1
|
Abdel-Mohsen HT, Syam YM, Abd El-Ghany MS, Abd El-Karim SS. Benzimidazole-oxindole hybrids: A novel class of selective dual CDK2 and GSK-3β inhibitors of potent anticancer activity. Arch Pharm (Weinheim) 2024; 357:e2300721. [PMID: 39041665 DOI: 10.1002/ardp.202300721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024]
Abstract
A new series of benzimidazole-oxindole hybrids 8a-x was discovered as dual cyclin-dependent kinase (CDK2) and glycogen synthase kinase-3-beta (GSK-3β) inhibitors with potent anticancer activity. The synthesized hits displayed potent anticancer activity against national cancer institute cancer cell lines in single-dose and five-dose assays. Moreover, the derivatives 8k, 8l, 8n, 8o, and 8p demonstrated potent cytotoxic activity against PANC-1 cells with IC50 = 1.88-2.79 µM. In addition, the hybrids 8l, 8n, 8o, and 8p displayed potent antiproliferative activity on the MG-63 cell line (IC50 = 0.99-1.90 µM). Concurrently, the benzimidazole-oxindole hybrid 8v exhibited potent dual CDK2/GSK-3β inhibitory activity with IC50 values of 0.04 and 0.021 µM, respectively. In addition, 8v displayed more than 10-fold higher selectivity toward CDK2 and GSK-3 β over CDK1, CDK5, GSK-3α, vascular endothelial growth factor receptor-2, and B-rapidly accelerated fibrosarcoma. Screening of the effect of 8n and 8v on the cell cycle and apoptosis of PANC-1 and MG-63 cells displayed their ability to arrest their cell cycle at the G2-M phase and to potentiate the apoptosis of both cell lines. In silico docking of the benzimidazole-oxindole hybrid 8v into the catalytic pocket of both CDK2 and GSK-3β revealed its perfect fitting through the formation of hydrogen bonding and hydrophobic interactions with the key amino acids in the binding sites. In addition, in silico absorption, distribution, metabolism, excretion studies proved that 8a-x exhibit satisfactory drug-likeness properties for drug development.
Collapse
Affiliation(s)
- Heba T Abdel-Mohsen
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Yasmin M Syam
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | | | - Somaia S Abd El-Karim
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
2
|
Asghar A, Chohan TA, Khurshid U, Saleem H, Mustafa MW, Khursheed A, Alafnan A, Batul R, Bin Break MK, Almansour K, Anwar S. A systematic review on understanding the mechanistic pathways and clinical aspects of natural CDK inhibitors on cancer progression.: Unlocking cellular and biochemical mechanisms. Chem Biol Interact 2024; 393:110940. [PMID: 38467339 DOI: 10.1016/j.cbi.2024.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Cell division, differentiation, and controlled cell death are all regulated by phosphorylation, a key biological function. This mechanism is controlled by a variety of enzymes, with cyclin-dependent kinases (CDKs) being particularly important in phosphorylating proteins at serine and threonine sites. CDKs, which contain 20 unique components, serve an important role in regulating vital physiological functions such as cell cycle progression and gene transcription. Methodologically, an extensive literature search was performed using reputable databases such as PubMed, Google Scholar, Scopus, and Web of Science. Keywords encompassed "cyclin kinase," "cyclin dependent kinase inhibitors," "CDK inhibitors," "natural products," and "cancer therapy." The inclusion criteria, focused on relevance, publication date, and language, ensured a thorough representation of the most recent research in the field, encompassing articles published from January 2015 to September 2023. Categorization of CDKs into those regulating transcription and those orchestrating cell cycle phases provides a comprehensive understanding of their diverse functions. Ongoing clinical trials featuring CDK inhibitors, notably CDK7 and CDK4/6 inhibitors, illuminate their promising potential in various cancer treatments. This review undertakes a thorough investigation of CDK inhibitors derived from natural (marine, terrestrial, and peptide) sources. The aim of this study is to provide a comprehensive comprehension of the chemical classifications, origins, target CDKs, associated cancer types, and therapeutic applications.
Collapse
Affiliation(s)
- Andleeb Asghar
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Mian Waqar Mustafa
- Department of Pharmacy, Forman Christian College University, Lahore, Pakistan
| | - Anjum Khursheed
- Department of Pharmacy, Grand Asian University, Sialkot, Pakistan
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Saudi Arabia
| | - Rahila Batul
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Saudi Arabia
| |
Collapse
|
3
|
Wang Y, Ma X, Xu E, Huang Z, Yang C, Zhu K, Dong Y, Zhang C. Identifying squalene epoxidase as a metabolic vulnerability in high-risk osteosarcoma using an artificial intelligence-derived prognostic index. Clin Transl Med 2024; 14:e1586. [PMID: 38372422 PMCID: PMC10875711 DOI: 10.1002/ctm2.1586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Osteosarcoma (OSA) presents a clinical challenge and has a low 5-year survival rate. Currently, the lack of advanced stratification models makes personalized therapy difficult. This study aims to identify novel biomarkers to stratify high-risk OSA patients and guide treatment. METHODS We combined 10 machine-learning algorithms into 101 combinations, from which the optimal model was established for predicting overall survival based on transcriptomic profiles for 254 samples. Alterations in transcriptomic, genomic and epigenomic landscapes were assessed to elucidate mechanisms driving poor prognosis. Single-cell RNA sequencing (scRNA-seq) unveiled genes overexpressed in OSA cells as potential therapeutic targets, one of which was validated via tissue staining, knockdown and pharmacological inhibition. We characterized changes in multiple phenotypes, including proliferation, colony formation, migration, invasion, apoptosis, chemosensitivity and in vivo tumourigenicity. RNA-seq and Western blotting elucidated the impact of squalene epoxidase (SQLE) suppression on signalling pathways. RESULTS The artificial intelligence-derived prognostic index (AIDPI), generated by our model, was an independent prognostic biomarker, outperforming clinicopathological factors and previously published signatures. Incorporating the AIDPI with clinical factors into a nomogram improved predictive accuracy. For user convenience, both the model and nomogram are accessible online. Patients in the high-AIDPI group exhibited chemoresistance, coupled with overexpression of MYC and SQLE, increased mTORC1 signalling, disrupted PI3K-Akt signalling, and diminished immune infiltration. ScRNA-seq revealed high expression of MYC and SQLE in OSA cells. Elevated SQLE expression correlated with chemoresistance and worse outcomes in OSA patients. Therapeutically, silencing SQLE suppressed OSA malignancy and enhanced chemosensitivity, mediated by cholesterol depletion and suppression of the FAK/PI3K/Akt/mTOR pathway. Furthermore, the SQLE-specific inhibitor FR194738 demonstrated anti-OSA effects in vivo and exhibited synergistic effects with chemotherapeutic agents. CONCLUSIONS AIDPI is a robust biomarker for identifying the high-risk subset of OSA patients. The SQLE protein emerges as a metabolic vulnerability in these patients, providing a target with translational potential.
Collapse
Affiliation(s)
- Yongjie Wang
- Department of Orthopaedic SurgeryShanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
- Institute of Bone Tumor Affiliated to Tongji University School of MedicineShanghaiP. R. China
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Xiaolong Ma
- Department of Orthopaedic SurgeryShanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
- Institute of Bone Tumor Affiliated to Tongji University School of MedicineShanghaiP. R. China
| | - Enjie Xu
- Department of Orthopaedic SurgeryShanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
- Institute of Bone Tumor Affiliated to Tongji University School of MedicineShanghaiP. R. China
| | - Zhen Huang
- Department of Orthopaedic SurgeryShanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
- Institute of Bone Tumor Affiliated to Tongji University School of MedicineShanghaiP. R. China
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Kunpeng Zhu
- Department of Orthopaedic SurgeryShanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
- Institute of Bone Tumor Affiliated to Tongji University School of MedicineShanghaiP. R. China
| | - Yang Dong
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Chunlin Zhang
- Department of Orthopaedic SurgeryShanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
- Institute of Bone Tumor Affiliated to Tongji University School of MedicineShanghaiP. R. China
| |
Collapse
|
4
|
Shang Z, Lai Y, Cheng H. DPP2/7 is a Potential Predictor of Prognosis and Target in Immunotherapy in Colorectal Cancer: An Integrative Multi-omics Analysis. Comb Chem High Throughput Screen 2024; 27:1642-1660. [PMID: 38454764 DOI: 10.2174/0113862073290831240229060932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) ranks among the leading causes of cancerrelated deaths. OBJECTIVE This study aimed to illuminate the relationship between DPP7 (also known as DPP2) and CRC through a combination of bioinformatics and experimental methodologies. METHODS A multi-dimensional bioinformatic analysis on DPP7 was executed, covering its expression, survival implications, clinical associations, functional roles, immune interactions, and drug sensitivities. Experimental validations involved siRNA-mediated DPP7 knockdown and various cellular assays. RESULTS Data from the Cancer Genome Atlas (TCGA) identified high DPP7 expression in solid CRC tumors, with elevated levels adversely affecting patient prognosis. A shift from the N0 to the N2 stage in CRC was associated with increased DPP7 expression. Functional insights indicated the involvement of DPP7 in cancer progression, particularly in extracellular matrix disassembly. Immunological analyses showed its association with immunosuppressive entities, and in vitro experiments in CRC cell lines underscored its oncogenic attributes. CONCLUSION DPP7 could serve as a CRC prognosis marker, functioning as an oncogene and representing a potential immunotherapeutic target.
Collapse
Affiliation(s)
- Zhihao Shang
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Yueyang Lai
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Haibo Cheng
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| |
Collapse
|
5
|
Fanta BS, Mekonnen L, Basnet SKC, Teo T, Lenjisa J, Khair NZ, Kou L, Tadesse S, Sykes MJ, Yu M, Wang S. 2-Anilino-4-(1-methyl-1H-pyrazol-4-yl)pyrimidine-derived CDK2 inhibitors as anticancer agents: Design, synthesis & evaluation. Bioorg Med Chem 2023; 80:117158. [PMID: 36706608 DOI: 10.1016/j.bmc.2023.117158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
Deregulation of cyclin-dependent kinase 2 (CDK2) and its activating partners, cyclins A and E, is associated with the pathogenesis of a myriad of human cancers and with resistance to anticancer drugs including CDK4/6 inhibitors. Thus, CDK2 has become an attractive target for the development of new anticancer therapies and for the amelioration of the resistance to CDK4/6 inhibitors. Bioisosteric replacement of the thiazole moiety of CDKI-73, a clinically trialled CDK inhibitor, by a pyrazole group afforded 9 and 19 that displayed potent CDK2-cyclin E inhibition (Ki = 0.023 and 0.001 μM, respectively) with submicromolar antiproliferative activity against a panel of cancer cell lines (GI50 = 0.025-0.780 μM). Mechanistic studies on 19 with HCT-116 colorectal cancer cells revealed that the compound reduced the phosphorylation of retinoblastoma at Ser807/811, arrested the cells at the G2/M phase, and induced apoptosis. These results highlight the potential of the 2-anilino-4-(1-methyl-1H-pyrazol-4-yl)pyrimidine series in developing potent and selective CDK2 inhibitors to combat cancer.
Collapse
Affiliation(s)
- Biruk Sintayehu Fanta
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Laychiluh Mekonnen
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Sunita K C Basnet
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Theodosia Teo
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Jimma Lenjisa
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Nishat Z Khair
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Lianmeng Kou
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Solomon Tadesse
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Matthew J Sykes
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Mingfeng Yu
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
6
|
Jiang M, Jike Y, Gan F, Li J, Hu Y, Xie M, Liu K, Qin W, Bo Z. Verification of Ferroptosis Subcluster-Associated Genes Related to Osteosarcoma and Exploration of Immune Targeted Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9942014. [PMID: 36211822 PMCID: PMC9534693 DOI: 10.1155/2022/9942014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Background Despite tremendous advances in treating osteosarcoma (OS), the survival rates of patients have failed to improve dramatically over the past decades. Ferroptosis, a newly discovered iron-dependent type of regulated cell death, is implicated in tumors, and its features in OS remain unascertained. We designed to determine the involvement of ferroptosis subcluster-related modular genes in OS progression and prognosis. Methods The OS-related datasets retrieved from GEO and TARGET database were clustered for identifying molecular subclusters with different ferroptosis-related genes (FRGs) expression patterns. Weighted gene coexpression network analysis (WGCNA) was applied to identify modular genes from FRG subclusters. The least absolute shrinkage and selection operator (LASSO) algorithm and multivariable Cox regression analysis were adopted to develop the prognostic model. Potential mechanisms of development and prognosis in OS were explored by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA). Then, a comprehensive analysis was conducted for immune checkpoint markers and assessment of predictive power to drug response. The protein expression levels of the three ferroptosis subcluster-related modular genes were verified by immunohistochemistry. Results Two independent subclusters presenting diverse expression profiles of FRGs were obtained, with significantly different survival states. Ferroptosis subcluster-related modular genes were screened with WGCNA, and the GESA results showed that ferroptosis subcluster-related modular genes could affect the cellular energy metabolism, thus influencing the development and prognosis of osteosarcoma. A prognostic model was established by incorporating three ferroptosis subcluster-related modular genes (LRRC1, ACO2, and CTNNBIP1) and a nomogram by integrating clinical features, and they were evaluated for the predictive power on OS prognosis. The 20 immune checkpoint-related genes confirmed the insensitivity to tumor immunotherapy in high-risk patients. IC50s of Axitinib and Cytarabine suggested a higher sensitivity to the targeted drug. Finally, the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry were consistent with bioinformatics analysis. Conclusion Ferroptosis are closely associated with the OS prognosis. The risk-scoring model incorporating three ferroptosis subcluster-related modular genes has shown outstanding advantages in predicting patient prognosis.
Collapse
Affiliation(s)
- Mingyang Jiang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiji Jike
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fu Gan
- Department of Urology Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jia Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yang Hu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mingjing Xie
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kaicheng Liu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wentao Qin
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhandong Bo
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Alemi F, Malakoti F, Vaghari-Tabari M, Soleimanpour J, Shabestani N, Sadigh AR, Khelghati N, Asemi Z, Ahmadi Y, Yousefi B. DNA damage response signaling pathways as important targets for combination therapy and chemotherapy sensitization in osteosarcoma. J Cell Physiol 2022; 237:2374-2386. [PMID: 35383920 DOI: 10.1002/jcp.30721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 11/08/2022]
Abstract
Osteosarcoma (OS) is the most common bone malignancy that occurs most often in young adults, and adolescents with a survival rate of 20% in its advanced stages. Nowadays, increasing the effectiveness of common treatments used in OS has become one of the main problems for clinicians due to cancer cells becoming resistant to chemotherapy. One of the most important mechanisms of resistance to chemotherapy is through increasing the ability of DNA repair because most chemotherapy drugs damage the DNA of cancer cells. DNA damage response (DDR) is a signal transduction pathway involved in preserving the genome stability upon exposure to endogenous and exogenous DNA-damaging factors such as chemotherapy agents. There is evidence that the suppression of DDR may reduce chemoresistance and increase the effectiveness of chemotherapy in OS. In this review, we aim to summarize these studies to better understand the role of DDR in OS chemoresistance in pursuit of overcoming the obstacles to the success of chemotherapy.
Collapse
Affiliation(s)
- Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Vaghari-Tabari
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimanpour
- Department of Orthopedics Surgery, Shohada Teaching Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Shabestani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aydin R Sadigh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nafiseh Khelghati
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Yasin Ahmadi
- Department of Medical Laboratory Sciences, Faculty of Science, Komar University of Science and Technology, Soleimania, Kurdistan Region, Iraq
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Li M, Cheng WT, Li H, Zhang Z, Lu XL, Deng SS, Li J, Yang CH. Comprehensive Analysis of Key mRNAs and lncRNAs in Osteosarcoma Response to Preoperative Chemotherapy with Prognostic Values. Curr Med Sci 2021; 41:916-929. [PMID: 34671904 DOI: 10.1007/s11596-021-2430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/29/2020] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Osteosarcoma is one of the most common types of bone sarcoma with a poor prognosis. However, identifying the predictive factors that contribute to the response to neoadjuvant chemotherapy remains a significant challenge. METHODS A public data series (GSE87437) was downloaded to identify differentially expressed genes (DEGs) and differentially expressed lncRNAs (DElncRNAs) between osteosarcoma patients that do and do not respond to preoperative chemotherapy. Subsequently, functional analysis of the transcriptome expression profile, regulatory networks of DEGs and DElncRNAs, competing endogenous RNAs (ceRNA) and protein-protein interaction networks were performed. Furthermore, the function, pathway, and survival analysis of hub genes was performed and drug and disease relationship prediction of DElncRNA was carried out. RESULTS A total of 626 DEGs, 26 DElncRNAs, and 18 hub genes were identified. However, only one gene and two lncRNAs were found to be suitable as candidate gene and lncRNAs respectively. CONCLUSION The DEGs, hub genes, candidate gene, and candidate lncRNAs screened out in this context were considered as potential biomarkers for the response to neoadjuvant chemotherapy of osteosarcoma.
Collapse
Affiliation(s)
- Mi Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei-Ting Cheng
- Oncology Department, Wuhan No.1 Hospital, Wuhan, 430030, China
| | - Hao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhi Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Li Lu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Si-Si Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jian Li
- Institute of Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, Bonn, D-53127, Germany.
| | - Cai-Hong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Etman AM, Abdel Mageed SS, Ali MA, El Hassab MAEM. Cyclin-Dependent Kinase as a Novel Therapeutic Target: An Endless Story. CURRENT CHEMICAL BIOLOGY 2021; 15:139-162. [DOI: 10.2174/2212796814999201123194016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 09/02/2023]
Abstract
Cyclin-Dependent Kinases (CDKs) are a family of enzymes that, along with their Cyclin
partners, play a crucial role in cell cycle regulation at many biological functions such as proliferation,
differentiation, DNA repair, and apoptosis. Thus, they are tightly regulated by a number of inhibitory
and activating enzymes. Deregulation of these kinases’ activity either by amplification,
overexpression or mutation of CDKs or Cyclins leads to uncontrolled proliferation of cancer cells.
Hyperactivity of these kinases has been reported in a wide variety of human cancers. Hence, CDKs
have been established as one of the most attractive pharmacological targets in the development of
promising anticancer drugs. The elucidated structural features and the well-characterized molecular
mechanisms of CDKs have been the guide in designing inhibitors to these kinases. Yet, they remain
a challenging therapeutic class as they share conserved structure similarity in their active site.
Several inhibitors have been discovered from natural sources or identified through high throughput
screening and rational drug design approaches. Most of these inhibitors target the ATP binding
pocket, therefore, they suffer from a number of limitations. Here, a growing number of ATP noncompetitive
peptides and small molecules has been reported.
Collapse
Affiliation(s)
- Ahmed Mohamed Etman
- Department of Pharmacology, Faculty of Pharmacy, Tanta University, Tanta, 31111,Egypt
| | - Sherif Sabry Abdel Mageed
- Department of Pharmacology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| | - Mohamed Ahmed Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| | - Mahmoud Abd El Monem El Hassab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| |
Collapse
|
10
|
He L, Yang H, Huang J. The tumor immune microenvironment and immune-related signature predict the chemotherapy response in patients with osteosarcoma. BMC Cancer 2021; 21:581. [PMID: 34016089 PMCID: PMC8138974 DOI: 10.1186/s12885-021-08328-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Genome-wide expression profiles have been shown to predict the response to chemotherapy. The purpose of this study was to develop a novel predictive signature for chemotherapy in patients with osteosarcoma. METHODS We analysed the relevance of immune cell infiltration and gene expression profiles of the tumor samples of good responders with those of poor responders from the TARGET and GEO databases. Immune cell infiltration was evaluated using a single-sample gene set enrichment analysis (ssGSEA) and the CIBERSORT algorithm between good and poor chemotherapy responders. Differentially expressed genes were identified based on the chemotherapy response. LASSO regression and binary logistic regression analyses were applied to select the differentially expressed immune-related genes (IRGs) and developed a predictive signature in the training cohort. A receiver operating characteristic (ROC) curve analysis was employed to assess and validate the predictive accuracy of the predictive signature in the validation cohort. RESULTS The analysis of immune infiltration showed a positive relationship between high-level immune infiltration and good responders, and T follicular helper cells and CD8 T cells were significantly more abundant in good responders with osteosarcoma. Two hundred eighteen differentially expressed genes were detected between good and poor responders, and a five IRGs panel comprising TNFRSF9, CD70, EGFR, PDGFD and S100A6 was determined to show predictive power for the chemotherapy response. A chemotherapy-associated predictive signature was developed based on these five IRGs. The accuracy of the predictive signature was 0.832 for the training cohort and 0.720 for the validation cohort according to ROC analysis. CONCLUSIONS The novel predictive signature constructed with five IRGs can be effectively utilized to predict chemotherapy responsiveness and help improve the efficacy of chemotherapy in patients with osteosarcoma.
Collapse
Affiliation(s)
- Lijiang He
- Department of Orthopaedics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hainan Yang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jingshan Huang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
11
|
Assessment of the Nutraceutical Effects of Oleuropein and the Cytotoxic Effects of Adriamycin, When Administered Alone and in Combination, in MG-63 Human Osteosarcoma Cells. Nutrients 2021; 13:nu13020354. [PMID: 33503913 PMCID: PMC7911555 DOI: 10.3390/nu13020354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Oleuropein (OLEU) is the most distinguished phenolic compound found in olive fruit and the leaves of Olea europaea L., with several pharmacological properties, including anti-cancer actions. Adriamycin (ADR) is an anthracycline widely used as a chemotherapeutic agent, although it presents significant side effects. The aim of the present study was to investigate the effect of oleuropein alone (20 μg/mL) and in co-treatment with ADR (50 nM), in MG-63 human osteosarcoma cells. Therefore, cellular and molecular techniques, such as MTT assay, flow cytometry, real-time Polymerase Chain Reaction (PCR), western blot and Elisa method, as well as Nuclear Magnetic Resonance (NMR) spectroscopy, were applied to unveil changes in the signal transduction pathways involved in osteosarcoma cells survival. The observed alterations in gene, protein and metabolite levels denote that OLEU not only inhibits MG-63 cells proliferation and potentiates ADR’s cytotoxicity, but also exerts its action, at least in part, through the induction of autophagy.
Collapse
|
12
|
Zeng Y, Qin T, Flamini V, Tan C, Zhang X, Cong Y, Birkin E, Jiang WG, Yao H, Cui Y. Identification of DHX36 as a tumour suppressor through modulating the activities of the stress-associated proteins and cyclin-dependent kinases in breast cancer. Am J Cancer Res 2020; 10:4211-4233. [PMID: 33414996 PMCID: PMC7783738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023] Open
Abstract
The nucleic acid guanine-quadruplex structures (G4s) are involved in many aspects of cancer progression. The DEAH-box polypeptide 36 (DHX36) has been identified as a dominant nucleic acid helicase which targets and disrupts DNA and RNA G4s in an ATP-dependent manner. However, the actual role of DHX36 in breast cancer remains unknown. In this study, we observed that the gene expression of DHX36 was positively associated with patient survival in breast cancer. The abundance of DHX36 is also linked with pathologic conditions and the stage of breast cancer. By using the xenograft mouse model, we demonstrated that the stable knockdown of DHX36 via lentivirus in breast cancer cells significantly promoted tumour growth. We also found that, after the DHX36 knockdown (KD), the invasion of triple-negative breast cancer cells was enhanced. In addition, we found a significant increase in the number of cells in the S-phase and a reduction of apoptosis with the response to cisplatin. DHX36 KD also desensitized the cytotoxic cellular response to paclitaxel and cisplatin. Transcriptomic profiling analysis by RNA sequencing indicated that DHX36 altered gene expression profile through the upstream activation of TNF, IFNγ, NFκb and TGFβ1. High throughput signalling analysis showed that one cluster of stress-associated kinase proteins including p53, ROCK1 and JNK were suppressed, while the mitotic checkpoint protein-serine kinases CDK1 and CDK2 were activated, as a consequence of the DHX36 knockdown. Our study reveals that DHX36 functions as a tumour suppressor and may be considered as a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Yinduo Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
- Cardiff China Medical Research Collaborative, Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
- Breast Tumour Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou 510120, China
| | - Tao Qin
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Valentina Flamini
- Cardiff China Medical Research Collaborative, Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
| | - Cui Tan
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
- Department of Pathology, Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Xinke Zhang
- Sun Yat-sen University Cancer Centre, The State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer MedicineGuangzhou 510060, China
| | - Yizi Cong
- Cardiff China Medical Research Collaborative, Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, China
| | - Emily Birkin
- Cardiff China Medical Research Collaborative, Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
- Breast Tumour Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou 510120, China
| | - Yuxin Cui
- Cardiff China Medical Research Collaborative, Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
13
|
Wu M, Han J, Liu Z, Zhang Y, Huang C, Li J, Li Z. Identification of novel CDK 9 inhibitors based on virtual screening, molecular dynamics simulation, and biological evaluation. Life Sci 2020; 258:118228. [PMID: 32781071 DOI: 10.1016/j.lfs.2020.118228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/24/2022]
Abstract
AIMS Cyclin-dependent kinase 9 (CDK9) is a member of the CDK subfamily and plays a major role in the regulation of transcriptional elongation. It has attracted widespread attention as a therapeutic target for cancer. Here, we aimed to explore novel CDK 9 inhibitors by using a hybrid virtual screening strategy. MAIN METHODS A hybrid virtual screening strategy was constructed with computer-aided drug design (CADD). First, compounds were filtered in accordance with Lipinski's rule of five and adsorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Second, a 3D-QSAR pharmacophore model was built and used as a 3D query to screen the obtained hit compounds. Third, the hit compounds were subjected to molecular docking studies. Fourth, molecular dynamics (MD) simulations were performed on CDK9 in complex with the final hits to examine the structural stability. Finally, CDK9 kinase biochemical assay was performed to identify the biological activity of the hit compounds. KEY FINDINGS Seven hit compounds were screened out. These hit compounds showed drug-like properties in accordance with Lipinski's rule of five and ADMET. Complexes involving the six hit compounds bound to CDK9 exhibited good structural stability in the MD simulation. Furthermore, these six hit compounds had strong inhibitory activity against CDK9 kinase. In particular, hit 3 showed the most promising activity with the percentage of 71%. SIGNIFICANCE The six hit compounds may be promising novel CDK9 inhibitors, and the hybrid virtual screening strategy designed in this study provides an important reference for the design and synthesis of novel CDK9 inhibitors.
Collapse
Affiliation(s)
- Mingfei Wu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jianfei Han
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Zhicheng Liu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Yilong Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China.
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
14
|
Bhatia K, Bhumika, Das A. Combinatorial drug therapy in cancer - New insights. Life Sci 2020; 258:118134. [PMID: 32717272 DOI: 10.1016/j.lfs.2020.118134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Cancer can arise due to mutations in numerous pathways present in our body and thus has many alternatives for getting aggravated. Due to this attribute, it gets difficult to treat cancer patients with monotherapy alone and has a risk of not being eliminated to the full extent. This necessitates the introduction of combinatorial therapy as it employs cancer treatment using more than one method and shows a greater success rate. Combinatorial therapy involves a complementary combination of two different therapies like a combination of radio and immunotherapy or a combination of drugs that can target more than one pathway of cancer formation like combining CDK targeting drugs with Growth factors targeting drugs. In this review, we discuss the various aspects of cancer which include, its causes; four regulatory mechanisms namely: apoptosis, cyclin-dependent kinases, tumor suppressor genes, and growth factors; some of the pathways involved; treatment: monotherapy and combinatorial therapy and combinatorial drug formulation in chemotherapy. The present review gives a holistic account of the different mechanisms of therapies and also drug combinations that may serve to not only complement the monotherapy but can also surpass the resistance against monotherapy agents.
Collapse
Affiliation(s)
- Karanpreet Bhatia
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India
| | - Bhumika
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India.
| |
Collapse
|
15
|
Canu G, Athanasiadis E, Grandy RA, Garcia-Bernardo J, Strzelecka PM, Vallier L, Ortmann D, Cvejic A. Analysis of endothelial-to-haematopoietic transition at the single cell level identifies cell cycle regulation as a driver of differentiation. Genome Biol 2020; 21:157. [PMID: 32611441 PMCID: PMC7329542 DOI: 10.1186/s13059-020-02058-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Haematopoietic stem cells (HSCs) first arise during development in the aorta-gonad-mesonephros (AGM) region of the embryo from a population of haemogenic endothelial cells which undergo endothelial-to-haematopoietic transition (EHT). Despite the progress achieved in recent years, the molecular mechanisms driving EHT are still poorly understood, especially in human where the AGM region is not easily accessible. RESULTS In this study, we take advantage of a human pluripotent stem cell (hPSC) differentiation system and single-cell transcriptomics to recapitulate EHT in vitro and uncover mechanisms by which the haemogenic endothelium generates early haematopoietic cells. We show that most of the endothelial cells reside in a quiescent state and progress to the haematopoietic fate within a defined time window, within which they need to re-enter into the cell cycle. If cell cycle is blocked, haemogenic endothelial cells lose their EHT potential and adopt a non-haemogenic identity. Furthermore, we demonstrate that CDK4/6 and CDK1 play a key role not only in the transition but also in allowing haematopoietic progenitors to establish their full differentiation potential. CONCLUSION We propose a direct link between the molecular machineries that control cell cycle progression and EHT.
Collapse
Affiliation(s)
- Giovanni Canu
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Emmanouil Athanasiadis
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Rodrigo A Grandy
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | | - Paulina M Strzelecka
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Surgery, University of Cambridge, Cambridge, UK.
| | - Daniel Ortmann
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Surgery, University of Cambridge, Cambridge, UK.
| | - Ana Cvejic
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK.
| |
Collapse
|
16
|
Fanelli M, Tavanti E, Patrizio MP, Vella S, Fernandez-Ramos A, Magagnoli F, Luppi S, Hattinger CM, Serra M. Cisplatin Resistance in Osteosarcoma: In vitro Validation of Candidate DNA Repair-Related Therapeutic Targets and Drugs for Tailored Treatments. Front Oncol 2020; 10:331. [PMID: 32211337 PMCID: PMC7077033 DOI: 10.3389/fonc.2020.00331] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Treatment of high-grade osteosarcoma, the most common malignant tumor of bone, is largely based on administration of cisplatin and other DNA damaging drugs. Altered DNA repair mechanisms may thus significantly impact on either response or resistance to chemotherapy. In this study, by using a panel of human osteosarcoma cell lines, either sensitive or resistant to cisplatin, we assessed the value as candidate therapeutic targets of DNA repair-related factors belonging to the nucleotide excision repair (NER) or base excision repair (BER) pathways, as well as of a group of 18 kinases, which expression was higher in cisplatin-resistant variants compared to their parental cell lines and may be indirectly involved in DNA repair. The causal involvement of these factors in cisplatin resistance of human osteosarcoma cells was validated through gene silencing approaches and in vitro reversal of CDDP resistance. This approach highlighted a subgroup of genes, which value as promising candidate therapeutic targets was further confirmed by protein expression analyses. The in vitro activity of 15 inhibitor drugs against either these genes or their pathways was then analyzed, in order to identify the most active ones in terms of inherent activity and ability to overcome cisplatin resistance. NSC130813 (NERI02; F06) and triptolide, both targeting NER factors, proved to be the two most active agents, without evidence of cross-resistance with cisplatin. Combined in vitro treatments showed that NSC130813 and triptolide, when administered together with cisplatin, were able to improve its efficacy in both drug-sensitive and resistant osteosarcoma cells. This evidence may indicate an interesting therapeutic future option for treatment of osteosarcoma patients who present reduced responsiveness to cisplatin, even if possible effects of additive collateral toxicities must be carefully considered. Moreover, our study also showed that targeting protein kinases belonging to the mitogen-activated protein kinase (MAPK) or fibroblast growth factor receptor (FGFR) pathways might indicate new promising therapeutic perspectives in osteosarcoma, demanding for additional investigation.
Collapse
Affiliation(s)
- Marilù Fanelli
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Elisa Tavanti
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Maria Pia Patrizio
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Serena Vella
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Amira Fernandez-Ramos
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Federica Magagnoli
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Silvia Luppi
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Claudia Maria Hattinger
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Massimo Serra
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| |
Collapse
|
17
|
Cooperation between SS18-SSX1 and miR-214 in Synovial Sarcoma Development and Progression. Cancers (Basel) 2020; 12:cancers12020324. [PMID: 32019274 PMCID: PMC7072427 DOI: 10.3390/cancers12020324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
SS18-SSX fusion proteins play a central role in synovial sarcoma development, although, the genetic network and mechanisms of synovial sarcomagenesis remain unknown. We established a new ex vivo synovial sarcoma mouse model through retroviral-mediated gene transfer of SS18-SSX1 into mouse embryonic mesenchymal cells followed by subcutaneous transplantation into nude mice. This approach successfully induced subcutaneous tumors in 100% recipients, showing invasive proliferation of short spindle tumor cells with occasional biphasic appearance. Cytokeratin expression was observed in epithelial components in tumors and expression of TLE1 and BCL2 was also shown. Gene expression profiling indicated SWI/SNF pathway modulation by SS18-SSX1 introduction into mesenchymal cells and Tle1 and Atf2 upregulation in tumors. These findings indicate that the model exhibits phenotypes typical of human synovial sarcoma. Retroviral tagging of the tumor identified 15 common retroviral integration sites within the Dnm3 locus as the most frequent in 30 mouse synovial sarcomas. miR-199a2 and miR-214 upregulation within the Dnm3 locus was observed. SS18-SSX1 and miR-214 cointroduction accelerated sarcoma onset, indicating that miR-214 is a cooperative oncomiR in synovial sarcomagenesis. miR-214 functions in a cell non-autonomous manner, promoting cytokine gene expression (e.g., Cxcl15/IL8). Our results emphasize the role of miR-214 in tumor development and disease progression.
Collapse
|
18
|
Choong PF, Teh HX, Teoh HK, Ong HK, Cheong SK, Kamarul T. DNA repair efficiency associated with reprogrammed osteosarcoma cells. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Jin Z, Liu S, Zhu P, Tang M, Wang Y, Tian Y, Li D, Zhu X, Yan D, Zhu Z. Cross-Species Gene Expression Analysis Reveals Gene Modules Implicated in Human Osteosarcoma. Front Genet 2019; 10:697. [PMID: 31440272 PMCID: PMC6693360 DOI: 10.3389/fgene.2019.00697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/03/2019] [Indexed: 01/20/2023] Open
Abstract
Background: Osteosarcoma (OS) is one of the malignant bone tumors occurring in both human and canine, and in both of them, it is characterized by a high rate of metastasis and poor prognosis. Cross-species analysis reveals previously neglected molecular or signaling pathways involved in the progression of diseases, and dogs are genetically comparable to humans and live in similar environments. Therefore, the aim of this study was to find out OS hub genes through a cross-species analysis. Materials and Methods: All the human and canine OS gene expression data obtained by the Affymetrix platform were collected. After quality assessment and normalization, co-expression network was performed using weighted gene co-expression network analysis (WGCNA). Species-specific modules and consensus modules were identified. Protein–protein interaction (PPI) networks analysis was performed based on consensus gene modules. Then, consensus modules were functionally annotated and correlated with clinical traits. Hub nodes were identified by a subnetwork analysis of PPI network and WGCNA module membership. Modules of interest and hub nodes were validated in an external data set. Results: Three modules for the human network, seven modules for the canine network, and four consensus modules were identified. The consensus module 3 (C3) showed a significant correlation with the metastatic status in the training data set and a significant correlation with metastasis-free survival in the external data set. Cluster of differentiation 86 (CD86) was identified as the hub gene of C3, showing a significant correlation with metastasis-free survival. Conclusion: Genes in C3 play an important role in OS metastasis, whereas CD86 might be a potential molecular biomarker for OS metastasis.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shanshan Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Pei Zhu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Mengyan Tang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuanxin Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuan Tian
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xun Zhu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Sun J, Xu H, Qi M, Zhang C, Shi J. Identification of key genes in osteosarcoma by meta‑analysis of gene expression microarray. Mol Med Rep 2019; 20:3075-3084. [PMID: 31432118 PMCID: PMC6755242 DOI: 10.3892/mmr.2019.10543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/17/2019] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) is one of the most malignant tumors in children and young adults. To better understand the underlying mechanism, five related datasets deposited in the Gene Expression Omnibus were included in the present study. The Bioconductor ‘limma’ package was used to identify differentially expressed genes (DEGs) and the ‘Weighted Gene Co-expression Network Analysis’ package was used to construct a weighted gene co-expression network to identify key modules and hub genes, associated with OS. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes overrepresentation analyses were used for functional annotation. The results indicated that 1,405 genes were dysregulated in OS, including 927 upregulated and 478 downregulated genes, when the cut off value was set at a ≥2 fold-change and an adjusted P-value of P<0.01 was used. Functional annotation of DEGs indicated that these genes were involved in the extracellular matrix (ECM) and that they function in several processes, including biological adhesion, ECM organization, cell migration and leukocyte migration. These findings suggested that dysregulation of the ECM shaped the tumor microenvironment and modulated the OS hallmark. Genes assigned to the yellow module were positively associated with OS and could contribute to the development of OS. In conclusion, the present study has identified several key genes that are potentially druggable genes or therapeutics targets in OS. Functional annotations revealed that the dysregulation of the ECM may contribute to OS development and, therefore, provided new insights to improve our understanding of the mechanisms underlying OS.
Collapse
Affiliation(s)
- Junkui Sun
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hongen Xu
- Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Muge Qi
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China
| | - Chi Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jianxiang Shi
- Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
21
|
Emmert H, Culley J, Brunton VG. Inhibition of cyclin-dependent kinase activity exacerbates H 2 O 2 -induced DNA damage in Kindler syndrome keratinocytes. Exp Dermatol 2019; 28:1074-1078. [PMID: 31260568 DOI: 10.1111/exd.14000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Kindler syndrome (KS) is an autosomal recessive skin disorder characterized by skin blistering and photosensitivity. KS is caused by loss of function mutations in FERMT1, which encodes Kindlin-1. Kindlin-1 is a FERM domain containing adaptor protein that is found predominantly at cell-extracellular matrix adhesions where it binds to integrin β subunits and is required for efficient integrin activation. Using keratinocytes derived from a patient with KS, into which wild-type Kindlin-1 (Kin1WT) has been expressed, we show that Kindlin-1 binds to cyclin-dependent kinase (CDK)1 and CDK2. CDK1 and CDK2 are key regulators of cell cycle progression, however, cell cycle analysis showed only small differences between the KS and KS-Kin1WT keratinocytes. In contrast, G2/M cell cycle arrest in response to oxidative stress induced by hydrogen peroxide (H2 O2 ) was enhanced in KS keratinocytes but not KS-Kin1WT cells, following inhibition of CDK activity. Furthermore, KS keratinocytes were more sensitive to DNA damage in response to H2 O2 and this was exacerbated by treatment with the CDK inhibitor roscovitine. Thus, in Kindlin-1 deficient keratinocytes, CDK activity can further regulate oxidative damage induced cell cycle arrest and DNA damage. This provides further insight into the key pathways that control sensitivity to oxidative stress in KS patients.
Collapse
Affiliation(s)
- Hila Emmert
- Edinburgh Cancer Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Jayne Culley
- Edinburgh Cancer Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Valerie G Brunton
- Edinburgh Cancer Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Xia P, Liu Y, Chen J, Coates S, Liu DX, Cheng Z. Inhibition of cyclin-dependent kinase 2 protects against doxorubicin-induced cardiomyocyte apoptosis and cardiomyopathy. J Biol Chem 2018; 293:19672-19685. [PMID: 30361442 DOI: 10.1074/jbc.ra118.004673] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/23/2018] [Indexed: 11/06/2022] Open
Abstract
With the rapid increase in cancer survival because of improved diagnosis and therapy in the past decades, cancer treatment-related cardiotoxicity is becoming an urgent healthcare concern. The anthracycline doxorubicin (DOX), one of the most effective chemotherapeutic agents to date, causes cardiomyopathy by inducing cardiomyocyte apoptosis. We demonstrated previously that overexpression of the cyclin-dependent kinase (CDK) inhibitor p21 promotes resistance against DOX-induced cardiomyocyte apoptosis. Here we show that DOX exposure provokes cardiac CDK2 activation and cardiomyocyte cell cycle S phase reentry, resulting in enhanced cellular sensitivity to DOX. Genetic or pharmacological inhibition of CDK2 markedly suppressed DOX-induced cardiomyocyte apoptosis. Conversely, CDK2 overexpression augmented DOX-induced apoptosis. We also found that DOX-induced CDK2 activation in the mouse heart is associated with up-regulation of the pro-apoptotic BCL2 family member BCL2-like 11 (Bim), a BH3-only protein essential for triggering Bax/Bak-dependent mitochondrial outer membrane permeabilization. Further experiments revealed that DOX induces cardiomyocyte apoptosis through CDK2-dependent expression of Bim. Inhibition of CDK2 with roscovitine robustly repressed DOX-induced mitochondrial depolarization. In a cardiotoxicity model of chronic DOX exposure (5 mg/kg weekly for 4 weeks), roscovitine administration significantly attenuated DOX-induced contractile dysfunction and ventricular remodeling. These findings identify CDK2 as a key determinant of DOX-induced cardiotoxicity. CDK2 activation is necessary for DOX-induced Bim expression and mitochondrial damage. Our results suggest that pharmacological inhibition of CDK2 may be a cardioprotective strategy for preventing anthracycline-induced heart damage.
Collapse
Affiliation(s)
- Peng Xia
- From the Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210-1495 and
| | - Yuening Liu
- From the Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210-1495 and
| | - Jingrui Chen
- From the Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210-1495 and
| | - Shelby Coates
- the Department of Biology, Pacific Lutheran University, Tacoma, Washington 98447
| | - David X Liu
- From the Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210-1495 and
| | - Zhaokang Cheng
- From the Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210-1495 and
| |
Collapse
|
23
|
Zha C, Deng W, Fu Y, Tang S, Lan X, Ye Y, Su Y, Jiang L, Chen Y, Huang Y, Ding J, Geng M, Huang M, Wan H. Design, synthesis and biological evaluation of tetrahydronaphthyridine derivatives as bioavailable CDK4/6 inhibitors for cancer therapy. Eur J Med Chem 2018; 148:140-153. [PMID: 29459274 DOI: 10.1016/j.ejmech.2018.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
Abstract
CDK4/6 pathway is an attractive chemotherapeutic target for antitumor drug discovery and development. Herein, we reported the structure-based design and synthesis of a series of novel tetrahydronaphthyridine analogues as selective CDK4/6 inhibitors. Compound 5 was identified as a hit and then systematically structure optimization study was conducted. These efforts led to compound 28, which exhibited excellent in vitro potencies against CDK4/6 enzymatic activity with high selectivity over CDK1, and against Colo-205 cell growth. The compound demonstrated favorable in vitro metabolic and robust mice pharmacokinetic properties. In Colo-205 xenograft models, compound 28 showed potent tumor growth inhibition with acceptable toxic effects, which could serve as a novel anticancer agent for further preclinical study.
Collapse
Affiliation(s)
- Chuantao Zha
- Shanghai HaiHe Pharmaceutical, Co. Ltd, No. 421 Newton Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Wenjia Deng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Fu
- Shanghai HaiHe Pharmaceutical, Co. Ltd, No. 421 Newton Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Shuai Tang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Xiaojing Lan
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Yan Ye
- Shanghai HaiHe Pharmaceutical, Co. Ltd, No. 421 Newton Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Yi Su
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Lei Jiang
- Shanghai HaiHe Pharmaceutical, Co. Ltd, No. 421 Newton Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Yi Chen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Ying Huang
- Shanghai HaiHe Pharmaceutical, Co. Ltd, No. 421 Newton Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Meiyu Geng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Min Huang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China.
| | - Huixin Wan
- Shanghai HaiHe Pharmaceutical, Co. Ltd, No. 421 Newton Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
24
|
Ferreira de Oliveira JMP, Pacheco AR, Coutinho L, Oliveira H, Pinho S, Almeida L, Fernandes E, Santos C. Combination of etoposide and fisetin results in anti-cancer efficiency against osteosarcoma cell models. Arch Toxicol 2017; 92:1205-1214. [PMID: 29270805 DOI: 10.1007/s00204-017-2146-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/14/2017] [Indexed: 01/26/2023]
Abstract
Osteosarcoma chemotherapy is often limited by chemoresistance, resulting in poor prognosis. Combined chemotherapy could, therefore, be used to prevent resistance to chemotherapeutics. Here, the effects of fisetin on osteosarcoma cells were investigated, as well as cytostatic potential in combination with the anti-cancer drug etoposide. For this, different osteosarcoma cell lines were treated with fisetin, with etoposide and with respective combinations. Fisetin was associated with decrease in colony formation in Saos-2 and in U2OS cells but not in MG-63 cells. Notwithstanding, upon evaluation of cellular growth by crystal violet assay, MG-63 and Saos-2 cells showed decreased cell proliferation at 40 and 20 µM fisetin, respectively. Depending on the relative concentrations, fisetin:etoposide combinations showed negative-to-positive interactions on the inhibition of cell proliferation. In addition, fisetin treatment up to 50 µM for 48 h resulted in G2-phase cell cycle arrest. Regardless of the combination, fisetin:etoposide increased % cells in G2-phase and decreased % cells in G1-phase. In addition, mixtures with more positive combined effects induced increased % cells in S-phase. Compared to etoposide treatment, these combinations resulted in decreased levels of cyclins B1 and E1, pointing to the role of these regulators in fisetin-induced cell cycle arrest. In conclusion, these results show that the combination of fisetin with etoposide has higher anti-proliferative effects in osteosarcoma associated with cell cycle arrest, allowing the use of lower doses of the chemotherapeutic agent, which has important implications for osteosarcoma treatment.
Collapse
Affiliation(s)
- José Miguel P Ferreira de Oliveira
- UCIBIO, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, 4150-171, Porto, Portugal
| | - Ana Rita Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Laura Coutinho
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.,CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 4200-319, Porto, Portugal
| | - Sónia Pinho
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Luis Almeida
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- UCIBIO, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Conceição Santos
- Department of Biology, Faculty of Sciences, University of Porto, 4150-171, Porto, Portugal. .,LAQV, REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|