1
|
van der Heijden ME, Brown AM, Kizek DJ, Sillitoe RV. Cerebellar nuclei cells produce distinct pathogenic spike signatures in mouse models of ataxia, dystonia, and tremor. eLife 2024; 12:RP91483. [PMID: 39072369 DOI: 10.7554/elife.91483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
The cerebellum contributes to a diverse array of motor conditions, including ataxia, dystonia, and tremor. The neural substrates that encode this diversity are unclear. Here, we tested whether the neural spike activity of cerebellar output neurons is distinct between movement disorders with different impairments, generalizable across movement disorders with similar impairments, and capable of causing distinct movement impairments. Using in vivo awake recordings as input data, we trained a supervised classifier model to differentiate the spike parameters between mouse models for ataxia, dystonia, and tremor. The classifier model correctly assigned mouse phenotypes based on single-neuron signatures. Spike signatures were shared across etiologically distinct but phenotypically similar disease models. Mimicking these pathophysiological spike signatures with optogenetics induced the predicted motor impairments in otherwise healthy mice. These data show that distinct spike signatures promote the behavioral presentation of cerebellar diseases.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Amanda M Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Dominic J Kizek
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, United States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
2
|
Silva NT, Ramírez-Buriticá J, Pritchett DL, Carey MR. Climbing fibers provide essential instructive signals for associative learning. Nat Neurosci 2024; 27:940-951. [PMID: 38565684 PMCID: PMC11088996 DOI: 10.1038/s41593-024-01594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 02/05/2024] [Indexed: 04/04/2024]
Abstract
Supervised learning depends on instructive signals that shape the output of neural circuits to support learned changes in behavior. Climbing fiber (CF) inputs to the cerebellar cortex represent one of the strongest candidates in the vertebrate brain for conveying neural instructive signals. However, recent studies have shown that Purkinje cell stimulation can also drive cerebellar learning and the relative importance of these two neuron types in providing instructive signals for cerebellum-dependent behaviors remains unresolved. In the present study we used cell-type-specific perturbations of various cerebellar circuit elements to systematically evaluate their contributions to delay eyeblink conditioning in mice. Our findings reveal that, although optogenetic stimulation of either CFs or Purkinje cells can drive learning under some conditions, even subtle reductions in CF signaling completely block learning to natural stimuli. We conclude that CFs and corresponding Purkinje cell complex spike events provide essential instructive signals for associative cerebellar learning.
Collapse
Affiliation(s)
- N Tatiana Silva
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | | | - Dominique L Pritchett
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
- Biology Department, Howard University, Washington, DC, USA.
| | - Megan R Carey
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
| |
Collapse
|
3
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
4
|
Broersen R, Albergaria C, Carulli D, Carey MR, Canto CB, De Zeeuw CI. Synaptic mechanisms for associative learning in the cerebellar nuclei. Nat Commun 2023; 14:7459. [PMID: 37985778 PMCID: PMC10662440 DOI: 10.1038/s41467-023-43227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Associative learning during delay eyeblink conditioning (EBC) depends on an intact cerebellum. However, the relative contribution of changes in the cerebellar nuclei to learning remains a subject of ongoing debate. In particular, little is known about the changes in synaptic inputs to cerebellar nuclei neurons that take place during EBC and how they shape the membrane potential of these neurons. Here, we probed the ability of these inputs to support associative learning in mice, and investigated structural and cell-physiological changes within the cerebellar nuclei during learning. We find that optogenetic stimulation of mossy fiber afferents to the anterior interposed nucleus (AIP) can substitute for a conditioned stimulus and is sufficient to elicit conditioned responses (CRs) that are adaptively well-timed. Further, EBC induces structural changes in mossy fiber and inhibitory inputs, but not in climbing fiber inputs, and it leads to changes in subthreshold processing of AIP neurons that correlate with conditioned eyelid movements. The changes in synaptic and spiking activity that precede the CRs allow for a decoder to distinguish trials with a CR. Our data reveal how structural and physiological modifications of synaptic inputs to cerebellar nuclei neurons can facilitate learning.
Collapse
Affiliation(s)
- Robin Broersen
- Department of Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Catarina Albergaria
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
- University College London, Sainsbury Wellcome Centre, London, UK
| | - Daniela Carulli
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Megan R Carey
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
| | - Cathrin B Canto
- Department of Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.
| | - Chris I De Zeeuw
- Department of Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Broersen R, Canto CB, De Zeeuw CI. Cerebellar nuclei: Associative motor learning in zebrafish. Curr Biol 2023; 33:R867-R870. [PMID: 37607484 DOI: 10.1016/j.cub.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cerebellar output neurons integrate strong inhibitory input and weaker excitatory input during the control of spontaneous and learned movements. A new study sheds light on how those inputs are integrated during associative swimming in zebrafish larvae.
Collapse
Affiliation(s)
- Robin Broersen
- Department of Neuroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Cathrin B Canto
- Department of Neuroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands; Department of Cerebellar Coordination & Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands; Department of Cerebellar Coordination & Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
van der Heijden ME, Brown AM, Sillitoe RV. Influence of data sampling methods on the representation of neural spiking activity in vivo. iScience 2022; 25:105429. [PMID: 36388953 PMCID: PMC9641233 DOI: 10.1016/j.isci.2022.105429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/06/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
In vivo single-unit recordings distinguish the basal spiking properties of neurons in different experimental settings and disease states. Here, we examined over 300 spike trains recorded from Purkinje cells and cerebellar nuclei neurons to test whether data sampling approaches influence the extraction of rich descriptors of firing properties. Our analyses included neurons recorded in awake and anesthetized control mice, and disease models of ataxia, dystonia, and tremor. We find that recording duration circumscribes overall representations of firing rate and pattern. Notably, shorter recording durations skew estimates for global firing rate variability toward lower values. We also find that only some populations of neurons in the same mouse are more similar to each other than to neurons recorded in different mice. These data reveal that recording duration and approach are primary considerations when interpreting task-independent single neuron firing properties. If not accounted for, group differences may be concealed or exaggerated.
Collapse
Affiliation(s)
- Meike E. van der Heijden
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Amanda M. Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
7
|
Coutant B, Frontera JL, Perrin E, Combes A, Tarpin T, Menardy F, Mailhes-Hamon C, Perez S, Degos B, Venance L, Léna C, Popa D. Cerebellar stimulation prevents Levodopa-induced dyskinesia in mice and normalizes activity in a motor network. Nat Commun 2022; 13:3211. [PMID: 35680891 PMCID: PMC9184492 DOI: 10.1038/s41467-022-30844-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Chronic Levodopa therapy, the gold-standard treatment for Parkinson's Disease (PD), leads to the emergence of involuntary movements, called levodopa-induced dyskinesia (LID). Cerebellar stimulation has been shown to decrease LID severity in PD patients. Here, in order to determine how cerebellar stimulation induces LID alleviation, we performed daily short trains of optogenetic stimulations of Purkinje cells (PC) in freely moving LID mice. We demonstrated that these stimulations are sufficient to suppress LID or even prevent their development. This symptomatic relief is accompanied by the normalization of aberrant neuronal discharge in the cerebellar nuclei, the motor cortex and the parafascicular thalamus. Inhibition of the cerebello-parafascicular pathway counteracted the beneficial effects of cerebellar stimulation. Moreover, cerebellar stimulation reversed plasticity in D1 striatal neurons and normalized the overexpression of FosB, a transcription factor causally linked to LID. These findings demonstrate LID alleviation and prevention by daily PC stimulations, which restore the function of a wide motor network, and may be valuable for LID treatment.
Collapse
Affiliation(s)
- Bérénice Coutant
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Jimena Laura Frontera
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Elodie Perrin
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Adèle Combes
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Thibault Tarpin
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Fabien Menardy
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Caroline Mailhes-Hamon
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Sylvie Perez
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Bertrand Degos
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Clément Léna
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France.
| | - Daniela Popa
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France.
| |
Collapse
|
8
|
Tognolina M, Monteverdi A, D’Angelo E. Discovering Microcircuit Secrets With Multi-Spot Imaging and Electrophysiological Recordings: The Example of Cerebellar Network Dynamics. Front Cell Neurosci 2022; 16:805670. [PMID: 35370553 PMCID: PMC8971197 DOI: 10.3389/fncel.2022.805670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
The cerebellar cortex microcircuit is characterized by a highly ordered neuronal architecture having a relatively simple and stereotyped connectivity pattern. For a long time, this structural simplicity has incorrectly led to the idea that anatomical considerations would be sufficient to understand the dynamics of the underlying circuitry. However, recent experimental evidence indicates that cerebellar operations are much more complex than solely predicted by anatomy, due to the crucial role played by neuronal and synaptic properties. To be able to explore neuronal and microcircuit dynamics, advanced imaging, electrophysiological techniques and computational models have been combined, allowing us to investigate neuronal ensembles activity and to connect microscale to mesoscale phenomena. Here, we review what is known about cerebellar network organization, neural dynamics and synaptic plasticity and point out what is still missing and would require experimental assessments. We consider the available experimental techniques that allow a comprehensive assessment of circuit dynamics, including voltage and calcium imaging and extracellular electrophysiological recordings with multi-electrode arrays (MEAs). These techniques are proving essential to investigate the spatiotemporal pattern of activity and plasticity in the cerebellar network, providing new clues on how circuit dynamics contribute to motor control and higher cognitive functions.
Collapse
Affiliation(s)
| | - Anita Monteverdi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Brain Connectivity Center, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Brain Connectivity Center, Pavia, Italy
| |
Collapse
|
9
|
Uematsu A, Tanaka M. Effects of GABAergic and Glutamatergic Inputs on Temporal Prediction Signals in the Primate Cerebellar Nucleus. Neuroscience 2022; 482:161-171. [PMID: 35031083 DOI: 10.1016/j.neuroscience.2021.11.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
The cerebellum has been shown to be involved in temporal information processing. We recently demonstrated that neurons in the cerebellar dentate nucleus exhibited periodic activity predicting stimulus timing when monkeys attempted to detect a single omission of isochronous repetitive visual stimulus. In this study, we assessed the relative contribution of signals from Purkinje cells and mossy and climbing fibers to the periodic activity by comparing single neuronal firing before and during local infusion of GABA or glutamate receptor antagonists (gabazine or a mixture of 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide hydrate (NBQX) and (±)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP)). Gabazine application reduced the magnitude of periodic activity and increased the baseline firing rate in most neurons. In contrast, during the blockade of glutamate receptors, both the magnitude of periodic firing modulation and the baseline activity remained unchanged in the population, while a minority of neurons significantly altered their activity. Furthermore, the amounts of changes in the baseline activity and the magnitude of periodic activity were inversely correlated in the gabazine experiments but not in the NBQX + CPP experiments. We also found that the variation of baseline activity decreased during gabazine application but sometimes increased during the blockade of glutamate receptors. These changes were not observed during prolonged recording without drug administration. These results suggest that the predictive neuronal activity in the dentate nucleus may mainly attribute to the inputs from the cerebellar cortex, while the signals from both mossy fibers and Purkinje cells may play a role in setting the level and variance of baseline activity during the task.
Collapse
Affiliation(s)
- Akiko Uematsu
- Department of Physiology, Hokkaido University School of Medicine, Sapporo 060-8638, Japan; Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo 060-8638, Japan.
| |
Collapse
|
10
|
McAfee SS, Liu Y, Sillitoe RV, Heck DH. Cerebellar Coordination of Neuronal Communication in Cerebral Cortex. Front Syst Neurosci 2022; 15:781527. [PMID: 35087384 PMCID: PMC8787113 DOI: 10.3389/fnsys.2021.781527] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Cognitive processes involve precisely coordinated neuronal communications between multiple cerebral cortical structures in a task specific manner. Rich new evidence now implicates the cerebellum in cognitive functions. There is general agreement that cerebellar cognitive function involves interactions between the cerebellum and cerebral cortical association areas. Traditional views assume reciprocal interactions between one cerebellar and one cerebral cortical site, via closed-loop connections. We offer evidence supporting a new perspective that assigns the cerebellum the role of a coordinator of communication. We propose that the cerebellum participates in cognitive function by modulating the coherence of neuronal oscillations to optimize communications between multiple cortical structures in a task specific manner.
Collapse
Affiliation(s)
- Samuel S. McAfee
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Yu Liu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
| | - Detlef H. Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
- *Correspondence: Detlef H. Heck,
| |
Collapse
|
11
|
Kang S, Jun S, Baek SJ, Park H, Yamamoto Y, Tanaka-Yamamoto K. Recent Advances in the Understanding of Specific Efferent Pathways Emerging From the Cerebellum. Front Neuroanat 2021; 15:759948. [PMID: 34975418 PMCID: PMC8716603 DOI: 10.3389/fnana.2021.759948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The cerebellum has a long history in terms of research on its network structures and motor functions, yet our understanding of them has further advanced in recent years owing to technical developments, such as viral tracers, optogenetic and chemogenetic manipulation, and single cell gene expression analyses. Specifically, it is now widely accepted that the cerebellum is also involved in non-motor functions, such as cognitive and psychological functions, mainly from studies that have clarified neuronal pathways from the cerebellum to other brain regions that are relevant to these functions. The techniques to manipulate specific neuronal pathways were effectively utilized to demonstrate the involvement of the cerebellum and its pathways in specific brain functions, without altering motor activity. In particular, the cerebellar efferent pathways that have recently gained attention are not only monosynaptic connections to other brain regions, including the periaqueductal gray and ventral tegmental area, but also polysynaptic connections to other brain regions, including the non-primary motor cortex and hippocampus. Besides these efferent pathways associated with non-motor functions, recent studies using sophisticated experimental techniques further characterized the historically studied efferent pathways that are primarily associated with motor functions. Nevertheless, to our knowledge, there are no articles that comprehensively describe various cerebellar efferent pathways, although there are many interesting review articles focusing on specific functions or pathways. Here, we summarize the recent findings on neuronal networks projecting from the cerebellum to several brain regions. We also introduce various techniques that have enabled us to advance our understanding of the cerebellar efferent pathways, and further discuss possible directions for future research regarding these efferent pathways and their functions.
Collapse
Affiliation(s)
- Seulgi Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soo Ji Baek
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
12
|
Beekhof GC, Gornati SV, Canto CB, Libster AM, Schonewille M, De Zeeuw CI, Hoebeek FE. Activity of Cerebellar Nuclei Neurons Correlates with ZebrinII Identity of Their Purkinje Cell Afferents. Cells 2021; 10:2686. [PMID: 34685666 PMCID: PMC8534335 DOI: 10.3390/cells10102686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Purkinje cells (PCs) in the cerebellar cortex can be divided into at least two main subpopulations: one subpopulation that prominently expresses ZebrinII (Z+), and shows a relatively low simple spike firing rate, and another that hardly expresses ZebrinII (Z-) and shows higher baseline firing rates. Likewise, the complex spike responses of PCs, which are evoked by climbing fiber inputs and thus reflect the activity of the inferior olive (IO), show the same dichotomy. However, it is not known whether the target neurons of PCs in the cerebellar nuclei (CN) maintain this bimodal distribution. Electrophysiological recordings in awake adult mice show that the rate of action potential firing of CN neurons that receive input from Z+ PCs was consistently lower than that of CN neurons innervated by Z- PCs. Similar in vivo recordings in juvenile and adolescent mice indicated that the firing frequency of CN neurons correlates to the ZebrinII identity of the PC afferents in adult, but not postnatal stages. Finally, the spontaneous action potential firing pattern of adult CN neurons recorded in vitro revealed no significant differences in intrinsic pacemaking activity between ZebrinII identities. Our findings indicate that all three main components of the olivocerebellar loop, i.e., PCs, IO neurons and CN neurons, operate at a higher rate in the Z- modules.
Collapse
Affiliation(s)
- Gerrit C. Beekhof
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; (G.C.B.); (S.V.G.)
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
| | - Simona V. Gornati
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; (G.C.B.); (S.V.G.)
| | - Cathrin B. Canto
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
| | - Avraham M. Libster
- Edmond & Lily Safra Center for Brain Sciences (ELSC), Department of Neurobiology, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel;
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; (G.C.B.); (S.V.G.)
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; (G.C.B.); (S.V.G.)
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
| | - Freek E. Hoebeek
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; (G.C.B.); (S.V.G.)
- Department for Developmental Origins of Disease, Wilhelmina Children’s Hospital, Brain Center, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| |
Collapse
|
13
|
Judd EN, Lewis SM, Person AL. Diverse inhibitory projections from the cerebellar interposed nucleus. eLife 2021; 10:e66231. [PMID: 34542410 PMCID: PMC8483738 DOI: 10.7554/elife.66231] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/19/2021] [Indexed: 11/17/2022] Open
Abstract
The cerebellum consists of parallel circuit modules that contribute to diverse behaviors, spanning motor to cognitive. Recent work employing cell-type-specific tracing has identified circumscribed output channels of the cerebellar nuclei (CbN) that could confer tight functional specificity. These studies have largely focused on excitatory projections of the CbN, however, leaving open the question of whether inhibitory neurons also constitute multiple output modules. We mapped output and input patterns to intersectionally restricted cell types of the interposed and adjacent interstitial nuclei in mice. In contrast to the widespread assumption of primarily excitatory outputs and restricted inferior olive-targeting inhibitory output, we found that inhibitory neurons from this region ramified widely within the brainstem, targeting both motor- and sensory-related nuclei, distinct from excitatory output targets. Despite differences in output targeting, monosynaptic rabies tracing revealed largely shared afferents to both cell classes. We discuss the potential novel functional roles for inhibitory outputs in the context of cerebellar theory.
Collapse
Affiliation(s)
- Elena N Judd
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Samantha M Lewis
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Abigail L Person
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
14
|
Sathyamurthy A, Barik A, Dobrott CI, Matson KJE, Stoica S, Pursley R, Chesler AT, Levine AJ. Cerebellospinal Neurons Regulate Motor Performance and Motor Learning. Cell Rep 2021; 31:107595. [PMID: 32402292 PMCID: PMC7263484 DOI: 10.1016/j.celrep.2020.107595] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 02/02/2023] Open
Abstract
To understand the neural basis of behavior, it is important to reveal how movements are planned, executed, and refined by networks of neurons distributed throughout the nervous system. Here, we report the neuroanatomical organization and behavioral roles of cerebellospinal (CeS) neurons. Using intersectional genetic techniques, we find that CeS neurons constitute a small minority of excitatory neurons in the fastigial and interpositus deep cerebellar nuclei, target pre-motor circuits in the ventral spinal cord and the brain, and control distinct aspects of movement. CeS neurons that project to the ipsilateral cervical cord are required for skilled forelimb performance, while CeS neurons that project to the contralateral cervical cord are involved in skilled locomotor learning. Together, this work establishes CeS neurons as a critical component of the neural circuitry for skilled movements and provides insights into the organizational logic of motor networks. Sathyamurthy et al. define the organization, function, and targets of cerebellospinal neurons, revealing a direct link between the deep cerebellar nuclei and motor execution circuits in the spinal cord and demonstrating a role for these neurons in motor control.
Collapse
Affiliation(s)
- Anupama Sathyamurthy
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arnab Barik
- Sensory Cells and Circuits Section, National Center for Complimentary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Courtney I Dobrott
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kaya J E Matson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stefan Stoica
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Randall Pursley
- Signal Processing and Instrumentation Section, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander T Chesler
- Sensory Cells and Circuits Section, National Center for Complimentary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Gómez-González GB, Martínez-Torres A. Inter-fastigial projections along the roof of the fourth ventricle. Brain Struct Funct 2021; 226:901-917. [PMID: 33511462 DOI: 10.1007/s00429-021-02217-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
The fastigial nucleus (FN) is a bilateral cerebellar integrative center for saccadic and vestibular control associated with non-motor functions such as feeding and cardiovascular regulation. In a previous study, we identified a tract of myelinated axons embedded in the subventricular zone (SVZ) that is located between the ependymal cells that form the dorsal wall of the ventricle and the glia limitans at the roof of the fourth ventricle González-González (Sci Rep 2017, 7:40768). Here, we show that this tract of axons, named subventricular axons or SVa, contains projection neurons that bilaterally interconnect both FNs. The approach consisted of the use of a battery of fluorescent neuronal tracers, transgenic mouse lines, and immunohistofluorescence. Our observations show that the SVa belong to a wide network of GABAergic projection neurons mainly located in the medial and caudal region of the FN. The SVa should be considered a part of a continuum of the cerebellar white matter that follows an alternative pathway through the SVZ, a region closely associated with the physiology of the fourth ventricle. This finding adds to our understanding of the complex organization of the FN; however, the function of the interconnection remains to be elucidated.
Collapse
Affiliation(s)
- Gabriela B Gómez-González
- Laboratory of Molecular and Cellular Neurobiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, México
| | - Ataúlfo Martínez-Torres
- Laboratory of Molecular and Cellular Neurobiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, México.
| |
Collapse
|
16
|
Thanawalla AR, Chen AI, Azim E. The Cerebellar Nuclei and Dexterous Limb Movements. Neuroscience 2020; 450:168-183. [PMID: 32652173 PMCID: PMC7688491 DOI: 10.1016/j.neuroscience.2020.06.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/03/2020] [Accepted: 06/30/2020] [Indexed: 01/21/2023]
Abstract
Dexterous forelimb movements like reaching, grasping, and manipulating objects are fundamental building blocks of the mammalian motor repertoire. These behaviors are essential to everyday activities, and their elaboration underlies incredible accomplishments by human beings in art and sport. Moreover, the susceptibility of these behaviors to damage and disease of the nervous system can lead to debilitating deficits, highlighting a need for a better understanding of function and dysfunction in sensorimotor control. The cerebellum is central to coordinating limb movements, as defined in large part by Joseph Babinski and Gordon Holmes describing motor impairment in patients with cerebellar lesions over 100 years ago (Babinski, 1902; Holmes, 1917), and supported by many important human and animal studies that have been conducted since. Here, with a focus on output pathways of the cerebellar nuclei across mammalian species, we describe forelimb movement deficits observed when cerebellar circuits are perturbed, the mechanisms through which these circuits influence motor output, and key challenges in defining how the cerebellum refines limb movement.
Collapse
Affiliation(s)
- Ayesha R Thanawalla
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Albert I Chen
- Nanyang Technological University (NTU), School of Biological Sciences, 11 Mandalay Road, Singapore 308232, Singapore; A*STAR, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 308232, Singapore.
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
17
|
Menardy F, Varani AP, Combes A, Léna C, Popa D. Functional Alteration of Cerebello-Cerebral Coupling in an Experimental Mouse Model of Parkinson's Disease. Cereb Cortex 2020; 29:1752-1766. [PMID: 30715237 PMCID: PMC6418382 DOI: 10.1093/cercor/bhy346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
In Parkinson's disease, the degeneration of the midbrain dopaminergic neurons is consistently associated with modified metabolic activity in the cerebellum. Here we examined the functional reorganization taking place in the cerebello-cerebral circuit in a murine model of Parkinson's disease with 6-OHDA lesion of midbrain dopaminergic neurons. Cerebellar optogenetic stimulations evoked similar movements in control and lesioned mice, suggesting a normal coupling of cerebellum to the motor effectors after the lesion. In freely moving animals, the firing rate in the primary motor cortex was decreased after the lesion, while cerebellar nuclei neurons showed an increased firing rate. This increase may result from reduced inhibitory Purkinje cells inputs, since a population of slow and irregular Purkinje cells was observed in the cerebellar hemispheres of lesioned animals. Moreover, cerebellar stimulations generated smaller electrocortical responses in the motor cortex of lesioned animals suggesting a weaker cerebello-cerebral coupling. Overall these results indicate the presence of functional changes in the cerebello-cerebral circuit, but their ability to correct cortical dysfunction may be limited due to functional uncoupling between the cerebellum and cerebral cortex.
Collapse
Affiliation(s)
- Fabien Menardy
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Andrés Pablo Varani
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Adèle Combes
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Clément Léna
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Daniela Popa
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
18
|
Nam SM, Seo JS, Nahm SS, Chang BJ. Effects of ascorbic acid treatment on developmental alterations in calcium-binding proteins and gamma-aminobutyric acid transporter 1 in the cerebellum of lead-exposed rats during pregnancy and lactation. J Toxicol Sci 2020; 44:799-809. [PMID: 31708536 DOI: 10.2131/jts.44.799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the present study, we investigated the effects of lead (Pb) and ascorbic acid co-administration on rat cerebellar development. Female rats were randomly divided into the following groups: control, Pb, and Pb plus ascorbic acid (PA) groups. From one week prior to mating, female rats were administered Pb (0.3% Pb acetate in drinking water) and ascorbic acid (100 mg/kg, oral intubation). The chemical administration was stopped on postnatal day 21 when the morphology of the offspring's cerebellum is similar to that of the adult brain. The blood Pb level was significantly increased following long-term Pb exposure. Ascorbic acid reduced Pb levels in the dams and offspring. Nissl staining demonstrated that the number of Purkinje cells was significantly reduced following Pb exposure, while ascorbic acid ameliorated this effect in the cerebellum of the offspring. Calcium-binding proteins, such as calbindin, calretinin, and parvalbumin were commonly expressed in Purkinje cells, and Pb exposure and ascorbic acid treatment resulted in similar patterns of change, namely Pb-induced impairment and ascorbic acid-mediated amelioration. The gamma-aminobutyric acid transporter 1 (GABAT1) is expressed in the pinceau structure where the somata of Purkinje cells are entwined in inhibitory synapses. The number of GABAT1-immunoreactive synapses was reduced following Pb exposure, and ascorbic acid co-treatment prevented this effect in the cerebellar cortex. Therefore, it can be concluded that ascorbic acid supplementation to mothers during gestation and lactation may have potential preventive effects against Pb-induced impairments in the developing cerebellum via protection of inhibitory neurons and synapses.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Korea.,College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Korea
| | - Jin Seok Seo
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Korea
| | - Sang-Soep Nahm
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Korea.,College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Korea
| | - Byung-Joon Chang
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Korea.,College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Korea
| |
Collapse
|
19
|
Abstract
Understanding mechanisms underlying learning and memory is crucial in view of tackling cognitive decline occurring during aging or following neurological disorders. The cerebellum offers an ideal system to achieve this goal because of the well-characterized forms of motor learning that it controls. It is so far unclear whether cerebellar memory processes depend on changes in perineuronal nets (PNNs). PNNs are assemblies of extracellular matrix molecules around neurons, which regulate neural plasticity. Here we demonstrate that during eyeblink conditioning (EBC), which is a form of cerebellar motor learning, PNNs in the mouse deep cerebellar nuclei are dynamically modulated, and PNN changes are essential for the formation and storage of EBC memories. Together, these results unveil an important mechanism controlling motor associative memories. Perineuronal nets (PNNs) are assemblies of extracellular matrix molecules, which surround the cell body and dendrites of many types of neuron and regulate neural plasticity. PNNs are prominently expressed around neurons of the deep cerebellar nuclei (DCN), but their role in adult cerebellar plasticity and behavior is far from clear. Here we show that PNNs in the mouse DCN are diminished during eyeblink conditioning (EBC), a form of associative motor learning that depends on DCN plasticity. When memories are fully acquired, PNNs are restored. Enzymatic digestion of PNNs in the DCN improves EBC learning, but intact PNNs are necessary for memory retention. At the structural level, PNN removal induces significant synaptic rearrangements in vivo, resulting in increased inhibition of DCN baseline activity in awake behaving mice. Together, these results demonstrate that PNNs are critical players in the regulation of cerebellar circuitry and function.
Collapse
|
20
|
Differential Coding Strategies in Glutamatergic and GABAergic Neurons in the Medial Cerebellar Nucleus. J Neurosci 2019; 40:159-170. [PMID: 31694963 DOI: 10.1523/jneurosci.0806-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/08/2019] [Accepted: 10/30/2019] [Indexed: 11/21/2022] Open
Abstract
The cerebellum drives motor coordination and sequencing of actions at the millisecond timescale through adaptive control of cerebellar nuclear output. Cerebellar nuclei integrate high-frequency information from both the cerebellar cortex and the two main excitatory inputs of the cerebellum: the mossy fibers and the climbing fiber collaterals. However, how nuclear cells process rate and timing of inputs carried by these inputs is still debated. Here, we investigate the influence of the cerebellar cortical output, the Purkinje cells, on identified cerebellar nuclei neurons in vivo in male mice. Using transgenic mice expressing Channelrhodopsin2 specifically in Purkinje cells and tetrode recordings in the medial nucleus, we identified two main groups of neurons based on the waveform of their action potentials. These two groups of neurons coincide with glutamatergic and GABAergic neurons identified by optotagging after Chrimson expression in VGLUT2-cre and GAD-cre mice, respectively. The glutamatergic-like neurons fire at high rate and respond to both rate and timing of Purkinje cell population inputs, whereas GABAergic-like neurons only respond to the mean population firing rate of Purkinje cells at high frequencies. Moreover, synchronous activation of Purkinje cells can entrain the glutamatergic-like, but not the GABAergic-like, cells over a wide range of frequencies. Our results suggest that the downstream effect of synchronous and rhythmic Purkinje cell discharges depends on the type of cerebellar nuclei neurons targeted.SIGNIFICANCE STATEMENT Motor coordination and skilled movements are driven by the permanent discharge of neurons from the cerebellar nuclei that communicate cerebellar computation to other brain areas. Here, we set out to study how specific subtypes of cerebellar nuclear neurons of the medial nucleus are controlled by Purkinje cells, the sole output of the cerebellar cortex. We could isolate different subtypes of nuclear cell that differentially encode Purkinje cell inhibition. Purkinje cell stimulation entrains glutamatergic projection cells at their firing frequency, whereas GABAergic neurons are only inhibited. These differential coding strategies may favor temporal precision of cerebellar excitatory outputs associated with specific features of movement control while setting the global level of cerebellar activity through inhibition via rate coding mechanisms.
Collapse
|
21
|
Moscato L, Montagna I, De Propris L, Tritto S, Mapelli L, D'Angelo E. Long-Lasting Response Changes in Deep Cerebellar Nuclei in vivo Correlate With Low-Frequency Oscillations. Front Cell Neurosci 2019; 13:84. [PMID: 30894802 PMCID: PMC6414422 DOI: 10.3389/fncel.2019.00084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/19/2019] [Indexed: 01/21/2023] Open
Abstract
The deep cerebellar nuclei (DCN) have been suggested to play a critical role in sensorimotor learning and some forms of long-term synaptic plasticity observed in vitro have been proposed as a possible substrate. However, till now it was not clear whether and how DCN neuron responses manifest long-lasting changes in vivo. Here, we have characterized DCN unit responses to tactile stimulation of the facial area in anesthetized mice and evaluated the changes induced by theta-sensory stimulation (TSS), a 4 Hz stimulation pattern that is known to induce plasticity in the cerebellar cortex in vivo. DCN units responded to tactile stimulation generating bursts and pauses, which reflected combinations of excitatory inputs most likely relayed by mossy fiber collaterals, inhibitory inputs relayed by Purkinje cells, and intrinsic rebound firing. Interestingly, initial bursts and pauses were often followed by stimulus-induced oscillations in the peri-stimulus time histograms (PSTH). TSS induced long-lasting changes in DCN unit responses. Spike-related potentiation and suppression (SR-P and SR-S), either in units initiating the response with bursts or pauses, were correlated with stimulus-induced oscillations. Fitting with resonant functions suggested the existence of peaks in the theta-band (burst SR-P at 9 Hz, pause SR-S at 5 Hz). Optogenetic stimulation of the cerebellar cortex altered stimulus-induced oscillations suggesting that Purkinje cells play a critical role in the circuits controlling DCN oscillations and plasticity. This observation complements those reported before on the granular and molecular layers supporting the generation of multiple distributed plasticities in the cerebellum following naturally patterned sensory entrainment. The unique dependency of DCN plasticity on circuit oscillations discloses a potential relationship between cerebellar learning and activity patterns generated in the cerebellar network.
Collapse
Affiliation(s)
- Letizia Moscato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Ileana Montagna
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Licia De Propris
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Simona Tritto
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
22
|
Brown AM, Arancillo M, Lin T, Catt DR, Zhou J, Lackey EP, Stay TL, Zuo Z, White JJ, Sillitoe RV. Molecular layer interneurons shape the spike activity of cerebellar Purkinje cells. Sci Rep 2019; 9:1742. [PMID: 30742002 PMCID: PMC6370775 DOI: 10.1038/s41598-018-38264-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/14/2018] [Indexed: 12/03/2022] Open
Abstract
Purkinje cells receive synaptic input from several classes of interneurons. Here, we address the roles of inhibitory molecular layer interneurons in establishing Purkinje cell function in vivo. Using conditional genetics approaches in mice, we compare how the lack of stellate cell versus basket cell GABAergic neurotransmission sculpts the firing properties of Purkinje cells. We take advantage of an inducible Ascl1CreER allele to spatially and temporally target the deletion of the vesicular GABA transporter, Vgat, in developing neurons. Selective depletion of basket cell GABAergic neurotransmission increases the frequency of Purkinje cell simple spike firing and decreases the frequency of complex spike firing in adult behaving mice. In contrast, lack of stellate cell communication increases the regularity of Purkinje cell simple spike firing while increasing the frequency of complex spike firing. Our data uncover complementary roles for molecular layer interneurons in shaping the rate and pattern of Purkinje cell activity in vivo.
Collapse
Affiliation(s)
- Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Marife Arancillo
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Tao Lin
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Daniel R Catt
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Joy Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Elizabeth P Lackey
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Trace L Stay
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Zhongyuan Zuo
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Joshua J White
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA.
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA.
- Program in Developmental Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA.
| |
Collapse
|
23
|
Ni RJ, Huang ZH, Luo PH, Ma XH, Li T, Zhou JN. The tree shrew cerebellum atlas: Systematic nomenclature, neurochemical characterization, and afferent projections. J Comp Neurol 2018; 526:2744-2775. [PMID: 30155886 DOI: 10.1002/cne.24526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/02/2018] [Accepted: 08/18/2018] [Indexed: 02/05/2023]
Abstract
The cerebellum is involved in the control of movement, emotional responses, and reward processing. The tree shrew is the closest living relative of primates. However, little is known not only about the systematic nomenclature for the tree shrew cerebellum but also about the detailed neurochemical characterization and afferent projections. In this study, Nissl staining and acetylcholinesterase histochemistry were used to reveal anatomical features of the cerebellum of tree shrews (Tupaia belangeri chinensis). The cerebellar cortex presented a laminar structure. The morphological characteristics of the cerebellum were comprehensively described in the coronal, sagittal, and horizontal sections. Moreover, distributive maps of calbindin-immunoreactive (-ir) cells in the Purkinje cell layer of the cerebellum of tree shrews were depicted using coronal, sagittal, and horizontal schematics. In addition, 5th cerebellar lobule (5Cb)-projecting neurons were present in the pontine nuclei, reticular nucleus, spinal vestibular nucleus, ventral spinocerebellar tract, and inferior olive of the tree shrew brain. The anterior part of the paramedian lobule of the cerebellum (PMa) received mainly strong innervation from the lateral reticular nucleus, inferior olive, pontine reticular nucleus, spinal trigeminal nucleus, pontine nuclei, and reticulotegmental nucleus of the pons. The present results provide the first systematic nomenclature, detailed atlas of the whole cerebellum, and whole-brain mapping of afferent projections to the 5Cb and PMa in tree shrews. Our findings provide morphological support for tree shrews as an alternative model for studies of human cerebellar pathologies.
Collapse
Affiliation(s)
- Rong-Jun Ni
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zhao-Huan Huang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Peng-Hao Luo
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiao-Hong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Li
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jiang-Ning Zhou
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
24
|
Abstract
Purkinje cells (PC) control deep cerebellar nuclei (DCN), which in turn inhibit inferior olive nucleus, closing a positive feedback loop via climbing fibers. PC highly express potassium BK channels but their contribution to the olivo-cerebellar loop is not clear. Using multiple-unit recordings in alert mice we found in that selective deletion of BK channels in PC induces a decrease in their simple spike firing with a beta-range bursting pattern and fast intraburst frequency (~200 Hz). To determine the impact of this abnormal rhythm on the olivo-cerebellar loop we analyzed simultaneous rhythmicity in different cerebellar structures. We found that this abnormal PC rhythmicity is transmitted to DCN neurons with no effect on their mean firing frequency. Long term depression at the parallel-PC synapses was altered and the intra-burst complex spike spikelets frequency was increased without modification of the mean complex spike frequency in BK-PC−/− mice. We argue that the ataxia present in these conditional knockout mice could be explained by rhythmic disruptions transmitted from mutant PC to DCN but not by rate code modification only. This suggests a neuronal mechanism for ataxia with possible implications for human disease.
Collapse
|
25
|
Ten Brinke MM, Heiney SA, Wang X, Proietti-Onori M, Boele HJ, Bakermans J, Medina JF, Gao Z, De Zeeuw CI. Dynamic modulation of activity in cerebellar nuclei neurons during pavlovian eyeblink conditioning in mice. eLife 2017; 6:28132. [PMID: 29243588 PMCID: PMC5760204 DOI: 10.7554/elife.28132] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
While research on the cerebellar cortex is crystallizing our understanding of its function in learning behavior, many questions surrounding its downstream targets remain. Here, we evaluate the dynamics of cerebellar interpositus nucleus (IpN) neurons over the course of Pavlovian eyeblink conditioning. A diverse range of learning-induced neuronal responses was observed, including increases and decreases in activity during the generation of conditioned blinks. Trial-by-trial correlational analysis and optogenetic manipulation demonstrate that facilitation in the IpN drives the eyelid movements. Adaptive facilitatory responses are often preceded by acquired transient inhibition of IpN activity that, based on latency and effect, appear to be driven by complex spikes in cerebellar cortical Purkinje cells. Likewise, during reflexive blinks to periocular stimulation, IpN cells show excitation-suppression patterns that suggest a contribution of climbing fibers and their collaterals. These findings highlight the integrative properties of subcortical neurons at the cerebellar output stage mediating conditioned behavior.
Collapse
Affiliation(s)
| | - Shane A Heiney
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Henk-Jan Boele
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jacob Bakermans
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| |
Collapse
|
26
|
Wu Y, Raman IM. Facilitation of mossy fibre-driven spiking in the cerebellar nuclei by the synchrony of inhibition. J Physiol 2017; 595:5245-5264. [PMID: 28513836 PMCID: PMC5538193 DOI: 10.1113/jp274321] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/11/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Large premotor neurons of the cerebellar nuclei (CbN cells) integrate synaptic inhibition from Purkinje neurons and synaptic excitation from mossy fibres to generate cerebellar output. We find that mossy fibre inputs to CbN cells generate unitary AMPA receptor EPSCs of ∼1 nS that decay in ∼1 ms and mildly voltage-dependent NMDA receptor EPSCs of ∼0.6 nS that decay in ∼7 ms. A few hundred mossy fibres active at a few tens of spikes s-1 must converge on CbN cells to generate physiological CbN spike rates (∼60 spikes s-1 ) during convergent inhibition from spontaneously active Purkinje cells. Dynamic clamp studies in cerebellar slices from weanling mice demonstrate that synaptic excitation from mossy fibres becomes more effective at increasing the rate of CbN cell spiking when the coherence (synchrony) of convergent inhibition is increased. ABSTRACT Large projection neurons of the cerebellar nuclei (CbN cells), whose activity generates movement, are inhibited by Purkinje cells and excited by mossy fibres. The high convergence, firing rates and strength of Purkinje inputs predict powerful suppression of CbN cell spiking, raising the question of what activity patterns favour excitation over inhibition. Recording from CbN cells at near-physiological temperatures in cerebellar slices from weanling mice, we measured the amplitude, kinetics, voltage dependence and short-term plasticity of mossy fibre-mediated EPSCs. Unitary EPSCs were small and brief (AMPA receptor, ∼1 nS, ∼1 ms; NMDA receptor, ∼0.6 nS, ∼7 ms) and depressed moderately. Using these experimentally measured parameters, we applied combinations of excitation and inhibition to CbN cells with dynamic clamp. Because Purkinje cells can fire coincident simple spikes during cerebellar behaviours, we varied the proportion (0-20 of 40) and precision (0-4 ms jitter) of synchrony of inhibitory inputs, along with the rates (0-100 spikes s-1 ) and number (0-800) of excitatory inputs. Even with inhibition constant, when inhibitory synchrony was higher, excitation increased CbN cell firing rates more effectively. Partial inhibitory synchrony also dictated CbN cell spike timing, even with physiological rates of excitation. These effects were present with ≥10 inhibitory inputs active within 2-4 ms of each other. Conversely, spiking was most effectively suppressed when inhibition was maximally asynchronous. Thus, the rate and relative timing of Purkinje-mediated inhibition set the rate and timing of cerebellar output. The results suggest that increased coherence of Purkinje cell activity can facilitate mossy fibre-driven spiking by CbN cells, in turn driving movements.
Collapse
Affiliation(s)
- Yeechan Wu
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, 60208, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Indira M Raman
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, 60208, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
27
|
Yarden-Rabinowitz Y, Yarom Y. In vivo analysis of synaptic activity in cerebellar nuclei neurons unravels the efficacy of excitatory inputs. J Physiol 2017; 595:5945-5963. [PMID: 28618000 DOI: 10.1113/jp274115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/07/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Cerebellar nuclei (CN) neurons can be classified into four groups according to their action potential (AP) waveform, corresponding to four types of neurons previously characterized. Half of the APs are generated by excitatory events, suggesting that excitatory inputs play a key role in generating CN outputs. Analysis of post-synaptic potentials reveals that the probability of excitatory inputs generating an AP is 0.1. The input from climbing fibre collaterals is characterized by a pair of synaptic potentials with a distinct interpair interval of 4.5 ms. The probability of climbing fibre collaterals initiating an AP in CN neurons is 0.15. ABSTRACT It is commonly agreed that the main function of the cerebellar system is to provide well-timed signals used for the execution of motor commands or prediction of sensory inputs. This function is manifested as a temporal sequence of spiking that should be expressed in the cerebellar nuclei (CN) projection neurons. Whether spiking activity is generated by excitation or release from inhibition is still a hotly debated issue. In an attempt to resolve this debate, we recorded intracellularly from CN neurons in anaesthetized mice and performed an analysis of synaptic activity that yielded a number of important observations. First, we demonstrate that CN neurons can be classified into four groups. Second, shape-index plots of the excitatory events suggest that they are distributed over the entire dendritic tree. Third, the rise time of excitatory events is linearly related to amplitude, suggesting that all excitatory events contribute equally to the generation of action potentials (APs). Fourth, we identified a temporal pattern of spontaneous excitatory events that represent climbing fibre inputs and confirm the results by direct stimulation and analysis on harmaline-evoked activity. Finally, we demonstrate that the probability of excitatory inputs generating an AP is 0.1 yet half of the APs are generated by excitatory events. Moreover, the probability of a presumably spontaneous climbing fibre input generating an AP is higher, reaching a mean population value of 0.15. In view of these results, the mode of synaptic integration at the level of the CN should be re-considered.
Collapse
Affiliation(s)
- Yasmin Yarden-Rabinowitz
- Department of Neurobiology, Silberman Institute of Life Sciences and Edmond & Lily Safra Center for Brain Sciences (ELSC), The Hebrew University, 91904, Jerusalem, Israel
| | - Yosef Yarom
- Department of Neurobiology, Silberman Institute of Life Sciences and Edmond & Lily Safra Center for Brain Sciences (ELSC), The Hebrew University, 91904, Jerusalem, Israel
| |
Collapse
|