1
|
Bende G, Zsindely N, Laczi K, Kristóffy Z, Papp C, Farkas A, Tóth L, Sáringer S, Bodai L, Rákhely G, Marx F, Galgóczy L. The Neosartorya (Aspergillus) fischeri antifungal protein NFAP2 has low potential to trigger resistance development in Candida albicans in vitro. Microbiol Spectr 2024:e0127324. [PMID: 39560388 DOI: 10.1128/spectrum.01273-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Due to the increase in the number of drug-resistant Candida albicans strains, new antifungal compounds with limited potential for the development of resistance are urgently needed. NFAP2, an antifungal protein (AFP) secreted by Neosartorya (Aspergillus) fischeri, is a promising candidate. We investigated the ability of C. albicans to develop resistance to NFAP2 in a microevolution experiment compared with generic fluconazole (FLC). C. albicans adapted to only 1× minimum inhibitory concentration (MIC) of NFAP2, which can be considered tolerance rather than resistance, compared with 32× MIC of FLC. Genome analysis revealed non-silent mutations in only two genes in NFAP2-tolerant strains and in several genes in FLC-resistant strains. Tolerance development to NFAP2 did not influence cell morphology. The susceptibility of NFAP2-tolerant strains did not change to FLC, amphotericin B, micafungin, and terbinafine. These strains did not show altered susceptibility to AFPs from Penicillium chrysogenum, except one which had less susceptibility to Penicillium chrysogenum antifungal protein B. FLC-resistant strains had decreased susceptibility to terbinafine and NFAP2, but not to other drugs and AFPs from P. chrysogenum. NFAP2-tolerant and FLC-resistant strains showed decreased and increased NFAP2 binding and uptake, respectively. The development of tolerance to NFAP2 decreased tolerance to cell wall, heat, and UV stresses. The development of FLC resistance increased tolerance to cell wall stress and decreased tolerance to heat and UV stresses. Tolerance to NFAP2 did not have significant metabolic fitness cost and could not increase virulence, compared with resistance to FLC.IMPORTANCEDue to the increasing number of (multi)drug-resistant strains, only a few effective antifungal drugs are available to treat infections caused by opportunistic Candida species. Therefore, the incidence of hard-to-treat candidiasis has increased dramatically in the past decade, and the demand to identify antifungal compounds with minimal potential to trigger resistance is substantial. The features of NFAP2 make it a promising candidate for the topical treatment of Candida infection. Data on the development of resistance to antifungal proteins in Candida albicans are lacking. In this study, we provide evidence that NFAP2 has a low potential to trigger resistance in C. albicans in vitro, and the developed tolerance to NFAP2 is not associated with severe phenotypic changes compared with development of resistance to generic fluconazole. These results suggest the slow emergence of NFAP2-resistant Candida strains, and NFAP2 can reliably be used long-term in the clinic.
Collapse
Affiliation(s)
- Gábor Bende
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Krisztián Laczi
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, HUN-REN Biological Research Center, Szeged, Hungary
| | - Zsolt Kristóffy
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Attila Farkas
- Institute of Plant Biology, HUN-REN Biological Research Center, Szeged, Hungary
| | - Liliána Tóth
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Szabolcs Sáringer
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Institute of Biophysics, HUN-REN Biological Research Center, Szeged, Hungary
| | - Florentine Marx
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - László Galgóczy
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| |
Collapse
|
2
|
Holzknecht J, Marx F. Navigating the fungal battlefield: cysteine-rich antifungal proteins and peptides from Eurotiales. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1451455. [PMID: 39323611 PMCID: PMC11423270 DOI: 10.3389/ffunb.2024.1451455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024]
Abstract
Fungi are ubiquitous in the environment and play a key role in the decomposition and recycling of nutrients. On the one hand, their special properties are a great asset for the agricultural and industrial sector, as they are used as source of nutrients, producers of enzymes, pigments, flavorings, and biocontrol agents, and in food processing, bio-remediation and plant growth promotion. On the other hand, they pose a serious challenge to our lives and the environment, as they are responsible for fungal infections in plants, animals and humans. Although host immunity opposes invading pathogens, certain factors favor the manifestation of fungal diseases. The prevalence of fungal infections is on the rise, and there is an alarming increase in the resistance of fungal pathogens to approved drugs. The limited number of antimycotics, the obstacles encountered in the development of new drugs due to the poor tolerability of antifungal agents in patients, the limited number of unique antifungal targets, and the low species specificity contribute to the gradual depletion of the antifungal pipeline and newly discovered antifungal drugs are rare. Promising candidates as next-generation therapeutics are antimicrobial proteins and peptides (AMPs) produced by numerous prokaryotic and eukaryotic organisms belonging to all kingdom classes. Importantly, filamentous fungi from the order Eurotiales have been shown to be a rich source of AMPs with specific antifungal activity. A growing number of published studies reflects the efforts made in the search for new antifungal proteins and peptides (AFPs), their efficacy, species specificity and applicability. In this review, we discuss important aspects related to fungi, their impact on our life and issues involved in treating fungal infections in plants, animals and humans. We specifically highlight the potential of AFPs from Eurotiales as promising alternative antifungal therapeutics. This article provides insight into the structural features, mode of action, and progress made toward their potential application in a clinical and agricultural setting. It also identifies the challenges that must be overcome in order to develop AFPs into therapeutics.
Collapse
Affiliation(s)
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Innsbruck Medical University,
Innsbruck, Austria
| |
Collapse
|
3
|
Giner-Llorca M, Locascio A, Del Real JA, Marcos JF, Manzanares P. Novel findings about the mode of action of the antifungal protein PeAfpA against Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2023; 107:6811-6829. [PMID: 37688596 PMCID: PMC10589166 DOI: 10.1007/s00253-023-12749-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
Antifungal proteins (AFPs) from filamentous fungi offer the potential to control fungal infections that threaten human health and food safety. AFPs exhibit broad antifungal spectra against harmful fungi, but limited knowledge of their killing mechanism hinders their potential applicability. PeAfpA from Penicillium expansum shows strong antifungal potency against plant and human fungal pathogens and stands above other AFPs for being active against the yeast Saccharomyces cerevisiae. We took advantage of this and used a model laboratory strain of S. cerevisiae to gain insight into the mode of action of PeAfpA by combining (i) transcriptional profiling, (ii) PeAfpA sensitivity analyses of deletion mutants available in the S. cerevisiae genomic deletion collection and (iii) cell biology studies using confocal microscopy. Results highlighted and confirmed the role of the yeast cell wall (CW) in the interaction with PeAfpA, which can be internalized through both energy-dependent and independent mechanisms. The combined results also suggest an active role of the CW integrity (CWI) pathway and the cAMP-PKA signalling in the PeAfpA killing mechanism. Besides, our studies revealed the involvement of phosphatidylinositol metabolism and the participation of ROX3, which codes for the subunit 19 of the RNA polymerase II mediator complex, in the yeast defence strategy. In conclusion, our study provides clues about both the killing mechanism of PeAfpA and the fungus defence strategies against the protein, suggesting also targets for the development of new antifungals. KEY POINTS: • PeAfpA is a cell-penetrating protein with inhibitory activity against S. cerevisiae. • The CW integrity (CWI) pathway is a key player in the PeAfpA killing mechanism. • Phosphatidylinositol metabolism and ROX3 are involved in the yeast defence strategy.
Collapse
Affiliation(s)
- Moisés Giner-Llorca
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Antonella Locascio
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Javier Alonso Del Real
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Jose F Marcos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Paloma Manzanares
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain.
| |
Collapse
|
4
|
Shaaban R, Elnaggar MS, Khalil N, Singab ANB. A comprehensive review on the medicinally valuable endosymbiotic fungi Penicillium chrysogenum. Arch Microbiol 2023; 205:240. [PMID: 37195521 DOI: 10.1007/s00203-023-03580-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Recently, it has been shown that metabolites derived from endosymbiotic fungi attracted high attention, since plenty of them have promising pharmaceutical applications. The variation of metabolic pathways in fungi is considered an optimistic source for lead compounds. Among these classes are terpenoids, alkaloids, polyketides, and steroids, which have proved several pharmacological activities, including antitumor, antimicrobial, anti-inflammatory, and antiviral actions. This review concludes the major isolated compounds from different strains of Penicillium chrysogenum during the period 2013-2023, together with their reported pharmacological activities. From literature surveys, 277 compounds have been identified from P. chrysogenum, which has been isolated as an endosymbiotic fungus from different host organisms, with specific attention paid to those showing marked biological activities that could be useful in the pharmaceutical industry in the future. This review represents documentation for a valuable reference for promising pharmaceutical applications or further needed studies on P. chrysogenum.
Collapse
Affiliation(s)
- Rawan Shaaban
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Mohamed S Elnaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt
- Center of Drug Discovery Research and Development, Ain-Shams University, Cairo, 11566, Egypt
| | - Noha Khalil
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt.
- Center of Drug Discovery Research and Development, Ain-Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
5
|
Akkuş-Dağdeviren ZB, Saleh A, Schöpf C, Truszkowska M, Bratschun-Khan D, Fürst A, Seybold A, Offterdinger M, Marx F, Bernkop-Schnürch A. Phosphatase-degradable nanoparticles: A game-changing approach for the delivery of antifungal proteins. J Colloid Interface Sci 2023; 646:290-300. [PMID: 37196502 DOI: 10.1016/j.jcis.2023.05.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
HYPOTHESIS Polyphosphate nanoparticles as phosphatase-degradable carriers for Penicillium chrysogenum antifungal protein (PAF) can enhance the antifungal activity of the protein against Candida albicans biofilm. EXPERIMENTS PAF-polyphosphate (PP) nanoparticles (PAF-PP NPs) were obtained through ionic gelation. The resulting NPs were characterized in terms of their particle size, size distribution and zeta potential. Cell viability and hemolysis studies were carried out in vitro on human foreskin fibroblasts (Hs 68 cells) and human erythrocytes, respectively. Enzymatic degradation of NPs was investigated by monitoring release of free monophosphates in the presence of isolated as well as C. albicans-derived phosphatases. In parallel, shift in zeta potential of PAF-PP NPs as a response to phosphatase stimuli was determined. Diffusion of PAF and PAF-PP NPs through C. albicans biofilm matrix was analysed by fluorescence correlation spectroscopy (FCS). Antifungal synergy was evaluated on C. albicans biofilm by determining the colony forming units (CFU). FINDINGS PAF-PP NPs were obtained with a mean size of 300.9 ± 4.6 nm and a zeta potential of -11.2 ± 2.8 mV. In vitro toxicity assessments revealed that PAF-PP NPs were highly tolerable by Hs 68 cells and human erythrocytes similar to PAF. Within 24 h, 21.9 ± 0.4 μM of monophosphate was released upon incubation of PAF-PP NPs having final PAF concentration of 156 μg/ml with isolated phosphatase (2 U/ml) leading to a shift in zeta potential up to -0.7 ± 0.3 mV. This monophosphate release from PAF-PP NPs was also observed in the presence of C. albicans-derived extracellular phosphatases. The diffusivity of PAF-PP NPs within 48 h old C. albicans biofilm matrix was similar to that of PAF. PAF-PP NPs enhanced antifungal activity of PAF against C. albicans biofilm decreasing the survival of the pathogen up to 7-fold in comparison to naked PAF. In conclusion, phosphatase-degradable PAF-PP NPs hold promise as nanocarriers to augment the antifungal activity of PAF and enable its efficient delivery to C. albicans cells for the potential treatment of Candida infections.
Collapse
Affiliation(s)
- Zeynep Burcu Akkuş-Dağdeviren
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ahmad Saleh
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmacy, Universitas Mandala Waluya, A.H.Nasution, Kendari 93231, Southeast Sulawesi, Indonesia
| | - Cristina Schöpf
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Martyna Truszkowska
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Doris Bratschun-Khan
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Anna Seybold
- Department of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Martin Offterdinger
- Division of Neurobiochemistry, Biooptics, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
6
|
Giner-Llorca M, Gallego del Sol F, Marcos JF, Marina A, Manzanares P. Rationally designed antifungal protein chimeras reveal new insights into structure-activity relationship. Int J Biol Macromol 2023; 225:135-148. [PMID: 36460243 DOI: 10.1016/j.ijbiomac.2022.11.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Antifungal proteins (AFPs) are promising antimicrobial compounds that represent a feasible alternative to fungicides. Penicillium expansum encodes three phylogenetically distinct AFPs (PeAfpA, PeAfpB and PeAfpC) which show different antifungal profiles and fruit protection effects. To gain knowledge about the structural determinants governing their activity, we solved the crystal structure of PeAfpB and rationally designed five PeAfpA::PeAfpB chimeras (chPeAFPV1-V5). Chimeras showed significant differences in their antifungal activity. chPeAFPV1 and chPeAFPV2 improved the parental PeAfpB potency, and it was very similar to that of PeAfpA. chPeAFPV4 and chPeAFPV5 showed an intermediate profile of activity compared to the parental proteins while chPeAFPV3 was inactive towards most of the fungi tested. Structural analysis of the chimeras evidenced an identical scaffold to PeAfpB, suggesting that the differences in activity are due to the contributions of specific residues and not to induced conformational changes or structural rearrangements. Results suggest that mannoproteins determine protein interaction with the cell wall and its antifungal activity while there is not a direct correlation between binding to membrane phospholipids and activity. This work provides new insights about the relevance of sequence motifs and the feasibility of modifying protein specificity, opening the door to the rational design of chimeras with biotechnological applicability.
Collapse
Affiliation(s)
- Moisés Giner-Llorca
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain
| | - Francisca Gallego del Sol
- Instituto de Biomedicina de Valencia (IBV), CSIC and CIBER de Enfermedades Raras (CIBERER), Jaume Roig 11, 46010, Valencia, Spain
| | - Jose F Marcos
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV), CSIC and CIBER de Enfermedades Raras (CIBERER), Jaume Roig 11, 46010, Valencia, Spain.
| | - Paloma Manzanares
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
7
|
DMSO-Induced Unfolding of the Antifungal Disulfide Protein PAF and Its Inactive Variant: A Combined NMR and DSC Study. Int J Mol Sci 2023; 24:ijms24021208. [PMID: 36674720 PMCID: PMC9864379 DOI: 10.3390/ijms24021208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
PAF and related antifungal proteins are promising antimicrobial agents. They have highly stable folds around room temperature due to the presence of 3-4 disulfide bonds. However, unfolded states persist and contribute to the thermal equilibrium in aqueous solution, and low-populated states might influence their biological impact. To explore such equilibria during dimethyl sulfoxide (DMSO)-induced chemical unfolding, we studied PAF and its inactive variant PAFD19S using nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). According to the NMR monitoring at 310 K, the folded structures disappear above 80 v/v% DMSO concentration, while the unfolding is completely reversible. Evaluation of a few resolved peaks from viscosity-compensated 15N-1H HSQC spectra of PAF yielded ∆G = 23 ± 7 kJ/M as the average value for NMR unfolding enthalpy. The NMR-based structures of PAF and the mutant in 50 v/v% DMSO/H2O mixtures were more similar in the mixed solvents then they were in water. The 15N NMR relaxation dynamics in the same mixtures verified the rigid backbones of the NMR-visible fractions of the proteins; still, enhanced dynamics around the termini and some loops were observed. DSC monitoring of the Tm melting point showed parabolic dependence on the DMSO molar fraction and suggested that PAF is more stable than the inactive PAFD19S. The DSC experiments were irreversible due to the applied broad temperature range, but still suggestive of the endothermic unfolding of PAF.
Collapse
|
8
|
Rocafort M, Bowen JK, Hassing B, Cox MP, McGreal B, de la Rosa S, Plummer KM, Bradshaw RE, Mesarich CH. The Venturia inaequalis effector repertoire is dominated by expanded families with predicted structural similarity, but unrelated sequence, to avirulence proteins from other plant-pathogenic fungi. BMC Biol 2022; 20:246. [PMID: 36329441 PMCID: PMC9632046 DOI: 10.1186/s12915-022-01442-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Scab, caused by the biotrophic fungus Venturia inaequalis, is the most economically important disease of apples worldwide. During infection, V. inaequalis occupies the subcuticular environment, where it secretes virulence factors, termed effectors, to promote host colonization. Consistent with other plant-pathogenic fungi, many of these effectors are expected to be non-enzymatic proteins, some of which can be recognized by corresponding host resistance proteins to activate plant defences, thus acting as avirulence determinants. To develop durable control strategies against scab, a better understanding of the roles that these effector proteins play in promoting subcuticular growth by V. inaequalis, as well as in activating, suppressing, or circumventing resistance protein-mediated defences in apple, is required. RESULTS We generated the first comprehensive RNA-seq transcriptome of V. inaequalis during colonization of apple. Analysis of this transcriptome revealed five temporal waves of gene expression that peaked during early, mid, or mid-late infection. While the number of genes encoding secreted, non-enzymatic proteinaceous effector candidates (ECs) varied in each wave, most belonged to waves that peaked in expression during mid-late infection. Spectral clustering based on sequence similarity determined that the majority of ECs belonged to expanded protein families. To gain insights into function, the tertiary structures of ECs were predicted using AlphaFold2. Strikingly, despite an absence of sequence similarity, many ECs were predicted to have structural similarity to avirulence proteins from other plant-pathogenic fungi, including members of the MAX, LARS, ToxA and FOLD effector families. In addition, several other ECs, including an EC family with sequence similarity to the AvrLm6 avirulence effector from Leptosphaeria maculans, were predicted to adopt a KP6-like fold. Thus, proteins with a KP6-like fold represent another structural family of effectors shared among plant-pathogenic fungi. CONCLUSIONS Our study reveals the transcriptomic profile underpinning subcuticular growth by V. inaequalis and provides an enriched list of ECs that can be investigated for roles in virulence and avirulence. Furthermore, our study supports the idea that numerous sequence-unrelated effectors across plant-pathogenic fungi share common structural folds. In doing so, our study gives weight to the hypothesis that many fungal effectors evolved from ancestral genes through duplication, followed by sequence diversification, to produce sequence-unrelated but structurally similar proteins.
Collapse
Affiliation(s)
- Mercedes Rocafort
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland, 1025, New Zealand
| | - Berit Hassing
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Murray P Cox
- Bioprotection Aotearoa, School of Natural Sciences, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Brogan McGreal
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland, 1025, New Zealand
| | - Silvia de la Rosa
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Kim M Plummer
- Department of Animal, Plant and Soil Sciences, La Trobe University, AgriBio, Centre for AgriBiosciences, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Rosie E Bradshaw
- Bioprotection Aotearoa, School of Natural Sciences, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Carl H Mesarich
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand.
| |
Collapse
|
9
|
Dini I, De Biasi MG, Mancusi A. An Overview of the Potentialities of Antimicrobial Peptides Derived from Natural Sources. Antibiotics (Basel) 2022; 11:1483. [PMID: 36358138 PMCID: PMC9686932 DOI: 10.3390/antibiotics11111483] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial peptides (AMPs) are constituents of the innate immune system in every kind of living organism. They can act by disrupting the microbial membrane or without affecting membrane stability. Interest in these small peptides stems from the fear of antibiotics and the emergence of microorganisms resistant to antibiotics. Through membrane or metabolic disruption, they defend an organism against invading bacteria, viruses, protozoa, and fungi. High efficacy and specificity, low drug interaction and toxicity, thermostability, solubility in water, and biological diversity suggest their applications in food, medicine, agriculture, animal husbandry, and aquaculture. Nanocarriers can be used to protect, deliver, and improve their bioavailability effectiveness. High cost of production could limit their use. This review summarizes the natural sources, structures, modes of action, and applications of microbial peptides in the food and pharmaceutical industries. Any restrictions on AMPs' large-scale production are also taken into consideration.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | | | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
10
|
Fardella PA, Tian Z, Clarke BB, Belanger FC. The Epichloë festucae Antifungal Protein Efe-AfpA Protects Creeping Bentgrass ( Agrostis stolonifera) from the Plant Pathogen Clarireedia jacksonii, the Causal Agent of Dollar Spot Disease. J Fungi (Basel) 2022; 8:jof8101097. [PMID: 36294663 PMCID: PMC9605492 DOI: 10.3390/jof8101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Dollar spot disease, caused by the fungal pathogen Clarireedia jacksonii, is a major problem in many turfgrass species, particularly creeping bentgrass (Agrostis stolonifera). It is well-established that strong creeping red fescue (Festuca rubra subsp. rubra) exhibits good dollar spot resistance when infected by the fungal endophyte Epichloë festucae. This endophyte-mediated disease resistance is unique to the fine fescues and has not been observed in other grass species infected with other Epichloë spp. The mechanism underlying the unique endophyte-mediated disease resistance in strong creeping red fescue has not yet been established. We pursued the possibility that it may be due to the presence of an abundant secreted antifungal protein produced by E. festucae. Here, we compare the activity of the antifungal protein expressed in Escherichia coli, Pichia pastoris, and Penicillium chrysogenum. Active protein was recovered from all systems, with the best activity being from Pe. chrysogenum. In greenhouse assays, topical application of the purified antifungal protein to creeping bentgrass and endophyte-free strong creeping red fescue protected the plants from developing severe symptoms caused by C. jacksonii. These results support the hypothesis that Efe-AfpA is a major contributor to the dollar spot resistance observed with E. festucae-infected strong creeping red fescue in the field, and that this protein could be developed as an alternative or complement to fungicides for the management of this disease on turfgrasses.
Collapse
|
11
|
Holzknecht J, Dubrac S, Hedtrich S, Galgóczy L, Marx F. Small, Cationic Antifungal Proteins from Filamentous Fungi Inhibit Candida albicans Growth in 3D Skin Infection Models. Microbiol Spectr 2022; 10:e0029922. [PMID: 35499318 PMCID: PMC9241769 DOI: 10.1128/spectrum.00299-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
The emerging resistance of human-pathogenic fungi to antifungal drugs urges the development of alternative therapeutic strategies. The small, cationic antifungal proteins (AFPs) from filamentous ascomycetes represent promising candidates for next-generation antifungals. These bio-molecules need to be tested for tolerance in the host and efficacy against fungal pathogens before they can be safely applied in humans. Testing of the efficacy and possible adverse effects of new drug candidates in three-dimensional (3D) human-cell based models represents an advantageous alternative to animal experiments. In, this study, as a proof-of-principle, we demonstrate the usefulness of 3D skin infection models for screening new antifungal drug candidates for topical application. We established a cutaneous infection with the opportunistic human-pathogenic yeast Candida albicans in a commercially available 3D full-thickness (FT) skin model to test the curative potential of distinct AFPs from Penicillium chrysogenum (PAFopt, PAFB, and PAFC) and Neosartorya (Aspergillus) fischeri (NFAP2) in vitro. All tested AFPs were comparably well tolerated by the skin models. The infected 3D models exhibited reduced epidermal permeability barriers, allowing C. albicans to colonize the epidermal and dermal layers, and showed increased secretion of the pro-inflammatory cytokine IL-6 and the chemokine IL-8. AFP treatment diminished the fungal burden and penetration depth of C. albicans in the infected models. The epidermal permeability barrier was restored and the secretion of IL-8 was decreased following AFP treatment. In summary, our study proves that the tested AFPs exhibit antifungal potential against cutaneous C. albicans infection in a 3D FT skin model. IMPORTANCE Candida albicans represents one of the most prevalent opportunistic fungal pathogens, causing superficial skin and mucosal infections in humans with certain predisposing health conditions and life-threatening systemic infections in immunosuppressed patients. The emerging drug resistance of this human-pathogenic yeast and the limited number of antifungal drugs for prevention and treatment of infections urgently demands the identification of new antifungal compounds with novel mechanisms of action. Small, cationic antifungal proteins (AFPs) from filamentous fungi represent promising candidates for next-generation antifungals for topical application. These bio-molecules need to be tested for tolerance by the host and efficacy in pathogen clearance prior to being involved in clinical trials. In a proof-of-principle study, we provide evidence for the suitability of 3D human-cell based models as advantageous alternatives to animal experiments. We document the tolerance of specific AFPs and their curative efficacy against cutaneous C. albicans infection in a 3D skin model.
Collapse
Affiliation(s)
- Jeanett Holzknecht
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - László Galgóczy
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
The Antifungal Protein AfpB Induces Regulated Cell Death in Its Parental Fungus Penicillium digitatum. mSphere 2020; 5:5/4/e00595-20. [PMID: 32848004 PMCID: PMC7449623 DOI: 10.1128/msphere.00595-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disease-causing fungi pose a serious threat to human health and food safety and security. The limited number of licensed antifungals, together with the emergence of pathogenic fungi with multiple resistance to available antifungals, represents a serious challenge for medicine and agriculture. Therefore, there is an urgent need for new compounds with high fungal specificity and novel antifungal mechanisms. Antifungal proteins in general, and AfpB from Penicillium digitatum in particular, are promising molecules for the development of novel antifungals. This study on AfpB’s mode of action demonstrates its potent, specific fungicidal activity through the interaction with multiple targets, presumably reducing the risk of evolving fungal resistance, and through a regulated cell death process, uncovering this protein as an excellent candidate for a novel biofungicide. The in-depth knowledge on AfpB mechanistic function presented in this work is important to guide its possible future clinical and agricultural applications. Filamentous fungi produce small cysteine-rich proteins with potent, specific antifungal activity, offering the potential to fight fungal infections that severely threaten human health and food safety and security. The genome of the citrus postharvest fungal pathogen Penicillium digitatum encodes one of these antifungal proteins, namely AfpB. Biotechnologically produced AfpB inhibited the growth of major pathogenic fungi at minimal concentrations, surprisingly including its parental fungus, and conferred protection to crop plants against fungal infections. This study reports an in-depth characterization of the AfpB mechanism of action, showing that it is a cell-penetrating protein that triggers a regulated cell death program in the target fungus. We prove the importance of AfpB interaction with the fungal cell wall to exert its killing activity, for which protein mannosylation is required. We also show that the potent activity of AfpB correlates with its rapid and efficient uptake by fungal cells through an energy-dependent process. Once internalized, AfpB induces a transcriptional reprogramming signaled by reactive oxygen species that ends in cell death. Our data show that AfpB activates a self-injury program, suggesting that this protein has a biological function in the parental fungus beyond defense against competitors, presumably more related to regulation of the fungal population. Our results demonstrate that this protein is a potent antifungal that acts through various targets to kill fungal cells through a regulated process, making AfpB a promising compound for the development of novel biofungicides with multiple fields of application in crop and postharvest protection, food preservation, and medical therapies. IMPORTANCE Disease-causing fungi pose a serious threat to human health and food safety and security. The limited number of licensed antifungals, together with the emergence of pathogenic fungi with multiple resistance to available antifungals, represents a serious challenge for medicine and agriculture. Therefore, there is an urgent need for new compounds with high fungal specificity and novel antifungal mechanisms. Antifungal proteins in general, and AfpB from Penicillium digitatum in particular, are promising molecules for the development of novel antifungals. This study on AfpB’s mode of action demonstrates its potent, specific fungicidal activity through the interaction with multiple targets, presumably reducing the risk of evolving fungal resistance, and through a regulated cell death process, uncovering this protein as an excellent candidate for a novel biofungicide. The in-depth knowledge on AfpB mechanistic function presented in this work is important to guide its possible future clinical and agricultural applications.
Collapse
|
13
|
Holzknecht J, Kühbacher A, Papp C, Farkas A, Váradi G, Marcos JF, Manzanares P, Tóth GK, Galgóczy L, Marx F. The Penicillium chrysogenum Q176 Antimicrobial Protein PAFC Effectively Inhibits the Growth of the Opportunistic Human Pathogen Candida albicans. J Fungi (Basel) 2020; 6:jof6030141. [PMID: 32824977 PMCID: PMC7557831 DOI: 10.3390/jof6030141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Small, cysteine-rich and cationic antimicrobial proteins (AMPs) from filamentous ascomycetes promise treatment alternatives to licensed antifungal drugs. In this study, we characterized the Penicillium chrysogenum Q176 antifungal protein C (PAFC), which is phylogenetically distinct to the other two Penicillium antifungal proteins, PAF and PAFB, that are expressed by this biotechnologically important ascomycete. PAFC is secreted into the culture broth and is co-expressed with PAF and PAFB in the exudates of surface cultures. This observation is in line with the suggested role of AMPs in the adaptive response of the host to endogenous and/or environmental stimuli. The in silico structural model predicted five β-strands stabilized by four intramolecular disulfide bonds in PAFC. The functional characterization of recombinant PAFC provided evidence for a promising new molecule in anti-Candida therapy. The thermotolerant PAFC killed planktonic cells and reduced the metabolic activity of sessile cells in pre-established biofilms of two Candidaalbicans strains, one of which was a fluconazole-resistant clinical isolate showing higher PAFC sensitivity than the fluconazole-sensitive strain. Candidacidal activity was linked to severe cell morphology changes, PAFC internalization, induction of intracellular reactive oxygen species and plasma membrane disintegration. The lack of hemolytic activity further corroborates the potential applicability of PAFC in clinical therapy.
Collapse
Affiliation(s)
- Jeanett Holzknecht
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria; (J.H.); (A.K.)
| | - Alexander Kühbacher
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria; (J.H.); (A.K.)
| | - Csaba Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary;
| | - Attila Farkas
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Györgyi Váradi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (G.V.); (G.K.T.)
| | - Jose F. Marcos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, E-46980 Valencia, Spain; (J.F.M.); (P.M.)
| | - Paloma Manzanares
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, E-46980 Valencia, Spain; (J.F.M.); (P.M.)
| | - Gábor K. Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (G.V.); (G.K.T.)
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm tér 8, H-6726 Szeged, Hungary
| | - László Galgóczy
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Correspondence: (L.G.); (F.M.); Tel.: +36-62-599-600 (ext. 415) (L.G.); +43-512-9003 (ext. 70207) (F.M.)
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria; (J.H.); (A.K.)
- Correspondence: (L.G.); (F.M.); Tel.: +36-62-599-600 (ext. 415) (L.G.); +43-512-9003 (ext. 70207) (F.M.)
| |
Collapse
|
14
|
Tong S, Li M, Keyhani NO, Liu Y, Yuan M, Lin D, Jin D, Li X, Pei Y, Fan Y. Characterization of a fungal competition factor: Production of a conidial cell-wall associated antifungal peptide. PLoS Pathog 2020; 16:e1008518. [PMID: 32324832 PMCID: PMC7200012 DOI: 10.1371/journal.ppat.1008518] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/05/2020] [Accepted: 04/05/2020] [Indexed: 01/16/2023] Open
Abstract
Competition is one of the fundamental driving forces of natural selection. Beauveria bassiana is a soil and plant phylloplane/root fungus capable of parasitizing insect hosts. Soil and plant environments are often enriched with other fungi against which B. bassiana competes for survival. Here, we report an antifungal peptide (BbAFP1), specifically expressed and localized to the conidial cell wall and is released into the surrounding microenvironment inhibiting growth of competing fungi. B. bassiana strains expressing BbAFP1, including overexpression strains, inhibited growth of Alternaria brassicae in co-cultured experiments, whereas targeted gene deletion of BbAFP1 significantly decreased (25%) this inhibitory effect. Recombinant BbAFP1 showed chitin and glucan binding abilities, and growth inhibition of a wide range of phytopathogenic fungi by disrupting membrane integrity and eliciting reactive oxygen species (ROS) production. A phenylalanine residue (F50) contributes to chitin binding and antifungal activity, but was not required for the latter. Expression of BbAFP1 in tomato resulted in transgenic plants with enhanced resistance to plant fungal pathogens. These results highlight the importance of fungal competition in shaping primitive competition strategies, with antimicrobial compounds that can be embedded in the spore cell wall to be released into the environment during the critical initial phases of germination for successful growth in its environmental niche. Furthermore, these peptides can be exploited to increase plant resistance to fungal pathogens. Microbial competition exerts powerful selective pressures for the development of defensive and offensive methods of suppressing potential competitors. One of the most vulnerable stages for any fungi is the initial germination of resting spores in potentially hostile environments. Currently, we know little about how fungi defend other microbial competitors during the beginning stage of conidial germination. Here, we report on an antifungal peptide from B. bassiana (BbAFP1) that is specifically expressed in mature aerial conidia, with the protein localized exclusively to the conidial cell wall. The “pre-loaded” BbAFP1 is released into the surrounding microenvironment where it can act to inhibit the growth of competing fungi during the initial stages of fungal germination, i.e. largely before actual germ tubes are apparent, thus conferring an advantage to B. bassiana in out-competing susceptible competitors in the microenvironment surrounding the spore. The effects of BbAFP1 on membrane integrity were characterized and a key amino acid (F50) was shown to function in chitin binding and antifungal activity. Transgenic tomato overexpressing BbAFP1 were shown to exhibit enhanced resistance to plant fungal pathogens. Our study provides new insights into the microbial competition and genes involved in this process that can be exploited to increase plant disease resistance.
Collapse
Affiliation(s)
- Sheng Tong
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Maolian Li
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Nemat O. Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Yu Liu
- College of Biotechnology, Southwest University, Chongqing, P. R. China
| | - Min Yuan
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Dongmei Lin
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Dan Jin
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Xianbi Li
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Yanhua Fan
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, P.R. China
- * E-mail:
| |
Collapse
|
15
|
Two small, cysteine-rich and cationic antifungal proteins from Penicillium chrysogenum: A comparative study of PAF and PAFB. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183246. [PMID: 32142818 PMCID: PMC7138148 DOI: 10.1016/j.bbamem.2020.183246] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
The filamentous fungus Penicillium chrysogenum Q176 secretes the antimicrobial proteins (AMPs) PAF and PAFB, which share a compact disulfide-bond mediated, β-fold structure rendering them highly stable. These two AMPs effectively inhibit the growth of human pathogenic fungi in micromolar concentrations and exhibit antiviral potential without causing cytotoxic effects on mammalian cells in vitro and in vivo. The antifungal mechanism of action of both AMPs is closely linked to - but not solely dependent on - the lipid composition of the fungal cell membrane and requires a strictly regulated protein uptake into the cell, indicating that PAF and PAFB are not canonical membrane active proteins. Variations in their antifungal spectrum and their killing dynamics point towards a divergent mode of action related to their physicochemical properties and surface charge distribution. In this review, we relate characteristic features of PAF and PAFB to the current knowledge about other AMPs of different sources. In addition, we present original data that have never been published before to substantiate our assumptions and provide evidences that help to explain and understand better the mechanistic function of PAF and PAFB. Finally, we underline the promising potential of PAF and PAFB as future antifungal therapeutics. Penicillium chrysogenum secretes the small, cysteine-rich proteins PAF and PAFB. Both exhibit antifungal activity, but with differences in their mode of action. Structure, membrane interaction and cellular uptake determine their function. PAF and PAFB are well tolerated by mammalian cells. They promise applicability in medicine, plant protection and food industry.
Collapse
|
16
|
Gandía M, Garrigues S, Bolós B, Manzanares P, Marcos JF. The Myosin Motor Domain-Containing Chitin Synthases Are Involved in Cell Wall Integrity and Sensitivity to Antifungal Proteins in Penicillium digitatum. Front Microbiol 2019; 10:2400. [PMID: 31681248 PMCID: PMC6813208 DOI: 10.3389/fmicb.2019.02400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022] Open
Abstract
Penicillium digitatum is the main postharvest pathogen of citrus fruit and is responsible for important economic losses in spite of the massive use of fungicides. The fungal cell wall (CW) and its specific component chitin are potential targets for the development of new antifungal molecules. Among these are the antifungal peptides and proteins that specifically interact with fungal CW. Chitin is synthesized by a complex family of chitin synthases (Chs), classified into up to eight classes within three divisions. Previously, we obtained and characterized a mutant of P. digitatum in the class VII gene (ΔchsVII), which contains a short myosin motor-like domain (MMD). In this report, we extend our previous studies to the characterization of mutants in chsII and in the gene coding for the other MMD-Chs (chsV), and study the role of chitin synthases in the sensitivity of P. digitatum to the self-antifungal protein AfpB, and to AfpA obtained from P. expansum. The ΔchsII mutant showed no significant phenotypic and virulence differences with the wild type strain, except in the production and morphology of the conidia. In contrast, mutants in chsV showed a more dramatic phenotype than the previous ΔchsVII, with reduced growth and conidial production, increased chitin content, changes in mycelial morphology and a decrease in virulence to citrus fruit. Mutants in chsVII were specifically more tolerant than the wild type to nikkomycin Z, an antifungal inhibitor of chitin biosynthesis. Treatment of P. digitatum with its own antifungal protein AfpB resulted in an overall reduction in the expression of the chitin synthase genes. The mutants corresponding to MMD chitin synthases exhibited differential sensitivity to the antifungal proteins AfpA and AfpB, ΔchsVII being more susceptible than its parental strain and ΔchsV being slightly more tolerant despite its reduced growth in liquid broth. Taking these results together, we conclude that the MMD-containing chitin synthases affect cell wall integrity and sensitivity to antifungal proteins in P. digitatum.
Collapse
Affiliation(s)
- Mónica Gandía
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | | | | | | |
Collapse
|
17
|
Huber A, Oemer G, Malanovic N, Lohner K, Kovács L, Salvenmoser W, Zschocke J, Keller MA, Marx F. Membrane Sphingolipids Regulate the Fitness and Antifungal Protein Susceptibility of Neurospora crassa. Front Microbiol 2019; 10:605. [PMID: 31031714 PMCID: PMC6471014 DOI: 10.3389/fmicb.2019.00605] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
The membrane sphingolipid glucosylceramide (GlcCer) plays an important role in fungal fitness and adaptation to most diverse environments. Moreover, reported differences in the structure of GlcCer between fungi, plants and animals render this pathway a promising target for new generation therapeutics. Our knowledge about the GlcCer biosynthesis in fungi is mainly based on investigations of yeasts, whereas this pathway is less well characterized in molds. We therefore performed a detailed lipidomic profiling of GlcCer species present in Neurospora crassa and comprehensively show that the deletion of genes encoding enzymes involved in GlcCer biosynthesis affects growth, conidiation and stress response in this model fungus. Importantly, our study evidences that differences in the pathway intermediates and their functional role exist between N. crassa and other fungal species. We further investigated the role of GlcCer in the susceptibility of N. crassa toward two small cysteine-rich and cationic antimicrobial proteins (AMPs), PAF and PAFB, which originate from the filamentous ascomycete Penicillium chrysogenum. The interaction of these AMPs with the fungal plasma membrane is crucial for their antifungal toxicity. We found that GlcCer determines the susceptibility of N. crassa toward PAF, but not PAFB. A higher electrostatic affinity of PAFB than PAF to anionic membrane surfaces might explain the difference in their antifungal mode of action.
Collapse
Affiliation(s)
- Anna Huber
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Oemer
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Nermina Malanovic
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Graz, Austria
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Graz, Austria
| | - Laura Kovács
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Johannes Zschocke
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A Keller
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Hajdu D, Huber A, Czajlik A, Tóth L, Kele Z, Kocsubé S, Fizil Á, Marx F, Galgóczy L, Batta G. Solution structure and novel insights into phylogeny and mode of action of the Neosartorya (Aspergillus) fischeri antifungal protein (NFAP). Int J Biol Macromol 2019; 129:511-522. [PMID: 30738898 DOI: 10.1016/j.ijbiomac.2019.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/22/2019] [Accepted: 02/03/2019] [Indexed: 01/02/2023]
Abstract
Small, cysteine-rich and cationic antifungal proteins from natural sources are promising candidates for the development of novel treatment strategies to prevent and combat infections caused by drug-resistant fungi. However, limited information about their structure and antifungal mechanism hampers their future applications. In the present study, we determined the solution structure, dynamics and associated solvent areas of the Neosartorya (Aspergillus) fischeri antifungal protein NFAP. Genome mining within the genus revealed the presence of orthologous genes in N. fischeri and Neosartorya spathulata, and genes encoding closely related proteins can be found in Penicillium brasiliensis and Penicillium oxalicum. We show that the tertiary structure of these putative proteins can be resolved using the structure of NFAP as reliable template for in silico prediction. Localization studies with fluorescence-labelled protein pointed at an energy-dependent uptake mechanism of NFAP in the sensitive model fungus Neurospora crassa and subsequent cytoplasmic localization coincided with cell-death induction. The presented results contribute to a better understanding of the structure/function relationship of NFAP and related proteins and pave the way towards future antifungal drug development.
Collapse
Affiliation(s)
- Dorottya Hajdu
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Anna Huber
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - András Czajlik
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Liliána Tóth
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary; Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Zoltán Kele
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Ádám Fizil
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - László Galgóczy
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria; Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary; Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Gyula Batta
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| |
Collapse
|
19
|
In Vivo Applicability of Neosartorya fischeri Antifungal Protein 2 (NFAP2) in Treatment of Vulvovaginal Candidiasis. Antimicrob Agents Chemother 2019; 63:AAC.01777-18. [PMID: 30478163 DOI: 10.1128/aac.01777-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
As a consequence of emerging numbers of vulvovaginitis cases caused by azole-resistant and biofilm-forming Candida species, fast and efficient treatment of this infection has become challenging. The problem is further exacerbated by the severe side effects of azoles as long-term-use medications in the recurrent form. There is therefore an increasing demand for novel and safely applicable effective antifungal therapeutic strategies. The small, cysteine-rich, and cationic antifungal proteins from filamentous ascomycetes are potential candidates, as they inhibit the growth of several Candida spp. in vitro; however, no information is available about their in vivo antifungal potency against yeasts. In the present study, we investigated the possible therapeutic application of one of their representatives in the treatment of vulvovaginal candidiasis, Neosartorya fischeri antifungal protein 2 (NFAP2). NFAP2 inhibited the growth of a fluconazole (FLC)-resistant Candida albicans strain isolated from a vulvovaginal infection, and it was effective against both planktonic cells and biofilm in vitro We observed that the fungal cell-killing activity of NFAP2 is connected to its pore-forming ability in the cell membrane. NFAP2 did not exert cytotoxic effects on primary human keratinocytes and dermal fibroblasts at the MIC in vitro. In vivo murine vulvovaginitis model experiments showed that NFAP2 significantly decreases the number of FLC-resistant C. albicans cells, and combined application with FLC enhances the efficacy. These results suggest that NFAP2 provides a feasible base for the development of a fundamental new, safely applicable mono- or polytherapeutic topical agent for the treatment of superficial candidiasis.
Collapse
|
20
|
Fathima KS, Sathiyendran M, Anitha K. Structure elucidation, biological evaluation and molecular docking studies of 3-aminoquinolinium 2-carboxy benzoate- A proton transferred molecular complex. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Structure and Synthesis of Antifungal Disulfide β-Strand Proteins from Filamentous Fungi. Microorganisms 2018; 7:microorganisms7010005. [PMID: 30591636 PMCID: PMC6352176 DOI: 10.3390/microorganisms7010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 02/03/2023] Open
Abstract
The discovery and understanding of the mode of action of new antimicrobial agents is extremely urgent, since fungal infections cause 1.5 million deaths annually. Antifungal peptides and proteins represent a significant group of compounds that are able to kill pathogenic fungi. Based on phylogenetic analyses the ascomycetous, cysteine-rich antifungal proteins can be divided into three different groups: Penicillium chrysogenum antifungal protein (PAF), Neosartorya fischeri antifungal protein 2 (NFAP2) and “bubble-proteins” (BP) produced, for example, by P. brevicompactum. They all dominantly have β-strand secondary structures that are stabilized by several disulfide bonds. The PAF group (AFP antifungal protein from Aspergillus giganteus, PAF and PAFB from P. chrysogenum,Neosartorya fischeri antifungal protein (NFAP)) is the best characterized with their common β-barrel tertiary structure. These proteins and variants can efficiently be obtained either from fungi production or by recombinant expression. However, chemical synthesis may be a complementary aid for preparing unusual modifications, e.g., the incorporation of non-coded amino acids, fluorophores, or even unnatural disulfide bonds. Synthetic variants up to ca. 6–7 kDa can also be put to good use for corroborating structure determination. A short overview of the structural peculiarities of antifungal β-strand disulfide bridged proteins will be given. Here, we describe the structural propensities of some known antifungal proteins from filamentous fungi which can also be prepared with modern synthetic chemistry methods.
Collapse
|
22
|
Wang J, Dou X, Song J, Lyu Y, Zhu X, Xu L, Li W, Shan A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med Res Rev 2018; 39:831-859. [PMID: 30353555 DOI: 10.1002/med.21542] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022]
Abstract
Antimicrobial peptides (AMPs), critical components of the innate immune system, are widely distributed throughout the animal and plant kingdoms. They can protect against a broad array of infection-causing agents, such as bacteria, fungi, parasites, viruses, and tumor cells, and also exhibit immunomodulatory activity. AMPs exert antimicrobial activities primarily through mechanisms involving membrane disruption, so they have a lower likelihood of inducing drug resistance. Extensive studies on the structure-activity relationship have revealed that net charge, hydrophobicity, and amphipathicity are the most important physicochemical and structural determinants endowing AMPs with antimicrobial potency and cell selectivity. This review summarizes the recent advances in AMPs development with respect to characteristics, structure-activity relationships, functions, antimicrobial mechanisms, expression regulation, and applications in food, medicine, and animals.
Collapse
Affiliation(s)
- Jiajun Wang
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xiujing Dou
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jing Song
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yinfeng Lyu
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xin Zhu
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Lin Xu
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Weizhong Li
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
23
|
Fizil Á, Sonderegger C, Czajlik A, Fekete A, Komáromi I, Hajdu D, Marx F, Batta G. Calcium binding of the antifungal protein PAF: Structure, dynamics and function aspects by NMR and MD simulations. PLoS One 2018; 13:e0204825. [PMID: 30321182 PMCID: PMC6188699 DOI: 10.1371/journal.pone.0204825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/14/2018] [Indexed: 11/19/2022] Open
Abstract
Calcium ions (Ca2+) play an important role in the toxicity of the cysteine-rich and cationic antifungal protein PAF from Penicillium chrysogenum: high extracellular Ca2+ levels reduce the toxicity of PAF in the sensitive model fungus Neurospora crassa in a concentration dependent way. However, little is known about the mechanistic details of the Ca2+ ion impact and the Ca2+ binding capabilities of PAF outside the fungal cell, which might be the reason for the activity loss. Using nuclear magnetic resonance (NMR), isothermal titration calorimetry and molecular dynamics (MD) simulations we demonstrated that PAF weakly, but specifically binds Ca2+ ions. MD simulations of PAF predicted one major Ca2+ binding site at the C-terminus involving Asp53 and Asp55, while Asp19 was considered as putative Ca2+ binding site. The exchange of Asp19 to serine had little impact on the Ca2+ binding, however caused the loss of antifungal activity, as was shown in our recent study. Now we replaced the C-terminal aspartates and expressed the serine variant PAFD53S/D55S. The specific Ca2+ binding affinity of PAFD53S/D55S decreased significantly if compared to PAF, whereas the antifungal activity was retained. To understand more details of Ca2+ interactions, we investigated the NMR and MD structure/dynamics of the free and Ca2+-bound PAF and PAFD53S/D55S. Though we found some differences between these protein variants and the Ca2+ complexes, these effects cannot explain the observed Ca2+ influence. In conclusion, PAF binds Ca2+ ions selectively at the C-terminus; however, this Ca2+ binding does not seem to play a direct role in the previously documented modulation of the antifungal activity of PAF.
Collapse
Affiliation(s)
- Ádám Fizil
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Christoph Sonderegger
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - András Czajlik
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Attila Fekete
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Komáromi
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dorottya Hajdu
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail: (GB); (FM)
| | - Gyula Batta
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- * E-mail: (GB); (FM)
| |
Collapse
|
24
|
Garrigues S, Gandía M, Castillo L, Coca M, Marx F, Marcos JF, Manzanares P. Three Antifungal Proteins From Penicillium expansum: Different Patterns of Production and Antifungal Activity. Front Microbiol 2018; 9:2370. [PMID: 30344516 PMCID: PMC6182064 DOI: 10.3389/fmicb.2018.02370] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023] Open
Abstract
Antifungal proteins of fungal origin (AFPs) are small, secreted, cationic, and cysteine-rich proteins. Filamentous fungi encode a wide repertoire of AFPs belonging to different phylogenetic classes, which offer a great potential to develop new antifungals for the control of pathogenic fungi. The fungus Penicillium expansum is one of the few reported to encode three AFPs each belonging to a different phylogenetic class (A, B, and C). In this work, the production of the putative AFPs from P. expansum was evaluated, but only the representative of class A, PeAfpA, was identified in culture supernatants of the native fungus. The biotechnological production of PeAfpB and PeAfpC was achieved in Penicillium chrysogenum with the P. chrysogenum-based expression cassette, which had been proved to work efficiently for the production of other related AFPs in filamentous fungi. Western blot analyses confirmed that P. expansum only produces PeAfpA naturally, whereas PeAfpB and PeAfpC could not be detected. From the three AFPs from P. expansum, PeAfpA showed the highest antifungal activity against all fungi tested, including plant and human pathogens. P. expansum was also sensitive to its self-AFPs PeAfpA and PeAfpB. PeAfpB showed moderate antifungal activity against filamentous fungi, whereas no activity could be attributed to PeAfpC at the conditions tested. Importantly, none of the PeAFPs showed hemolytic activity. Finally, PeAfpA was demonstrated to efficiently protect against fungal infections caused by Botrytis cinerea in tomato leaves and Penicillium digitatum in oranges. The strong antifungal potency of PeAfpA, together with the lack of cytotoxicity, and significant in vivo protection against phytopathogenic fungi that cause postharvest decay and plant diseases, make PeAfpA a promising alternative compound for application in agriculture, but also in medicine or food preservation.
Collapse
Affiliation(s)
- Sandra Garrigues
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Mónica Gandía
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Jose F. Marcos
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Paloma Manzanares
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
25
|
Sonderegger C, Váradi G, Galgóczy L, Kocsubé S, Posch W, Borics A, Dubrac S, Tóth GK, Wilflingseder D, Marx F. The Evolutionary Conserved γ-Core Motif Influences the Anti- Candida Activity of the Penicillium chrysogenum Antifungal Protein PAF. Front Microbiol 2018; 9:1655. [PMID: 30079061 PMCID: PMC6062912 DOI: 10.3389/fmicb.2018.01655] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022] Open
Abstract
Small, cysteine-rich and cationic antimicrobial proteins (AMPs) from filamentous ascomycetes represent ideal bio-molecules for the development of next-generation antifungal therapeutics. They are promising candidates to counteract resistance development and may complement or even replace current small molecule-based antibiotics in the future. In this study, we show that a 14 amino acid (aa) long peptide (Pγ) spanning the highly conserved γ-core motif of the Penicillium chrysogenum antifungal protein (PAF) has antifungal activity against the opportunistic human pathogenic yeast Candida albicans. By substituting specific aa we elevated the positive net charge and the hydrophilicity of Pγ and created the peptide variants Pγvar and Pγopt with 10-fold higher antifungal activity than Pγ. Similarly, the antifungal efficacy of the PAF protein could be significantly improved by exchanging the respective aa in the γ-core of the protein by creating the protein variants PAFγvar and PAFγopt. The designed peptides and proteins were investigated in detail for their physicochemical features and mode of action, and were tested for cytotoxicity on mammalian cells. This study proves for the first time the important role of the γ-core motif in the biological function of an AMP from ascomycetes. Furthermore, we provide a detailed phylogenetic analysis that proves the presence and conservation of the γ-core motif in all AMP classes from Eurotiomycetes. We emphasize the potential of this common protein motif for the design of short antifungal peptides and as a protein motif in which targeted aa substitutions enhance antimicrobial activity.
Collapse
Affiliation(s)
- Christoph Sonderegger
- Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria
| | - Györgyi Váradi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Galgóczy
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Wilfried Posch
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergy, Innsbruck Medical University, Innsbruck, Austria
| | - Gábor K. Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Szeged, Hungary
| | - Doris Wilflingseder
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Florentine Marx
- Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
26
|
Tóth L, Váradi G, Borics A, Batta G, Kele Z, Vendrinszky Á, Tóth R, Ficze H, Tóth GK, Vágvölgyi C, Marx F, Galgóczy L. Anti-Candidal Activity and Functional Mapping of Recombinant and Synthetic Neosartorya fischeri Antifungal Protein 2 (NFAP2). Front Microbiol 2018; 9:393. [PMID: 29563903 PMCID: PMC5845869 DOI: 10.3389/fmicb.2018.00393] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/21/2018] [Indexed: 12/03/2022] Open
Abstract
The increasing number of life-threatening Candida infections caused by antifungal drug-resistant strains urges the development of new therapeutic strategies. The small, cysteine-rich, and cationic Neosartorya fischeri antifungal protein 2 (NFAP2) effectively inhibits the growth of Candida spp. Limiting factors of its future application, are the low-yield production by the native producer, unavailable information about potential clinical application, and the unsolved relationship between the structure and function. In the present study we adopted a Penicillium chrysogenum-based expression system for bulk production of recombinant NFAP2. Furthermore, solid-phase peptide synthesis and native chemical ligation were applied to produce synthetic NFAP2. The average yield of recombinant and synthetic NFAP2 was 40- and 16-times higher than in the native producer, respectively. Both proteins were correctly processed, folded, and proved to be heat-stable. They showed the same minimal inhibitory concentrations as the native NFAP2 against clinically relevant Candida spp. Minimal inhibitory concentrations were higher in RPMI 1640 mimicking the human inner fluid than in a low ionic strength medium. The recombinant NFAP2 interacted synergistically with fluconazole, the first-line Candida therapeutic agent and significantly decreased its effective in vitro concentrations in RPMI 1640. Functional mapping with synthetic peptide fragments of NFAP2 revealed that not the evolutionary conserved antimicrobial γ-core motif, but the mid-N-terminal part of the protein influences the antifungal activity that does not depend on the primary structure of this region. Preliminary nucleic magnetic resonance measurements signed that the produced recombinant NFAP2 is suitable for further structural investigations.
Collapse
Affiliation(s)
- Liliána Tóth
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Györgyi Váradi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Kele
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ákos Vendrinszky
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Roberta Tóth
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Hargita Ficze
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor K Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - László Galgóczy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
27
|
New Antimicrobial Potential and Structural Properties of PAFB: A Cationic, Cysteine-Rich Protein from Penicillium chrysogenum Q176. Sci Rep 2018; 8:1751. [PMID: 29379111 PMCID: PMC5788923 DOI: 10.1038/s41598-018-20002-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
Small, cysteine-rich and cationic proteins with antimicrobial activity are produced by diverse organisms of all kingdoms and represent promising molecules for drug development. The ancestor of all industrial penicillin producing strains, the ascomycete Penicillium chryosgenum Q176, secretes the extensively studied antifungal protein PAF. However, the genome of this strain harbours at least two more genes that code for other small, cysteine-rich and cationic proteins with potential antifungal activity. In this study, we characterized the pafB gene product that shows high similarity to PgAFP from P. chrysogenum R42C. Although abundant and timely regulated pafB gene transcripts were detected, we could not identify PAFB in the culture broth of P. chrysogenum Q176. Therefore, we applied a P. chrysogenum-based expression system to produce sufficient amounts of recombinant PAFB to address unanswered questions concerning the structure and antimicrobial function. Nuclear magnetic resonance (NMR)-based analyses revealed a compact β-folded structure, comprising five β-strands connected by four solvent exposed and flexible loops and an “abcabc” disulphide bond pattern. We identified PAFB as an inhibitor of growth of human pathogenic moulds and yeasts. Furthermore, we document for the first time an anti-viral activity for two members of the small, cysteine-rich and cationic protein group from ascomycetes.
Collapse
|
28
|
Garrigues S, Gandía M, Popa C, Borics A, Marx F, Coca M, Marcos JF, Manzanares P. Efficient production and characterization of the novel and highly active antifungal protein AfpB from Penicillium digitatum. Sci Rep 2017; 7:14663. [PMID: 29116156 PMCID: PMC5677034 DOI: 10.1038/s41598-017-15277-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/24/2017] [Indexed: 12/28/2022] Open
Abstract
Filamentous fungi encode distinct antifungal proteins (AFPs) that offer great potential to develop new antifungals. Fungi are considered immune to their own AFPs as occurs in Penicillium chrysogenum, the producer of the well-known PAF. The Penicillium digitatum genome encodes only one afp gene (afpB), and the corresponding protein (AfpB) belongs to the class B phylogenetic cluster. Previous attempts to detect AfpB were not successful. In this work, immunodetection confirmed the absence of AfpB accumulation in wild type and previous recombinant constitutive P. digitatum strains. Biotechnological production and secretion of AfpB were achieved in P. digitatum with the use of a P. chrysogenum-based expression cassette and in the yeast Pichia pastoris with the α-factor signal peptide. Both strategies allowed proper protein folding, efficient production and single-step purification of AfpB from culture supernatants. AfpB showed antifungal activity higher than the P. chrysogenum PAF against the majority of the fungi tested, especially against Penicillium species and including P. digitatum, which was highly sensitive to the self-AfpB. Spectroscopic data suggest that native folding is not required for activity. AfpB also showed notable ability to withstand protease and thermal degradation and no haemolytic activity, making AfpB a promising candidate for the control of pathogenic fungi.
Collapse
Affiliation(s)
- Sandra Garrigues
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Mónica Gandía
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Crina Popa
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Bellaterra, Barcelona, Spain
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre of Hungarian Academy of Sciences, Szeged, Hungary
| | - Florentine Marx
- Biocenter, Division of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Bellaterra, Barcelona, Spain
| | - Jose F Marcos
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Paloma Manzanares
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
29
|
Structural determinants of Neosartorya fischeri antifungal protein (NFAP) for folding, stability and antifungal activity. Sci Rep 2017; 7:1963. [PMID: 28512317 PMCID: PMC5434006 DOI: 10.1038/s41598-017-02234-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/07/2017] [Indexed: 12/21/2022] Open
Abstract
The recent global challenges to prevent and treat fungal infections strongly demand for the development of new antifungal strategies. The structurally very similar cysteine-rich antifungal proteins from ascomycetes provide a feasible basis for designing new antifungal molecules. The main structural elements responsible for folding, stability and antifungal activity are not fully understood, although this is an essential prerequisite for rational protein design. In this study, we used the Neosartorya fischeri antifungal protein (NFAP) to investigate the role of the disulphide bridges, the hydrophobic core, and the N-terminal amino acids in the formation of a highly stable, folded, and antifungal active protein. NFAP and its mutants carrying cysteine deletion (NFAPΔC), hydrophobic core deletion (NFAPΔh), and N-terminal amino acids exchanges (NFAPΔN) were produced in Pichia pastoris. The recombinant NFAP showed the same features in structure, folding, stability and activity as the native protein. The data acquired with mass spectrometry, structural analyses and antifungal activity assays of NFAP and its mutants proved the importance of the disulphide bonding, the hydrophobic core and the correct N-terminus for folding, stability and full antifungal function. Our findings provide further support to the comprehensive understanding of the structure-function relationship in members of this protein group.
Collapse
|
30
|
Garrigues S, Gandía M, Borics A, Marx F, Manzanares P, Marcos JF. Mapping and Identification of Antifungal Peptides in the Putative Antifungal Protein AfpB from the Filamentous Fungus Penicillium digitatum. Front Microbiol 2017; 8:592. [PMID: 28428776 PMCID: PMC5382200 DOI: 10.3389/fmicb.2017.00592] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Antifungal proteins (AFPs) from Ascomycetes are small cysteine-rich proteins that are abundantly secreted and show antifungal activity against non-producer fungi. A gene coding for a class B AFP (AfpB) was previously identified in the genome of the plant pathogen Penicillium digitatum. However, previous attempts to detect the AfpB protein were not successful despite the high expression of the corresponding afpB gene. In this work, the structure of the putative AfpB was modeled. Based on this model, four synthetic cysteine-containing peptides, PAF109, PAF112, PAF118, and PAF119, were designed and their antimicrobial activity was tested and characterized. PAF109 that corresponds to the γ-core motif present in defensin-like antimicrobial proteins did not show antimicrobial activity. On the contrary, PAF112 and PAF118, which are cationic peptides derived from two surface-exposed loops in AfpB, showed moderate antifungal activity against P. digitatum and other filamentous fungi. It was also confirmed that cyclization through a disulfide bridge prevented peptide degradation. PAF116, which is a peptide analogous to PAF112 but derived from the Penicillium chrysogenum antifungal protein PAF, showed activity against P. digitatum similar to PAF112, but was less active than the native PAF protein. The two AfpB-derived antifungal peptides PAF112 and PAF118 showed positive synergistic interaction when combined against P. digitatum. Furthermore, the synthetic hexapeptide PAF26 previously described in our laboratory also exhibited synergistic interaction with the peptides PAF112, PAF118, and PAF116, as well as with the PAF protein. This study is an important contribution to the mapping of antifungal motifs within the AfpB and other AFPs, and opens up new strategies for the rational design and application of antifungal peptides and proteins.
Collapse
Affiliation(s)
- Sandra Garrigues
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Mónica Gandía
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre of Hungarian Academy of SciencesSzeged, Hungary
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Medical University of InnsbruckInnsbruck, Austria
| | - Paloma Manzanares
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Jose F Marcos
- Institute of Biochemistry, Biological Research Centre of Hungarian Academy of SciencesSzeged, Hungary
| |
Collapse
|