1
|
Liu X, Chen Y, Li Y, Bai J, Zeng Z, Wang M, Dong Y, Zhou Y. STAU1-mediated CNBP mRNA degradation by LINC00665 alters stem cell characteristics in ovarian cancer. Biol Direct 2024; 19:59. [PMID: 39080743 PMCID: PMC11288052 DOI: 10.1186/s13062-024-00506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND To investigate the role of lncRNA LINC00665 in modulating ovarian cancer stemness and its influence on treatment resistance and cancer development. METHODS We isolated ovarian cancer stem cells (OCSCs) from the COC1 cell line using a combination of chemotherapeutic agents and growth factors, and verified their stemness through western blotting and immunofluorescence for stem cell markers. Employing bioinformatics, we identified lncRNAs associated with ovarian cancer, with a focus on LINC00665 and its interaction with the CNBP mRNA. In situ hybridization, immunohistochemistry, and qPCR were utilized to examine their expression and localization, alongside functional assays to determine the effects of LINC00665 on CNBP. RESULTS LINC00665 employs its Alu elements to interact with the 3'-UTR of CNBP mRNA, targeting it for degradation. This molecular crosstalk enhances stemness by promoting the STAU1-mediated decay of CNBP mRNA, thereby modulating the Wnt and Notch signaling cascades that are pivotal for maintaining CSC characteristics and driving tumor progression. These mechanistic insights were corroborated by a series of in vitro assays and validated in vivo using tumor xenograft models. Furthermore, we established a positive correlation between elevated CNBP levels and increased disease-free survival in patients with ovarian cancer, underscoring the prognostic value of CNBP in this context. CONCLUSIONS lncRNA LINC00665 enhances stemness in ovarian cancer by mediating the degradation of CNBP mRNA, thereby identifying LINC00665 as a potential therapeutic target to counteract drug resistance and tumor recurrence associated with CSCs.
Collapse
Affiliation(s)
- Xiaofang Liu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yang Chen
- Department of General Surgery, The First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Ying Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Jinling Bai
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Zhi Zeng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Yingying Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
2
|
Xu Z. CRISPR/Cas9-mediated silencing of CD44: unveiling the role of hyaluronic acid-mediated interactions in cancer drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2849-2876. [PMID: 37991544 DOI: 10.1007/s00210-023-02840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
A comprehensive overview of CD44 (CD44 Molecule (Indian Blood Group)), a cell surface glycoprotein, and its interaction with hyaluronic acid (HA) in drug resistance mechanisms across various types of cancer is provided, where CRISPR/Cas9 gene editing was utilized to silence CD44 expression and examine its impact on cancer cell behavior, migration, invasion, proliferation, and drug sensitivity. The significance of the HA-CD44 axis in tumor microenvironment (TME) delivery and its implications in specific cancer types, the influence of CD44 variants and the KHDRBS3 (KH RNA Binding Domain Containing, Signal Transduction Associated 3) gene on cancer progression and drug resistance, and the potential of targeting HA-mediated pathways using CRISPR/Cas9 gene editing technology to overcome drug resistance in cancer were also highlighted.
Collapse
Affiliation(s)
- Zhujun Xu
- Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China.
| |
Collapse
|
3
|
Chaudhuri R, Samanta A, Saha P, Ghosh S, Sinha D. The Potential of Epigallocatechin Gallate in Targeting Cancer Stem Cells: A Comprehensive Review. Curr Med Chem 2024; 31:5255-5280. [PMID: 38243984 DOI: 10.2174/0109298673281666231227053726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024]
Abstract
The dreadful scenario of cancer prevails due to the presence of cancer stem cells (CSCs), which contribute to tumor growth, metastasis, invasion, resistance to chemo- and radiotherapy, and recurrence. CSCs are a small subpopulation of cells within the tumor that are characterized by self-renewal capability and have the potential to manifest heterogeneous lineages of cancer cells that constitute the tumor. The major bioactive green tea polyphenol (-)-epigallocatechin gallate (EGCG) has been fruitful in downgrading cancer stemness signaling and CSC biomarkers in cancer progression. EGCG has been evidenced to maneuver extrinsic and intrinsic apoptotic pathways in order to decrease the viability of CSCs. Cancer stemness is intricately related to epithelial-mesenchymal transition (EMT), metastasis and therapy resistance, and EGCG has been evidenced to regress all these CSC-related effects. By inhibiting CSC characteristics EGCG has also been evidenced to sensitize the tumor cells to radiotherapy and chemotherapy. However, the use of EGCG in in vitro and in vivo cancer models raises concern about its bioavailability, stability and efficacy against spheroids raised from parental cells. Therefore, novel nano formulations of EGCG and adjuvant therapy of EGCG with other phytochemicals or drugs or small molecules may have a better prospect in targeting CSCs. However, extensive clinical research is still awaited to elucidate a full proof impact of EGCG in cancer therapy.
Collapse
Affiliation(s)
- Rupa Chaudhuri
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Anurima Samanta
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Priyanka Saha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Sukanya Ghosh
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| |
Collapse
|
4
|
Liu S, Xie SM, Liu W, Gagea M, Hanker AB, Nguyen N, Singareeka Raghavendra A, Yang-Kolodji G, Chu F, Neelapu SS, Marchese A, Hanash S, Zimmermann J, Arteaga CL, Tripathy D. Targeting CXCR4 abrogates resistance to trastuzumab by blocking cell cycle progression and synergizes with docetaxel in breast cancer treatment. Breast Cancer Res 2023; 25:62. [PMID: 37280713 DOI: 10.1186/s13058-023-01665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Although trastuzumab and other HER2-targeted therapies have significantly improved survival in patients with HER2 overexpressed or amplified (HER2+) breast cancer, a significant proportion of patients do not respond or eventually develop clinical resistance. Strategies to reverse trastuzumab resistance remain a high clinical priority. We were the first to report the role of CXCR4 in trastuzumab resistance. The present study aims to explore the therapeutic potential of targeting CXCR4 and better understand the associated mechanisms. METHODS Immunofluorescent staining, confocal microscopy analysis, and immunoblotting were used to analyze CXCR4 expression. BrdU incorporation assays and flow cytometry were used to analyze dynamic CXCR4 expression. Three-dimensional co-culture (tumor cells/breast cancer-associated fibroblasts/human peripheral blood mononuclear cells) or antibody-dependent cellular cytotoxicity assay was used to mimic human tumor microenvironment, which is necessary for testing therapeutic effects of CXCR4 inhibitor or trastuzumab. The FDA-approved CXCR4 antagonist AMD3100, trastuzumab, and docetaxel chemotherapy were used to evaluate therapeutic efficacy in vitro and in vivo. Reverse phase protein array and immunoblotting were used to discern the associated molecular mechanisms. RESULTS Using a panel of cell lines and patient breast cancer samples, we confirmed CXCR4 drives trastuzumab resistance in HER2+ breast cancer and further demonstrated the increased CXCR4 expression in trastuzumab-resistant cells is associated with cell cycle progression with a peak in the G2/M phases. Blocking CXCR4 with AMD3100 inhibits cell proliferation by downregulating mediators of G2-M transition, leading to G2/M arrest and abnormal mitosis. Using a panel of trastuzumab-resistant cell lines and an in vivo established trastuzumab-resistant xenograft mouse model, we demonstrated that targeting CXCR4 with AMD3100 suppresses tumor growth in vitro and in vivo, and synergizes with docetaxel. CONCLUSIONS Our findings support CXCR4 as a novel therapeutic target and a predictive biomarker for trastuzumab resistance in HER2+ breast cancer.
Collapse
Affiliation(s)
- Shuying Liu
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shelly M Xie
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenbin Liu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ariella B Hanker
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nguyen Nguyen
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Gloria Yang-Kolodji
- Department of Medicine, University of South California, Los Angeles, CA, USA
| | - Fuliang Chu
- Department of Lymphoma-Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sattva S Neelapu
- Department of Lymphoma-Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Debasish Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Nairuz T, Mahmud Z, Manik RK, Kabir Y. Cancer stem cells: an insight into the development of metastatic tumors and therapy resistance. Stem Cell Rev Rep 2023:10.1007/s12015-023-10529-x. [PMID: 37129728 DOI: 10.1007/s12015-023-10529-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
The term "cancer stem cells" (CSCs) refers to cancer cells that exhibit traits parallel to normal stem cells, namely the potential to give rise to every type of cell identified in a tumor microenvironment. It has been found that CSCs usually develops from other neoplastic cells or non-cancerous somatic cells by acquiring stemness and malignant characteristics through particular genetic modifications. A trivial number of CSCs, identified in solid and liquid cancer, can give rise to an entire tumor population with aggressive anticancer drug resistance, metastasis, and invasiveness. Besides, cancer stem cells manipulate their intrinsic and extrinsic features, regulate the metabolic pattern of the cell, adjust efflux-influx efficiency, modulate different signaling pathways, block apoptotic signals, and cause genetic and epigenetic alterations to retain their pluripotency and ability of self-renewal. Notably, to keep the cancer stem cells' ability to become malignant cells, mesenchymal stem cells, tumor-associated fibroblasts, immune cells, etc., interact with one another. Furthermore, CSCs are characterized by the expression of particular molecular markers that carry significant diagnostic and prognostic significance. Because of this, scientific research on CSCs is becoming increasingly imperative, intending to understand the traits and behavior of cancer stem cells and create more potent anticancer therapeutics to fight cancer at the CSC level. In this review, we aimed to elucidate the critical role of CSCs in the onset and spread of cancer and the characteristics of CSCs that promote severe resistance to targeted therapy.
Collapse
Affiliation(s)
- Tahsin Nairuz
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Rasel Khan Manik
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
6
|
Pandurangi RS, Cseh O, Luchman HA, Ma CX, Senadheera SN, Forrest ML. Rational Drug Design of Targeted and Enzyme-Cleavable Vitamin E Analogs as a Neoadjuvant to Chemotherapy: In Vitro and In Vivo Evaluation on Reduction of the Cardiotoxicity Side Effect of Doxorubicin. ACS Pharmacol Transl Sci 2023; 6:372-386. [PMID: 36926453 PMCID: PMC10012254 DOI: 10.1021/acsptsci.2c00091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 02/09/2023]
Abstract
Traditional drug design focuses on specific biological targets where specific receptors or biomarkers are overexpressed by cancer cells. Cancer cells circumvent the interventions by activating survival pathways and/or downregulating cell death pathways for their survival. A priori activation of apoptosis pathways of tumor (AAAPT) is a novel tumor-sensitizing technology that sensitizes tumor cells that are not responding well to the current treatments by targeting specific survival pathways involved in the desensitization of tumor cells and tries to revive them selectively in cancer cells, sparing normal cells. Several vitamin E derivatives (AMP-001, AMP-002, AMP-003, and AMP-004) were synthesized, characterized, and studied for their anti-tumorigenic properties and their synergistic potential with the standard chemotherapy doxorubicin in various cancer cells including brain cancer stem cells in vitro. Preliminary studies revealed that AAAPT drugs (a) reduced the invasive potential of brain tumor stem cells, (b) synergized with Federal Drug Application-approved doxorubicin, and (c) enhanced the therapeutic index of doxorubicin in the triple-negative breast cancer tumor rat model, preserving the ventricular function compared to cardiotoxic doxorubicin alone at therapeutic dose. The AAAPT approach has the advantage of inhibiting survival pathways and activating cell death pathways selectively in cancer cells by using targeting, linkers cleavable by tumor-specific Cathepsin B, and PEGylation technology to enhance the bioavailability. We propose AAAPT drugs as a neoadjuvant to chemotherapy and not as stand-alone therapy, which is shown to be effective in expanding the therapeutic index of doxorubicin and making it work at lower doses.
Collapse
Affiliation(s)
- Raghu S. Pandurangi
- Sci-Engi-Medco
Solutions Inc. (SEMCO), 573, Lexington Landing Pl, St. Charles, Missouri 63303, United States
| | - Orsolya Cseh
- HRIC
2A25, 3330 Hospital Drive NW, Calgary, AB T2N 4N, Canada
| | | | - Cynthia Xiuguang Ma
- Siteman
Cancer Center, Washington University School
of Medicine, St. Louis, Missouri 63110, United States
| | - Sanjeewa N. Senadheera
- Department
of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas 66047, United States
| | - Marcus Laird Forrest
- Department
of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
7
|
Kralj J, Pernar Kovač M, Dabelić S, Polančec DS, Wachtmeister T, Köhrer K, Brozovic A. Transcriptome analysis of newly established carboplatin-resistant ovarian cancer cell model reveals genes shared by drug resistance and drug-induced EMT. Br J Cancer 2023; 128:1344-1359. [PMID: 36717670 PMCID: PMC10050213 DOI: 10.1038/s41416-023-02140-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND In ovarian cancer (OC) therapy, even initially responsive patients develop drug resistance. METHODS Here, we present an OC cell model composed of variants with differing degrees of acquired resistance to carboplatin (CBP), cross-resistance to paclitaxel, and CBP-induced metastatic properties (migration and invasion). Transcriptome data were analysed by two approaches identifying differentially expressed genes and CBP sensitivity-correlating genes. The impact of selected genes and signalling pathways on drug resistance and metastatic potential, along with their clinical relevance, was examined by in vitro and in silico approaches. RESULTS TMEM200A and PRKAR1B were recognised as potentially involved in both phenomena, also having high predictive and prognostic values for OC patients. CBP-resistant MES-OV CBP8 cells were more sensitive to PI3K/Akt/mTOR pathway inhibitors Rapamycin, Wortmannin, SB216763, and transcription inhibitor Triptolide compared with parental MES-OV cells. When combined with CBP, Rapamycin decreased the sensitivity of parental cells while Triptolide sensitised drug-resistant cells to CBP. Four PI3K/Akt/mTOR inhibitors reduced migration in both cell lines. CONCLUSIONS A newly established research model and two distinct transcriptome analysis approaches identified novel candidate genes enrolled in CBP resistance development and/or CBP-induced EMT and implied that one-gene targeting could be a better approach than signalling pathway inhibition for influencing both phenomena.
Collapse
Affiliation(s)
- Juran Kralj
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Margareta Pernar Kovač
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Sanja Dabelić
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb, Croatia
| | | | - Thorsten Wachtmeister
- Genomics and Transcriptomics Laboratory at the Biological and Medical Research Center (BMFZ), Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory at the Biological and Medical Research Center (BMFZ), Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia.
| |
Collapse
|
8
|
Liu S, Xie SM, Liu W, Gagea M, Hanker AB, Nguyen N, Raghavendra AS, Yang-Kolodji G, Chu F, Neelapu SS, Hanash S, Zimmermann J, Arteaga CL, Tripathy D. Targeting CXCR4 abrogates resistance to trastuzumab by blocking cell cycle progression and synergizes with docetaxel in breast cancer treatment. RESEARCH SQUARE 2023:rs.3.rs-2388864. [PMID: 36824840 PMCID: PMC9949251 DOI: 10.21203/rs.3.rs-2388864/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background: Although trastuzumab and other HER2-targeted therapies have significantly improved survival in patients with HER2 overexpressed or amplified (HER2+) breast cancer, a significant proportion of patients do not respond or eventually develop clinical resistance. Strategies to reverse trastuzumab resistance remain a high clinical priority. We were the first to report the role of CXCR4 in trastuzumab resistance. The present study aims to explore the therapeutic potential of targeting CXCR4 and better understand the associated mechanisms. Methods: Immunofluorescent staining, confocal microscopy analysis, and immunoblotting were used to analyze CXCR4 expression. BrdU incorporation assays and flow cytometry were used to analyze dynamic CXCR4expression. Three-dimensional co-culture (tumor cells/ breast cancer-associated fibroblasts / human peripheral blood mononuclear cells) or antibody-dependent cellular cytotoxicity assay was used to mimic human tumor microenvironment, which is necessary for testing therapeutic effect of CXCR4 inhibitor or trastuzumab. The FDA-approved CXCR4 antagonist AMD3100, trastuzumab, and docetaxel chemotherapy were used to evaluate therapeutic efficacy in vitro and in vivo. Reverse phase protein array and immunoblotting were used to discern the associated molecular mechanisms. Results: Using multiple cell lines and patient breast cancer samples we confirmed CXCR4 drives trastuzumab resistance in HER2+ breast cancer and further demonstrated that the increased CXCR4 expression in trastuzumab-resistant cells is associated with cell cycle progression with a peak in the G2/M phases. Blocking CXCR4 with AMD3100 inhibits cell proliferation by downregulating mediators of G2-M transition, leading to G2/M arrest and abnormal mitosis. Using multiple trastuzumab-resistant cell lines and an in vivo established trastuzumab-resistant xenograft mouse model, we demonstrated that targeting CXCR4 with AMD3100 suppresses tumor growth in vitro and in vivo, and synergizes with docetaxel. Conclusions: Our findings support CXCR4 as a novel therapeutic target and a predictive biomarker for trastuzumab resistance in HER2+ breast cancer.
Collapse
Affiliation(s)
- Shuying Liu
- The University of Texas MD Anderson Cancer Center
| | | | - Wenbin Liu
- The University of Texas MD Anderson Cancer Center
| | - Mihai Gagea
- The University of Texas MD Anderson Cancer Center
| | | | | | | | | | - Fuliang Chu
- The University of Texas MD Anderson Cancer Center
| | | | - Samir Hanash
- The University of Texas MD Anderson Cancer Center
| | | | | | | |
Collapse
|
9
|
Shivhare S, Das A. Cell density modulates chemoresistance in breast cancer cells through differential expression of ABC transporters. Mol Biol Rep 2023; 50:215-225. [PMID: 36319789 DOI: 10.1007/s11033-022-08028-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/12/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Breast cancer patients undergoing chemotherapy encounter a significant challenge of chemoresistance because of drug efflux by ATP-binding cassette (ABC) transporters. Breast cancer cell density alters considerably throughout the early stages of primary and secondary tumor development. Although cell density in culture influences kinetics, the effects of varying cell densities on the chemoresistance of breast cancer cells remains largely unexplored. METHODS AND RESULTS We observed chemotherapeutics-induced differential gene and protein expression of ABC transporters in luminal and basal breast cancer cells cultured at low and high seeding densities. Low-density cultures depicted a significant increase in the mRNA expression of ABC transporters-ABCG2, ABCG1, ABCC4, ABCA2, ABCA3, ABCC2, ABCC3, ABCC6, ABCC7, and ABCC9 as compared with high-density cultures. Next, cells at both low and high seeding densities when pre-treated with cyclosporine A (CsA), a pan-inhibitor of ABC transporters, resulted in increased sensitization to chemotherapeutics-doxorubicin and tamoxifen at markedly low IC50 concentrations suggesting the role of ABC transporters. Finally, markedly high doxorubicin-drug accumulation, significantly increased expression of N-cadherin, and a significant decrease in chemotherapeutics-induced in vitro tumorigenesis was observed in low-density seeded breast cancer cells when pre-treated with CsA suggesting ABC transporters inhibition-mediated increased efficacy of chemotherapeutics. CONCLUSION These findings suggest that breast cancer cells grown at low seeding density imparts chemoresistance towards doxorubicin or tamoxifen by a differential increase in the expression of ABC transporters. Thus, a combinatorial treatment strategy including ABC transporter inhibitors and chemotherapeutics can be a way forward for overcoming the breast cancer chemoresistance.
Collapse
Affiliation(s)
- Surbhi Shivhare
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS, 500 007, India.,Academy of Scientific and Innovative Research, Ghaziabad, UP, 201 002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS, 500 007, India. .,Academy of Scientific and Innovative Research, Ghaziabad, UP, 201 002, India.
| |
Collapse
|
10
|
Tumour invasion and dissemination. Biochem Soc Trans 2022; 50:1245-1257. [PMID: 35713387 PMCID: PMC9246329 DOI: 10.1042/bst20220452] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Activating invasion and metastasis are one of the primary hallmarks of cancer, the latter representing the leading cause of death in cancer patients. Whilst many advances in this area have been made in recent years, the process of cancer dissemination and the underlying mechanisms governing invasion are still poorly understood. Cancer cells exhibit multiple invasion strategies, including switching between modes of invasion and plasticity in response to therapies, surgical interventions and environmental stimuli. The ability of cancer cells to switch migratory modes and their inherent plasticity highlights the critical challenge preventing the successful design of cancer and anti-metastatic therapies. This mini-review presents current knowledge on the critical models of tumour invasion and dissemination. We also discuss the current issues surrounding current treatments and arising therapeutic opportunities. We propose that the establishment of novel approaches to study the key biological mechanisms underlying the metastatic cascade is critical in finding novel targets that could ultimately lead to complete inhibition of cancer cell invasion and dissemination.
Collapse
|
11
|
Bose S, Saha P, Chatterjee B, Srivastava AK. Chemokines driven ovarian cancer progression, metastasis and chemoresistance: potential pharmacological targets for cancer therapy. Semin Cancer Biol 2022; 86:568-579. [DOI: 10.1016/j.semcancer.2022.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/18/2022]
|
12
|
Malakouti P, Mohammadi M, Boshagh MA, Amini A, Rezaee MA, Rahmani MR. Combined effects of pioglitazone and doxorubicin on migration and invasion of MDA-MB-231 breast cancer cells. J Egypt Natl Canc Inst 2022; 34:13. [PMID: 35342925 DOI: 10.1186/s43046-022-00110-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Despite antitumor properties, chemotherapy medication can create conditions in tumor cells that work in favor of the tumor. Doxorubicin, commonly prescribed chemotherapy agents, can increase the risk of migration and invasion of tumor cells through overexpression of the CXCR4 gene by affecting downstream signaling pathways. The regulatory role of CXCR7 on CXCR4 function has been demonstrated. Therefore, it is hypothesized that combining doxorubicin with another anticancer drug could be a promising approach. METHODS In this research, we evaluated the anti-invasive property of pioglitazone along with antitumor effects of doxorubicin on MDA-MB-231 breast cancer cell lines. RESULTS There was no significant difference between two treatment groups in neither the expression nor changes in the expression of CXCR7 and CXCR4 genes (P < 0.05). Pioglitazone-doxorubicin combination reduced cell migration in tumor cells to a significantly higher extent compared to doxorubicin alone (P < 0.05). CONCLUSIONS Co-administration of pioglitazone and doxorubicin might reduce cell migration in breast cancer tumor cells, and that cell migration function is independent of some specific proteins.
Collapse
Affiliation(s)
- Parisa Malakouti
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mobin Mohammadi
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Amin Boshagh
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Abbasali Amini
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Ali Rezaee
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Reza Rahmani
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
13
|
CXC Chemokine Signaling in Progression of Epithelial Ovarian Cancer: Theranostic Perspectives. Int J Mol Sci 2022; 23:ijms23052642. [PMID: 35269786 PMCID: PMC8910147 DOI: 10.3390/ijms23052642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with epithelial ovarian cancer (EOC) are often diagnosed at an advanced stage due to nonspecific symptoms and ineffective screening approaches. Although chemotherapy has been available and widely used for the treatment of advanced EOC, the overall prognosis remains dismal. As part of the intrinsic defense mechanisms against cancer development and progression, immune cells are recruited into the tumor microenvironment (TME), and this process is directed by the interactions between different chemokines and their receptors. In this review, the functional significance of CXC chemokine ligands/chemokine receptors (CXCL/CXCR) and their roles in modulating EOC progression are summarized. The status and prospects of CXCR/CXCL-based theranostic strategies in EOC management are also discussed.
Collapse
|
14
|
Subhan A, Attia SA, P Torchilin V. Targeted siRNA nanotherapeutics against breast and ovarian metastatic cancer: a comprehensive review of the literature. Nanomedicine (Lond) 2021; 17:41-64. [PMID: 34930021 DOI: 10.2217/nnm-2021-0207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metastasis is considered the major cause of unsuccessful cancer therapy. The metastatic development requires tumor cells to leave their initial site, circulate in the blood stream, acclimate to new cellular environments at a remote secondary site and endure there. There are several steps in metastasis, including invasion, intravasation, circulation, extravasation, premetastatic niche formation, micrometastasis and metastatic colonization. siRNA therapeutics are appreciated for their usefulness in treatment of cancer metastasis. However, siRNA therapy as a single therapy may not be a sufficient option for control of metastasis. By combining siRNA with targeting, functional agents or small-molecule drugs have shown potential effects that enhance therapeutic effectiveness. This review addresses multidrug resistance and metastasis in breast and ovarian cancers and highlights drug-delivery strategies using siRNA therapeutics.
Collapse
Affiliation(s)
- Abdus Subhan
- Department of Chemistry, ShahJalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Sara Aly Attia
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA.,Department of Oncology, Radiotherapy & Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| |
Collapse
|
15
|
Fibronectin 1: A Potential Biomarker for Ovarian Cancer. DISEASE MARKERS 2021; 2021:5561651. [PMID: 34093898 PMCID: PMC8164534 DOI: 10.1155/2021/5561651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022]
Abstract
Methods OVCAR3 and A2780 are the two common cell lines that are used for ovarian cancer studies. The different invasion and migration abilities were observed by scratch tests and transwell experiments in our preliminary study. Gene chip was used to screen the expression gene in these two different cell lines, and then, the differentially expressed genes (at least 2-fold difference, P value < 0.05) were analyzed using KEGG. Result Fibronectin 1 (FN1) was found to be the most strongly correlated with the invasion and migration abilities of the OVCAR3 cells. Real-time PCR and FN1 knockout cell line was conducted and confirmed this finding. Based on the Oncomine database analysis, comparing with normal people, ovarian cancer patients exhibited high levels of FN1 expression. Additionally, higher FN1 expression was found in patients with higher FIGO stages of cancer. Conclusion FN1 could be a new biomarker for ovarian cancer detection and progress indicator.
Collapse
|
16
|
Berthenet K, Castillo Ferrer C, Fanfone D, Popgeorgiev N, Neves D, Bertolino P, Gibert B, Hernandez-Vargas H, Ichim G. Failed Apoptosis Enhances Melanoma Cancer Cell Aggressiveness. Cell Rep 2021; 31:107731. [PMID: 32521256 DOI: 10.1016/j.celrep.2020.107731] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/13/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022] Open
Abstract
Triggering apoptosis remains an efficient strategy to treat cancer. However, apoptosis is no longer a final destination since cancer cells can undergo partial apoptosis without dying. Recent evidence shows that partial mitochondrial permeabilization and non-lethal caspase activation occur under certain circumstances, although it remains unclear how failed apoptosis affects cancer cells. Using a cancer cell model to trigger non-lethal caspase activation, we find that melanoma cancer cells undergoing failed apoptosis have a particular transcriptomic signature associated with focal adhesions, transendothelial migration, and modifications of the actin cytoskeleton. In line with this, cancer cells surviving apoptosis gain migration and invasion properties in vitro and in vivo. We further demonstrate that failed apoptosis-associated gain in invasiveness is regulated by the c-Jun N-terminal kinase (JNK) pathway, whereas its RNA sequencing signature is found in metastatic melanoma. These findings advance our understanding of how cell death can both cure and promote cancer.
Collapse
Affiliation(s)
- Kevin Berthenet
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS 5286, Lyon, France; Cancer Cell Death Laboratory, Part of LabEx DEVweCAN, Université de Lyon, Lyon, France
| | - Camila Castillo Ferrer
- Cancer Target and Experimental Therapeutics, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, Grenoble, France; EPHE, PSL Research University, Paris, France
| | - Deborah Fanfone
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS 5286, Lyon, France; Cancer Cell Death Laboratory, Part of LabEx DEVweCAN, Université de Lyon, Lyon, France
| | | | | | - Philippe Bertolino
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS 5286, Lyon, France
| | - Benjamin Gibert
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS 5286, Lyon, France; Apoptosis, Cancer and Development Laboratory, Labeled by "La Ligue Contre le Cancer," Part of LabEx DEVweCAN and Convergence PLAsCAN Institute, Lyon, France
| | - Hector Hernandez-Vargas
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS 5286, Lyon, France; Université Claude Bernard Lyon 1, Lyon, France
| | - Gabriel Ichim
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS 5286, Lyon, France; Cancer Cell Death Laboratory, Part of LabEx DEVweCAN, Université de Lyon, Lyon, France.
| |
Collapse
|
17
|
Akkoc Y, Peker N, Akcay A, Gozuacik D. Autophagy and Cancer Dormancy. Front Oncol 2021; 11:627023. [PMID: 33816262 PMCID: PMC8017298 DOI: 10.3389/fonc.2021.627023] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Metastasis and relapse account for the great majority of cancer-related deaths. Most metastatic lesions are micro metastases that have the capacity to remain in a non-dividing state called “dormancy” for months or even years. Commonly used anticancer drugs generally target actively dividing cancer cells. Therefore, cancer cells that remain in a dormant state evade conventional therapies and contribute to cancer recurrence. Cellular and molecular mechanisms of cancer dormancy are not fully understood. Recent studies indicate that a major cellular stress response mechanism, autophagy, plays an important role in the adaptation, survival and reactivation of dormant cells. In this review article, we will summarize accumulating knowledge about cellular and molecular mechanisms of cancer dormancy, and discuss the role and importance of autophagy in this context.
Collapse
Affiliation(s)
- Yunus Akkoc
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Nesibe Peker
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Arzu Akcay
- Yeni Yüzyıl University, School of Medicine, Private Gaziosmanpaşa Hospital, Department of Pathology, Istanbul, Turkey
| | - Devrim Gozuacik
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Koç University School of Medicine, Istanbul, Turkey.,Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| |
Collapse
|
18
|
Ma J, Zhou C, Chen X. miR-636 inhibits EMT, cell proliferation and cell cycle of ovarian cancer by directly targeting transcription factor Gli2 involved in Hedgehog pathway. Cancer Cell Int 2021; 21:64. [PMID: 33472614 PMCID: PMC7819188 DOI: 10.1186/s12935-020-01725-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/19/2020] [Indexed: 02/08/2023] Open
Abstract
Background Hedgehog (Hh) signaling pathway, which is essential for cell proliferation and differentiation, is noted to be aberrantly activated in tumor from increasing studies in recent years. MicroRNAs (miRNAs) as an important non-coding RNA in cells have been proven to possess a regulatory role specific to the Hh signaling pathway. Here, in vitro and in vivo cellular/molecular experiments were adopted to clarify the regulatory mechanism linking miR-636 to the Hh signaling pathway in ovarian cancer (OVC). Methods Protein–protein interaction analysis was performed to identify the hub gene in the Hh pathway. TargetScan database was used to predict the potential upstream regulators for Gli2. qRT-PCR was performed to test the expression of miR-636, while Western blot was conducted to detect the expression of proteins related to the Hh pathway and epithelial-mesenchymal transition (EMT). For cell functional experiments, HO-8910PM OVC cell line was used. MTT assay and wound healing assay were used to measure the effect of miR-636 on cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used to identify the change in expression of Hh and EMT-related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeting relationship between miR-636 and Gli2. Xenotransplantation models were established for in vivo examination. Results Gli2 was identified as the hub gene of the Hh pathway and it was validated to be regulated by miR-636 based on the data from TargetScan and GEO databases. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines, and overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation, migration and induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 caused opposite results. Dual-luciferase reporter gene assay revealed that Gli2 was the target gene of miR-636 in OVC. Besides, overexpressed miR-636 decreased protein expression of Gli2, and affected the expression of proteins related to the Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration, and attenuated the blocking effect of miR-636 on cell cycle. The xenotransplantation experiment suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process of OVC cells via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation in vivo. Conclusion miR-636 mediates the activation of the Hh pathway via binding to Gli2, thus inhibiting EMT, suppressing cell proliferation and migration of OVC. Trial registration: The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of The Second Affiliated hospital of Zhejiang University School of Medicine (IR2019001235). Written informed consent was obtained from individual or guardian participants.
Collapse
Affiliation(s)
- Jiong Ma
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, 310009, China
| | - Chunxia Zhou
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, 310009, China
| | - Xuejun Chen
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
19
|
Cancer Stem Cells and Nucleolin as Drivers of Carcinogenesis. Pharmaceuticals (Basel) 2021; 14:ph14010060. [PMID: 33451077 PMCID: PMC7828541 DOI: 10.3390/ph14010060] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer, one of the most mortal diseases worldwide, is characterized by the gain of specific features and cellular heterogeneity. Clonal evolution is an established theory to explain heterogeneity, but the discovery of cancer stem cells expanded the concept to include the hierarchical growth and plasticity of cancer cells. The activation of epithelial-to-mesenchymal transition and its molecular players are widely correlated with the presence of cancer stem cells in tumors. Moreover, the acquisition of certain oncological features may be partially attributed to alterations in the levels, location or function of nucleolin, a multifunctional protein involved in several cellular processes. This review aims at integrating the established hallmarks of cancer with the plasticity of cancer cells as an emerging hallmark; responsible for tumor heterogeneity; therapy resistance and relapse. The discussion will contextualize the involvement of nucleolin in the establishment of cancer hallmarks and its application as a marker protein for targeted anticancer therapies
Collapse
|
20
|
Park DS, Luddy KA, Robertson-Tessi M, O'Farrelly C, Gatenby RA, Anderson ARA. Searching for Goldilocks: How Evolution and Ecology Can Help Uncover More Effective Patient-Specific Chemotherapies. Cancer Res 2020; 80:5147-5154. [PMID: 32934022 PMCID: PMC10940023 DOI: 10.1158/0008-5472.can-19-3981] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/04/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022]
Abstract
Deaths from cancer are mostly due to metastatic disease that becomes resistant to therapy. A mainstay treatment for many cancers is chemotherapy, for which the dosing strategy is primarily limited by patient toxicity. While this MTD approach builds upon the intuitively appealing principle that maximum therapeutic benefit is achieved by killing the largest possible number of cancer cells, there is increasing evidence that moderation might allow host-specific features to contribute to success. We believe that a "Goldilocks Window" of submaximal chemotherapy will yield improved overall outcomes. This window combines the complex interplay of cancer cell death, immune activity, emergence of chemoresistance, and metastatic dissemination. These multiple activities driven by chemotherapy have tradeoffs that depend on the specific agents used as well as their dosing levels and schedule. Here we present evidence supporting the idea that MTD may not always be the best approach and offer suggestions toward a more personalized treatment regime that integrates insights into patient-specific eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Derek S Park
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Kimberly A Luddy
- Trinity Biosciences Institute, Trinity College, Dublin, Ireland
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mark Robertson-Tessi
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Robert A Gatenby
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Alexander R A Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
21
|
Establishment of Acquired Cisplatin Resistance in Ovarian Cancer Cell Lines Characterized by Enriched Metastatic Properties with Increased Twist Expression. Int J Mol Sci 2020; 21:ijms21207613. [PMID: 33076245 PMCID: PMC7589258 DOI: 10.3390/ijms21207613] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal of the gynecologic cancers, and platinum-based treatment is a part of the standard first-line chemotherapy regimen. However, rapid development of acquired cisplatin resistance remains the main cause of treatment failure, and the underlying mechanism of resistance in OC treatment remains poorly understood. Faced with this problem, our aim in this study was to generate cisplatin-resistant (CisR) OC cell models in vitro and investigate the role of epithelial–mesenchymal transition (EMT) transcription factor Twist on acquired cisplatin resistance in OC cell models. To achieve this aim, OC cell lines OV-90 and SKOV-3 were exposed to cisplatin using pulse dosing and stepwise dose escalation methods for a duration of eight months, and a total of four CisR sublines were generated, two for each cell line. The acquired cisplatin resistance was confirmed by determination of 50% inhibitory concentration (IC50) and clonogenic survival assay. Furthermore, the CisR cells were studied to assess their respective characteristics of metastasis, EMT phenotype, DNA repair and endoplasmic reticulum stress-mediated cell death. We found the IC50 of CisR cells to cisplatin was 3–5 times higher than parental cells. The expression of Twist and metastatic ability of CisR cells were significantly greater than those of sensitive cells. The CisR cells displayed an EMT phenotype with decreased epithelial cell marker E-cadherin and increased mesenchymal proteins N-cadherin and vimentin. We observed that CisR cells showed significantly higher expression of DNA repair proteins, X-ray repair cross-complementing protein 1 (XRCC1) and poly (ADP-ribose) polymerases 1 (PARP1), with significantly reduced endoplasmic reticulum (ER) stress-mediated cell death. Moreover, Twist knockdown reduced metastatic ability of CisR cells by suppressing EMT, DNA repair and inducing ER stress-induced cell death. In conclusion, we highlighted the utilization of an acquired cisplatin resistance model to identify the potential role of Twist as a therapeutic target to reverse acquired cisplatin resistance in OC.
Collapse
|
22
|
Novel role of lncRNA CHRF in cisplatin resistance of ovarian cancer is mediated by miR-10b induced EMT and STAT3 signaling. Sci Rep 2020; 10:14768. [PMID: 32901049 PMCID: PMC7478977 DOI: 10.1038/s41598-020-71153-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian Cancer (OC) is a highly lethal gynecological cancer which often progresses through acquired resistance against the administered therapy. Cisplatin is a common therapeutic for the treatment of OC patients and therefore it is critical to understand the mechanisms of resistance against this drug. We studied a paired cell line consisting of parental and cisplatin resistant (CR) derivative ES2 OC cells, and found a number of dysregulated lncRNAs, with CHRF being the most significantly upregulated lncRNA in CR ES2 cells. The findings corroborated in human patient samples and CHRF was significantly elevated in OC patients with resistant disease. CHRF was also found to be elevated in patients with liver metastasis. miR-10b was found to be mechanistically involved in CHRF mediated cisplatin resistance. It induced resistance in not only ES2 but also OVCAR and SKOV3 OC cells. Induction of epithelial-to-mesenchymal-transition (EMT) and activation of STAT3 signaling were determined to be the mechanisms underlying the CHRF-miR-10b axis-mediated cisplatin resistance. Down-regulation of CHRF reversed EMT, STAT3 activation and the resulting cisplatin resistance, which could be attenuated by miR-10b. The results were also validated in an in vivo cisplatin resistance model wherein CR cells were associated with increased tumor burden, CHRF downregulation associated with decreased tumor burden and miR-10b again attenuated the CHRF downregulation effects. Our results support a novel role of lncRNA CHRF in cisplatin resistance of OC and establish CHRF-miR-10b signaling as a putative therapeutic target for sensitizing resistant OC cells.
Collapse
|
23
|
Xue J, Li R, Gao D, Chen F, Xie H. CXCL12/CXCR4 Axis-Targeted Dual-Functional Nano-Drug Delivery System Against Ovarian Cancer. Int J Nanomedicine 2020; 15:5701-5718. [PMID: 32848392 PMCID: PMC7426108 DOI: 10.2147/ijn.s257527] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction Traditional chemotherapy for ovarian cancer is limited due to drug resistance and systemic side effects. Although various targeted drug delivery strategies have been designed to enhance drug accumulation at the tumor site, simply improvement of targeting capability has not consistently led to satisfactory outcomes. Herein, AMD3100 was selected as the targeting ligand because of its high affinity to chemokine receptor 4 (CXCR4), which was highly expressed on ovarian cancer cells. Moreover, the AMD3100 has been proved having blockage capability of stromal cell-derived factor 1 (SDF-1 or CXCL12)/CXCR4 axis and to be a sensitizer of chemotherapeutic therapy. We designed a dual-functional targeting delivery system by modifying paclitaxel (PTX)-loaded PEGylation bovine serum albumin (BSA) nanoparticles (NPs) with AMD3100 (AMD-NP-PTX), which can not only achieve specific tumor-targeting efficiency but also enhance the therapeutic outcomes. Methods AMD3100 was chemically modified to Mal-PEG-NHS followed by reacting with BSA, then AMD-NP-PTX was synthesized and characterized. The targeting efficiency of AMD-NP was evaluated both in vitro and in vivo. The anticancer effect of AMD-NP-PTX was determined on Caov3 cells and ovarian cancer-bearing nude mice. Finally, the potential therapeutic mechanism was studied. Results AMD-NP-PTX was synthesized successfully and well characterized. Cellular uptake assay and in vivo imaging experiments demonstrated that NPs could be internalized by Caov3 cells more efficiently after modification of AMD3100. Furthermore, the AMD-NP-PTX exhibited significantly enhanced inhibition effect on tumor growth and metastasis compared with PTX, NP-PTX and free AMD3100 plus NP-PTX both in vitro and in vivo, and demonstrated improved safety profile. We also confirmed that AMD-NP-PTX worked through targeting CXCL12/CXCR4 axis, thereby disturbing its downstream signaling pathways including epithelial–mesenchymal transition (EMT) processes and nuclear factor κB (NF-κB) pathway. Conclusion The AMD-NP-PTX we designed would open a new avenue for dual-functional NPs in ovarian cancer therapy.
Collapse
Affiliation(s)
- Jiyang Xue
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, People's Republic of China
| | - Ruixiang Li
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Dingding Gao
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Fenghua Chen
- Department of Ultrasonography, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, People's Republic of China
| | - Hongjuan Xie
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, People's Republic of China
| |
Collapse
|
24
|
Flavonoids in Cancer Metastasis. Cancers (Basel) 2020; 12:cancers12061498. [PMID: 32521759 PMCID: PMC7352928 DOI: 10.3390/cancers12061498] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Metastasis represents a serious complication in the treatment of cancer. Flavonoids are plant secondary metabolites exerting various health beneficiary effects. The effects of flavonoids against cancer are associated not only with early stages of the cancer process, but also with cancer progression and spread into distant sites. Flavonoids showed potent anti-cancer effects against various cancer models in vitro and in vivo, mediated via regulation of key signaling pathways involved in the migration and invasion of cancer cells and metastatic progression, including key regulators of epithelial-mesenchymal transition or regulatory molecules such as MMPs, uPA/uPAR, TGF-β and other contributors of the complex process of metastatic spread. Moreover, flavonoids modulated also the expression of genes associated with the progression of cancer and improved inflammatory status, a part of the complex process involved in the development of metastasis. Flavonoids also documented clear potential to improve the anti-cancer effectiveness of conventional chemotherapeutic agents. Most importantly, flavonoids represent environmentally-friendly and cost-effective substances; moreover, a wide spectrum of different flavonoids demonstrated safety and minimal side effects during long-termed administration. In addition, the bioavailability of flavonoids can be improved by their conjugation with metal ions or structural modifications by radiation. In conclusion, anti-cancer effects of flavonoids, targeting all phases of carcinogenesis including metastatic progression, should be implemented into clinical cancer research in order to strengthen their potential use in the future targeted prevention and therapy of cancer in high-risk individuals or patients with aggressive cancer disease with metastatic potential.
Collapse
|
25
|
Zhang J, Quan LN, Meng Q, Wang HY, Wang J, Yu P, Fu JT, Li YJ, Chen J, Cheng H, Wu QP, Yu XR, Yun HY, Huang SG. miR-548e Sponged by ZFAS1 Regulates Metastasis and Cisplatin Resistance of OC by Targeting CXCR4 and let-7a/BCL-XL/S Signaling Axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:621-638. [PMID: 32353736 PMCID: PMC7191130 DOI: 10.1016/j.omtn.2020.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 12/23/2022]
Abstract
Ovarian cancer (OC) is a severe malignancy featuring a poor prognosis due to rapid metastasis and chemotherapy resistance. In this study, we extensively investigated the upstream and downstream mechanisms of miR-548e in regulating OC progression and cisplatin resistance. Our results indicated that ZFAS1 was highly expressed and promoted OC cell proliferation, migration, invasion, and cisplatin resistance by directly suppressing miR-548e expression. ZFAS1 co-localized with miR-548e in the cytosols of OC cells. miR-548e repressed CXCR4 expression, and elevated CXCR4 expression promoted OC cell proliferation, migration, invasion, and cisplatin resistance. Cisplatin resistance induced by ZFAS1 and CXCR4 overexpression in OC cells was mediated by their suppression on let-7a and elevation of BCL-XL/S expression. ZFAS1 knockdown and miR-548e and let-7a overexpression impaired cisplatin resistance and suppressed lung metastatic nodule formation in nude mice. In conclusion, ZFAS1 binds with miR-548e to enhance CXCR4 expression to promote OC cell proliferation and metastasis, which also enhances cisplatin resistance by suppressing let-7a and elevating BCL-XL/S protein expression.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Haidian Island, Haikou 570208, Hainan Province, P.R. China
| | - Li-Ni Quan
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Haidian Island, Haikou 570208, Hainan Province, P.R. China
| | - Qiu Meng
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Haidian Island, Haikou 570208, Hainan Province, P.R. China
| | - Hai-Yan Wang
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Haidian Island, Haikou 570208, Hainan Province, P.R. China
| | - Jie Wang
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Haidian Island, Haikou 570208, Hainan Province, P.R. China
| | - Pin Yu
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Haidian Island, Haikou 570208, Hainan Province, P.R. China
| | - Jian-Tao Fu
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Haidian Island, Haikou 570208, Hainan Province, P.R. China
| | - Ying-Jia Li
- Clinical Laboratory, Third Xiangya Hospital of Central South University, No. 138 Tong Zipo Road, Changsha 410013, Hunan Province, P.R. China
| | - Jin Chen
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Haidian Island, Haikou 570208, Hainan Province, P.R. China
| | - Hong Cheng
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Haidian Island, Haikou 570208, Hainan Province, P.R. China
| | - Qing-Ping Wu
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Haidian Island, Haikou 570208, Hainan Province, P.R. China
| | - Xin-Rong Yu
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Haidian Island, Haikou 570208, Hainan Province, P.R. China
| | - Hong-Ye Yun
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Haidian Island, Haikou 570208, Hainan Province, P.R. China
| | - Shou-Guo Huang
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Haidian Island, Haikou 570208, Hainan Province, P.R. China.
| |
Collapse
|
26
|
Hira VV, Van Noorden CJ, Molenaar RJ. CXCR4 Antagonists as Stem Cell Mobilizers and Therapy Sensitizers for Acute Myeloid Leukemia and Glioblastoma? BIOLOGY 2020; 9:biology9020031. [PMID: 32079173 PMCID: PMC7168055 DOI: 10.3390/biology9020031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022]
Abstract
Glioblastoma is the most aggressive and malignant primary brain tumor in adults and has a poor patient survival of only 20 months after diagnosis. This poor patient survival is at least partly caused by glioblastoma stem cells (GSCs), which are slowly-dividing and therefore therapy-resistant. GSCs are localized in protective hypoxic peri-arteriolar niches where these aforementioned stemness properties are maintained. We previously showed that hypoxic peri-arteriolar GSC niches in human glioblastoma are functionally similar to hypoxic peri-arteriolar hematopoietic stem cell (HSC) niches in human bone marrow. GSCs and HSCs express the receptor C-X-C receptor type 4 (CXCR4), which binds to the chemoattractant stromal-derived factor-1α (SDF-1α), which is highly expressed in GSC niches in glioblastoma and HSC niches in bone marrow. This receptor–ligand interaction retains the GSCs/HSCs in their niches and thereby maintains their slowly-dividing state. In acute myeloid leukemia (AML), leukemic cells use the SDF-1α–CXCR4 interaction to migrate to HSC niches and become slowly-dividing and therapy-resistant leukemic stem cells (LSCs). In this communication, we aim to elucidate how disruption of the SDF-1α–CXCR4 interaction using the FDA-approved CXCR4 inhibitor plerixafor (AMD3100) may be used to force slowly-dividing cancer stem cells out of their niches in glioblastoma and AML. Ultimately, this strategy aims to induce GSC and LSC differentiation and their sensitization to therapy.
Collapse
Affiliation(s)
- Vashendriya V.V. Hira
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia (R.J.M.)
- Correspondence:
| | - Cornelis J.F. Van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia (R.J.M.)
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Remco J. Molenaar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia (R.J.M.)
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
27
|
Labrie M, Kendsersky ND, Ma H, Campbell L, Eng J, Chin K, Mills GB. Proteomics advances for precision therapy in ovarian cancer. Expert Rev Proteomics 2019; 16:841-850. [PMID: 31512530 PMCID: PMC6814571 DOI: 10.1080/14789450.2019.1666004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/06/2019] [Indexed: 10/26/2022]
Abstract
Introduction: Due to the relatively low mutation rate and high frequency of copy number variation, finding actionable genetic drivers of high-grade serous carcinoma (HGSC) is a challenging task. Furthermore, emerging studies show that genetic alterations are frequently poorly represented at the protein level adding a layer of complexity. With improvements in large-scale proteomic technologies, proteomics studies have the potential to provide robust analysis of the pathways driving high HGSC behavior. Areas covered: This review summarizes recent large-scale proteomics findings across adequately sized ovarian cancer sample sets. Key words combined with 'ovarian cancer' including 'proteomics', 'proteogenomic', 'reverse-phase protein array', 'mass spectrometry', and 'adaptive response', were used to search PubMed. Expert opinion: Proteomics analysis of HGSC as well as their adaptive responses to therapy can uncover new therapeutic liabilities, which can reduce the emergence of drug resistance and potentially improve patient outcomes. There is a pressing need to better understand how the genomic and epigenomic heterogeneity intrinsic to ovarian cancer is reflected at the protein level and how this information could be used to improve patient outcomes.
Collapse
Affiliation(s)
- Marilyne Labrie
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Nicholas D Kendsersky
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Hongli Ma
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Lydia Campbell
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - Jennifer Eng
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - Koei Chin
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - Gordon B Mills
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
- Department of Systems Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
28
|
Kamal Y, Schmit SL, Hoehn HJ, Amos CI, Frost HR. Transcriptomic Differences between Primary Colorectal Adenocarcinomas and Distant Metastases Reveal Metastatic Colorectal Cancer Subtypes. Cancer Res 2019; 79:4227-4241. [PMID: 31239274 PMCID: PMC6697603 DOI: 10.1158/0008-5472.can-18-3945] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/11/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022]
Abstract
Approximately 20% of colorectal cancer patients with colorectal adenocarcinomas present with metastases at the time of diagnosis, and therapies that specially target these metastases are lacking. We present a novel approach for investigating transcriptomic differences between primary colorectal adenocarcinoma and distant metastases, which may help to identify primary tumors with high risk for future dissemination and to inform the development of metastasis-targeted therapies. To effectively compare the transcriptomes of primary colorectal adenocarcinoma and metastatic lesions at both the gene and pathway levels, we eliminated tissue specificity of the "host" organs where tumors are located and adjusted for confounders such as exposure to chemotherapy and radiation, and identified that metastases were characterized by reduced epithelial-mesenchymal transition (EMT) but increased MYC target and DNA-repair pathway activities. FBN2 and MMP3 were the most differentially expressed genes between primary tumors and metastases. The two subtypes of colorectal adenocarcinoma metastases that were identified, EMT inflammatory and proliferative, were distinct from the consensus molecular subtype (CMS) 3, suggesting subtype exclusivity. In summary, this study highlights transcriptomic differences between primary tumors and colorectal adenocarcinoma metastases and delineates pathways that are activated in metastases that could be targeted in colorectal adenocarcinoma patients with metastatic disease. SIGNIFICANCE: These findings identify a colorectal adenocarcinoma metastasis-specific gene-expression signature that is free from potentially confounding background signals coming from treatment exposure and the normal host tissue that the metastasis is now situated within.
Collapse
Affiliation(s)
- Yasmin Kamal
- Department of Biomedical Data Sciences, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Stephanie L Schmit
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Hannah J Hoehn
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Christopher I Amos
- Department of Biomedical Data Sciences, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.
- Dan L. Duncan Comprehensive Cancer Center at Baylor College of Medicine, Houston, Texas
| | - H Robert Frost
- Department of Biomedical Data Sciences, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.
| |
Collapse
|
29
|
Contribution of Epithelial Plasticity to Therapy Resistance. J Clin Med 2019; 8:jcm8050676. [PMID: 31091749 PMCID: PMC6571660 DOI: 10.3390/jcm8050676] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
Therapy resistance is responsible for tumour recurrence and represents one of the major challenges in present oncology. Significant advances have been made in the understanding of the mechanisms underlying resistance to conventional and targeted therapies improving the clinical management of relapsed patients. Unfortunately, in too many cases, resistance reappears leading to a fatal outcome. The recent introduction of immunotherapy regimes has provided an unprecedented success in the treatment of specific cancer types; however, a good percentage of patients do not respond to immune-based treatments or ultimately become resistant. Cellular plasticity, cancer cell stemness and tumour heterogeneity have emerged as important determinants of treatment resistance. Epithelial-to-mesenchymal transition (EMT) is associated with resistance in many different cellular and preclinical models, although little evidence derives directly from clinical samples. The recognition of the presence in tumours of intermediate hybrid epithelial/mesenchymal states as the most likely manifestation of epithelial plasticity and their potential link to stemness and tumour heterogeneity, provide new clues to understanding resistance and could be exploited in the search for anti-resistance strategies. Here, recent evidence linking EMT/epithelial plasticity to resistance against conventional, targeted and immune therapy are summarized. In addition, future perspectives for related clinical approaches are also discussed.
Collapse
|
30
|
Lin KC, Torga G, Sun Y, Axelrod R, Pienta KJ, Sturm JC, Austin RH. The role of heterogeneous environment and docetaxel gradient in the emergence of polyploid, mesenchymal and resistant prostate cancer cells. Clin Exp Metastasis 2019; 36:97-108. [PMID: 30810874 DOI: 10.1007/s10585-019-09958-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/19/2019] [Indexed: 12/01/2022]
Abstract
The ability of a population of PC3 prostate epithelial cancer cells to become resistant to docetaxel therapy and progress to a mesenchymal state remains a fundamental problem. The progression towards resistance is difficult to directly study in heterogeneous ecological environments such as tumors. In this work, we use a micro-fabricated "evolution accelerator" environment to create a complex heterogeneous yet controllable in-vitro environment with a spatially-varying drug concentration. With such a structure we observe the rapid emergence of a surprisingly large number of polyploid giant cancer cells (PGCCs) in regions of very high drug concentration, which does not occur in conventional cell culture of uniform concentration. This emergence of PGCCs in a high drug environment is due to migration of diploid epithelial cells from regions of low drug concentration, where they proliferate, to regions of high drug concentration, where they rapidly convert to PGCCs. Such a mechanism can only occur in spatially-varying rather than homogeneous environments. Further, PGCCs exhibit increased expression of the mesenchymal marker ZEB1 in the same high-drug regions where they are formed, suggesting the possible induction of an epithelial to mesenchymal transition (EMT) in these cells. This is consistent with prior work suggesting the PGCC cells are mediators of resistance in response to chemotherapeutic stress. Taken together, this work shows the key role of spatial heterogeneity and the migration of proliferative diploid cells to form PGCCs as a survival strategy for the cancer population, with implications for new therapies.
Collapse
Affiliation(s)
| | | | - Yusha Sun
- Princeton University, Princeton, NJ, USA
| | | | | | | | | |
Collapse
|
31
|
Mihanfar A, Aghazadeh Attari J, Mohebbi I, Majidinia M, Kaviani M, Yousefi M, Yousefi B. Ovarian cancer stem cell: A potential therapeutic target for overcoming multidrug resistance. J Cell Physiol 2018; 234:3238-3253. [PMID: 30317560 DOI: 10.1002/jcp.26768] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/27/2018] [Indexed: 12/24/2022]
Abstract
The cancer stem cell (CSC) model encompasses an advantageous paradigm that in recent decades provides a better elucidation for many important biological aspects of cancer initiation, progression, metastasis, and, more important, development of multidrug resistance (MDR). Such several other hematological malignancies and solid tumors and the identification and isolation of ovarian cancer stem cells (OV-CSCs) show that ovarian cancer also follows this hierarchical model. Gaining a better insight into CSC-mediated resistance holds promise for improving current ovarian cancer therapies and prolonging the survival of recurrent ovarian cancer patients in the future. Therefore, in this review, we will discuss some important mechanisms by which CSCs can escape chemotherapy, and then review the recent and growing body of evidence that supports the contribution of CSCs to MDR in ovarian cancer.
Collapse
Affiliation(s)
- Aynaz Mihanfar
- Faculty of Medicine, Department of Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Iraj Mohebbi
- Department of Occupational Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Mehdi Yousefi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Lian X, Huang Y, Zhu Y, Fang Y, Zhao R, Joseph E, Li J, Pellois JP, Zhou HC. Enzyme-MOF Nanoreactor Activates Nontoxic Paracetamol for Cancer Therapy. Angew Chem Int Ed Engl 2018; 57:5725-5730. [PMID: 29536600 PMCID: PMC6621563 DOI: 10.1002/anie.201801378] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/09/2018] [Indexed: 11/08/2022]
Abstract
Prodrug activation, by exogenously administered enzymes, for cancer therapy is an approach to achieve better selectivity and less systemic toxicity than conventional chemotherapy. However, the short half-lives of the activating enzymes in the bloodstream has limited its success. Demonstrated here is that a tyrosinase-MOF nanoreactor activates the prodrug paracetamol in cancer cells in a long-lasting manner. By generating reactive oxygen species (ROS) and depleting glutathione (GSH), the product of the enzymatic conversion of paracetamol is toxic to drug-resistant cancer cells. Tyrosinase-MOF nanoreactors cause significant cell death in the presence of paracetamol for up to three days after being internalized by cells, while free enzymes totally lose activity in a few hours. Thus, enzyme-MOF nanocomposites are envisioned to be novel persistent platforms for various biomedical applications.
Collapse
Affiliation(s)
- Xizhen Lian
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255 (USA)
| | - Yanyan Huang
- Beijing National Laboratory for MolecularSciences; CAS Key, Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy Of Sciences, Beijing, 100190(China)
| | - Yuanyuan Zhu
- Beijing National Laboratory for MolecularSciences; CAS Key, Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy Of Sciences, Beijing, 100190(China)
| | - Yu Fang
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255 (USA)
| | - Rui Zhao
- Beijing National Laboratory for MolecularSciences; CAS Key, Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy Of Sciences, Beijing, 100190(China)
| | - Elizabeth Joseph
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255 (USA)
| | - Jialuo Li
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255 (USA)
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, Texas A&M University College Station, TX 77843-2128 (USA); Department of Chemistry, Texas A&M University, College Station, TX 77843-3255 (USA)
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255 (USA)
| |
Collapse
|
33
|
Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci 2018; 25:20. [PMID: 29506506 PMCID: PMC5838954 DOI: 10.1186/s12929-018-0426-4] [Citation(s) in RCA: 563] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/01/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are subpopulations of cancer cells sharing similar characteristics as normal stem or progenitor cells such as self-renewal ability and multi-lineage differentiation to drive tumour growth and heterogeneity. Throughout the cancer progression, CSC can further be induced from differentiated cancer cells via the adaptation and cross-talks with the tumour microenvironment as well as a response from therapeutic pressures, therefore contributes to their heterogeneous phenotypes. Challengingly, conventional cancer treatments target the bulk of the tumour and are unable to target CSCs due to their highly resistance nature, leading to metastasis and tumour recurrence. MAIN BODY This review highlights the roles of CSCs in tumour initiation, progression and metastasis with a focus on the cellular and molecular regulators that influence their phenotypical changes and behaviours in the different stages of cancer progression. We delineate the cross-talks between CSCs with the tumour microenvironment that support their intrinsic properties including survival, stemness, quiescence and their cellular and molecular adaptation in response to therapeutic pressure. An insight into the distinct roles of CSCs in promoting angiogenesis and metastasis has been captured based on in vitro and in vivo evidences. CONCLUSION Given dynamic cellular events along the cancer progression and contributions of resistance nature by CSCs, understanding their molecular and cellular regulatory mechanism in a heterogeneous nature, provides significant cornerstone for the development of CSC-specific therapeutics.
Collapse
Affiliation(s)
- Ain Zubaidah Ayob
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
- Cell and Molecular Laboratory (CMBL), The Dean’s Office, Faculty of Medicine, University of Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Amelot A, Terrier LM, Mathon B, Cook AR, Mazeron JJ, Valery CA, Cornu P, Leveque M, Carpentier A. Can anticancer chemotherapy promote the progression of brain metastases? Med Oncol 2018; 35:35. [PMID: 29427159 DOI: 10.1007/s12032-018-1097-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/05/2018] [Indexed: 12/31/2022]
Abstract
Brain metastases natural history from one primary tumor type might be accelerated or favored by using certain systemic chemotherapy. A great deal was described in mice and suggested in human with antiangiogenic drugs, but little is known about the metastatic progression generated by the perverse effect of anticancer drugs. A total of 413 patients who underwent treatment for brain metastasis (2013-2016) were included. The identification of all previous anticancer drugs received by patients from primary tumor diagnosis to brain metastases diagnosis was collated. The median value for the time of first appearance of brain metastasis in all patients was 13.1 months (SD 1.77). The values of brain metastasis-free survival (bMFS) for each primary cancer were: 50.9 months (SD 8.8) for breast, 28.5 months (SD 11.4) for digestive, 27.7 months (SD 18.3) for melanoma, 12.3 months (SD 8.3) for kidney, 1.5 months (SD 0.1) for lung and 26.9 months (SD 18.3) for others (p < 0.009). Through Cox multivariate proportional hazard model, we identified that the only independent factors associated with short bMFS were: lung primary tumor [odd ratio (OR) 0.234, CI 95% 0.16-0.42; p < 0.0001] and mitotic spindle inhibitor (taxanes) chemotherapy [OR 0.609, CI 95% 0.50-0.93; p < 0.001]. Contrariwise, breast primary tumor [odd ratio (OR) 2.372, CI 95% 1.29-4.3; p < 0.005] was an independent factor that proved a significantly longer bMFS. We suggest that anticancer drugs, especially taxane and its derivatives, could promote brain metastases, decreasing free survival. Mechanisms are discussed but still need to be determined.
Collapse
Affiliation(s)
- Aymeric Amelot
- Department of Neurosurgery, Groupe Hospitalier Pitié-Salpétrière, APHP, 47-83 Boulevard de l'Hôpital, Batiment Babinski, 75013, Paris, France. .,Université Paris VI - Pierre et Marie Curie, Paris, France.
| | | | - Bertrand Mathon
- Department of Neurosurgery, Groupe Hospitalier Pitié-Salpétrière, APHP, 47-83 Boulevard de l'Hôpital, Batiment Babinski, 75013, Paris, France.,Université Paris VI - Pierre et Marie Curie, Paris, France
| | - Ann-Rose Cook
- Department of Neurosurgery, Hopital Bretonneau, Tours, France
| | - Jean-Jacques Mazeron
- Université Paris VI - Pierre et Marie Curie, Paris, France.,Department of Radiotherapy, Groupe Hospitalier Pitié-Salpétrière, APHP, Paris, France
| | - Charles-Ambroise Valery
- Department of Neurosurgery, Groupe Hospitalier Pitié-Salpétrière, APHP, 47-83 Boulevard de l'Hôpital, Batiment Babinski, 75013, Paris, France.,Université Paris VI - Pierre et Marie Curie, Paris, France
| | - Philippe Cornu
- Department of Neurosurgery, Groupe Hospitalier Pitié-Salpétrière, APHP, 47-83 Boulevard de l'Hôpital, Batiment Babinski, 75013, Paris, France.,Université Paris VI - Pierre et Marie Curie, Paris, France
| | - Marc Leveque
- Department of Neurosurgery, Groupe Hospitalier Pitié-Salpétrière, APHP, 47-83 Boulevard de l'Hôpital, Batiment Babinski, 75013, Paris, France.,Université Paris VI - Pierre et Marie Curie, Paris, France
| | - Alexandre Carpentier
- Department of Neurosurgery, Groupe Hospitalier Pitié-Salpétrière, APHP, 47-83 Boulevard de l'Hôpital, Batiment Babinski, 75013, Paris, France.,Université Paris VI - Pierre et Marie Curie, Paris, France
| |
Collapse
|
35
|
Zhang W, Yu F, Wang Y, Zhang Y, Meng L, Chi Y. Rab23 promotes the cisplatin resistance of ovarian cancer via the Shh-Gli-ABCG2 signaling pathway. Oncol Lett 2018; 15:5155-5160. [PMID: 29552151 DOI: 10.3892/ol.2018.7949] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
As a novel member of the Rab GTPase family, the role of Rab23 has been reported in multiple types of tumor. However, to the best of our knowledge, the role of Rab23 in ovarian cancer (OC) has not yet been reported. In the present study, immunohistochemistry analysis demonstrated that Rab23 was upregulated in OC tissue; survival analysis indicated that Rab23 expression was associated with a reduced overall survival (OS) rate and disease-free survival (DFS) time. In vitro experiments also demonstrated the increased expression of Rab23 in the OC cells lines, A2780 and SKOV-3, compared with in the normal ovarian cell line, IOSE80. Following the silencing of ABCG2 in SKOV-3 cells, ATP-binding cassette sub-family G member 2 (ABCG2) expression was significantly downregulated both at the RNA and protein levels. The cisplatin (DDP) IC50 declined from 43.09±7.12 µmol/l in control cells to 26.46±5.38 µmol/l in SKOV-3 cells with silenced Rab23. In contrast, in A2780 cells overexpressing Rab23 (A2780-Rab23), ABCG2 expression was significantly upregulated and the DDP IC50 increased from 27.42±6.54 µmol/l in control cells to 45.92±5.23 µmol/l in A2780-Rab23. Investigation into the potential molecular mechanisms for this revealed that the expression of sonic hedgehog (Shh) and Gli family zinc finger 1 (Gli1) was increased in A2780-Rab23 cells, whereas silencing Rab23 in SKOV-3 cells significantly inhibited the expression of Shh and Gli1. The Gli1 inhibitor GANT-61 significantly abrogated the increased ABCG2 expression in A2780-Rab23 cells. Furthermore, the DDP IC50 in A2780-Rab23 cells decreased significantly following the silencing of ABCG2 expression; the IC50 declined from 51.66±8.32 µmol/l in A2780-Rab23 cells to 25.61±6.17 µmol/l in A2780-Rab23 cells with silenced ABCG2. Collectively, the results indicate that Rab23 promotes the DDP resistance of OC cells via the Shh-Gli1-ABCG2 pathway, providing the proof of principle for the further investigation of drug resistance therapy targeting Rab23.
Collapse
Affiliation(s)
- Wenjie Zhang
- Oncology Department, Rizhao People's Hospital, Rizhao, Shandong 276800, P.R. China
| | - Feng Yu
- Gynaecology Department, Maternal and Child Health Care and Family Planning Service Center of Rizhao City, Rizhao, Shandong 276826, P.R. China
| | - Yu Wang
- Emergency Internal Medicine Department, Central Hospital of Rizhao City, Rizhao, Shandong 276800, P.R. China
| | - Yu Zhang
- Blood Drawing Department, Central Blood Station of Rizhao City, Rizhao, Shandong 276800, P.R. China
| | - Lingxin Meng
- Oncology Department, Rizhao People's Hospital, Rizhao, Shandong 276800, P.R. China
| | - Yuhua Chi
- Oncology Department, Rizhao People's Hospital, Rizhao, Shandong 276800, P.R. China
| |
Collapse
|
36
|
Jia D, Jolly MK, Kulkarni P, Levine H. Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory. Cancers (Basel) 2017; 9:E70. [PMID: 28640191 PMCID: PMC5532606 DOI: 10.3390/cancers9070070] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 01/11/2023] Open
Abstract
Waddington's epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of "landscape" in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an "attractor" that is determined by interactions between multiple molecular players, and is buffered against environmental fluctuations. In addition, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss the phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of "cancer attractors"-hidden stable states of the underlying regulatory network that are not occupied by normal cells. Phenotypic transitions in cancer occur at varying levels depending on the context. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of therapy resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to therapies such as chemotherapy and androgen-deprivation therapy. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes "recanalization", i.e., the exit from "cancer attractors" and re-entry into "normal attractors", is more likely to succeed rather than a conventional approach that targets individual molecules/pathways.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77005, USA.
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Prakash Kulkarni
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Bioengineering, Rice University, Houston, TX 77005, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
| |
Collapse
|