1
|
O'Donoghue L, Smolenski A. Roles of G proteins and their GTPase-activating proteins in platelets. Biosci Rep 2024; 44:BSR20231420. [PMID: 38808367 PMCID: PMC11139668 DOI: 10.1042/bsr20231420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Platelets are small anucleate blood cells supporting vascular function. They circulate in a quiescent state monitoring the vasculature for injuries. Platelets adhere to injury sites and can be rapidly activated to secrete granules and to form platelet/platelet aggregates. These responses are controlled by signalling networks that include G proteins and their regulatory guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Recent proteomics studies have revealed the complete spectrum of G proteins, GEFs, and GAPs present in platelets. Some of these proteins are specific for platelets and very few have been characterised in detail. GEFs and GAPs play a major role in setting local levels of active GTP-bound G proteins in response to activating and inhibitory signals encountered by platelets. Thus, GEFs and GAPs are highly regulated themselves and appear to integrate G protein regulation with other cellular processes. This review focuses on GAPs of small G proteins of the Arf, Rab, Ras, and Rho families, as well as of heterotrimeric G proteins found in platelets.
Collapse
Affiliation(s)
- Lorna O'Donoghue
- UCD School of Medicine, University College Dublin, UCD Conway Institute, Belfield, Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green 123, Dublin 2, Ireland
| | - Albert Smolenski
- UCD School of Medicine, University College Dublin, UCD Conway Institute, Belfield, Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green 123, Dublin 2, Ireland
| |
Collapse
|
2
|
Hu S, Zhang Y, Qiu C, Li Y. RGS10 inhibits proliferation and migration of pulmonary arterial smooth muscle cell in pulmonary hypertension via AKT/mTORC1 signaling. Clin Exp Hypertens 2023; 45:2271186. [PMID: 37879890 DOI: 10.1080/10641963.2023.2271186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Objective: Excessive proliferation and migration of pulmonary arterial smooth muscle cell (PASMC) is a core event of pulmonary hypertension (PH). Regulators of G protein signaling 10 (RGS10) can regulate cellular proliferation and cardiopulmonary diseases. We demonstrate whether RGS10 also serves as a regulator of PH.Methods: PASMC was challenged by hypoxia to induce proliferation and migration. Adenovirus carrying Rgs10 gene (Ad-Rgs10) was used for external expression of Rgs10. Hypoxia/SU5416 or MCT was used to induce PH. Right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) were used to validate the establishment of PH model.Results: RGS10 was downregulated in hypoxia-challenged PASMC. Ad-Rgs10 significantly suppressed proliferation and migration of PASMC after hypoxia stimulus, while silencing RGS10 showed contrary effect. Mechanistically, we observed that phosphorylation of S6 and 4E-Binding Protein 1 (4EBP1), the main downstream effectors of mammalian target of rapamycin complex 1 (mTORC1) as well as phosphorylation of AKT, the canonical upstream of mTORC1 in hypoxia-induced PASMC were negatively modulated by RGS10. Both recovering mTORC1 activity and restoring AKT activity abolished these effects of RGS10 on PASMC. More importantly, AKT activation also abolished the inhibitory role of RGS10 in mTORC1 activity in hypoxia-challenged PASMC. Finally, we also observed that overexpression of RGS10 in vivo ameliorated pulmonary vascular wall thickening and reducing RVSP and RVHI in mouse PH model.Conclusion: Our findings reveal the modulatory role of RGS10 in PASMC and PH via AKT/mTORC1 axis. Therefore, targeting RGS10 may serve as a novel potent method for the prevention against PH."
Collapse
Affiliation(s)
- Sheng Hu
- Department of Pulmonary and Critical Care Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Yijie Zhang
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, China
| | - Chenming Qiu
- Department of Burn, The General Hospital of Western Theater Command, Chengdu, China
| | - Ying Li
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
3
|
Gupta S, Cooper M, Zhao X, Yarman Y, Thomson H, DeHelian D, Brass LF, Ma P. A regulatory node involving Gα q, PLCβ, and RGS proteins modulates platelet reactivity to critical agonists. J Thromb Haemost 2023; 21:3633-3639. [PMID: 37657560 PMCID: PMC10840692 DOI: 10.1016/j.jtha.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Most platelet agonists work through G protein-coupled receptors, activating pathways that involve members of the Gq, Gi, and G12/G13 families of heterotrimeric G proteins. Gq signaling has been shown to be critical for efficient platelet activation. Growing evidence suggests that regulatory mechanisms converge on G protein-coupled receptors and Gq to prevent overly robust platelet reactivity. OBJECTIVES To identify and characterize mechanisms by which Gq signaling is regulated in platelets. METHODS Based on our prior experience with a Gαi2 variant that escapes regulation by regulator of G protein signaling (RGS) proteins, a Gαq variant was designed with glycine 188 replaced with serine (G188S) and then incorporated into a mouse line so that its effects on platelet activation and thrombus formation could be studied in vitro and in vivo. RESULTS AND CONCLUSIONS As predicted, the G188S substitution in Gαq disrupted its interaction with RGS18. Unexpectedly, it also uncoupled PLCβ-3 from activation by platelet agonists as evidenced by a loss rather than a gain of platelet function in vitro and in vivo. Binding studies showed that in addition to preventing the binding of RGS18 to Gαq, the G188S substitution also prevented the binding of PLCβ-3 to Gαq. Structural analysis revealed that G188 resides in the region that is also important for Gαq binding to PLCβ-3 in platelets. We conclude that the Gαq signaling node is more complex than that has been previously understood, suggesting that there is cross-talk between RGS proteins and PLCβ-3 in the context of Gαq signaling.
Collapse
Affiliation(s)
- Shuchi Gupta
- Department of Medicine and the Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Matthew Cooper
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Xuefei Zhao
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yanki Yarman
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hannah Thomson
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Daniel DeHelian
- Department of Medicine and the Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Lawrence F Brass
- Department of Medicine and the Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Peisong Ma
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Janus-Bell E, Mangin PH. The relative importance of platelet integrins in hemostasis, thrombosis and beyond. Haematologica 2023; 108:1734-1747. [PMID: 36700400 PMCID: PMC10316258 DOI: 10.3324/haematol.2022.282136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Integrins are heterodimeric transmembrane receptors composed of α and β chains, with an N-terminal extracellular domain forming a globular head corresponding to the ligand binding site. Integrins regulate various cellular functions including adhesion, migration, proliferation, spreading and apoptosis. On platelets, integrins play a central role in adhesion and aggregation on subendothelial matrix proteins of the vascular wall, thereby ensuring hemostasis. Platelet integrins belong either to the β1 family (α2β1, α5β1 and α6β1) or to the β3 family (αIIbβ3 and αvβ3). On resting platelets, integrins can engage their ligands when the latter are immobilized but not in their soluble form. The effects of various agonists promote an inside-out signal in platelets, increasing the affinity of integrins for their ligands and conveying a modest signal reinforcing platelet activation, called outside-in signaling. This outside-in signal ensures platelet adhesion, shape change, granule secretion and aggregation. In this review, we examine the role of each platelet integrin in hemostatic plug formation, hemostasis and arterial thrombosis and also beyond these classical functions, notably in tumor metastasis and sepsis.
Collapse
Affiliation(s)
- Emily Janus-Bell
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg.
| | - Pierre H Mangin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg
| |
Collapse
|
5
|
Zhang W, Yan C, Liu X, Yang P, Wang J, Chen Y, Liu W, Li S, Zhang X, Dong G, He X, Yuan X, Jing H. Global characterization of megakaryocytes in bone marrow, peripheral blood, and cord blood by single-cell RNA sequencing. Cancer Gene Ther 2022; 29:1636-1647. [PMID: 35650393 DOI: 10.1038/s41417-022-00476-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/03/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023]
Abstract
Megakaryocytes (MK) are mainly derived from bone marrow and are mainly involved in platelet production. Studies have shown that MK derived from bone marrow may have immune function, and that MK from peripheral blood are associated with prostate cancer. Single-cell transcriptome sequencing can help us better understand the heterogeneity and potential function of MK cell populations in bone marrow (BM), peripheral Blood (PB), and cord blood (CB) of healthy and diseased people.We integrated more than 1.2 million single-cell transcriptome data from 132 samples of PB, BM, and CB from healthy individuals and patients from different dataset. We examined the MK (including MK and product of MK) by single-cell RNA sequencing data analysis methods and identification of MK-related protein expression by the Human Protein atlas. We investigate the relationship between the MK subtype and Non-Small Cell Lung Cancer (NSCLC) in 77 non-cancer and 402 NSCLC. We found that MK were widely distributed and the amount of MK in peripheral blood was more than that in bone marrow and there were specificity MK subtypes in peripheral blood. We found classical MK1 with typical MK characteristics and non-classical MK2 closely related to immunity which was the most common subtype in bone marrow and cord blood. Classical MK1 was closely related to Non-Small Cell Lung Cancer (NSCLC) and can be used as a diagnostic marker. MK2 may have potential adaptive immune function and play a role in tumor NSCLC and autoimmune diseases Systemic Lupus Erythematosus. MK have 14 subtypes and are widely distributed in PB, CB, and BM. MK subtypes are closely related to immunity and have potential to be a diagnostic indicator of NSCLC.
Collapse
Affiliation(s)
- Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 100191, Beijing, China
| | - Changjian Yan
- The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China
| | - Xiaoni Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, China
| | - Ping Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 100191, Beijing, China
| | - Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 100191, Beijing, China
| | - Yingtong Chen
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 100191, Beijing, China
| | - Weiyou Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, China
| | - Shaoxiang Li
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Xiuru Zhang
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Xue He
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China.
| | - Xiaoliang Yuan
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, China.
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 100191, Beijing, China.
| |
Collapse
|
6
|
Lymperopoulos A, Suster MS, Borges JI. Cardiovascular GPCR regulation by regulator of G protein signaling proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:145-166. [PMID: 36357075 DOI: 10.1016/bs.pmbts.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in regulation of cardiovascular homeostasis across all vertebrate species, including humans. In terms of normal cellular function, termination of GPCR signaling via the heterotrimeric G proteins is equally (if not more) important to its stimulation. The Regulator of G protein Signaling (RGS) protein superfamily are indispensable for GPCR signaling cessation at the cell membrane, and thus, for cellular control of GPCR signaling and function. Perturbations in both activation and termination of G protein signaling underlie many examples of cardiovascular dysfunction and heart disease pathogenesis. Despite the plethora of over 30 members comprising the mammalian RGS protein superfamily, each member interacts with a specific set of second messenger pathways and GPCR types/subtypes in a tissue/cell type-specific manner. An increasing number of studies over the past two decades have provided compelling evidence for the involvement of various RGS proteins in physiological regulation of cardiovascular GPCRs and, consequently, also in the pathophysiology of several cardiovascular ailments. This chapter summarizes the current understanding of the functional roles of RGS proteins as they pertain to cardiovascular, i.e., heart, blood vessel, and platelet GPCR function, with a particular focus on their implications for chronic heart failure pathophysiology and therapy.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States.
| | - Malka S Suster
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| |
Collapse
|
7
|
Lozano PA, Alarabi AB, Garcia SE, Boakye ET, Kingbong HT, Naddour E, Villalobos-García D, Badejo P, El-Halawany MS, Khasawneh FT, Alshbool FZ. The Antidepressant Duloxetine Inhibits Platelet Function and Protects against Thrombosis. Int J Mol Sci 2022; 23:ijms23052587. [PMID: 35269729 PMCID: PMC8910021 DOI: 10.3390/ijms23052587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
While cardiovascular disease (CVD) is the leading cause of death, major depressive disorder (MDD) is the primary cause of disability, affecting more than 300 million people worldwide. Interestingly, there is evidence that CVD is more prevalent in people with MDD. It is well established that neurotransmitters, namely serotonin and norepinephrine, are involved in the biochemical mechanisms of MDD, and consequently, drugs targeting serotonin-norepinephrine reuptake, such as duloxetine, are commonly prescribed for MDD. In this connection, serotonin and norepinephrine are also known to play critical roles in primary hemostasis. Based on these considerations, we investigated if duloxetine can be repurposed as an antiplatelet medication. Our results-using human and/or mouse platelets show that duloxetine dose-dependently inhibited agonist-induced platelet aggregation, compared to the vehicle control. Furthermore, it also blocked agonist-induced dense and α-granule secretion, integrin αIIbβ3 activation, phosphatidylserine expression, and clot retraction. Moreover duloxetine-treated mice had a significantly prolonged occlusion time. Finally, duloxetine was also found to impair hemostasis. Collectively, our data indicate that the antidepressant duloxetine, which is a serotonin-norepinephrine antagonist, exerts antiplatelet and thromboprotective effects and inhibits hemostasis. Consequently, duloxetine, or a rationally designed derivative, presents potential benefits in the context of CVD, including that associated with MDD.
Collapse
Affiliation(s)
- Patricia A. Lozano
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (P.A.L.); (A.B.A.)
| | - Ahmed B. Alarabi
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (P.A.L.); (A.B.A.)
| | - Sarah E. Garcia
- School of Pharmacy, The University of Texas at El Paso, El Paso, TX 79902, USA; (S.E.G.); (E.T.B.); (H.T.K.); (E.N.)
| | - Erica T. Boakye
- School of Pharmacy, The University of Texas at El Paso, El Paso, TX 79902, USA; (S.E.G.); (E.T.B.); (H.T.K.); (E.N.)
| | - Hendreta T. Kingbong
- School of Pharmacy, The University of Texas at El Paso, El Paso, TX 79902, USA; (S.E.G.); (E.T.B.); (H.T.K.); (E.N.)
| | - Elie Naddour
- School of Pharmacy, The University of Texas at El Paso, El Paso, TX 79902, USA; (S.E.G.); (E.T.B.); (H.T.K.); (E.N.)
| | - Daniel Villalobos-García
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (D.V.-G.); (P.B.); (M.S.E.-H.)
| | - Precious Badejo
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (D.V.-G.); (P.B.); (M.S.E.-H.)
| | - Medhat S. El-Halawany
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (D.V.-G.); (P.B.); (M.S.E.-H.)
| | - Fadi T. Khasawneh
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (D.V.-G.); (P.B.); (M.S.E.-H.)
- Correspondence: (F.T.K.); (F.Z.A.); Tel.: +1-(361)-221-0755 (F.T.K.); +1-(361)-221-0793 (F.Z.A.)
| | - Fatima Z. Alshbool
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (P.A.L.); (A.B.A.)
- Correspondence: (F.T.K.); (F.Z.A.); Tel.: +1-(361)-221-0755 (F.T.K.); +1-(361)-221-0793 (F.Z.A.)
| |
Collapse
|
8
|
Almutairi F, Sarr D, Tucker SL, Fantone K, Lee JK, Rada B. RGS10 Reduces Lethal Influenza Infection and Associated Lung Inflammation in Mice. Front Immunol 2021; 12:772288. [PMID: 34912341 PMCID: PMC8667315 DOI: 10.3389/fimmu.2021.772288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2023] Open
Abstract
Seasonal influenza epidemics represent a significant global health threat. The exacerbated immune response triggered by respiratory influenza virus infection causes severe pulmonary damage and contributes to substantial morbidity and mortality. Regulator of G-protein signaling 10 (RGS10) belongs to the RGS protein family that act as GTPase activating proteins for heterotrimeric G proteins to terminate signaling pathways downstream of G protein-coupled receptors. While RGS10 is highly expressed in immune cells, in particular monocytes and macrophages, where it has strong anti-inflammatory effects, its physiological role in the respiratory immune system has not been explored yet. Here, we show that Rgs10 negatively modulates lung immune and inflammatory responses associated with severe influenza H1N1 virus respiratory infection in a mouse model. In response to influenza A virus challenge, mice lacking RGS10 experience enhanced weight loss and lung viral titers, higher mortality and significantly faster disease onset. Deficiency of Rgs10 upregulates the levels of several proinflammatory cytokines and chemokines and increases myeloid leukocyte accumulation in the infected lung, markedly neutrophils, monocytes, and inflammatory monocytes, which is associated with more pronounced lung damage. Consistent with this, influenza-infected Rgs10-deficent lungs contain more neutrophil extracellular traps and exhibit higher neutrophil elastase activities than wild-type lungs. Overall, these findings propose a novel, in vivo role for RGS10 in the respiratory immune system controlling myeloid leukocyte infiltration, viral clearance and associated clinical symptoms following lethal influenza challenge. RGS10 also holds promise as a new, potential therapeutic target for respiratory infections.
Collapse
Affiliation(s)
- Faris Almutairi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Samantha L. Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kayla Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
9
|
Almutairi F, Tucker SL, Sarr D, Rada B. PI3K/ NF-κB-dependent TNF-α and HDAC activities facilitate LPS-induced RGS10 suppression in pulmonary macrophages. Cell Signal 2021; 86:110099. [PMID: 34339853 PMCID: PMC8406451 DOI: 10.1016/j.cellsig.2021.110099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
Regulator of G-protein signaling 10 (RGS10) is a member of the superfamily of RGS proteins that canonically act as GTPase activating proteins (GAPs). RGS proteins accelerate GTP hydrolysis on the G-protein α subunits and result in termination of signaling pathways downstream of G protein-coupled receptors. Beyond its GAP function, RGS10 has emerged as an anti-inflammatory protein by inhibiting LPS-mediated NF-κB activation and expression of inflammatory cytokines, in particular TNF-α. Although RGS10 is abundantly expressed in resting macrophages, previous studies have shown that RGS10 expression is suppressed in macrophages following Toll-like receptor 4 (TLR4) activation by LPS. However, the molecular mechanism by which LPS induces Rgs10 silencing has not been clearly defined. The goal of the current study was to determine whether LPS silences Rgs10 expression through an NF-κB-mediated proinflammatory mechanism in pulmonary macrophages, a unique type of innate immune cells. We demonstrate that Rgs10 transcript and RGS10 protein levels are suppressed upon LPS treatment in the murine MH-S alveolar macrophage cell line. We show that pharmacological inhibition of PI3K/ NF-κB/p300 (NF-κB co-activator)/TNF-α signaling cascade and the activities of HDAC (1-3) enzymes block LPS-induced silencing of Rgs10 in MH-S cells as well as microglial BV2 cells and BMDMs. Further, loss of RGS10 generated by using CRISPR/Cas9 amplifies NF-κB phosphorylation and inflammatory gene expression following LPS treatment in MH-S cells. Together, our findings strongly provide critical insight into the molecular mechanism underlying RGS10 suppression by LPS in pulmonary macrophages.
Collapse
Affiliation(s)
- Faris Almutairi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Samantha L Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
10
|
Ren J, Wei W, Tan L, Yang Q, Lu Q, Ding H, Yue Y, Tian Y, Hao L, Wang M, Li J. Inhibition of regulator of G protein signaling 10, aggravates rheumatoid arthritis progression by promoting NF-κB signaling pathway. Mol Immunol 2021; 134:236-246. [PMID: 33836352 DOI: 10.1016/j.molimm.2021.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/10/2021] [Accepted: 03/18/2021] [Indexed: 02/05/2023]
Abstract
Rheumatoid arthritis (RA) is the most common inflammatory arthropathy, with evidence pointing to an immune-mediated etiology that propagates chronic inflammation. Although targeted immune therapeutics and aggressive treatment strategies have substantially improved, a complete understanding of the associated pathological mechanisms of the disease remains elusive. This study aimed at investigating whether regulator of G protein signaling 10 (RGS10) could affect rheumatoid arthritis (RA) pathology by regulating the immune response. A DBA/J1 mouse model of RA was established and evaluated for disease severity. RGS10 expression was inhibited by adeno-associated virus in vivo. Moreover, small interfering RNA was used to downregulate RGS10 expression in raw 264.7 cells in vitro. Results showed that RGS10 inhibition augmented RA severity, and attenuated the increase in expression of inflammatory factors. Furthermore, activated NF-κB signaling pathways were detected following RGS10 inhibition. These results revealed that RGS10 inhibition directly aggravated the RA pathological process by activating the NF-κB signaling pathway. Therefore, RGS10 is a promising novel therapeutic target for RA treatment with a potential clinical impact.
Collapse
Affiliation(s)
- Jie Ren
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Wei Wei
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Liangyu Tan
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Qin Yang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Qiuyu Lu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Handong Ding
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Yuan Yue
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Ye Tian
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Min Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China.
| | - Jinle Li
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China.
| |
Collapse
|
11
|
Let’s “brake” it down. Blood 2020; 136:1703-1705. [DOI: 10.1182/blood.2020007350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
DeHelian D, Gupta S, Wu J, Thorsheim C, Estevez B, Cooper M, Litts K, Lee-Sundlov MM, Hoffmeister KM, Poncz M, Ma P, Brass LF. RGS10 and RGS18 differentially limit platelet activation, promote platelet production, and prolong platelet survival. Blood 2020; 136:1773-1782. [PMID: 32542378 PMCID: PMC7544544 DOI: 10.1182/blood.2019003251] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
G protein-coupled receptors are critical mediators of platelet activation whose signaling can be modulated by members of the regulator of G protein signaling (RGS) family. The 2 most abundant RGS proteins in human and mouse platelets are RGS10 and RGS18. While each has been studied individually, critical questions remain about the overall impact of this mode of regulation in platelets. Here, we report that mice missing both proteins show reduced platelet survival and a 40% decrease in platelet count that can be partially reversed with aspirin and a P2Y12 antagonist. Their platelets have increased basal (TREM)-like transcript-1 expression, a leftward shift in the dose/response for a thrombin receptor-activating peptide, an increased maximum response to adenosine 5'-diphosphate and TxA2, and a greatly exaggerated response to penetrating injuries in vivo. Neither of the individual knockouts displays this constellation of findings. RGS10-/- platelets have an enhanced response to agonists in vitro, but platelet count and survival are normal. RGS18-/- mice have a 15% reduction in platelet count that is not affected by antiplatelet agents, nearly normal responses to platelet agonists, and normal platelet survival. Megakaryocyte number and ploidy are normal in all 3 mouse lines, but platelet recovery from severe acute thrombocytopenia is slower in RGS18-/- and RGS10-/-18-/- mice. Collectively, these results show that RGS10 and RGS18 have complementary roles in platelets. Removing both at the same time discloses the extent to which this regulatory mechanism normally controls platelet reactivity in vivo, modulates the hemostatic response to injury, promotes platelet production, and prolongs platelet survival.
Collapse
Affiliation(s)
- Daniel DeHelian
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Shuchi Gupta
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Jie Wu
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Chelsea Thorsheim
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Brian Estevez
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia PA
| | - Matthew Cooper
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Kelly Litts
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Melissa M Lee-Sundlov
- Department of Biochemistry and
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Milwaukee, WI; and
| | - Karin M Hoffmeister
- Department of Biochemistry and
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Milwaukee, WI; and
| | - Mortimer Poncz
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia PA
| | - Peisong Ma
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Lawrence F Brass
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
13
|
Almutairi F, Lee JK, Rada B. Regulator of G protein signaling 10: Structure, expression and functions in cellular physiology and diseases. Cell Signal 2020; 75:109765. [PMID: 32882407 PMCID: PMC7579743 DOI: 10.1016/j.cellsig.2020.109765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/22/2023]
Abstract
Regulator of G protein signaling 10 (RGS10) belongs to the superfamily of RGS proteins, defined by the presence of a conserved RGS domain that canonically binds and deactivates heterotrimeric G-proteins. RGS proteins act as GTPase activating proteins (GAPs), which accelerate GTP hydrolysis on the G-protein α subunits and result in termination of signaling pathways downstream of G protein-coupled receptors. RGS10 is the smallest protein of the D/R12 subfamily and selectively interacts with Gαi proteins. It is widely expressed in many cells and tissues, with the highest expression found in the brain and immune cells. RGS10 expression is transcriptionally regulated via epigenetic mechanisms. Although RGS10 lacks multiple of the defined regulatory domains found in other RGS proteins, RGS10 contains post-translational modification sites regulating its expression, localization, and function. Additionally, RGS10 is a critical protein in the regulation of physiological processes in multiple cells, where dysregulation of its expression has been implicated in various diseases including Parkinson's disease, multiple sclerosis, osteopetrosis, chemoresistant ovarian cancer and cardiac hypertrophy. This review summarizes RGS10 features and its regulatory mechanisms, and discusses the known functions of RGS10 in cellular physiology and pathogenesis of several diseases.
Collapse
Affiliation(s)
- Faris Almutairi
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
14
|
Chen X, Zhao X, Cooper M, Ma P. The Roles of GRKs in Hemostasis and Thrombosis. Int J Mol Sci 2020; 21:ijms21155345. [PMID: 32731360 PMCID: PMC7432802 DOI: 10.3390/ijms21155345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Along with cancer, cardiovascular and cerebrovascular diseases remain by far the most common causes of death. Heart attacks and strokes are diseases in which platelets play a role, through activation on ruptured plaques and subsequent thrombus formation. Most platelet agonists activate platelets via G protein-coupled receptors (GPCRs), which make these receptors ideal targets for many antiplatelet drugs. However, little is known about the mechanisms that provide feedback regulation on GPCRs to limit platelet activation. Emerging evidence from our group and others strongly suggests that GPCR kinases (GRKs) are critical negative regulators during platelet activation and thrombus formation. In this review, we will summarize recent findings on the role of GRKs in platelet biology and how one specific GRK, GRK6, regulates the hemostatic response to vascular injury. Furthermore, we will discuss the potential role of GRKs in thrombotic disorders, such as thrombotic events in COVID-19 patients. Studies on the function of GRKs during platelet activation and thrombus formation have just recently begun, and a better understanding of the role of GRKs in hemostasis and thrombosis will provide a fruitful avenue for understanding the hemostatic response to injury. It may also lead to new therapeutic options for the treatment of thrombotic and cardiovascular disorders.
Collapse
Affiliation(s)
- Xi Chen
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Xuefei Zhao
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Matthew Cooper
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Peisong Ma
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Correspondence: ; Tel.: +1-215-955-3966
| |
Collapse
|
15
|
Hernandez KR, Karim ZA, Qasim H, Druey KM, Alshbool FZ, Khasawneh FT. Regulator of G-Protein Signaling 16 Is a Negative Modulator of Platelet Function and Thrombosis. J Am Heart Assoc 2020; 8:e011273. [PMID: 30791801 PMCID: PMC6474914 DOI: 10.1161/jaha.118.011273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Members of the regulator of G‐protein signaling (RGS) family inhibit G‐protein coupled receptor signaling by modulating G‐protein activity. In platelets, there are 3 different RGS isoforms that are expressed at the protein level, including RGS16. Recently, we have shown that CXCL12 regulates platelet function via RGS16. However, the role of RGS16 in platelet function and thrombus formation is poorly defined. Methods and Results We used a genetic knockout mouse model approach to examine the role(s) of RGS16 in platelet activation by using a host of in vitro and in vivo assays. We observed that agonist‐induced platelet aggregation, secretion, and integrin activation were much more pronounced in platelets from the RGS16 knockout (Rgs16−/−) mice relative to their wild type (Rgs16+/+) littermates. Furthermore, the Rgs16−/− mice had a markedly shortened bleeding time and were more susceptible to vascular injury–associated thrombus formation than the controls. Conclusions These findings support a critical role for RGS16 in regulating hemostatic and thrombotic functions of platelets in mice. Hence, RGS16 represents a potential therapeutic target for modulating platelet function.
Collapse
Affiliation(s)
- Keziah R Hernandez
- 1 Pharmaceutical Sciences, School of Pharmacy The University of Texas at El Paso TX
| | - Zubair A Karim
- 1 Pharmaceutical Sciences, School of Pharmacy The University of Texas at El Paso TX
| | - Hanan Qasim
- 1 Pharmaceutical Sciences, School of Pharmacy The University of Texas at El Paso TX
| | - Kirk M Druey
- 2 Molecular Signal Transduction Section Laboratory of Allergic Diseases NIAID/NIH Bethesda MD
| | - Fatima Z Alshbool
- 1 Pharmaceutical Sciences, School of Pharmacy The University of Texas at El Paso TX
| | - Fadi T Khasawneh
- 1 Pharmaceutical Sciences, School of Pharmacy The University of Texas at El Paso TX
| |
Collapse
|
16
|
Paez Espinosa EV, Lin OA, Karim ZA, Alshbool FZ, Khasawneh FT. Mouse transient receptor potential channel type 6 selectively regulates agonist-induced platelet function. Biochem Biophys Rep 2019; 20:100685. [PMID: 31508510 PMCID: PMC6726914 DOI: 10.1016/j.bbrep.2019.100685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 01/20/2023] Open
Abstract
While changes in intracellular calcium levels is a central step in platelet activation and thrombus formation, the contribution and mechanism of receptor-operated calcium entry (ROCE) via transient receptor potential channels (TRPCs) in platelets remains poorly defined. In previous studies, we have shown that TRPC6 regulates hemostasis and thrombosis, in mice. In the present studies, we employed a knockout mouse model system to characterize the role of TRPC6 in ROCE and platelet activation. It was observed that the TRPC6 deletion (Trpc6−/−) platelets displayed impaired elevation of intracellular calcium, i.e., defective ROCE. Moreover, these platelets also exhibited defects in a host of functional responses, namely aggregation, granule secretion, and integrin αIIbβ3. Interestingly, the aforementioned defects were specific to the thromboxane receptor (TPR), as no impaired responses were observed in response to ADP or the thrombin receptor-activating peptide 4 (TRAP4). The defect in ROCE in the Trpc6−/− was also observed with 1-oleoyl-2-acetyl-sn-glycerol (OAG). Finally, our studies also revealed that TRPC6 regulates clot retraction. Taken together, our findings demonstrate that TRPC6 directly regulates TPR-dependent ROCE and platelet function. Thus, TRPC6 may serve as a novel target for the therapeutic management of thrombotic diseases. TRPC6 regulates TPR-mediated/receptor-operated calcium entry. TRPC6 regulates TPR-dependent platelet aggregation, secretion and integrin activation. TRPC6 regulates clot retraction. TRPC6 expression levels are age-dependent in platelets.
Collapse
Affiliation(s)
| | | | - Zubair A Karim
- 1101 N. Campbell St, Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
| | - Fatima Z Alshbool
- 1101 N. Campbell St, Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
| | - Fadi T Khasawneh
- 1101 N. Campbell St, Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
| |
Collapse
|
17
|
RGS10 shapes the hemostatic response to injury through its differential effects on intracellular signaling by platelet agonists. Blood Adv 2019; 2:2145-2155. [PMID: 30150297 DOI: 10.1182/bloodadvances.2017008508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/27/2018] [Indexed: 11/20/2022] Open
Abstract
Platelets express ≥2 members of the regulators of G protein signaling (RGS) family. Here, we have focused on the most abundant, RGS10, examining its impact on the hemostatic response in vivo and the mechanisms involved. We have previously shown that the hemostatic thrombi formed in response to penetrating injuries consist of a core of fully activated densely packed platelets overlaid by a shell of less-activated platelets responding to adenosine 5'-diphosphate (ADP) and thromboxane A2 (TxA2). Hemostatic thrombi formed in RGS10-/- mice were larger than in controls, with the increase due to expansion of the shell but not the core. Clot retraction was slower, and average packing density was reduced. Deleting RGS10 had agonist-specific effects on signaling. There was a leftward shift in the dose/response curve for the thrombin receptor (PAR4) agonist peptide AYPGKF but no increase in the maximum response. This contrasted with ADP and TxA2, both of which evoked considerably greater maximum responses in RGS10-/- platelets with enhanced Gq- and Gi-mediated signaling. Shape change, which is G13-mediated, was unaffected. Finally, we found that free RGS10 levels in platelets are actively regulated. In resting platelets, RGS10 was bound to 2 scaffold proteins: spinophilin and 14-3-3γ. Platelet activation caused an increase in free RGS10, as did the endothelium-derived platelet antagonist prostacyclin. Collectively, these observations show that RGS10 serves as an actively regulated node on the platelet signaling network, helping to produce smaller and more densely packed hemostatic thrombi with a greater proportion of fully activated platelets.
Collapse
|
18
|
Brass LF, Tomaiuolo M, Welsh J, Poventud-Fuentes I, Zhu L, Diamond SL, Stalker TJ. Hemostatic Thrombus Formation in Flowing Blood. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00020-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Squires KE, Montañez-Miranda C, Pandya RR, Torres MP, Hepler JR. Genetic Analysis of Rare Human Variants of Regulators of G Protein Signaling Proteins and Their Role in Human Physiology and Disease. Pharmacol Rev 2018; 70:446-474. [PMID: 29871944 DOI: 10.1124/pr.117.015354] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate the physiologic actions of many neurotransmitters, hormones, and other signaling molecules. Human RGS proteins comprise a family of 20 canonical proteins that bind directly to G protein-coupled receptors/G protein complexes to limit the lifetime of their signaling events, which regulate all aspects of cell and organ physiology. Genetic variations account for diverse human traits and individual predispositions to disease. RGS proteins contribute to many complex polygenic human traits and pathologies such as hypertension, atherosclerosis, schizophrenia, depression, addiction, cancers, and many others. Recent analysis indicates that most human diseases are due to extremely rare genetic variants. In this study, we summarize physiologic roles for RGS proteins and links to human diseases/traits and report rare variants found within each human RGS protein exome sequence derived from global population studies. Each RGS sequence is analyzed using recently described bioinformatics and proteomic tools for measures of missense tolerance ratio paired with combined annotation-dependent depletion scores, and protein post-translational modification (PTM) alignment cluster analysis. We highlight selected variants within the well-studied RGS domain that likely disrupt RGS protein functions and provide comprehensive variant and PTM data for each RGS protein for future study. We propose that rare variants in functionally sensitive regions of RGS proteins confer profound change-of-function phenotypes that may contribute, in newly appreciated ways, to complex human diseases and/or traits. This information provides investigators with a valuable database to explore variation in RGS protein function, and for targeting RGS proteins as future therapeutic targets.
Collapse
Affiliation(s)
- Katherine E Squires
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Carolina Montañez-Miranda
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Rushika R Pandya
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Matthew P Torres
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - John R Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| |
Collapse
|
20
|
Alqinyah M, Almutairi F, Wendimu MY, Hooks SB. RGS10 Regulates the Expression of Cyclooxygenase-2 and Tumor Necrosis Factor Alpha through a G Protein-Independent Mechanism. Mol Pharmacol 2018; 94:1103-1113. [PMID: 30049816 DOI: 10.1124/mol.118.111674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/11/2018] [Indexed: 01/18/2023] Open
Abstract
The small regulator of G protein signaling protein RGS10 is a key regulator of neuroinflammation and ovarian cancer cell survival; however, the mechanism for RGS10 function in these cells is unknown and has not been linked to specific G protein pathways. RGS10 is highly enriched in microglia, and loss of RGS10 expression in microglia amplifies production of the inflammatory cytokine tumor necrosis factor α (TNFα) and enhances microglia-induced neurotoxicity. RGS10 also regulates cell survival and chemoresistance of ovarian cancer cells. Cyclooxygenase-2 (COX-2)-mediated production of prostaglandins such as prostaglandin E2 (PGE2) is a key factor in both neuroinflammation and cancer chemoresistance, suggesting it may be involved in RGS10 function in both cell types, but a connection between RGS10 and COX-2 has not been reported. To address these questions, we completed a mechanistic study to characterize RGS10 regulation of TNFα and COX-2 and to determine if these effects are mediated through a G protein-dependent mechanism. Our data show for the first time that loss of RGS10 expression significantly elevates stimulated COX-2 expression and PGE2 production in microglia. Furthermore, the elevated inflammatory signaling resulting from RGS10 loss was not affected by Gαi inhibition, and a RGS10 mutant that is unable to bind activated G proteins was as effective as wild type in inhibiting TNFα expression. Similarly, suppression of RGS10 in ovarian cancer cells enhanced TNFα and COX-2 expression, and this effect did not require Gi activity. Together, our data strongly indicate that RGS10 inhibits COX-2 expression by a G protein-independent mechanism to regulate inflammatory signaling in microglia and ovarian cancer cells.
Collapse
Affiliation(s)
- Mohammed Alqinyah
- Hooks Laboratory, Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia
| | - Faris Almutairi
- Hooks Laboratory, Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia
| | - Menbere Y Wendimu
- Hooks Laboratory, Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia
| | - Shelley B Hooks
- Hooks Laboratory, Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia
| |
Collapse
|
21
|
Qasim H, Karim ZA, Silva-Espinoza JC, Khasawneh FT, Rivera JO, Ellis CC, Bauer SL, Almeida IC, Alshbool FZ. Short-Term E-Cigarette Exposure Increases the Risk of Thrombogenesis and Enhances Platelet Function in Mice. J Am Heart Assoc 2018; 7:JAHA.118.009264. [PMID: 30021806 PMCID: PMC6201451 DOI: 10.1161/jaha.118.009264] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Cardiovascular disease is the main cause of death in the United States, with smoking being the primary preventable cause of premature death, and thrombosis being the main mechanism of cardiovascular mortality in smokers. Due to the perception that electronic/e‐cigarettes are “safer/less harmful” than conventional cigarettes, their usage—among a variety of ages—has increased tremendously during the past decade. Notably, there are limited studies regarding the negative effects of e‐cigarettes on the cardiovascular system, which is also the subject of significant debate. Methods and Results We employed a passive e‐VapeTM vapor inhalation system and developed an in vivo whole‐body e‐cigarette mouse exposure protocol that mimics real‐life human exposure scenarios/conditions and investigated the effects of e‐cigarettes and clean air on platelet function and thrombogenesis. Our results show that platelets from e‐cigarette–exposed mice are hyperactive, with enhanced aggregation, dense and α granule secretion, activation of the αIIbβ3 integrin, phosphatidylserine expression, and Akt and ERK activation, when compared with clean air–exposed platelets. E‐cigarette–exposed platelets were also found to be resistant to inhibition by prostacyclin, relative to clean air. Furthermore, the e‐cigarette–exposed mice exhibited a shortened thrombosis occlusion and bleeding times. Conclusions Taken together, our data demonstrate for the first time that e‐cigarettes alter physiological hemostasis and increase the risk of thrombogenic events. This is attributable, at least in part, to the hyperactive state of platelets. Thus, the negative health consequences of e‐cigarette exposure should not be underestimated and warrant further investigation.
Collapse
Affiliation(s)
- Hanan Qasim
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas El Paso, TX
| | - Zubair A Karim
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas El Paso, TX
| | - Juan C Silva-Espinoza
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas El Paso, TX
| | - Fadi T Khasawneh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas El Paso, TX
| | - José O Rivera
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas El Paso, TX
| | - Cameron C Ellis
- Border Biomedical Research Center, Department of Biological Sciences, College of Science, University of Texas El Paso, TX
| | - Stephanie L Bauer
- Border Biomedical Research Center, Department of Biological Sciences, College of Science, University of Texas El Paso, TX
| | - Igor C Almeida
- Border Biomedical Research Center, Department of Biological Sciences, College of Science, University of Texas El Paso, TX
| | - Fatima Z Alshbool
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas El Paso, TX
| |
Collapse
|
22
|
Asli A, Sadiya I, Avital-Shacham M, Kosloff M. “Disruptor” residues in the regulator of G protein signaling (RGS) R12 subfamily attenuate the inactivation of Gα subunits. Sci Signal 2018; 11:11/534/eaan3677. [DOI: 10.1126/scisignal.aan3677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Stefanini L, Bergmeier W. Negative regulators of platelet activation and adhesion. J Thromb Haemost 2018; 16:220-230. [PMID: 29193689 PMCID: PMC5809258 DOI: 10.1111/jth.13910] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Indexed: 12/29/2022]
Abstract
Platelets are small anucleated cells that constantly patrol the cardiovascular system to preserve its integrity and prevent excessive blood loss where the vessel lining is breached. Their key challenge is to form a hemostatic plug under conditions of high shear forces. To do so, platelets have evolved a molecular machinery that enables them to sense trace amounts of signals at the site of damage and to rapidly shift from a non-adhesive to a pro-adhesive state. However, this highly efficient molecular machinery can also lead to unintended platelet activation and cause clinical complications such as thrombocytopenia and thrombosis. Thus, several checkpoints are in place to tightly control platelet activation and adhesiveness in space and time. In this review, we will discuss select negative regulators of platelet activation, which are critical to maintain patrolling platelets in a quiescent, non-adhesive state and/or to limit platelet adhesion to sites of injury.
Collapse
Affiliation(s)
- L Stefanini
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - W Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Bergmeier W, Stefanini L. Platelets at the Vascular Interface. Res Pract Thromb Haemost 2018; 2:27-33. [PMID: 29457148 PMCID: PMC5810953 DOI: 10.1002/rth2.12061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/19/2017] [Indexed: 02/01/2023] Open
Abstract
In this brief review paper, we will summarize the State-of-the-Art on how platelet reactivity is regulated in circulation and at sites of vascular injury. Our review discusses recent and ongoing work, presented at this year's International Society on Thrombosis and Haemostasis (ISTH) meeting, on the role of platelets in (1) classical hemostasis at sites of mechanical injury, and (2) the maintenance of vascular integrity at sites of inflammation.
Collapse
Affiliation(s)
- Wolfgang Bergmeier
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- McAllister Heart InstituteUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Lucia Stefanini
- Department of Internal Medicine and Medical SpecialtiesSapienza University of RomeRomeItaly
| |
Collapse
|
25
|
Dunster JL, Panteleev MA, Gibbins JM, Sveshnikova AN. Mathematical Techniques for Understanding Platelet Regulation and the Development of New Pharmacological Approaches. Methods Mol Biol 2018; 1812:255-279. [PMID: 30171583 DOI: 10.1007/978-1-4939-8585-2_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mathematical and computational modeling is currently in the process of becoming an accepted tool in the arsenal of methods utilized for the investigation of complex biological systems. For some problems in the field, like cellular metabolic regulation, neural impulse propagation, or cell cycle, progress is already unthinkable without use of such methods. Mathematical models of platelet signaling, function, and metabolism during the last years have not only been steadily increasing in their number, but have also been providing more in-depth insights, generating hypotheses, and allowing predictions to be made leading to new experimental designs and data. Here we describe the basic approaches to platelet mathematical model development and validation, highlighting the challenges involved. We then review the current theoretical models in the literature and how these are being utilized to increase our understanding of these complex cells.
Collapse
Affiliation(s)
- Joanna L Dunster
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.
| | - Mikhail A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- National Scientific and Practical Centre of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Moscow, Russia
- Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Anastacia N Sveshnikova
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- National Scientific and Practical Centre of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Moscow, Russia
| |
Collapse
|