1
|
Yang K, Nong K, Xu F, Chen Y, Yu J, Lin L, Hu X, Wang Y, Li T, Dong J, Wang J. Discovery of Novel N-Hydroxy-1,2,4-oxadiazole-5-formamides as ASM Direct Inhibitors for the Treatment of Atherosclerosis. J Med Chem 2023; 66:2681-2698. [PMID: 36786607 DOI: 10.1021/acs.jmedchem.2c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Acid sphingomyelinase (ASM), which regulates sphingolipid metabolism and lipid signaling, has been considered as a new potential target for the treatment of atherosclerosis. In this study, a series of benzene-heterocyclic-based ASM inhibitors were rationally designed, synthesized, and screened for the first time. As a result, some compounds showed favorable inhibitory activity against recombinant human ASM. The detailed SARs are also discussed. Compound 4i revealed good pharmacokinetic data and in vivo inhibitory activity against ASM by reducing the level of ceramide in mice plasma and liver. Pharmacodynamic studies confirmed that 4i could lessen lipid plaques in the aortic arch and aorta and reduce plasma ceramide concentration and Ox-LDL levels. Moreover, 4i was found to significantly decrease LPS-induced and Ox-LDL-induced cell inflammation by regulating the levels of ceramide and sphingomyelin. Overall, this study preliminarily demonstrates that ASM may be an effective target against atherosclerosis for the first time.
Collapse
Affiliation(s)
- Kan Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Keyi Nong
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.,State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Fei Xu
- Department of Biochemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yu Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinying Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lizhi Lin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Hu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Youzhi Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jibin Dong
- Department of Biochemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Berkowitz L, Cabrera-Reyes F, Salazar C, Ryff CD, Coe C, Rigotti A. Sphingolipid Profiling: A Promising Tool for Stratifying the Metabolic Syndrome-Associated Risk. Front Cardiovasc Med 2022; 8:785124. [PMID: 35097004 PMCID: PMC8795367 DOI: 10.3389/fcvm.2021.785124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Metabolic syndrome (MetS) is a multicomponent risk condition that reflects the clustering of individual cardiometabolic risk factors related to abdominal obesity and insulin resistance. MetS increases the risk for cardiovascular diseases (CVD) and type 2 diabetes mellitus (T2DM). However, there still is not total clinical consensus about the definition of MetS, and its pathophysiology seems to be heterogeneous. Moreover, it remains unclear whether MetS is a single syndrome or a set of diverse clinical conditions conferring different metabolic and cardiovascular risks. Indeed, traditional biomarkers alone do not explain well such heterogeneity or the risk of associated diseases. There is thus a need to identify additional biomarkers that may contribute to a better understanding of MetS, along with more accurate prognosis of its various chronic disease risks. To fulfill this need, omics technologies may offer new insights into associations between sphingolipids and cardiometabolic diseases. Particularly, ceramides –the most widely studied sphingolipid class– have been shown to play a causative role in both T2DM and CVD. However, the involvement of simple glycosphingolipids remains controversial. This review focuses on the current understanding of MetS heterogeneity and discuss recent findings to address how sphingolipid profiling can be applied to better characterize MetS-associated risks.
Collapse
Affiliation(s)
- Loni Berkowitz
- Department of Nutrition, Diabetes and Metabolism & Center of Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Loni Berkowitz
| | - Fernanda Cabrera-Reyes
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian Salazar
- Department of Nutrition, Diabetes and Metabolism & Center of Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carol D. Ryff
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, United States
| | - Christopher Coe
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, United States
| | - Attilio Rigotti
- Department of Nutrition, Diabetes and Metabolism & Center of Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Sphingolipids in Hematopoiesis: Exploring Their Role in Lineage Commitment. Cells 2021; 10:cells10102507. [PMID: 34685487 PMCID: PMC8534120 DOI: 10.3390/cells10102507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022] Open
Abstract
Sphingolipids, associated enzymes, and the sphingolipid pathway are implicated in complex, multifaceted roles impacting several cell functions, such as cellular homeostasis, apoptosis, cell differentiation, and more through intrinsic and autocrine/paracrine mechanisms. Given this broad range of functions, it comes as no surprise that a large body of evidence points to important functions of sphingolipids in hematopoiesis. As the understanding of the processes that regulate hematopoiesis and of the specific characteristics that define each type of hematopoietic cells is being continuously refined, the understanding of the roles of sphingolipid metabolism in hematopoietic lineage commitment is also evolving. Recent findings indicate that sphingolipid alterations can modulate lineage commitment from stem cells all the way to megakaryocytic, erythroid, myeloid, and lymphoid cells. For instance, recent evidence points to the ability of de novo sphingolipids to regulate the stemness of hematopoietic stem cells while a substantial body of literature implicates various sphingolipids in specialized terminal differentiation, such as thrombopoiesis. This review provides a comprehensive discussion focused on the mechanisms that link sphingolipids to the commitment of hematopoietic cells to the different lineages, also highlighting yet to be resolved questions.
Collapse
|
4
|
Gkouskou K, Vasilogiannakopoulou T, Andreakos E, Davanos N, Gazouli M, Sanoudou D, Eliopoulos AG. COVID-19 enters the expanding network of apolipoprotein E4-related pathologies. Redox Biol 2021; 41:101938. [PMID: 33730676 PMCID: PMC7943392 DOI: 10.1016/j.redox.2021.101938] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/12/2021] [Accepted: 03/05/2021] [Indexed: 12/18/2022] Open
Abstract
COVID-19 incidence and case fatality rates (CFR) differ among ethnicities, stimulating efforts to pinpoint genetic factors that could explain these phenomena. In this regard, the multiallelic apolipoprotein E (APOE) gene has recently been interrogated in the UK biobank cohort, demonstrating associations of the APOE ε4/ε4 genotype with COVID-19 severity and mortality. The frequency of the ε4 allele and thus the distribution of APOE ε4/ε4 genotype may differ among populations. We have assessed APOE genotypes in 1638 Greek individuals, based on haplotypes derived from SNP rs7412 and rs429358 and found reduced frequency of ε4/ε4 compared to the British cohort. Herein we discuss this finding in relation to CFR and hypothesize on the potential mechanisms linking APOE ε4/ε4 to severe COVID-19. We postulate that the metabolic deregulation ensued by APOE4, manifested by elevated cholesterol and oxidized lipoprotein levels, may be central to heightened pneumocyte susceptibility to infection and to exaggerated lung inflammation associated with the ε4/ε4 genotype. We also discuss putative dietary and pharmacological approaches for the prevention and management of COVID-19 in APOE ε4/ε4 individuals.
Collapse
Affiliation(s)
- Kalliopi Gkouskou
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Embiodiagnostics Biology Research Company, Heraklion, Crete, Greece.
| | | | | | | | - Maria Gazouli
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Sanoudou
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Greece; Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aristides G Eliopoulos
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
5
|
Karjalainen JP, Mononen N, Hutri-Kähönen N, Lehtimäki M, Hilvo M, Kauhanen D, Juonala M, Viikari J, Kähönen M, Raitakari O, Laaksonen R, Lehtimäki T. New evidence from plasma ceramides links apoE polymorphism to greater risk of coronary artery disease in Finnish adults. J Lipid Res 2019; 60:1622-1629. [PMID: 31270131 PMCID: PMC6718445 DOI: 10.1194/jlr.m092809] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/03/2019] [Indexed: 12/20/2022] Open
Abstract
apoE, a key regulator of plasma lipids, mediates altered functionalities in lipoprotein metabolism and thus affects the risk of coronary artery disease (CAD). The significance of different apoE polymorphisms remains unclear; although the ε4 allele is clearly associated with increased cholesterol levels (which inform CAD risk), direct studies about apoE polymorphisms on CAD risk and development have yielded controversial results. Furthermore, certain species of ceramides-complex lipids abundant in plasma LDL-are markers of increased risk of myocardial infarction and cardiovascular death. Using a high-throughput MS approach, we quantified 30 molecular plasma ceramide species from a cohort of 2,160 apoE-genotyped (rs7412, rs429358) young adults enrolled in the population-based Cardiovascular Risk in Young Finns Study. We then searched this lipidome data set to identify new indications of pathways influenced by apoE polymorphisms and possibly related to CAD risk. This approach revealed a previously unreported association between apoE polymorphism and a consistently documented high-risk CAD marker, Cer(d18:1/16:0). Compared with the apoE ε3/3 reference group, plasma levels of apoE ε4 were elevated and those of apoE ε2 were lowered in all subjects without evidence of apoE-by-sex interactions. apoE associated with seven ceramides that are connected to atherogenically potent macrophages and/or lipoprotein particles; these associations could indicate a plausible linkage between apoE polymorphism and ceramide metabolism, leading to adverse plasma LDL metabolism and atherogenesis. In conclusion, new evidence from plasma ceramides links apoE polymorphism with an increased risk of CAD and extends our understanding of the role of apoE in health and disease.
Collapse
Affiliation(s)
- Juho-Pekka Karjalainen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nina Hutri-Kähönen
- Department of Paediatrics Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Miikael Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | | | - Markus Juonala
- Department of Medicine, University of Turku, and Division of Medicine, Turku University Hospital, Turku, Finland; Murdoch Children's Research Institute Melbourne, Australia
| | | | - Mika Kähönen
- Department of Clinical Physiology Tampere University Hospital, and Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Raitakari
- Centre for Population Health Research University of Turku and Turku University Hospital, Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, and Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Reijo Laaksonen
- Zora Biosciences Oy Espoo, Finland; Finnish Cardiovascular Research Center Faculty of Medicine and Health Technology, Tampere University and Finnish Clinical Biobank, Tampere University Hospital, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
6
|
Asare GA, Owusu-Boateng E, Asiedu B, Amoah BY, Essendoh E, Otoo RY. Oxidised low-density lipoprotein, a possible distinguishing lipid profile biomolecule between prostate cancer and benign prostatic hyperplasia. Andrologia 2019; 51:e13321. [PMID: 31145504 DOI: 10.1111/and.13321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) and prostate cancer (PCa) share common conditions such as lower urinary tract symptoms (LUTS) and dyslipidaemia. Whether an extensive lipid profile analysis could discriminate between BPH and PCa was the objective. Thirty-six (36) BPH and twenty (20) PCa outpatients of a urology clinic plus forty (40) controls without LUTS, but normal PSA, were recruited. Body mass index (BMI), lipid profile (total cholesterol [CHOL], triglycerides [TG], high-density lipoprotein [HDL], very-low-density lipoprotein [VLDL], low-density lipoprotein [LDL] and Castelli's risk index I [CR I] [TC/HDL]), oxidised LDL, apolipoprotein E, ceramide and PSA were determined. Mean ages for BPH, PCa and control were 69 ± 13, 67 ± 10 and 53 ± 7 years respectively. Most parameters apart from BMI and HDL were significantly different compared to the control group. oxLDL for BPH versus control, PCa versus control and BPH versus PCa was significant (p < 0.001, p = 0.02 and p < 0.001 respectively). Ceramide showed significant group differences. Between BPH and PCa, total cholesterol, LDL and Apo E were significantly different (p = 0.00, p = 0.01 and p = 0.03 respectively). Apo E could potentially be a discriminating biomarker. Receiver operating characteristic curves for TPSA, Apo E and oxLDL demonstrated sensitivity of 69.44 and specificity of 88.24 for oxLDL, hence more discriminatory.
Collapse
Affiliation(s)
- George Awuku Asare
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences (SBAHS), University of Ghana, Korle Bu, Accra, Ghana
| | - Emmanunella Owusu-Boateng
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences (SBAHS), University of Ghana, Korle Bu, Accra, Ghana
| | - Bernice Asiedu
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences (SBAHS), University of Ghana, Korle Bu, Accra, Ghana
| | - Brodrick Yeboah Amoah
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences (SBAHS), University of Ghana, Korle Bu, Accra, Ghana
| | - Eric Essendoh
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences (SBAHS), University of Ghana, Korle Bu, Accra, Ghana
| | - Rabin Yitzhak Otoo
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences (SBAHS), University of Ghana, Korle Bu, Accra, Ghana
| |
Collapse
|
7
|
Dawodu D, Patecki M, Hegermann J, Dumler I, Haller H, Kiyan Y. oxLDL inhibits differentiation and functional activity of osteoclasts via scavenger receptor-A mediated autophagy and cathepsin K secretion. Sci Rep 2018; 8:11604. [PMID: 30072716 PMCID: PMC6072764 DOI: 10.1038/s41598-018-29963-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022] Open
Abstract
Resorptive activity of osteoclasts is important for maintaining bone homeostasis. Endogenous compounds such as oxidized low density lipoprotein (oxLDL) have been shown to disturb this activity. While some studies have investigated the effects of oxLDL on the process of osteoclastogenesis, the underlying mechanism are not fully understood. We show here that oxLDL concentrations of ~10-25 µg protein (0.43-1.0 µM MDA/mg protein) completely blocked the formation of functional osteoclasts. The underlying mechanism implies an inhibition of autophagy that in turn leads to a decreased fusion of cathepsin K (CatK)-loaded lysosomal vesicles with the ruffled border membrane. As result, a lower secretion of CatK and impaired protonation of the resorption lacunae by vacuolar-ATPase (v-ATPase) is observed in the presence of oxLDL. We demonstrate that scavenger receptor A (SR-A) mediates oxLDL effects on osteoclastogenesis and repressing this receptor partially rescued oxLDL effects. Collectively, our data provides an insight into the possible mechanism of oxLDL on osteoclastogenesis suggesting that it does not perturb the packaging of CatK and v-ATPase (V-a3) in the secretory lysosome, but inhibits the fusion of these lysosomes to the ruffled border. The relevance of our findings suggests a distinct link between oxLDL, autophagy and osteoclastogenesis.
Collapse
Affiliation(s)
- Damilola Dawodu
- Department of Nephrology and Hypertensiology, Hannover Medical School, Hannover, Germany
| | - Margret Patecki
- Department of Nephrology and Hypertensiology, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Inna Dumler
- Department of Nephrology and Hypertensiology, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertensiology, Hannover Medical School, Hannover, Germany
| | - Yulia Kiyan
- Department of Nephrology and Hypertensiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
8
|
Huang C, Huang Y, Zhou Y, Nie W, Pu X, Xu X, Zhu J. Exosomes derived from oxidized LDL-stimulated macrophages attenuate the growth and tube formation of endothelial cells. Mol Med Rep 2018; 17:4605-4610. [PMID: 29328492 DOI: 10.3892/mmr.2018.8380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 11/02/2017] [Indexed: 11/05/2022] Open
Abstract
Oxidized low-density lipoprotein (oxLDL) has a critical role in the development of atherosclerosis. The participation of oxLDL‑stimulated macrophages has been well‑established in atherosclerosis, however the underlying mechanisms are unclear. Macrophage‑derived exosomes are actively released and are involved in numerous physiological and pathological processes. However, the function of exosomes secreted by oxLDL‑stimulated macrophages in atherosclerosis remains unknown. Exosomes from oxLDL‑treated macrophages and controls were co‑cultured with endothelial cells and the exosomes were taken up by endocytosis. Cell Counting Kit‑8 and tube formation assay results revealed that exosomes derived from oxLDL‑stimulated macrophages reduced the growth and tube formation ability of endothelial cells. Suppression of exosomal secretion by oxLDL‑stimulated macrophages rescued the growth and tube formation ability of endothelial cells. Therefore, the results of the present study indicate that oxLDL‑stimulated macrophages may attenuate the growth and tube formation of endothelial cells, at least in part through exosomal transfer. This may provide novel targets for the development of atherosclerosis therapeutics.
Collapse
Affiliation(s)
- Chaoyang Huang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yuan Huang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yijiang Zhou
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Wencheng Nie
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiangyuan Pu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaolei Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jianhua Zhu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|