonotic pathogens of public health importance that are found on all continents except Antarctica and are associated with hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. Despite the significant disease burden they cause, no FDA-approved specific therapeutics or vaccines exist against these lethal viruses. The lack of available interventions is largely due to an incomplete understanding of hantavirus pathogenesis and molecular mechanisms of virus replication, including cellular entry. Hantavirus Gn/Gc glycoproteins are the only viral proteins exposed on the surface of virions and are necessary and sufficient to orchestrate virus attachment and entry. In vitro studies have implicated integrins (β1-3), DAF/CD55, and gC1qR as candidate receptors that mediate viral attachment for both Old World and New World hantaviruses. Recently, protocadherin-1 (PCDH1) was demonstrated as a requirement for cellular attachment and entry of New World hantaviruses in vitro and lethal HPS in vivo, making it the first clade-specific host factor to be identified. Attachment of hantavirus particles to cellular receptors induces their internalization by clathrin-mediated, dynamin-independent, or macropinocytosis-like mechanisms, followed by particle trafficking to an endosomal compartment where the fusion of viral and endosomal membranes can occur. Following membrane fusion, which requires cholesterol and acid pH, viral nucleocapsids escape into the cytoplasm and launch genome replication. In this review, we discuss the current mechanistic understanding of hantavirus entry, highlight gaps in our existing knowledge, and suggest areas for future inquiry.
Collapse
Affiliation(s)
- Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maria Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lara M Kleinfelter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Megan M Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
14
|
Ierodiakonou D, Coull BA, Zanobetti A, Postma DS, Boezen HM, Vonk JM, McKone EF, Schildcrout JS, Koppelman GH, Croteau-Chonka DC, Lumley T, Koutrakis P, Schwartz J, Gold DR, Weiss ST. Pathway analysis of a genome-wide gene by air pollution interaction study in asthmatic children. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:539-547. [PMID: 31028280 PMCID: PMC10730425 DOI: 10.1038/s41370-019-0136-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/23/2018] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
OBJECTIVES We aimed to investigate the role of genetics in the respiratory response of asthmatic children to air pollution, with a genome-wide level analysis of gene by nitrogen dioxide (NO2) and carbon monoxide (CO) interaction on lung function and to identify biological pathways involved. METHODS We used a two-step method for fast linear mixed model computations for genome-wide association studies, exploring whether variants modify the longitudinal relationship between 4-month average pollution and post-bronchodilator FEV1 in 522 Caucasian and 88 African-American asthmatic children. Top hits were confirmed with classic linear mixed-effect models. We used the improved gene set enrichment analysis for GWAS (i-GSEA4GWAS) to identify plausible pathways. RESULTS Two SNPs near the EPHA3 (rs13090972 and rs958144) and one in TXNDC8 (rs7041938) showed significant interactions with NO2 in Caucasians but we did not replicate this locus in African-Americans. SNP-CO interactions did not reach genome-wide significance. The i-GSEA4GWAS showed a pathway linked to the HO-1/CO system to be associated with CO-related FEV1 changes. For NO2-related FEV1 responses, we identified pathways involved in cellular adhesion, oxidative stress, inflammation, and metabolic responses. CONCLUSION The host lung function response to long-term exposure to pollution is linked to genes involved in cellular adhesion, oxidative stress, inflammatory, and metabolic pathways.
Collapse
Affiliation(s)
- Despo Ierodiakonou
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Antonella Zanobetti
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Dirkje S Postma
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H Marike Boezen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Edward F McKone
- Department of Respiratory Medicine, St. Vincent University Hospital, Dublin, Ireland
| | - Jonathan S Schildcrout
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Gerard H Koppelman
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pediatric Pulmonology and Pediatric Allergology-Beatrix Children Hospital, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Damien C Croteau-Chonka
- Channing Division of Network Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Thomas Lumley
- Department of Biostatistics, University of Auckland, Auckland, New Zealand
| | - Petros Koutrakis
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Joel Schwartz
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Diane R Gold
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Channing Division of Network Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Park J, Hescott BJ, Slonim DK. Pathway centrality in protein interaction networks identifies putative functional mediating pathways in pulmonary disease. Sci Rep 2019; 9:5863. [PMID: 30971743 PMCID: PMC6458310 DOI: 10.1038/s41598-019-42299-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
Abstract
Identification of functional pathways mediating molecular responses may lead to better understanding of disease processes and suggest new therapeutic approaches. We introduce a method to detect such mediating functions using topological properties of protein-protein interaction networks. We define the concept of pathway centrality, a measure of communication between disease genes and differentially expressed genes. Using pathway centrality, we identify mediating pathways in three pulmonary diseases (asthma; bronchopulmonary dysplasia (BPD); and chronic obstructive pulmonary disease (COPD)). We systematically evaluate the significance of all identified central pathways using genetic interactions. Mediating pathways shared by all three pulmonary disorders favor innate immune and inflammation-related processes, including toll-like receptor (TLR) signaling, PDGF- and angiotensin-regulated airway remodeling, the JAK-STAT signaling pathway, and interferon gamma. Disease-specific mediators, such as neurodevelopmental processes in BPD or adhesion molecules in COPD, are also highlighted. Some of our findings implicate pathways already in development as drug targets, while others may suggest new therapeutic approaches.
Collapse
Affiliation(s)
- Jisoo Park
- School of Medicine, University of California, San Diego, CA, 92093, USA.
| | - Benjamin J Hescott
- College of Computer and Information Science, Northeastern University, Boston, MA, 02115, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA, 02155, USA.
- Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
16
|
Biswas S. Role of PCDH 1 Gene in the Development of Childhood Asthma and Other Related Phenotypes: A Literature Review. Cureus 2018; 10:e3360. [PMID: 30510870 PMCID: PMC6257625 DOI: 10.7759/cureus.3360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The asthma gene PCDH 1, encoding protocadherin-1, is a cellular adhesion molecule which plays an important role in epithelial barrier formation and repair. PCDH 1 is a novel susceptible gene not only in childhood asthma but also in eczema and other atopic phenotypes. In this article, we reviewed relevant articles from PubMed, Google Scholar, Science Direct and included all available significant pieces of information about the PCDH 1 association with asthma and other atopic or non-atopic phenotypes. It is very interesting that cigarette smoking can induce changes in PCDH 1 expression but how the changes in PCDH 1 induce asthma is still not clear. PCDH 1 gene polymorphism also sometimes plays role in asthma and bronchial hyperresponsiveness (BHR) pathogenesis as well as in allergic dermatitis.
Collapse
Affiliation(s)
- Sharmi Biswas
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
17
|
Hypoxia-derived exosomes induce putative altered pathways in biosynthesis and ion regulatory channels in glioblastoma cells. Biochem Biophys Rep 2018; 14:104-113. [PMID: 29872742 PMCID: PMC5986551 DOI: 10.1016/j.bbrep.2018.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/08/2018] [Accepted: 03/29/2018] [Indexed: 12/31/2022] Open
Abstract
Hypoxia, a hallmark characteristic of glioblastoma (GBM) induces changes in the transcriptome and the proteome of tumor cells. We discovered that hypoxic stress produces significant qualitative and quantitative changes in the protein content of secreted exosomes from GBM cells. Among the proteins found to be selectively elevated in hypoxic exosomes were protein-lysine 6-oxidase (LOX), thrombospondin-1 (TSP1), vascular derived endothelial factor (VEGF) and a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1), well studied contributors to tumor progression, metastasis and angiogenesis. Our findings demonstrate that hypoxic exosomes induce differential gene expression in recipient glioma cells. Glioma cells stimulated with hypoxic exosomes showed a marked upregulation of small nucleolar RNA, C/D box 116–21 (SNORD116-21) transcript among others while significantly downregulated the potassium voltage-gated channel subfamily J member 3 (KCNJ3) message. This differential expression of certain genes is governed by the protein cargo being transferred via exosomes. Additionally, compared to normoxic exosomes, hypoxic exosomes increased various angiogenic related parameters vis-à-vis, overall tube length, branching intervals and length of isolated branches studied in tube formation assay with endothelial progenitor cells (EPCs). Thus, the intercellular communication facilitated via exosomes secreted from hypoxic GBM cells induce marked changes in the expression of genes in neighboring normoxic tumor cells and possibly in surrounding stromal cells, many of which are involved in cancer progression and treatment resistance mechanisms. In GBM, hypoxic stress induces profound changes in the protein content of secreted exosomes. Hypoxic exosomal contents induce angiogenesis and significant changes in recipient GBM cell transcriptome. Hypoxic exosomes play a major role leading to tumor proliferation, tumor growth and cell survival.
Collapse
|