1
|
Frizzera D, Zanni V, Seffin E, de Miranda JR, Marroni F, Annoscia D, Nazzi F. Assessing lethal and sublethal effects of pesticides on honey bees in a multifactorial context. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174892. [PMID: 39034005 DOI: 10.1016/j.scitotenv.2024.174892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The registration of novel pesticides that are subsequently banned because of their unexpected negative effects on non-target species can have a huge environmental impact. Therefore, the pre-emptive evaluation of the potential effects of new compounds is essential. To this aim both lethal and sublethal effects should be assessed in a realistic scenario including the other stressors that can interact with pesticides. However, laboratory studies addressing such interactive effects are rare, while standardized laboratory-based protocols focus on lethal effects and not on sub-lethal effects. We propose to assess both lethal and sublethal effects in a multifactorial context including the other stressors affecting the non-target species. We tested this approach by studying the impact on honey bees of the insecticide sulfoxaflor in combination with a common parasite, a sub-optimal temperature and food deprivation. We studied the survival and the transcriptome of honey bees, to assess both the lethal and the potential sublethal effects of the insecticide, respectively. With this method we show that a field realistic concentration of sulfoxaflor in food does not affect the survival of honey bees; however, the significant impact on some key genes indicates that sublethal effects are possible in a realistically complex scenario. Moreover, our results demonstrate the feasibility and reliability of a novel approach to hazard assessment considering the interactive effects of pesticides. We anticipate our approach to be a starting point for a paradigm shift in toxicology: from an unifactorial, mortality-centered assessment to a multifactorial, comprehensive approach. This is something of the utmost importance to preserve pollination, thus contributing to the sustainability of our food production system.
Collapse
Affiliation(s)
- Davide Frizzera
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Virginia Zanni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Elisa Seffin
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | | | - Fabio Marroni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, via delle Scienze 206, 33100 Udine, Italy.
| |
Collapse
|
2
|
Misiewicz A, Filipiak ZM, Kadyrova K, Bednarska AJ. Combined effects of three insecticides with different modes of action on biochemical responses of the solitary bee Osmia bicornis. CHEMOSPHERE 2024; 359:142233. [PMID: 38705404 DOI: 10.1016/j.chemosphere.2024.142233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Bees are simultaneously exposed to a variety of pesticides, which are often applied in mixtures and can cause lethal and sublethal effects. The combined effects of pesticides, however, are not measured in the current risk assessment schemes. Additionally, the sublethal effects of pesticides on a variety of physiological processes are poorly recognized in bees, especially in non-Apis solitary bees. In this study, we used a full-factorial design to examine the main and interactive effects of three insecticide formulations with different modes of action (Mospilan 20 SP, Sherpa 100 EC, and Dursban 480 EC) on bee biochemical processes. We measured acetylcholinesterase (AChE), glutathione S-transferase (GST) and esterase (EST) activities, as well as a nonenzymatic biomarker associated with energy metabolism, i.e., ATP level. All studied endpoints were affected by Sherpa 100 EC, and the activities of AChE and EST as well as ATP levels were affected by Dursban 480 EC. Moreover, complex interactions between all three insecticides affected ATP levels, showing outcomes that cannot be predicted when testing each insecticide separately. The results indicate that even if interactive effects are sometimes difficult to interpret, there is a need to study such interactions if laboratory-generated toxicity data are to be extrapolated to field conditions.
Collapse
Affiliation(s)
- Anna Misiewicz
- Institute of Nature Conservation, Polish Academy of Sciences, A. Mickiewicza 33, 31-120, Kraków, Poland.
| | - Zuzanna M Filipiak
- Institute of Nature Conservation, Polish Academy of Sciences, A. Mickiewicza 33, 31-120, Kraków, Poland
| | - Kamila Kadyrova
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka J Bednarska
- Institute of Nature Conservation, Polish Academy of Sciences, A. Mickiewicza 33, 31-120, Kraków, Poland
| |
Collapse
|
3
|
Powner MB, Jeffery G. Light stimulation of mitochondria reduces blood glucose levels. JOURNAL OF BIOPHOTONICS 2024; 17:e202300521. [PMID: 38378043 DOI: 10.1002/jbio.202300521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/22/2024]
Abstract
Mitochondria regulate metabolism, but solar light influences its rate. Photobiomodulation (PBM) with red light (670 nm) increases mitochondrial membrane potentials and adenosine triphosphate production and may increase glucose demand. Here we show, with a glucose tolerance test, that PBM of normal subjects significantly reduces blood sugar levels. A 15 min exposure to 670 nm light reduced the degree of blood glucose elevation following glucose intake by 27.7%, integrated over 2 h after the glucose challenge. Maximum glucose spiking was reduced by 7.5%. Consequently, PBM with 670 nm light can be used to reduce blood glucose spikes following meals. This intervention may reduce damaging fluctuations of blood glucose on the body.
Collapse
Affiliation(s)
- Michael B Powner
- Department of Optometry and Visual Science, Centre for Applied Vision Research, School of Health and Psychological Sciences, City, University of London, London, UK
| | - Glen Jeffery
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
4
|
Jiang SD, Wang L, Wang L, Sun J, Wang JJ, Wei DD. Mitochondrial coding genes mediate insecticide tolerance in the oriental fruit fly, Bactrocera dorsalis (Hendel). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105763. [PMID: 38458663 DOI: 10.1016/j.pestbp.2023.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 03/10/2024]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), an invasive insect pest infesting fruits and vegetables, possesses a remarkable capacity for environmental adaptation. The investigation of behind mechanisms of the stress adaptability in B. dorsalis holds significantly practical relevance. Previous studies on the molecular mechanism underlying stress resistance in B. dorsalis have predominantly focused on nuclear-coding genes, with limited exploration on organelle-coding genes. In this study, we assessed alterations in the mitochondrial physiological parameters of B. dorsalis under exposure to malathion, avermectin, and beta-cypermethrin at LD50 dosages. The results showed that all three insecticides were capable of reducing mitochondrial complex IV activity and ATP content. Expression patterns of mitochondrial coding genes across different developmental stages, tissues and insecticide exposures were analyzed by RT-qPCR. The results revealed that these mitochondrial coding genes were expressed in various tissues and at different developmental stages. Particularly noteworthy, atp6, cox2, and cytb exhibited substantial up-regulation in response to malathion and avermectin treatment. Furthermore, RNAi-mediated knockdown of atp6 and cox2 resulted in the increased toxicity of malathion and avermectin against B. dorsalis, and cox2 silencing was also associated with the decreased complex IV activity. These findings suggest that atp6 and cox2 most likely play pivotal roles in mediating tolerance or resistance to malathion and avermectin in B. dorsalis. Our results provide novel insights into the role of mitochondrial coding genes in conferring tolerance to insecticides in B. dorsalis, with practical implications for controlling this pest in the field.
Collapse
Affiliation(s)
- Shi-Die Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Lei Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jun Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
5
|
Wang Y, Yin N, Yang R, Zhao M, Li S, Zhang S, Zhao Y, Faiola F. Development of a simplified human embryonic stem cell-based retinal pre-organoid model for toxicity evaluations of common pollutants. Cutan Ocul Toxicol 2023; 42:264-272. [PMID: 37602871 DOI: 10.1080/15569527.2023.2249988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVE To explore the retinal toxicity of pharmaceuticals and personal care products (PPCPs), flame retardants, bisphenols, phthalates, and polycyclic aromatic hydrocarbons (PAHs) on human retinal progenitor cells (RPCs) and retinal pigment epithelial (RPE) cells, which are the primary cell types at the early stages of retinal development, vital for subsequent functional cell type differentiation, and closely related to retinal diseases. MATERIALS AND METHODS After 23 days of differentiation, human embryonic stem cell (hESC)-based retinal pre-organoids, containing RPCs and RPE cells, were exposed to 10, 100, and 1000 nM pesticides (butachlor, terbutryn, imidacloprid, deltamethrin, pendimethalin, and carbaryl), flame retardants (PFOS, TBBPA, DBDPE, and TDCIPP), PPCPs (climbazole and BHT), and other typical pollutants (phenanthrene, DCHP, and BPA) for seven days. Then, mRNA expression changes were monitored and compared. RESULTS (1) The selected pollutants did not show strong effects at environmental and human-relevant concentrations, although the effects of flame retardants were more potent than those of other categories of chemicals. Surprisingly, some pollutants with distinct structures showed similar adverse effects. (2) Exposure to pollutants induced different degrees of cell detachment, probably due to alterations in extracellular matrix and/or cell adhesion. CONCLUSIONS In this study, we established a retinal pre-organoid model suitable for evaluating multiple pollutants' effects, and pointed out the potential retinal toxicity of flame retardants, among other pollutants. Nevertheless, the potential mechanisms of toxicity and the effects on cell detachment are still unclear and deserve further exploration. Additionally, this model holds promise for screening interventions aimed at mitigating the detrimental effects of these pollutants.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yanyi Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
6
|
Shinhmar H, Hogg C, Jeffery G. Exposure to long wavelength light that improves aged mitochondrial function shifts acute cytokine expression in serum and the retina. PLoS One 2023; 18:e0284172. [PMID: 37478072 PMCID: PMC10361513 DOI: 10.1371/journal.pone.0284172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/08/2023] [Indexed: 07/23/2023] Open
Abstract
Aged mitochondrial function can be improved with long wavelength light exposure. This reduces cellular markers of inflammation and can improve system function from fly through to human. We have previously shown that with age there are increases in cytokine expression in mouse serum. Here, we ask what impact 670nm light has on this expression using a 40 cytokine array in blood serum and retina in C57Bl6 mice. 670nm exposure was delivered daily for a week in 12 month old mice. This shifted patterns of cytokine expression in both serum and retina inducing a selective increase. In serum examples of significant increases were found in IL (interleukins) 1α, IL-7, 10, 16, 17 along with TNF-α and CXCL (chemokines) 9 and 10. In retina the increases were again mainly in some IL's and CXCL's. A few cytokines were reduced by light exposure. Changes in serum cytokines implies that long wavelengths impact systemically even to unexposed tissues deep in the body. In the context of wider literature, increased cytokine expression may be protective. However, their upregulation by light merits further analysis as cytokines upregulation can also be negative and there are probably complex patterns of interaction in the dynamics of their expression.
Collapse
Affiliation(s)
- Harpreet Shinhmar
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Chris Hogg
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
7
|
Kenna D, Graystock P, Gill RJ. Toxic temperatures: Bee behaviours exhibit divergent pesticide toxicity relationships with warming. GLOBAL CHANGE BIOLOGY 2023; 29:2981-2998. [PMID: 36944569 DOI: 10.1111/gcb.16671] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 05/03/2023]
Abstract
Climate change and agricultural intensification are exposing insect pollinators to temperature extremes and increasing pesticide usage. Yet, we lack good quantification of how temperature modulates the sublethal effects of pesticides on behaviours vital for fitness and pollination performance. Consequently, we are uncertain if warming decreases or increases the severity of different pesticide impacts, and whether separate behaviours vary in the direction of response. Quantifying these interactive effects is vital in forecasting pesticide risk across climate regions and informing pesticide application strategies and pollinator conservation. This multi-stressor study investigated the responses of six functional behaviours of bumblebees when exposed to either a neonicotinoid (imidacloprid) or a sulfoximine (sulfoxaflor) across a standardised low, mid, and high temperature. We found the neonicotinoid had a significant effect on five of the six behaviours, with a greater effect at the lower temperature(s) when measuring responsiveness, the likelihood of movement, walking rate, and food consumption rate. In contrast, the neonicotinoid had a greater impact on flight distance at the higher temperature. Our findings show that different organismal functions can exhibit divergent thermal responses, with some pesticide-affected behaviours showing greater impact as temperatures dropped, and others as temperatures rose. We must therefore account for environmental context when determining pesticide risk. Moreover, we found evidence of synergistic effects, with just a 3°C increase causing a sudden drop in flight performance, despite seeing no effect of pesticide at the two lower temperatures. Our findings highlight the importance of multi-stressor studies to quantify threats to insects, which will help to improve dynamic evaluations of population tipping points and spatiotemporal risks to biodiversity across different climate regions.
Collapse
Affiliation(s)
- Daniel Kenna
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Berkshire, UK
| | - Peter Graystock
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Berkshire, UK
| | - Richard J Gill
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Berkshire, UK
| |
Collapse
|
8
|
Martins CAH, Caliani I, D'Agostino A, Di Noi A, Casini S, Parrilli M, Azpiazu C, Bosch J, Sgolastra F. Biochemical responses, feeding and survival in the solitary bee Osmia bicornis following exposure to an insecticide and a fungicide alone and in combination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27636-27649. [PMID: 36383317 PMCID: PMC9995414 DOI: 10.1007/s11356-022-24061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
In agricultural ecosystems, bees are exposed to combinations of pesticides that may have been applied at different times. For example, bees visiting a flowering crop may be chronically exposed to low concentrations of systemic insecticides applied before bloom and then to a pulse of fungicide, considered safe for bees, applied during bloom. In this study, we simulate this scenario under laboratory conditions with females of the solitary bee, Osmia bicornis L. We studied the effects of chronic exposure to the neonicotinoid insecticide, Confidor® (imidacloprid) at a realistic concentration, and of a pulse (1 day) exposure of the fungicide Folicur® SE (tebuconazole) at field application rate. Syrup consumption, survival, and four biomarkers: acetylcholinesterase (AChE), carboxylesterase (CaE), glutathione S-transferase (GST), and alkaline phosphatase (ALP) were evaluated at two different time points. An integrated biological response (IBRv2) index was elaborated with the biomarker results. The fungicide pulse had no impact on survival but temporarily reduced syrup consumption and increased the IBRv2 index, indicating potential molecular alterations. The neonicotinoid significantly reduced syrup consumption, survival, and the neurological activity of the enzymes. The co-exposure neonicotinoid-fungicide did not increase toxicity at the tested concentrations. AChE proved to be an efficient biomarker for the detection of early effects for both the insecticide and the fungicide. Our results highlight the importance of assessing individual and sub-individual endpoints to better understand pesticide effects on bees.
Collapse
Affiliation(s)
- Cátia Ariana Henriques Martins
- Department of Agricultural and Food Sciences, Alma Mater Studiorum Università Di Bologna, Viale Fanin 42, 40127, Bologna, Italy
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - Antonella D'Agostino
- Department of Management and Quantitative Studies, University of Naples Parthenope, Naples, Italy
| | - Agata Di Noi
- Department of Life Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy.
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - Martina Parrilli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum Università Di Bologna, Viale Fanin 42, 40127, Bologna, Italy
| | - Celeste Azpiazu
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de La Barceloneta 37, 08003, Barcelona, Spain
- Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Jordi Bosch
- CREAF, Universitat Autònoma de Barcelona, 08193, Barcelona, Bellaterra, Spain
| | - Fabio Sgolastra
- Department of Agricultural and Food Sciences, Alma Mater Studiorum Università Di Bologna, Viale Fanin 42, 40127, Bologna, Italy
| |
Collapse
|
9
|
Systemic glucose levels are modulated by specific wavelengths in the solar light spectrum that shift mitochondrial metabolism. PLoS One 2022; 17:e0276937. [PMID: 36327250 PMCID: PMC9632789 DOI: 10.1371/journal.pone.0276937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Systemic glucose levels can be modulated with specific solar wavelengths that influence mitochondrial metabolism. Mitochondrial respiration can be modulated using light that shifts ATP production with exceptional conservation of effect across species, from insects to humans. Known wavelengths have opposing effects of photobiomodulation, with longer wavelengths (660–900 nm red/infrared) increasing ATP production, and 420 nm (blue) light suppressing metabolism. Increasing mitochondrial respiration should result in a greater demand for glucose, and a decrease should result in a reduced demand for glucose. Here we have tested the hypothesis that these wavelengths alter circulating glucose concentration. We first established an oral glucose tolerance test curve in a bumblebee model, which showed sustained increase in systemic glucose beyond that seen in mammals, with a gradual normalisation over eight hours. This extended period of increased systemic glucose provided a stable model for glucose manipulation. Bees were starved overnight and given a glucose load in the morning. In the first group glucose levels were examined at hourly intervals. In the second group, bees were additionally exposed to either 670 nm or 420 nm light and their blood glucose examined. Increasing mitochondrial activity with 670 nm light at the peak of circulating glucose, resulted in a significant 50% reduction in concentration measured. Exposure to 420nm light that retards mitochondrial respiration elevated systemic glucose levels by over 50%. The impact of 670 nm and 420 nm on mitochondria is highly conserved. Hence, different wavelengths of visible light may be used to modulate systemic metabolism bidirectionally and may prove an effective agent in mammals.
Collapse
|
10
|
Kam JH, Brod C, Gourde A, Brod M, Jeffery G. From the Lab to the Field: Translating Applications of Near-Infrared Light from Laboratory to the Field to Improve Honeybee Mitochondrial Function and Hive Health. Photobiomodul Photomed Laser Surg 2022; 40:604-612. [DOI: 10.1089/photob.2022.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jaimie Hoh Kam
- Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
11
|
Riveros AJ, Gronenberg W. The flavonoid rutin protects against cognitive impairments by imidacloprid and fipronil. J Exp Biol 2022; 225:276420. [PMID: 36000283 PMCID: PMC9482366 DOI: 10.1242/jeb.244526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022]
Abstract
The ongoing decline of bee populations and its impact on food security demands integrating multiple strategies. Sublethal impairments associated with exposure to insecticides, affecting the individual and the colony levels, have led to insecticide moratoria and bans. However, legislation alone is not sufficient and remains a temporary solution to an evolving market of insecticides. Here, we asked whether bees can be prophylactically protected against sublethal cognitive effects of two major neurotoxic insecticides, imidacloprid and fipronil, with different mechanisms of action. We evaluated the protective effect of the prophylactic administration of the flavonoid rutin, a secondary plant metabolite, present in nectar and pollen, and known for its neuroprotective properties. Following controlled or ad libitum administration of rutin, foragers of the North American bumble bee Bombus impatiens received oral administration of the insecticides at sublethal realistic dosages. Learning acquisition, memory retention and decision speed were evaluated using olfactory absolute conditioning of the proboscis extension response. We show that the insecticides primarily impair acquisition but not retention or speed of the conditioned proboscis extension response. We further show that the administration of the flavonoid rutin successfully protects the bees against impairments produced by acute and chronic administration of insecticides. Our results suggest a new avenue for the protection of bees against sublethal cognitive effects of insecticides. Highlighted Article: Prophylactically feeding bumble bees with rutin protects their learning and memory performance against oral exposure to insecticides with different mechanisms of action.
Collapse
Affiliation(s)
- Andre J Riveros
- Departamento de Biología. Facultad de Ciencias Naturales. Universidad del Rosario. Bogotá, Colombia.,Department of Neuroscience. School of Brain, Mind and Behavior. University of Arizona. Tucson, AZ, USA.,AJR. Departamento de Biología. Facultad de Ciencias Naturales. Universidad del Rosario. Cra. 26 #63B-48. Bogotá, Colombia
| | - Wulfila Gronenberg
- Department of Neuroscience. School of Brain, Mind and Behavior. University of Arizona. Tucson, AZ, USA
| |
Collapse
|
12
|
Neonicotinoids: mechanisms of systemic toxicity based on oxidative stress-mitochondrial damage. Arch Toxicol 2022; 96:1493-1520. [PMID: 35344072 DOI: 10.1007/s00204-022-03267-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/23/2022] [Indexed: 11/02/2022]
Abstract
Neonicotinoids are the most widely used pesticides in the world. However, research studies have shown that it can affect the cognitive abilities and health of non-target bees and other wild pollinators by inducing DNA damage, apoptosis and mitochondrial damage, injure to its central nervous system, and it is even developmentally neurotoxic to mammals and humans, with mitochondria being an important target of neonicotinoids. Therefore, this article reviews the role of mitochondrial morphology, calcium ions (Ca2+) homeostasis, respiratory function, apoptosis, and DNA damage in neonicotinoids-induced systemic toxicity. Additionally, it evaluates the protective effects of various active substances including vitamin C, N-acetylcysteine (NAC), curcumin (CUR), glutathione reduced (GSH), caffeic acid phenethyl ester (CAPE), resveratrol, and thymoquinone (TQ) on neonicotinoids-induced toxicity. This review manuscript found that mitochondria are important targets to neonicotinoids. Neonicotinoids can cause DNA damage, apoptosis, protein oxidation, and lipid peroxidation in non-target organisms by altering mitochondrial Ca2+ homeostasis, inhibiting mitochondrial respiration, and inducing reactive oxygen species (ROS) production. Several active substances (vitamin C, NAC, CUR, GSH, resveratrol, CAPE, and TQ) play a protective role against neonicotinoid-induced systemic toxicity by inhibiting ROS signaling pathways, apoptosis, and lipid peroxidation. This review manuscript emphasizes the importance and urgency of the development of neonicotinoid antidotes, emphasizes the prospect of the application of targeted mitochondrial antidotes, and prospects the development of neonicotinoid antidotes in order to provide some strategies for the prevention of neonicotinoid toxicity.
Collapse
|
13
|
Powner MB, Priestley G, Hogg C, Jeffery G. Improved mitochondrial function corrects immunodeficiency and impaired respiration in neonicotinoid exposed bumblebees. PLoS One 2021; 16:e0256581. [PMID: 34437613 PMCID: PMC8389381 DOI: 10.1371/journal.pone.0256581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023] Open
Abstract
Neonicotinoid pesticides undermine pollinating insects including bumblebees. However, we have previously shown that mitochondrial damage induced by neonicotinoids can be corrected by 670nm light exposure. But we do not know if this protection extends to immunity or what the minimum effective level of 670nm light exposure is necessary for protection. We use whole body bee respiration in vivo as a metric of neonicotinoid damage and assess the amount of light exposure needed to correct it. We reveal that only 1 min of 670nm exposure is sufficient to correct respiratory deficits induced by pesticide and that this also completely repairs damaged immunocompetence measured by haemocyte counts and the antibacterial action of hemolymph. Further, this single 1 min exposure remains effective for 3–6 days. Longer exposures were not more effective. Such data are key for development of protective light strategies that can be delivered by relatively small economic devices placed in hives.
Collapse
Affiliation(s)
- Michael Barry Powner
- Centre for Applied Vision Research, City University of London, London, United Kingdom
| | | | - Chris Hogg
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Almasri H, Tavares DA, Tchamitchian S, Pélissier M, Sené D, Cousin M, Brunet JL, Belzunces LP. Toxicological status changes the susceptibility of the honey bee Apis mellifera to a single fungicidal spray application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42807-42820. [PMID: 33822299 DOI: 10.1007/s11356-021-13747-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
During all their life stages, bees are exposed to residual concentrations of pesticides, such as insecticides, herbicides, and fungicides, stored in beehive matrices. Fungicides are authorized for use during crop blooms because of their low acute toxicity to honey bees. Thus, a bee that might have been previously exposed to pesticides through contaminated food may be subjected to fungicide spraying when it initiates its first flight outside the hive. In this study, we assessed the effects of acute exposure to the fungicide in bees with different toxicological statuses. Three days after emergence, bees were subjected to chronic exposure to the insecticide imidacloprid and the herbicide glyphosate, either individually or in a binary mixture, at environmental concentrations of 0.01 and 0.1 μg/L in food (0.0083 and 0.083 μg/kg) for 30 days. Seven days after the beginning of chronic exposure to the pesticides (10 days after emergence), the bees were subjected to spraying with the fungicide difenoconazole at the registered field dosage. The results showed a delayed significant decrease in survival when honey bees were treated with the fungicide. Fungicide toxicity increased when honey bees were chronically exposed to glyphosate at the lowest concentration, decreased when they were exposed to imidacloprid, and did not significantly change when they were exposed to the binary mixture regardless of the concentration. Bees exposed to all of these pesticide combinations showed physiological disruptions, revealed by the modulation of several life history traits related mainly to metabolism, even when no effect of the other pesticides on fungicide toxicity was observed. These results show that the toxicity of active substances may be misestimated in the pesticide registration procedure, especially for fungicides.
Collapse
Affiliation(s)
- Hanine Almasri
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000, Avignon, France
| | - Daiana Antonia Tavares
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000, Avignon, France
| | - Sylvie Tchamitchian
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000, Avignon, France
| | - Michel Pélissier
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000, Avignon, France
| | - Déborah Sené
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000, Avignon, France
| | - Marianne Cousin
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000, Avignon, France
| | - Jean-Luc Brunet
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000, Avignon, France
| | - Luc P Belzunces
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000, Avignon, France.
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France.
| |
Collapse
|
15
|
Methylene blue can act as an antidote to pesticide poisoning of bumble bee mitochondria. Sci Rep 2021; 11:14710. [PMID: 34282204 PMCID: PMC8289979 DOI: 10.1038/s41598-021-94231-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/07/2021] [Indexed: 11/09/2022] Open
Abstract
The population of bumble bees and other pollinators has considerably declined worldwide, probably, due to the toxic effect of pesticides used in agriculture. Inexpensive and available antidotes can be one of the solutions for the problem of pesticide toxicity for pollinators. We studied the properties of the thiazine dye Methylene blue (MB) as an antidote against the toxic action of pesticides in the bumble bee mitochondria and found that MB stimulated mitochondrial respiration mediated by Complex I of the electron transport chain (ETC) and increased respiration of the mitochondria treated with mitochondria-targeted (chlorfenapyr, hydramethylnon, pyridaben, tolfenpyrad, and fenazaquin) and non-mitochondrial (deltamethrin, metribuzin, and penconazole) pesticides. MB also restored the mitochondrial membrane potential dissipated by the pesticides affecting the ETC. The mechanism of MB action is most probably related to its ability to shunt electron flow in the mitochondrial ETC.
Collapse
|
16
|
Liu P, Wu F, Li H, You J. The neonicotinoid alternative sulfoxaflor causes chronic toxicity and impairs mitochondrial energy production in Chironomus kiinensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105822. [PMID: 33823484 DOI: 10.1016/j.aquatox.2021.105822] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Unintentional environmental consequences caused by neonicotinoids reinforce the development of safer alternatives. Sulfoxaflor is considered such an alternative. However, ecological risk of sulfoxaflor remains largely unknown. Here, we investigated the acute and chronic toxicity of sulfoxaflor to a benthic invertebrate, Chironomus kiinensis. Sulfoxaflor showed lower lethality than imidacloprid to midges, with LC50 values of 84.1 (81.5-87.3), 66.3 (34.8-259), and 47.5 (29.5-306) μg/L for 96-h, 10-d, and 23-d exposures, respectively. Conversely, sulfoxaflor significantly inhibited C. kiinensis growth and emergence in chronic exposures when concentrations were above 20 μg/L. Effects on energy production were assessed through in vitro tests using mitochondria isolated from C. kiinensis. Sulfoxaflor disrupted mitochondrial state-3 respiration, meanwhile, adenosine triphosphatase (ATPase) activity and adenosine triphosphate (ATP) production were both inhibited in a dose-dependent manner. The observed mitochondrial dysfunction may be related to the decreased organismal growth and emergence, which could further influence biodiversity. Interestingly, sulfoxaflor uptake in C. kiinensis was detected even after emergence, implying its potential to be transported along food webs and among environmental compartments. This study provides thorough investigations on the toxicity of an emerging neonicotinoid alternative to Chironomidae. Data derived from the current study are useful to inform future ecological risk assessment and benefit problem-solving to the overall agriculture-environment nexus.
Collapse
Affiliation(s)
- Peipei Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Fan Wu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China.
| | - Huizhen Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Jing You
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| |
Collapse
|
17
|
Shinhmar H, Grewal M, Sivaprasad S, Hogg C, Chong V, Neveu M, Jeffery G. Optically Improved Mitochondrial Function Redeems Aged Human Visual Decline. J Gerontol A Biol Sci Med Sci 2021; 75:e49-e52. [PMID: 32596723 DOI: 10.1093/gerona/glaa155] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
The age spectrum of human populations is shifting toward the older with larger proportions suffering physical decline. Mitochondria influence the pace of aging as the energy they provide for cellular function in the form of adenosine triphosphate (ATP) declines with age. Mitochondrial density is greatest in photoreceptors, particularly cones that have high energy demands and mediate color vision. Hence, the retina ages faster than other organs, with a 70% ATP reduction over life and a significant decline in photoreceptor function. Mitochondria have specific light absorbance characteristics influencing their performance. Longer wavelengths spanning 650->1,000 nm improve mitochondrial complex activity, membrane potential, and ATP production. Here, we use 670-nm light to improve photoreceptor performance and measure this psychophysically in those aged 28-72 years. Rod and cone performance declined significantly after approximately 40 years of age. 670-nm light had no impact in younger individuals, but in those around 40 years and older, significant improvements were obtained in color contrast sensitivity for the blue visual axis (tritan) known to display mitochondrial vulnerability. The red visual axis (protan) improved but not significantly. Rod thresholds also improved significantly in those >40 years. Using specific wavelengths to enhance mitochondrial performance will be significant in moderating the aging process in this metabolically demanding tissue.
Collapse
Affiliation(s)
| | - Manjot Grewal
- Institute of Ophthalmology, University College London, UK
| | | | - Chris Hogg
- Institute of Ophthalmology, University College London, UK
| | | | - Magella Neveu
- Institute of Ophthalmology, University College London, UK
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, UK
| |
Collapse
|
18
|
Camp AA, Lehmann DM. Impacts of Neonicotinoids on the Bumble Bees Bombus terrestris and Bombus impatiens Examined through the Lens of an Adverse Outcome Pathway Framework. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:309-322. [PMID: 33226673 PMCID: PMC8577289 DOI: 10.1002/etc.4939] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/05/2020] [Accepted: 11/18/2020] [Indexed: 05/26/2023]
Abstract
Bumble bees (Bombus sp.) are important pollinators for agricultural systems and natural landscapes and have faced population declines globally in recent decades. Neonicotinoid pesticides have been implicated as one of the reasons for the population reductions in bumble bees and other pollinators due to their widespread use, specificity to the invertebrate nervous system, and toxicity to bees. Adverse outcome pathways (AOPs) are used to describe the mechanism of action of a toxicant through sequential levels of biological organization to understand the key events that occur for a given adverse outcome. We used the AOP framework to organize and present the current literature available on the impacts of neonicotinoids on bumble bees. The present review focuses on Bombus terrestris and B. impatiens, the 2 most commonly studied bumble bees due to their commercial availability. Our review does not seek to describe an AOP for the molecular initiating event shared by neonicotinoids, but rather aims to summarize the current literature and determine data gaps for the Bombus research community to address. Overall, we highlight a great need for additional studies, especially those examining cellular and organ responses in bumble bees exposed to neonicotinoids. Environ Toxicol Chem 2021;40:309-322. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- A. A. Camp
- ORISE Researcher, Oak Ridge Associated Universities, Research Triangle Park, NC 27711, USA
| | - D. M. Lehmann
- Center for Public Health and Environmental Assessment (CPHEA), Public Health & Environmental Systems Division, Exposure Indicators Branch, US - Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
19
|
Chmiel JA, Daisley BA, Pitek AP, Thompson GJ, Reid G. Understanding the Effects of Sublethal Pesticide Exposure on Honey Bees: A Role for Probiotics as Mediators of Environmental Stress. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00022] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
20
|
Weinrich TW, Kam JH, Ferrara BT, Thompson EP, Mitrofanis J, Jeffery G. A day in the life of mitochondria reveals shifting workloads. Sci Rep 2019; 9:13898. [PMID: 31554906 PMCID: PMC6761129 DOI: 10.1038/s41598-019-48383-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondria provide energy for cellular function. We examine daily changing patterns of mitochondrial function and metabolism in Drosophila in vivo in terms of their complex (I-IV) activity, ATP production, glycolysis, and whole fly respiration in the morning, afternoon and night. Complex activity and respiration showed significant and unexpected variation, peaking in the afternoon. However, ATP levels by contrast are >40% greater in the morning and lowest at night when glycolysis peaks. Complex activity modulation was at the protein level with no evidence for differential transcription over the day. Timing differences between increased ATP production and peaks of complex activity may result from more efficient ATP production early in the day leaving complex activity with spare capacity. Optical stimulation of mitochondria is only possible in the mornings when there is such spare capacity. These results provide first evidence of shifts in cellular energy capacity at the organism level. Understanding their translation may be significant to the chosen timing of energy demanding interventions to improve function and health.
Collapse
Affiliation(s)
| | - Jaimie Hoh Kam
- University College Institute of Ophthalmology, London, UK
| | | | | | - John Mitrofanis
- University of Sydney, School of Medical Sciences, Sydney, Australia
| | - Glen Jeffery
- University College Institute of Ophthalmology, London, UK.
| |
Collapse
|
21
|
Kam JH, Weinrich TW, Shinhmar H, Powner MB, Roberts NW, Aboelnour A, Jeffery G. Fundamental differences in patterns of retinal ageing between primates and mice. Sci Rep 2019; 9:12574. [PMID: 31467395 PMCID: PMC6715671 DOI: 10.1038/s41598-019-49121-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/06/2019] [Indexed: 01/09/2023] Open
Abstract
Photoreceptors have high metabolic demands and age rapidly, undermining visual function. We base our understanding mainly on ageing mice where elevated inflammation, extracellular deposition, including that of amyloid beta, and rod and cone photoreceptor loss occur, but cones are not lost in ageing primate although their function declines, revealing that primate and mouse age differently. We examine ageing primate retinae and show elevated stress but low inflammation. However, aged primates have a >70% reduction in adenosine triphosphate (ATP) and a decrease in cytochrome c oxidase. There is a shift in cone mitochondrial positioning and glycolytic activity increases. Bruch’s membrane thickens but unlike in mice, amyloid beta is absent. Hence, reduced ATP may explain cone functional decline in ageing but their retained presence offers the possibility of functional restoration if they can be fuelled appropriately to restore cellular function. This is important because as humans we largely depend on cone function to see and are rarely fully dark adapted. Presence of limited aged inflammation and amyloid beta deposition question some of the therapeutic approaches taken to resolve problems of retinal ageing in humans and the possible lack of success in clinical trials in macular degeneration that have targeted inflammatory agents.
Collapse
Affiliation(s)
- Jaimie Hoh Kam
- University College London, Institute of Ophthalmology, EC1V9EL, London, UK
| | - Tobias W Weinrich
- University College London, Institute of Ophthalmology, EC1V9EL, London, UK
| | - Harpreet Shinhmar
- University College London, Institute of Ophthalmology, EC1V9EL, London, UK
| | - Michael B Powner
- City, University of London, Centre of Applied Vision Research, EC1V0HB, London, UK
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| | - Asmaa Aboelnour
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Glen Jeffery
- University College London, Institute of Ophthalmology, EC1V9EL, London, UK.
| |
Collapse
|
22
|
Hamblin MR, Huang YY, Heiskanen V. Non-mammalian Hosts and Photobiomodulation: Do All Life-forms Respond to Light? Photochem Photobiol 2019; 95:126-139. [PMID: 29882348 PMCID: PMC6286699 DOI: 10.1111/php.12951] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Photobiomodulation (PBM), also known as low-level laser (light) therapy, was discovered over 50 years ago, but only recently has it been making progress toward wide acceptance. PBM originally used red and near-infrared (NIR) lasers, but now other wavelengths and non-coherent light-emitting diodes (LEDs) are being explored. The almost complete lack of side effects makes the conduction of controlled clinical trials relatively easy. Laboratory research has mainly concentrated on mammalian cells (normal or cancer) in culture, and small rodents (mice and rats) as models of different diseases. A sizeable body of work was carried out in the 1970s and 1980s in Russia looking at various bacterial and fungal cells. The present review covers some of these studies and a recent number of papers that have applied PBM to so-called "model organisms." These models include flies (Drosophila), worms (Caenorhabditis elegans), fish (zebrafish) and caterpillars (Galleria). Much knowledge about the genomics and proteomics, and many reagents for these organisms already exist. They are inexpensive to work with and have lower regulatory barriers compared to vertebrate animals. Other researchers have studied different models (snails, sea urchins, Paramecium, toads, frogs and chickens). Plants may respond to NIR light differently from visible light (photosynthesis and photomorphogenesis) but PBM in plants has not been much studied. Veterinarians routinely use PBM to treat non-mammalian patients. The conclusion is that red or NIR light does indeed have significant biologic effects conserved over many different kingdoms, and perhaps it is true that "all life-forms respond to light."
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | | |
Collapse
|
23
|
Non-target toxicity of novel insecticides. Arh Hig Rada Toksikol 2018; 69:86-102. [PMID: 29990301 DOI: 10.2478/aiht-2018-69-3111] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 01/04/2023] Open
Abstract
Humans have used insecticides since ancient times. The spectrum and potency of available insecticidal substances has greatly expanded since the industrial revolution, resulting in widespread use and unforeseen levels of synthetic chemicals in the environment. Concerns about the toxic effects of these new chemicals on non-target species became public soon after their appearance, which eventually led to the restrictions of use. At the same time, new, more environmentally-friendly insecticides have been developed, based on naturally occurring chemicals, such as pyrethroids (derivatives of pyrethrin), neonicotinoids (derivatives of nicotine), and insecticides based on the neem tree vegetable oil (Azadirachta indica), predominantly azadirachtin. Although these new substances are more selective toward pest insects, they can still target other organisms. Neonicotinoids, for example, have been implicated in the decline of the bee population worldwide. This review summarises recent literature published on non-target toxicity of neonicotinoids, pyrethroids, and neem-based insecticidal substances, with a special emphasis on neonicotinoid toxicity in honeybees. We also touch upon the effects of pesticide combinations and documented human exposure to these substances.
Collapse
|
24
|
The temporal sequence of improved mitochondrial function on the dynamics of respiration, mobility, and cognition in aged Drosophila. Neurobiol Aging 2018; 70:140-147. [PMID: 30007163 DOI: 10.1016/j.neurobiolaging.2018.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
Abstract
Aging is associated with mitochondrial decline and reduced adenosine triphosphate (ATP) production leading to cellular dysfunction, but this is improved by long-wavelength light absorbed by cytochrome c oxidase, increasing cytochrome c oxidase activity, ATP production and improving metabolism, sensory motor function, and cognition. Yet, the sequence of these events is unknown. We give old flies a single 90-minute 670-nm pulse and measure temporal sequences of changes in respiration, ATP, motor, and cognitive ability. Respiration increased significantly 20 minutes after light initiation and remained elevated for 4 days. Measurable ATP increased at 1 hour, peaking at 3 hours, and then declined rapidly. Respiration improved before ATP increased, which indicates an early ATP sink. Flies explore environments stereotypically, which is lost with aging but is reestablished for 7 hours after light exposure. However, again, there are improvements before there are peaks in ATP production. Improved mobility and cognitive function persist after ATP levels return to normal. Hence, elevated ATP in age may initiate independent signaling mechanisms that result in improvements in aged metabolism and function.
Collapse
|
25
|
Weinrich TW, Coyne A, Salt TE, Hogg C, Jeffery G. Improving mitochondrial function significantly reduces metabolic, visual, motor and cognitive decline in aged Drosophila melanogaster. Neurobiol Aging 2017; 60:34-43. [PMID: 28917665 DOI: 10.1016/j.neurobiolaging.2017.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/09/2017] [Accepted: 08/18/2017] [Indexed: 01/01/2023]
Abstract
Mitochondria play a major role in aging. Over time, mutations accumulate in mitochondrial DNA leading to reduced adenosine triphosphate (ATP) production and increased production of damaging reactive oxygen species. If cells fail to cope, they die. Reduced ATP will result in declining cellular membrane potentials leading to reduced central nervous system function. However, aged mitochondrial function is improved by long wavelength light (670 nm) absorbed by cytochrome c oxidase in mitochondrial respiration. In Drosophila, lifelong 670-nm exposure extends lifespan and improves aged mobility. Here, we ask if improved mitochondrial metabolism can reduce functional senescence in metabolism, sensory, locomotor, and cognitive abilities in old flies exposed to 670 nm daily for 1 week. Exposure significantly increased cytochrome c oxidase activity, whole body energy storage, ATP and mitochondrial DNA content, and reduced reactive oxygen species. Retinal function and memory were also significantly improved to levels found in 2-week-old flies. Mobility improved by 60%. The mode of action is likely related to improved energy homeostasis increasing ATP availability for ionic ATPases critical for maintenance of neuronal membrane potentials. 670-nm light exposure may be a simple route for resolving problems of aging.
Collapse
Affiliation(s)
| | - Ariathney Coyne
- University College London, Institute of Ophthalmology, London, UK
| | - Thomas E Salt
- University College London, Institute of Ophthalmology, London, UK; Neurexpert Ltd., London, UK
| | - Christopher Hogg
- University College London, Institute of Ophthalmology, London, UK
| | - Glen Jeffery
- University College London, Institute of Ophthalmology, London, UK.
| |
Collapse
|
26
|
El Massri N, Lemgruber AP, Rowe IJ, Moro C, Torres N, Reinhart F, Chabrol C, Benabid AL, Mitrofanis J. Photobiomodulation-induced changes in a monkey model of Parkinson’s disease: changes in tyrosine hydroxylase cells and GDNF expression in the striatum. Exp Brain Res 2017; 235:1861-1874. [DOI: 10.1007/s00221-017-4937-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/27/2017] [Indexed: 11/30/2022]
|
27
|
Sivapathasuntharam C, Sivaprasad S, Hogg C, Jeffery G. Aging retinal function is improved by near infrared light (670 nm) that is associated with corrected mitochondrial decline. Neurobiol Aging 2017; 52:66-70. [PMID: 28129566 PMCID: PMC5364001 DOI: 10.1016/j.neurobiolaging.2017.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/01/2017] [Accepted: 01/02/2017] [Indexed: 11/01/2022]
Abstract
Aging is associated with cellular decline and reduced function, partly mediated by mitochondrial compromise. However, aged mitochondrial function is corrected with near infrared light (670 nm) that improves their membrane potentials and adenosine triphosphate production and also reduces age-related inflammation. We ask if 670 nm light can also improve declining retinal function. Electroretinograms were measured in 2-, 7-, and 12-month old C57BL/6 mice. Significant age-related declines were measured in the photoreceptor generated a-wave and the postreceptoral b-wave. Seven- and 12-month-old mice were exposed to 670 nm for 15 minutes daily over 1 month. These showed significant improved retinal function in both waves of approximately 25% but did not reach levels found in 2-month-old animals. Our data suggest, 670 nm light can significantly improve aged retinal function, perhaps by providing additional adenosine triphosphate production for photoreceptor ion pumps or reduced aged inflammation. This may have implications for the treatment of retinal aging and age-related retinal disease, such as macular degeneration.
Collapse
Affiliation(s)
| | | | | | - Glen Jeffery
- University College London Institute of Ophthalmology, London, UK.
| |
Collapse
|