1
|
McCutcheon RA, Weber LAE, Nour MM, Cragg SJ, McGuire PM. Psychosis as a disorder of muscarinic signalling: psychopathology and pharmacology. Lancet Psychiatry 2024; 11:554-565. [PMID: 38795721 DOI: 10.1016/s2215-0366(24)00100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 05/28/2024]
Abstract
Dopaminergic receptor antagonism is a crucial component of all licensed treatments for psychosis, and dopamine dysfunction has been central to pathophysiological models of psychotic symptoms. Some clinical trials, however, indicate that drugs that act through muscarinic receptor agonism can also be effective in treating psychosis, potentially implicating muscarinic abnormalities in the pathophysiology of psychosis. Here, we discuss understanding of the central muscarinic system, and we examine preclinical, behavioural, post-mortem, and neuroimaging evidence for its involvement in psychosis. We then consider how altered muscarinic signalling could contribute to the genesis and maintenance of psychotic symptoms, and we review the clinical evidence for muscarinic agents as treatments. Finally, we discuss future research that could clarify the relationship between the muscarinic system and psychotic symptoms.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health, Oxford Health NHS Foundation Trust, Oxford, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Lilian A E Weber
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Matthew M Nour
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health, Oxford Health NHS Foundation Trust, Oxford, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Stephanie J Cragg
- Department of Physiology, Anatomy and Genetics, Centre for Cellular and Molecular Neurobiology, University of Oxford, UK; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
| | - Philip M McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health, Oxford Health NHS Foundation Trust, Oxford, UK
| |
Collapse
|
2
|
Tseng HH, Wu CY, Chang HH, Lu TH, Chang WH, Hsu CF, Lin RY, Yeh DR, Shaw FZ, Yang YK, Chen PS. Posterior cingulate and medial prefrontal excitation-inhibition balance in euthymic bipolar disorder. Psychol Med 2024:1-9. [PMID: 38825858 DOI: 10.1017/s0033291724001326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
BACKGROUND Persistent cognitive deficits and functional impairments are associated with bipolar disorder (BD), even during the euthymic phase. The dysfunction of default mode network (DMN) is critical for self-referential and emotional mental processes and is implicated in BD. The current study aims to explore the balance of excitatory and inhibitory neurotransmitters, i.e. glutamate and γ-aminobutyric acid (GABA), in hubs of the DMN during the euthymic patients with BD (euBD). METHOD Thirty-four euBD and 55 healthy controls (HC) were recruited to the study. Using proton magnetic resonance spectroscopy (1H-MRS), glutamate (with PRESS sequence) and GABA levels (with MEGAPRESS sequence) were measured in the medial prefrontal cortex/anterior cingulate cortex (mPFC/ACC) and the posterior cingulate gyrus (PCC). Measured concentrations of excitatory glutamate/glutamine (Glx) and inhibitory GABA were used to calculate the excitatory/inhibitory (E/I) ratio. Executive and attentional functions were respectively assessed using the Wisconsin card-sorting test and continuous performance test. RESULTS euBD performed worse on attentional function than controls (p = 0.001). Compared to controls, euBD had higher E/I ratios in the PCC (p = 0.023), mainly driven by a higher Glx level in the PCC of euBD (p = 0.002). Only in the BD group, a marginally significant negative association between the mPFC E/I ratio (Glx/GABA) and executive function was observed (p = 0.068). CONCLUSIONS Disturbed E/I balance, particularly elevated Glx/GABA ratio in PCC is observed in euBD. The E/I balance in hubs of DMN may serve as potential biomarkers for euBD, which may also contribute to their poorer executive function.
Collapse
Affiliation(s)
- Huai-Hsuan Tseng
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng Ying Wu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui Hua Chang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacy, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Tsung-Hua Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei Hung Chang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Chia-Fen Hsu
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ren-Yi Lin
- Mind Research and Imaging Center, National Cheng Kung University, Tainan, Taiwan
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | - Ding-Ruey Yeh
- Mind Research and Imaging Center, National Cheng Kung University, Tainan, Taiwan
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan, Taiwan
| | - Fu-Zen Shaw
- Mind Research and Imaging Center, National Cheng Kung University, Tainan, Taiwan
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Po See Chen
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Mineur YS, Picciotto MR. How can I measure brain acetylcholine levels in vivo? Advantages and caveats of commonly used approaches. J Neurochem 2023; 167:3-15. [PMID: 37621094 PMCID: PMC10616967 DOI: 10.1111/jnc.15943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
The neurotransmitter acetylcholine (ACh) plays a central role in the regulation of multiple cognitive and behavioral processes, including attention, learning, memory, motivation, anxiety, mood, appetite, and reward. As a result, understanding ACh dynamics in the brain is essential for elucidating the neural mechanisms underlying these processes. In vivo measurements of ACh in the brain have been challenging because of the low concentrations and rapid turnover of this neurotransmitter. Here, we review a number of techniques that have been developed to measure ACh levels in the brain in vivo. We follow this with a deeper focus on use of genetically encoded fluorescent sensors coupled with fiber photometry, an accessible technique that can be used to monitor neurotransmitter release with high temporal resolution and specificity. We conclude with a discussion of methods for analyzing fiber photometry data and their respective advantages and disadvantages. The development of genetically encoded fluorescent ACh sensors is revolutionizing the field of cholinergic signaling, allowing temporally precise measurement of ACh release in awake, behaving animals. Use of these sensors has already begun to contribute to a mechanistic understanding of cholinergic modulation of complex behaviors.
Collapse
Affiliation(s)
- Yann S. Mineur
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3 Floor Research, New Haven, CT 06508, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3 Floor Research, New Haven, CT 06508, USA
| |
Collapse
|
4
|
Koolschijn RS, Clarke WT, Ip IB, Emir UE, Barron HC. Event-related functional magnetic resonance spectroscopy. Neuroimage 2023; 276:120194. [PMID: 37244321 PMCID: PMC7614684 DOI: 10.1016/j.neuroimage.2023.120194] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
Proton-Magnetic Resonance Spectroscopy (MRS) is a non-invasive brain imaging technique used to measure the concentration of different neurochemicals. "Single-voxel" MRS data is typically acquired across several minutes, before individual transients are averaged through time to give a measurement of neurochemical concentrations. However, this approach is not sensitive to more rapid temporal dynamics of neurochemicals, including those that reflect functional changes in neural computation relevant to perception, cognition, motor control and ultimately behaviour. In this review we discuss recent advances in functional MRS (fMRS) that now allow us to obtain event-related measures of neurochemicals. Event-related fMRS involves presenting different experimental conditions as a series of trials that are intermixed. Critically, this approach allows spectra to be acquired at a time resolution in the order of seconds. Here we provide a comprehensive user guide for event-related task designs, choice of MRS sequence, analysis pipelines, and appropriate interpretation of event-related fMRS data. We raise various technical considerations by examining protocols used to quantify dynamic changes in GABA, the primary inhibitory neurotransmitter in the brain. Overall, we propose that although more data is needed, event-related fMRS can be used to measure dynamic changes in neurochemicals at a temporal resolution relevant to computations that support human cognition and behaviour.
Collapse
Affiliation(s)
- Renée S Koolschijn
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - I Betina Ip
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom
| | - Uzay E Emir
- School of Health Sciences, Purdue University, West Lafayette, United States
| | - Helen C Barron
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
5
|
Carter AR, Barrett A. Recent advances in treatment of spatial neglect: networks and neuropsychology. Expert Rev Neurother 2023; 23:587-601. [PMID: 37273197 PMCID: PMC10740348 DOI: 10.1080/14737175.2023.2221788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Spatial neglect remains an underdiagnosed and undertreated consequence of stroke that imposes significant disability. A growing appreciation of brain networks involved in spatial cognition is helping us to develop a mechanistic understanding of different therapies under development. AREAS COVERED This review focuses on neuromodulation of brain networks for the treatment of spatial neglect after stroke, using evidence-based approaches including 1) Cognitive strategies that are more likely to impact frontal lobe executive function networks; 2) Visuomotor adaptation, which may depend on the integrity of parietal and parieto- and subcortical-frontal connections and the presence of a particular subtype of neglect labeled Aiming neglect; 3) Non-invasive brain stimulation that may modulate relative levels of activity of the two hemispheres and depend on corpus callosum connectivity; and 4) Pharmacological modulation that may exert its effect primarily via right-lateralized networks more closely involved in arousal. EXPERT OPINION Despite promising results from individual studies, significant methodological heterogeneity between trials weakened conclusions drawn from meta-analyses. Improved classification of spatial neglect subtypes will benefit research and clinical care. Understanding the brain network mechanisms of different treatments and different types of spatial neglect will make possible a precision medicine treatment approach.
Collapse
Affiliation(s)
- Alex R. Carter
- Department of Neurology, Department of Orthopedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - A.M. Barrett
- UMass Chan Medical School and UMass Memorial Healthcare, Worcester, MA, USA
- Central Western MA VA Healthcare System, Worcester, MA, USA
| |
Collapse
|
6
|
Park MTM, Jeon P, French L, Dempster K, Chakravarty MM, MacKinley M, Richard J, Khan AR, Théberge J, Palaniyappan L. Microstructural imaging and transcriptomics of the basal forebrain in first-episode psychosis. Transl Psychiatry 2022; 12:358. [PMID: 36050318 PMCID: PMC9436926 DOI: 10.1038/s41398-022-02136-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
Cholinergic dysfunction has been implicated in the pathophysiology of psychosis and psychiatric disorders such as schizophrenia, depression, and bipolar disorder. The basal forebrain (BF) cholinergic nuclei, defined as cholinergic cell groups Ch1-3 and Ch4 (Nucleus Basalis of Meynert; NBM), provide extensive cholinergic projections to the rest of the brain. Here, we examined microstructural neuroimaging measures of the cholinergic nuclei in patients with untreated psychosis (~31 weeks of psychosis, <2 defined daily dose of antipsychotics) and used magnetic resonance spectroscopy (MRS) and transcriptomic data to support our findings. We used a cytoarchitectonic atlas of the BF to map the nuclei and obtained measures of myelin (quantitative T1, or qT1 as myelin surrogate) and microstructure (axial diffusion; AxD). In a clinical sample (n = 85; 29 healthy controls, 56 first-episode psychosis), we found significant correlations between qT1 of Ch1-3, left NBM and MRS-based dorsal anterior cingulate choline in healthy controls while this relationship was disrupted in FEP (p > 0.05). Case-control differences in qT1 and AxD were observed in the Ch1-3, with increased qT1 (reflecting reduced myelin content) and AxD (reflecting reduced axonal integrity). We found clinical correlates between left NBM qT1 with manic symptom severity, and AxD with negative symptom burden in FEP. Intracortical and subcortical myelin maps were derived and correlated with BF myelin. BF-cortical and BF-subcortical myelin correlations demonstrate known projection patterns from the BF. Using data from the Allen Human Brain Atlas, cholinergic nuclei showed significant enrichment for schizophrenia and depression-related genes. Cell-type specific enrichment indicated enrichment for cholinergic neuron markers as expected. Further relating the neuroimaging correlations to transcriptomics demonstrated links with cholinergic receptor genes and cell type markers of oligodendrocytes and cholinergic neurons, providing biological validity to the measures. These results provide genetic, neuroimaging, and clinical evidence for cholinergic dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Min Tae M. Park
- grid.39381.300000 0004 1936 8884Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Peter Jeon
- grid.39381.300000 0004 1936 8884Department of Medical Biophysics, Western University, London, Canada ,grid.39381.300000 0004 1936 8884Robarts Research Institute, Western University, London, Canada ,grid.415847.b0000 0001 0556 2414Lawson Health Research Institute, London, Canada
| | - Leon French
- grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Kara Dempster
- grid.55602.340000 0004 1936 8200Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - M. Mallar Chakravarty
- grid.14709.3b0000 0004 1936 8649Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, Canada ,Cerebral Imaging Centre, Douglas Research Centre, Montreal, Canada
| | - Michael MacKinley
- grid.39381.300000 0004 1936 8884Robarts Research Institute, Western University, London, Canada
| | - Julie Richard
- grid.39381.300000 0004 1936 8884Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Ali R. Khan
- grid.39381.300000 0004 1936 8884Department of Medical Biophysics, Western University, London, Canada ,grid.39381.300000 0004 1936 8884Robarts Research Institute, Western University, London, Canada
| | - Jean Théberge
- grid.39381.300000 0004 1936 8884Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada ,grid.39381.300000 0004 1936 8884Department of Medical Biophysics, Western University, London, Canada ,grid.415847.b0000 0001 0556 2414Lawson Health Research Institute, London, Canada
| | - Lena Palaniyappan
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada. .,Department of Medical Biophysics, Western University, London, Canada. .,Robarts Research Institute, Western University, London, Canada. .,Lawson Health Research Institute, London, Canada. .,Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Canada.
| |
Collapse
|
7
|
Bell TK, Godfrey KJ, Ware AL, Yeates KO, Harris AD. Harmonization of multi-site MRS data with ComBat. Neuroimage 2022; 257:119330. [PMID: 35618196 DOI: 10.1016/j.neuroimage.2022.119330] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive neuroimaging technique used to measure brain chemistry in vivo and has been used to study the healthy brain as well as neuropathology in numerous neurological disorders. The number of multi-site studies using MRS are increasing; however, non-biological variability introduced during data collection across multiple sites, such as differences in scanner vendors and site-specific acquisition implementations for MRS, can obscure detection of biological effects of interest. ComBat is a data harmonization technique that can remove non-biological sources of variance in multisite studies. It has been validated for use with structural and functional MRI metrics but not for MRS metabolites. This study investigated the validity of using ComBat to harmonize MRS metabolites for vendor and site differences. Analyses were performed using data acquired across 20 sites and included edited MRS for GABA+ (N=218) and macromolecule-suppressed GABA data (N=209), as well as standard PRESS data to quantify NAA, creatine, choline, and glutamate (N=190). ComBat harmonization successfully mitigated vendor and site differences for all metabolites of interest. Moreover, significant associations were detected between sex and choline levels and between age and glutamate and GABA+ levels that were not detectable prior to harmonization, confirming the importance of removing site and vendor effects in multi-site data. In conclusion, ComBat harmonization can be successfully applied to MRS data in multi-site MRS studies.
Collapse
Affiliation(s)
- Tiffany K Bell
- Department of Radiology, University of Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Calgary, AB T3B 6A9, Canada.
| | - Kate J Godfrey
- Department of Radiology, University of Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Calgary, AB T3B 6A9, Canada
| | - Ashley L Ware
- Hotchkiss Brain Institute, University of Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Calgary, AB T3B 6A9, Canada; Department of Psychology, University of Calgary, AB Canada; Department of Neurology, University of Utah, UT, United States
| | - Keith Owen Yeates
- Hotchkiss Brain Institute, University of Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Calgary, AB T3B 6A9, Canada; Department of Psychology, University of Calgary, AB Canada
| | - Ashley D Harris
- Department of Radiology, University of Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Calgary, AB T3B 6A9, Canada
| |
Collapse
|
8
|
Williams B, Christakou A. Dissociable roles for the striatal cholinergic system in different flexibility contexts. IBRO Neurosci Rep 2022; 12:260-270. [PMID: 35481226 PMCID: PMC9035710 DOI: 10.1016/j.ibneur.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
The production of behavioural flexibility requires the coordination and integration of information from across the brain, by the dorsal striatum. In particular, the striatal cholinergic system is thought to be important for the modulation of striatal activity. Research from animal literature has shown that chemical inactivation of the dorsal striatum leads to impairments in reversal learning. Furthermore, proton magnetic resonance spectroscopy work has shown that the striatal cholinergic system is also important for reversal learning in humans. Here, we aim to assess whether the state of the dorsal striatal cholinergic system at rest is related to serial reversal learning in humans. We provide preliminary results showing that variability in choline in the dorsal striatum is significantly related to both the number of perseverative and regressive errors that participants make, and their rate of learning from positive and negative prediction errors. These findings, in line with previous work, suggest the resting state of dorsal striatal cholinergic system has important implications for producing flexible behaviour. However, these results also suggest the system may have heterogeneous functionality across different types of tasks measuring behavioural flexibility. These findings provide a starting point for further interrogation into understanding the functional role of the striatal cholinergic system in flexibility. Striatal acetylcholine is important for behavioural flexibility in rodents & primates. Nascent evidence the striatal cholinergic system is important for human flexibility. 1H-MRS, reversal learning and reinforcement learning used to interrogate relationship. Striatal cholinergic system at rest is associated with direct and latent performance. Results specific to concentrations of striatal choline, and not other metabolites.
Collapse
Affiliation(s)
- Brendan Williams
- Centre for Integrative Neuroscience and Neurodynamics, University of Reading, UK
- School of Psychology and Clinical Language Sciences, University of Reading, UK
- Correspondence to: Centre for Integrative Neuroscience and Neurodynamics, Harry Pitt Building, University of Reading, Reading, Berkshire, UK.
| | - Anastasia Christakou
- Centre for Integrative Neuroscience and Neurodynamics, University of Reading, UK
- School of Psychology and Clinical Language Sciences, University of Reading, UK
| |
Collapse
|
9
|
Tuovinen N, Yalcin-Siedentopf N, Welte AS, Siedentopf CM, Steiger R, Gizewski ER, Hofer A. Neurometabolite correlates with personality and stress in healthy emerging adults: A focus on sex differences. Neuroimage 2021; 247:118847. [PMID: 34954024 DOI: 10.1016/j.neuroimage.2021.118847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Personality traits have been linked with both brain structure and function. However, the exact relationship between personality traits and other behavioural measures with neurometabolites, measured with proton magnetic resonance spectroscopy, is not clear. Here we investigated the association between behavioural measures (i.e., personality traits, resilience, perceived stress, self-esteem, hopelessness, psychological distress) and metabolite ratios (i.e., of choline-containing compounds [Cho], creatine and phosphocreatine [Cr], and N-acetyl-aspartate [NAA]) in the posterior cingulate cortex (pCC) and the dorsal anterior cingulate cortex (dACC) and surrounding white matter (WM) regions in healthy emerging adults (N = 57, 26 women, mean age=23.40 years, SD=2.50). The pCC and the dACC were selected for their known involvement as important brain network hubs and their association to five factor personality dimensions and other psychological measures. Spectral analysis as well as statistics for demographic, clinical, and imaging data were performed. Correlation and multiple regression analyses were used to test the relationship between metabolite ratios and behavioural scores in the entire sample as well as in female and male participants separately. The entire sample showed significant (p<0.05) negative correlates of stress with the NAA/Cr ratio in the pCC, and of extraversion with WM metabolite ratios. In regards of sex differences, a significantly higher NAA/Cho ratio in the pCC (p<0.05), the dACC (p<0.01), and in the left and right posterior WM matter (p<0.05), and a lower Cho/Cr ratio in the dACC (p<0.01) was detected in women. Moreover, the two sexes differed in regards of metabolite correlates of openness, conscientiousness, extraversion, agreeableness, neuroticism, stress, hopelessness, and self-esteem, and in multiple regression model predictions. Our results point to a role of the ACC in conscientiousness through its involvement in higher-order cognitive control as part of the salience network and internally directed thoughts as part of the default mode network (DMN). Furthermore, the two sexes differ in terms of metabolite correlates of openness and conscientiousness in the pCC, suggesting mental process involvement through the DMN, and of agreeableness in the dACC, possibly through involvement in social cognitive processes, particularly in women. Additionally, our results suggest that the ACC is linked to the so-called Alpha-factor of personality. Our findings on stress correlates contribute to the existing literature of the involvement of the ACC as part of the limbic system. In addition, our results suggest a possible role of the pCC in stress-regulatory processes through a possible co-involvement of stress, hopelessness, and self-esteem in the pCC in men, where higher self-esteem may help to cope with stress.
Collapse
Affiliation(s)
- Noora Tuovinen
- Medical University of Innsbruck, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Division of Psychiatry I, Anichstrasse 35, Innsbruck 6020, Austria.
| | - Nursen Yalcin-Siedentopf
- Medical University of Innsbruck, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Division of Psychiatry I, Anichstrasse 35, Innsbruck 6020, Austria.
| | - Anna-Sophia Welte
- Medical University of Innsbruck, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Division of Psychiatry I, Anichstrasse 35, Innsbruck 6020, Austria.
| | - Christian M Siedentopf
- Medical University of Innsbruck, Department of Neuroradiology, Anichstrasse 35, Innsbruck 6020, Austria.
| | - Ruth Steiger
- Medical University of Innsbruck, Department of Neuroradiology, Anichstrasse 35, Innsbruck 6020, Austria; Medical University of Innsbruck, Neuroimaging Research Core Facility, Anichstrasse 35, Innsbruck 6020, Austria.
| | - Elke R Gizewski
- Medical University of Innsbruck, Department of Neuroradiology, Anichstrasse 35, Innsbruck 6020, Austria; Medical University of Innsbruck, Neuroimaging Research Core Facility, Anichstrasse 35, Innsbruck 6020, Austria.
| | - Alex Hofer
- Medical University of Innsbruck, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Division of Psychiatry I, Anichstrasse 35, Innsbruck 6020, Austria.
| |
Collapse
|
10
|
Song T, Song X, Zhu C, Patrick R, Skurla M, Santangelo I, Green M, Harper D, Ren B, Forester BP, Öngür D, Du F. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res Rev 2021; 72:101503. [PMID: 34751136 PMCID: PMC8662951 DOI: 10.1016/j.arr.2021.101503] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
Accumulating evidence demonstrates that metabolic changes in the brain associated with neuroinflammation, oxidative stress, and mitochondrial dysfunction play an important role in the pathophysiology of mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the neural signatures associated with these metabolic alterations and underlying molecular mechanisms are still elusive. Accordingly, we reviewed the literature on in vivo human brain 1H and 31P-MRS studies and use meta-analyses to identify patterns of brain metabolic alterations in MCI and AD. 40 and 39 studies on MCI and AD, respectively, were classified according to brain regions. Our results indicate decreased N-acetyl aspartate and creatine but increased myo-inositol levels in both MCI and AD, decreased glutathione level in MCI as well as disrupted energy metabolism in AD. In addition, the hippocampus shows the strongest alterations in most of these metabolites. This meta-analysis also illustrates progressive metabolite alterations from MCI to AD. Taken together, it suggests that 1) neuroinflammation and oxidative stress may occur in the early stages of AD, and likely precede neuron loss in its progression; 2) the hippocampus is a sensitive region of interest for early diagnosis and monitoring the response of interventions; 3) targeting bioenergetics associated with neuroinflammation/oxidative stress is a promising approach for treating AD.
Collapse
Affiliation(s)
- Tao Song
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xiaopeng Song
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Chenyawen Zhu
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA
| | - Regan Patrick
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA; Department of Neuropsychology, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Miranda Skurla
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA
| | | | - Morgan Green
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA
| | - David Harper
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Boyu Ren
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brent P Forester
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
11
|
Dias I, Levers MR, Lamberti M, Hassink GC, van Wezel R, le Feber J. Consolidation of memory traces in cultured cortical networks requires low cholinergic tone, synchronized activity and high network excitability. J Neural Eng 2021; 18. [PMID: 33892486 DOI: 10.1088/1741-2552/abfb3f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/23/2021] [Indexed: 11/11/2022]
Abstract
In systems consolidation, encoded memories are replayed by the hippocampus during slow-wave sleep (SWS), and permanently stored in the neocortex. Declarative memory consolidation is believed to benefit from the oscillatory rhythms and low cholinergic tone observed in this sleep stage, but underlying mechanisms remain unclear. To clarify the role of cholinergic modulation and synchronized activity in memory consolidation, we applied repeated electrical stimulation in mature cultures of dissociated rat cortical neurons with high or low cholinergic tone, mimicking the cue replay observed during systems consolidation under distinct cholinergic concentrations. In the absence of cholinergic input, these cultures display activity patterns hallmarked by network bursts, synchronized events reminiscent of the low frequency oscillations observed during SWS. They display stable activity and connectivity, which mutually interact and achieve an equilibrium. Electrical stimulation reforms the equilibrium to include the stimulus response, a phenomenon interpreted as memory trace formation. Without cholinergic input, activity was burst-dominated. First application of a stimulus induced significant connectivity changes, while subsequent repetition no longer affected connectivity. Presenting a second stimulus at a different electrode had the same effect, whereas returning to the initial stimuli did not induce further connectivity alterations, indicating that the second stimulus did not erase the 'memory trace' of the first. Distinctively, cultures with high cholinergic tone displayed reduced network excitability and dispersed firing, and electrical stimulation did not induce significant connectivity changes. We conclude that low cholinergic tone facilitates memory formation and consolidation, possibly through enhanced network excitability. Network bursts or SWS oscillations may merely reflect high network excitability.
Collapse
Affiliation(s)
- Inês Dias
- Department of Clinical Neurophysiology, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands
| | - Marloes R Levers
- Department of Clinical Neurophysiology, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands
| | - Martina Lamberti
- Department of Clinical Neurophysiology, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands
| | - Gerco C Hassink
- Department of Clinical Neurophysiology, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands
| | - Richard van Wezel
- Department of Biomedical Signals and Systems, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands.,Department of Biophysics, Radboud University, Nijmegen, PO Box 9010 6525AJ, The Netherlands
| | - Joost le Feber
- Department of Clinical Neurophysiology, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands
| |
Collapse
|
12
|
Lockhofen DEL, Mulert C. Neurochemistry of Visual Attention. Front Neurosci 2021; 15:643597. [PMID: 34025339 PMCID: PMC8133366 DOI: 10.3389/fnins.2021.643597] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Visual attention is the cognitive process that mediates the selection of important information from the environment. This selection is usually controlled by bottom-up and top-down attentional biasing. Since for most humans vision is the dominant sense, visual attention is critically important for higher-order cognitive functions and related deficits are a core symptom of many neuropsychiatric and neurological disorders. Here, we summarize the importance and relative contributions of different neuromodulators and neurotransmitters to the neural mechanisms of top-down and bottom-up attentional control. We will not only review the roles of widely accepted neuromodulators, such as acetylcholine, dopamine and noradrenaline, but also the contributions of other modulatory substances. In doing so, we hope to shed some light on the current understanding of the role of neurochemistry in shaping neuron properties contributing to the allocation of attention in the visual field.
Collapse
Affiliation(s)
| | - Christoph Mulert
- Center for Psychiatry and Psychotherapy, Justus-Liebig University, Hessen, Germany
| |
Collapse
|
13
|
Bilingualism is a long-term cognitively challenging experience that modulates metabolite concentrations in the healthy brain. Sci Rep 2021; 11:7090. [PMID: 33782462 PMCID: PMC8007713 DOI: 10.1038/s41598-021-86443-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
Cognitively demanding experiences, including complex skill acquisition and processing, have been shown to induce brain adaptations, at least at the macroscopic level, e.g. on brain volume and/or functional connectivity. However, the neurobiological bases of these adaptations, including at the cellular level, are unclear and understudied. Here we use bilingualism as a case study to investigate the metabolic correlates of experience-based brain adaptations. We employ Magnetic Resonance Spectroscopy to measure metabolite concentrations in the basal ganglia, a region critical to language control which is reshaped by bilingualism. Our results show increased myo-Inositol and decreased N-acetyl aspartate concentrations in bilinguals compared to monolinguals. Both metabolites are linked to synaptic pruning, a process underlying experience-based brain restructuring. Interestingly, both concentrations correlate with relative amount of bilingual engagement. This suggests that degree of long-term cognitive experiences matters at the level of metabolic concentrations, which might accompany, if not drive, macroscopic brain adaptations.
Collapse
|
14
|
Frontal lobe metabolic alterations characterizing Parkinson's disease cognitive impairment. Neurol Sci 2020; 42:1053-1064. [PMID: 32729012 DOI: 10.1007/s10072-020-04626-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND PURPOSE Diagnosis of Parkinson's disease (PD) cognitive impairment at early stages is challenging compared to the stage of PD dementia where functional impairment is apparent and easily diagnosed. Hence, to evaluate potential early stage cognitive biomarkers, we assessed frontal lobe metabolic alterations using in vivo multi-voxel proton magnetic resonance spectroscopic imaging (1H-MRSI). METHOD Frontal metabolism was studied in patients with PD with normal cognition (PD-CN) (n = 26), with cognitive impairment (PD-CI) (n = 27), and healthy controls (HC) (n = 30) using a single slice (two-dimensional) 1H-MRSI at 3 T. The acquired spectra were post-processed distinctly for voxels corresponding to the bilateral middle/superior frontal gray matter (GM) and frontal white matter (WM) regions (delineated employing neuromorphometrics atlas) using the LC-Model software. RESULT Significant (post hoc p < 0.016) reduction in the concentration of N-acetyl aspartate (NAA) in the middle and superior frontal GMs and total choline (tCho) and total creatine (tCr) in the frontal WM was observed in PD-CI compared to PD-CN and HC, while that in HC and PD-CN groups were comparable. The NAA and tCr/tCho metabolite concentrations showed significant (p < 0.05) positive correlations with cognitive test scores in the frontal GM and WM, respectively. The receiver operating curve (ROC) analysis revealed significant (p < 0.05) "area under curve" for NAA/tNAA in the frontal GM and tCho in the frontal WM. CONCLUSION The frontal metabolic profile is altered in cognitively impaired PD compared with cognitively normal PD. Neuronal function loss (NAA), altered energy metabolism (Cr), and cholinergic (Cho) neural transmission are implicated in PD cognitive pathology. Frontal neuro-metabolism may promisingly serve as PD cognitive biomarker.
Collapse
|
15
|
Vaucher E, Laliberté G, Higgins MC, Maheux M, Jolicoeur P, Chamoun M. Cholinergic potentiation of visual perception and vision restoration in rodents and humans. Restor Neurol Neurosci 2020; 37:553-569. [PMID: 31839615 DOI: 10.3233/rnn-190947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The cholinergic system is a potent neuromodulator system that plays a critical role in cortical plasticity, attention, and learning. Recently, it was found that boosting this system during perceptual learning robustly enhances sensory perception in rodents. In particular, pairing cholinergic activation with visual stimulation increases neuronal responses, cue detection ability, and long-term facilitation in the primary visual cortex. The mechanisms of cholinergic enhancement are closely linked to attentional processes, long-term potentiation, and modulation of the excitatory/inhibitory balance. Some studies currently examine this effect in humans. OBJECTIVE The present article reviews the research from our laboratory, examining whether potentiating the central cholinergic system could help visual perception and restoration. METHODS Electrophysiological or pharmacological enhancement of the cholinergic system are administered during a visual training. Electrophysiological responses and perceptual learning performance are investigated before and after the training in rats and humans. This approach's ability to restore visual capacities following a visual deficit induced by a partial optic nerve crush is also investigated in rats. RESULTS The coupling of visual training to cholinergic stimulation improved visual discrimination and visual acuity in rats, and improved residual vision after a deficit. These changes were due to muscarinic and nicotinic transmissions and were associated with a functional improvement of evoked potentials. In humans, potentiation of cholinergic transmission with 5 mg of donepezil showed improved learning and ocular dominance plasticity, although this treatment was ineffective in augmenting the perceptual threshold and electroencephalography. CONCLUSIONS Potential therapeutic outcomes ought to facilitate vision restoration using commercially available cholinergic agents combined with visual stimulation in order to prevent irreversible vision loss in patients. This approach has the potential to help a large population of visually impaired individuals.
Collapse
Affiliation(s)
- Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada.,Centre de recherche en neuropsychologie et cognition (CERNEC), Montréal, Québec, Canada
| | - Guillaume Laliberté
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada
| | - Marie-Charlotte Higgins
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada
| | - Manon Maheux
- Centre de recherche en neuropsychologie et cognition (CERNEC), Montréal, Québec, Canada.,Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Jolicoeur
- Centre de recherche en neuropsychologie et cognition (CERNEC), Montréal, Québec, Canada.,Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Mira Chamoun
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
16
|
Weerasekera A, Crabbé M, Tomé SO, Gsell W, Sima D, Casteels C, Dresselaers T, Deroose C, Van Huffel S, Rudolf Thal D, Van Damme P, Himmelreich U. Non-invasive characterization of amyotrophic lateral sclerosis in a hTDP-43 A315T mouse model: A PET-MR study. NEUROIMAGE-CLINICAL 2020; 27:102327. [PMID: 32653817 PMCID: PMC7352080 DOI: 10.1016/j.nicl.2020.102327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 05/02/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
Currently TAR DNA binding protein 43 (TDP-43) pathology, underlying Amyotrophic Lateral Sclerosis (ALS), remains poorly understood which hinders both clinical diagnosis and drug discovery efforts. To better comprehend the disease pathophysiology, positron emission tomography (PET) and multi-parametric magnetic resonance imaging (mp-MRI) provide a non-invasive mode to investigate molecular, structural, and neurochemical abnormalities in vivo. For the first time, we report the findings of a longitudinal PET-MR study in the TDP-43A315T ALS mouse model, investigating disease-related changes in the mouse brain. 2-deoxy-2-[18F]fluoro-D-glucose [18F]FDG PET showed significantly lowered glucose metabolism in the motor and somatosensory cortices of TDP-43A315T mice whereas metabolism was elevated in the region covering the bilateral substantia nigra, reticular and amygdaloid nucleus between 3 and 7 months of age, as compared to non-transgenic controls. MR spectroscopy data showed significant changes in glutamate + glutamine (Glx) and choline levels in the motor cortex and hindbrain of TDP-43A315T mice compared to controls. Cerebral blood flow (CBF) measurements, using an arterial spin labelling approach, showed no significant age- or group-dependent changes in brain perfusion. Diffusion MRI indices demonstrated transient changes in different motor areas of the brain in TDP-43A315T mice around 14 months of age. Cytoplasmic TDP-43 proteinaceous inclusions were observed in the brains of symptomatic, 18-month-old mice, but not in non-symptomatic transgenic or wild-type mice. Our results reveal that disease- and age-related functional and neurochemical alterations, together with limited structural changes, occur in specific brain regions of transgenic TDP-43A315T mice, as compared to their healthy counterparts. Altogether these findings shed new light on TDP-43A315T disease pathogenesis and may prove useful for clinical management of ALS.
Collapse
Affiliation(s)
- Akila Weerasekera
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA, USA
| | - Melissa Crabbé
- Division of Nuclear Medicine, Department of Imaging and Pathology, KU Leuven, Belgium; MoSAIC - Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium.
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Willy Gsell
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Diana Sima
- Icometrix, R&D department, Leuven, Belgium; Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Cindy Casteels
- Division of Nuclear Medicine, Department of Imaging and Pathology, KU Leuven, Belgium; MoSAIC - Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium
| | - Tom Dresselaers
- Division of Radiology, Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Christophe Deroose
- Division of Nuclear Medicine, Department of Imaging and Pathology, KU Leuven, Belgium; MoSAIC - Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium
| | - Sabine Van Huffel
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Philip Van Damme
- Laboratory of Neurobiology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Center for Brain & Disease Research, VIB, Leuven, Belgium; Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Bell T, Lindner M, Langdon A, Mullins PG, Christakou A. Regional Striatal Cholinergic Involvement in Human Behavioral Flexibility. J Neurosci 2019; 39:5740-5749. [PMID: 31109959 PMCID: PMC6636079 DOI: 10.1523/jneurosci.2110-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Animal studies have shown that the striatal cholinergic system plays a role in behavioral flexibility but, until recently, this system could not be studied in humans due to a lack of appropriate noninvasive techniques. Using proton magnetic resonance spectroscopy, we recently showed that the concentration of dorsal striatal choline (an acetylcholine precursor) changes during reversal learning (a measure of behavioral flexibility) in humans. The aim of the present study was to examine whether regional average striatal choline was associated with reversal learning. A total of 22 participants (mean age = 25.2 years, range = 18-32 years, 13 female) reached learning criterion in a probabilistic learning task with a reversal component. We measured choline at rest in both the dorsal and ventral striatum using magnetic resonance spectroscopy. Task performance was described using a simple reinforcement learning model that dissociates the contributions of positive and negative prediction errors to learning. Average levels of choline in the dorsal striatum were associated with performance during reversal, but not during initial learning. Specifically, lower levels of choline in the dorsal striatum were associated with a lower number of perseverative trials. Moreover, choline levels explained interindividual variance in perseveration over and above that explained by learning from negative prediction errors. These findings suggest that the dorsal striatal cholinergic system plays an important role in behavioral flexibility, in line with evidence from the animal literature and our previous work in humans. Additionally, this work provides further support for the idea of measuring choline with magnetic resonance spectroscopy as a noninvasive way of studying human cholinergic neurochemistry.SIGNIFICANCE STATEMENT Behavioral flexibility is a crucial component of adaptation and survival. Evidence from the animal literature shows that the striatal cholinergic system is fundamental to reversal learning, a key paradigm for studying behavioral flexibility, but this system remains understudied in humans. Using proton magnetic resonance spectroscopy, we showed that choline levels at rest in the dorsal striatum are associated with performance specifically during reversal learning. These novel findings help to bridge the gap between animal and human studies by demonstrating the importance of cholinergic function in the dorsal striatum in human behavioral flexibility. Importantly, the methods described here cannot only be applied to furthering our understanding of healthy human neurochemistry, but also to extending our understanding of cholinergic disorders.
Collapse
Affiliation(s)
- Tiffany Bell
- School of Psychology and Clinical Language Sciences, and Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading RG6 6AL, United Kingdom
| | - Michael Lindner
- School of Psychology and Clinical Language Sciences, and Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading RG6 6AL, United Kingdom
| | - Angela Langdon
- Princeton Neuroscience Institute, Princeton University, New Jersey 08544, and
| | | | - Anastasia Christakou
- School of Psychology and Clinical Language Sciences, and Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading RG6 6AL, United Kingdom,
| |
Collapse
|
18
|
Mullins PG. Towards a theory of functional magnetic resonance spectroscopy (fMRS): A meta-analysis and discussion of using MRS to measure changes in neurotransmitters in real time. Scand J Psychol 2018; 59:91-103. [PMID: 29356002 DOI: 10.1111/sjop.12411] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/01/2017] [Indexed: 02/06/2023]
Abstract
Proton magnetic resonance spectroscopy is a powerful tool to investigate neurochemistry and physiology in vivo. Recently researchers have started to use MRS to measure neurotransmitter changes related to neural activity, so called functional MRS (fMRS). Particular interest has been placed on measuring glutamate changes associated with neural function, but differences are reported in the size of changes seen. This review discusses fMRS, and includes meta-analyses of the relative size of glutamate changes seen in fMRS, and the impact experimental design and stimulus paradigm may have. On average glutamate was found to increase by 6.97% (±1.739%) in response to neural activation. However, factors of experimental design may have a large impact on the size of these changes. For example an increase of 4.749% (±1.45%) is seen in block studies compared to an increase of 13.429% (±3.59) in studies using event related paradigms. The stimulus being investigated also seems to play a role with prolonged visual stimuli showing a small mean increase in glutamate of 2.318% (±1.227%) while at the other extreme, pain stimuli show a mean stimulation effect of 14.458% (±3.736%). These differences are discussed with regards to possible physiologic interpretations, as well experimental design implications.
Collapse
|
19
|
Bell T, Lindner M, Mullins PG, Christakou A. Functional neurochemical imaging of the human striatal cholinergic system during reversal learning. Eur J Neurosci 2018; 47:1184-1193. [PMID: 29265530 DOI: 10.1111/ejn.13803] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
Abstract
Animal studies have shown that acetylcholine (ACh) levels in the dorsal striatum play a role in reversal learning. However, this has not been studied in humans due to a lack of appropriate non-invasive techniques. Proton magnetic resonance spectroscopy (1 H-MRS) can be used to measure metabolite levels in humans in vivo. Although it cannot be used to study ACh directly, 1 H-MRS can be used to study choline, an ACh precursor, which is linked to activity-dependent ACh release. The aim of this study was to use functional-1 H-MRS (fMRS) to measure changes in choline levels in the human dorsal striatum during performance of a probabilistic reversal learning task. We demonstrate a task-dependent decrease in choline, specifically during reversal, but not initial, learning. We interpret this to reflect a sustained increase in ACh levels, which is in line with findings from the animal literature. This task-dependent change was specific to choline and was not observed in control metabolites. These findings provide support for the use of fMRS in the in vivo study of the human cholinergic system.
Collapse
Affiliation(s)
- Tiffany Bell
- School of Psychology and Clinical Language Sciences, Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Whiteknights, Reading, RG6 6AL, UK
| | - Michael Lindner
- School of Psychology and Clinical Language Sciences, Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Whiteknights, Reading, RG6 6AL, UK
| | | | - Anastasia Christakou
- School of Psychology and Clinical Language Sciences, Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Whiteknights, Reading, RG6 6AL, UK
| |
Collapse
|
20
|
Stanley JA, Raz N. Functional Magnetic Resonance Spectroscopy: The "New" MRS for Cognitive Neuroscience and Psychiatry Research. Front Psychiatry 2018; 9:76. [PMID: 29593585 PMCID: PMC5857528 DOI: 10.3389/fpsyt.2018.00076] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 02/23/2018] [Indexed: 01/30/2023] Open
Abstract
Proton magnetic resonance spectroscopy (1H MRS) is a well-established technique for quantifying the brain regional biochemistry in vivo. In most studies, however, the 1H MRS is acquired during rest with little to no constraint on behavior. Measured metabolite levels, therefore, reflect steady-state concentrations whose associations with behavior and cognition are unclear. With the recent advances in MR technology-higher-field MR systems, robust acquisition techniques and sophisticated quantification methods-1H MRS is now experiencing a resurgence. It is sensitive to task-related and pathology-relevant regional dynamic changes in neurotransmitters, including the most ubiquitous among them, glutamate. Moreover, high temporal resolution approaches allow tracking glutamate modulations at a time scale of under a minute during perceptual, motor, and cognitive tasks. The observed task-related changes in brain glutamate are consistent with new metabolic steady states reflecting the neural output driven by shifts in the local excitatory and inhibitory balance on local circuits. Unlike blood oxygen level differences-base functional MRI, this form of in vivo MRS, also known as functional MRS (1H fMRS), yields a more direct measure of behaviorally relevant neural activity and is considerably less sensitive to vascular changes. 1H fMRS enables noninvasive investigations of task-related glutamate changes that are relevant to normal and impaired cognitive performance, and psychiatric disorders. By targeting brain glutamate, this approach taps into putative neural correlates of synaptic plasticity. This review provides a concise survey of recent technological advancements that lay the foundation for the successful use of 1H fMRS in cognitive neuroscience and neuropsychiatry, including a review of seminal 1H fMRS studies, and the discussion of biological significance of task-related changes in glutamate modulation. We conclude with a discussion of the promises, limitations, and outstanding challenges of this new tool in the armamentarium of cognitive neuroscience and psychiatry research.
Collapse
Affiliation(s)
- Jeffrey A Stanley
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Naftali Raz
- Department of Psychology, Wayne State University, Detroit, MI, United States.,Institute of Gerontology, Wayne State University, Detroit, MI, United States.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|