1
|
Faria GNF, Karch CG, Chakraborty S, Gu T, Woodward A, Aissanou A, Lageshetty S, Silvy RP, Resasco D, Ballon JA, Harrison RG. Immunogenic Treatment of Metastatic Breast Cancer Using Targeted Carbon Nanotube Mediated Photothermal Therapy in Combination with Anti-Programmed Cell Death Protein-1. J Pharmacol Exp Ther 2024; 390:65-77. [PMID: 38772718 DOI: 10.1124/jpet.123.001796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
The high prevalence of breast cancer is a global health concern, compounded by the lack of safe or effective treatments for its advanced stages. These facts urge the development of novel treatment strategies. Annexin A5 (ANXA5) is a natural human protein that binds with high specificity to phosphatidylserine, a phospholipid tightly maintained in the inner leaflet of the cell membrane on most healthy cells but externalized in tumor cells and the tumor vasculature. Here, we have developed a targeted photosensitizer for photothermal therapy (PTT) of solid tumors through the functionalization of single-walled carbon nanotubes (SWCNTs) to ANXA5-the SWCNT-ANXA5 conjugate. The ablation of tumors through the SWCNT-ANXA5-mediated PTT synergizes with checkpoint inhibition, creating a systemic anticancer immune response. In vitro ablation of cells incubated with the conjugate promoted cell death in a dose-dependent and targeted manner. This treatment strategy was tested in vivo with the orthotopic EMT6 breast tumor model in female balb/cJ mice. Enhanced therapeutic effects were achieved by using intratumoral injection of the conjugate and treating tumors at a lower PTT temperature (45°C). Intratumoral injection prevented the accumulation of the SWCNTs in major clearance organs. When combined with checkpoint inhibition of anti-programmed cell death protein-1, SWCNT-ANXA5-mediated PTT increased survival and 80% of the mice survived for 100 days. Evidence of immune system activation by flow cytometry of splenic cells strengthens the hypothesis of an abscopal effect as a mechanism of prolonged survival. SIGNIFICANCE STATEMENT: This study demonstrated a relatively high survival rate (80% at 100 days) of mice with aggressive breast cancer when treated with photothermal therapy using the SWCNT-ANXA5 conjugate injected intratumorally and combined with immune stimulation using the anti-programmed cell death protein-1 checkpoint inhibitor. Photothermal therapy was accomplished by maintaining the tumor temperature at a relatively low level of 45°C and avoiding accumulation of the nanotubes in the clearance organs by using intratumoral administration.
Collapse
Affiliation(s)
- Gabriela N F Faria
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Clement G Karch
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Sampurna Chakraborty
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Tingting Gu
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Alexis Woodward
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Adam Aissanou
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Sathish Lageshetty
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Ricardo Prada Silvy
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Daniel Resasco
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Jorge Andres Ballon
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| | - Roger G Harrison
- School of Sustainable Chemical, Biological, and Materials Engineering (G.N.F.F., R.P.S., D.R., R.G.H.), School of Biomedical Engineering (C.G.K., S.C., A.W., A.A.), and Samuel Roberts Noble Microscopy Laboratory and School of Biological Sciences (T.G.), University of Oklahoma, Norman, Oklahoma; CHASM Advanced Materials, Inc, Norman, Oklahoma (S.L., R.P.S.); Department of Microbiology and Immunology, Universidad Nacional de San Agustin, Arequipa, Peru (J.A.B.); and Stephenson Cancer Center, Oklahoma City, Oklahoma (R.G.H.)
| |
Collapse
|
2
|
Wedig J, Jasani S, Mukherjee D, Lathrop H, Matreja P, Pfau T, D'Alesio L, Guenther A, Fenn L, Kaiser M, Torok MA, McGue J, Sizemore GM, Noonan AM, Dillhoff ME, Blaser BW, Frankel TL, Culp S, Hart PA, Cruz-Monserrate Z, Mace TA. CD200 is overexpressed in the pancreatic tumor microenvironment and predictive of overall survival. Cancer Immunol Immunother 2024; 73:96. [PMID: 38619621 PMCID: PMC11018596 DOI: 10.1007/s00262-024-03678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Pancreatic cancer is an aggressive disease with a 5 year survival rate of 13%. This poor survival is attributed, in part, to limited and ineffective treatments for patients with metastatic disease, highlighting a need to identify molecular drivers of pancreatic cancer to target for more effective treatment. CD200 is a glycoprotein that interacts with the receptor CD200R and elicits an immunosuppressive response. Overexpression of CD200 has been associated with differential outcomes, depending on the tumor type. In the context of pancreatic cancer, we have previously reported that CD200 is expressed in the pancreatic tumor microenvironment (TME), and that targeting CD200 in murine tumor models reduces tumor burden. We hypothesized that CD200 is overexpressed on tumor and stromal populations in the pancreatic TME and that circulating levels of soluble CD200 (sCD200) have prognostic value for overall survival. We discovered that CD200 was overexpressed on immune, stromal, and tumor populations in the pancreatic TME. Particularly, single-cell RNA-sequencing indicated that CD200 was upregulated on inflammatory cancer-associated fibroblasts. Cytometry by time of flight analysis of PBMCs indicated that CD200 was overexpressed on innate immune populations, including monocytes, dendritic cells, and monocytic myeloid-derived suppressor cells. High sCD200 levels in plasma correlated with significantly worse overall and progression-free survival. Additionally, sCD200 correlated with the ratio of circulating matrix metalloproteinase (MMP) 3: tissue inhibitor of metalloproteinase (TIMP) 3 and MMP11/TIMP3. This study highlights the importance of CD200 expression in pancreatic cancer and provides the rationale for designing novel therapeutic strategies that target this protein.
Collapse
Affiliation(s)
- Jessica Wedig
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, USA
| | - Shrina Jasani
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Debasmita Mukherjee
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, USA
| | - Hannah Lathrop
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Priya Matreja
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Timothy Pfau
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Liliana D'Alesio
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Abigail Guenther
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Lexie Fenn
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Morgan Kaiser
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Molly A Torok
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Jake McGue
- Department of Surgical Oncology, University of Michigan, Ann Arbor, USA
| | - Gina M Sizemore
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Radiation Oncology, The Ohio State University, Columbus, USA
| | - Anne M Noonan
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Mary E Dillhoff
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Bradley W Blaser
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Hematology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Timothy L Frankel
- Department of Surgical Oncology, University of Michigan, Ann Arbor, USA
| | - Stacey Culp
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, USA
| | - Phil A Hart
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W. 12th Ave., Columbus, OH, 43210, USA
| | - Zobeida Cruz-Monserrate
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W. 12th Ave., Columbus, OH, 43210, USA
| | - Thomas A Mace
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA.
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W. 12th Ave., Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Gorczynski R. Translation of Data from Animal Models of Cancer to Immunotherapy of Breast Cancer and Chronic Lymphocytic Leukemia. Genes (Basel) 2024; 15:292. [PMID: 38540350 PMCID: PMC10970502 DOI: 10.3390/genes15030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
The field of clinical oncology has been revolutionized over the past decade with the introduction of many new immunotherapies the existence of which have depended to a large extent on experimentation with both in vitro analysis and the use of various animal models, including gene-modified mice. The discussion below will review my own laboratory's studies, along with those of others in the field, on cancer immunotherapy. Our own studies have predominantly dwelt on two models of malignancy, namely a solid tumor model (breast cancer) and lymphoma. The data from our own laboratory, and that of other scientists, highlights the novel information so obtained, and the evidence that application of such information has already had an impact on immunotherapy of human oncologic diseases.
Collapse
Affiliation(s)
- Reginald Gorczynski
- Institute of Medical Science, Department of Immunology and Surgery, University of Toronto, C/O 429 Drewry Avenue, Toronto, ON M2R 2K6, Canada
| |
Collapse
|
4
|
Shao A, Owens DM. The immunoregulatory protein CD200 as a potentially lucrative yet elusive target for cancer therapy. Oncotarget 2023; 14:96-103. [PMID: 36738455 PMCID: PMC9899099 DOI: 10.18632/oncotarget.28354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CD200 is an immunoregulatory cell surface ligand with proven pro-tumorigenic credentials via its ability to suppress CD200 receptor (CD200R)-expressing anti-tumor immune function. This definitive role for the CD200-CD200R axis in regulating an immunosuppressive tumor microenvironment has garnered increasing interest in CD200 as a candidate target for immune checkpoint inhibition therapy. However, while the CD200 blocking antibody samalizumab is still in the early stages of clinical testing, alternative mechanisms for the pro-tumorigenic role of CD200 have recently emerged that extend beyond direct suppression of anti-tumor T cell responses and, as such, may not be susceptible to CD200 antibody blockade. Herein, we will summarize the current understanding of CD200 expression and function in the tumor microenvironment as well as alternative strategies for potential neutralization of multiple CD200 mechanisms in human cancers.
Collapse
Affiliation(s)
- Anqi Shao
- 1Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - David M. Owens
- 1Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY 10032, USA,2Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY 10032, USA,Correspondence to:David M. Owens, email:
| |
Collapse
|
5
|
Giannopoulos S, Bozkus CC, Zografos E, Athanasiou A, Bongiovanni AM, Doulaveris G, Bakoyiannis CN, Theodoropoulos GE, Zografos GC, Witkin SS, Orfanelli T. Targeting Both Autophagy and Immunotherapy in Breast Cancer Treatment. Metabolites 2022; 12:metabo12100966. [PMID: 36295867 PMCID: PMC9607060 DOI: 10.3390/metabo12100966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
As clinical efforts towards breast-conserving therapy and prolonging survival of those with metastatic breast cancer increase, innovative approaches with the use of biologics are on the rise. Two areas of current focus are cancer immunotherapy and autophagy, both of which have been well-studied independently but have recently been shown to have intertwining roles in cancer. An increased understanding of their interactions could provide new insights that result in novel diagnostic, prognostic, and therapeutic strategies. In this breast cancer-focused review, we explore the interactions between autophagy and two clinically relevant immune checkpoint pathways; the programmed cell death-1 receptor with its ligand (PD-L1)/PD-1 and the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)/CD80 and CD86 (B7-1 and B7-2). Furthermore, we discuss emerging preclinical and clinical data supporting targeting both immunotherapy and autophagy pathway manipulation as a promising approach in the treatment of breast cancer.
Collapse
Affiliation(s)
- Spyridon Giannopoulos
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cansu Cimen Bozkus
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029, USA
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Aikaterini Athanasiou
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ann Marie Bongiovanni
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Georgios Doulaveris
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Chris N Bakoyiannis
- First Department of Surgery, Division of Vascular Surgery, Laikon General Hospital, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Georgios E Theodoropoulos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Georgios C Zografos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Steven S Witkin
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Theofano Orfanelli
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| |
Collapse
|
6
|
Sun Y, Zhao J, Sun X, Ma G. Identification of TNFAIP8 as an Immune-Related Biomarker Associated With Tumorigenesis and Prognosis in Cutaneous Melanoma Patients. Front Genet 2021; 12:783672. [PMID: 34925463 PMCID: PMC8671633 DOI: 10.3389/fgene.2021.783672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/11/2021] [Indexed: 01/17/2023] Open
Abstract
Tumor necrosis factor-α–induced protein 8 (TNFAIP8) is a member of the TIPE/TNFAIP8 family which is associated with inflammation and tumorigenesis. The potential role of TNFAIP8 in a tumor immune microenvironment in skin cutaneous melanoma (SKCM) has not yet been investigated. The TNFAIP8 expression was evaluated via gene expression profiling interactive analysis (GEPIA). We also evaluated the influence of TNFAIP8 on overall survival via GEPIA and PrognoScan. After GO and KEGG pathway analyses, the correlation between the TNFAIP8 expression level and immune cells or gene markers of the immune infiltration level was explored by R-language. The result showed the TNFAIP8 expression was significantly reduced in SKCM in comparison with normal control. In SKCM, the TNFAIP8 expression in higher levels was associated with the better overall survival. The high expression of TNFAIP8 was positively correlated with the immune score and promoted immune cell infiltration in SKCM patients. TNFAIP8 can be a positive prognosis marker or new immunotherapy target in SKCM.
Collapse
Affiliation(s)
- Yuliang Sun
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China.,Department of Hand Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Jianxiong Zhao
- Key Laboratory of Experimental Teratology, Department of Human Anatomy, Ministry of Education, Shandong University School of Medicine, Jinan, China
| | - Xiaoru Sun
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangxin Ma
- Hematology and Oncology Unit, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Luo X, Qiu Y, Dinesh P, Gong W, Jiang L, Feng X, Li J, Jiang Y, Lei YL, Chen Q. The functions of autophagy at the tumour-immune interface. J Cell Mol Med 2021; 25:2333-2341. [PMID: 33605033 PMCID: PMC7933948 DOI: 10.1111/jcmm.16331] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 02/05/2023] Open
Abstract
Autophagy is frequently induced in the hypoxic tumour microenvironment. Accumulating evidence reveals important functions of autophagy at the tumour-immune interface. Herein, we propose an update on the roles of autophagy in modulating tumour immunity. Autophagy promotes adaptive resistance of established tumours to the cytotoxic effects of natural killer cells (NKs), macrophages and effector T cells. Increased autophagic flux in tumours dampen their immunogenicity and inhibits the expansion of cytotoxic T lymphocytes (CTLs) by suppressing the activation of STING type I interferon signalling (IFN-I) innate immune sensing pathway. Autophagy in suppressive tumour-infiltrating immune subsets maintains their survival through metabolic remodelling. On the other hand, autophagy is involved in the antigen processing and presentation process, which is essential for anti-tumour immune responses. Genetic deletion of autophagy induces spontaneous tumours in some models. Thus, the role of autophagy is context-dependent. In summary, our review has revealed the dichotomous roles of autophagy in modulating tumour immunity. Broad targeting of autophagy may not yield maximal benefits. The characterization of specific genes regulating tumour immunogenicity and innovation in targeted delivery of autophagy inhibitors into certain tumours are among the most urgent tasks to sensitize cold cancers to immunotherapy.
Collapse
Affiliation(s)
- Xiaobo Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Qiu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Palani Dinesh
- Department of Periodontics and Oral Medicine, Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, the University of Michigan, Ann Arbor, MI, USA
| | - Wang Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics and Oral Medicine, Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, the University of Michigan, Ann Arbor, MI, USA
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu L Lei
- Department of Periodontics and Oral Medicine, Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, the University of Michigan, Ann Arbor, MI, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Wei C, Li X. The Role of Photoactivated and Non-Photoactivated Verteporfin on Tumor. Front Pharmacol 2020; 11:557429. [PMID: 33178014 PMCID: PMC7593515 DOI: 10.3389/fphar.2020.557429] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Verteporfin (VP) has long been clinically used to treat age-related macular degeneration (AMD) through photodynamic therapy (PDT). Recent studies have reported a significant anti-tumor effect of VP as well. Yes-associated protein (YAP) is a pro-tumorigenic factor that is aberrantly expressed in various cancers and is a central effector of the Hippo signaling pathway that regulates organ size and tumorigenesis. VP can inhibit YAP without photoactivation, along with suppressing autophagy, and downregulating germinal center kinase-like kinase (GLK) and STE20/SPS1-related proline/alanine-rich kinase (SPAK). In addition, VP can induce mitochondrial damage and increase the production of reactive oxygen species (ROS) upon photoactivation, and is an effective photosensitizer (PS) in anti-tumor PDT. We have reviewed the direct and adjuvant therapeutic action of VP as a PS, and its YAP/TEA domain (TEAD)-dependent and independent pharmacological effects in the absence of light activation against cancer cells and solid tumors. Based on the present evidence, VP may be repositioned as a promising anti-cancer chemotherapeutic and adjuvant drug.
Collapse
Affiliation(s)
- Changran Wei
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangqi Li
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| |
Collapse
|
9
|
Choueiry F, Torok M, Shakya R, Agrawal K, Deems A, Benner B, Hinton A, Shaffer J, Blaser BW, Noonan AM, Williams TM, Dillhoff M, Conwell DL, Hart PA, Cruz-Monserrate Z, Bai XF, Carson WE, Mace TA. CD200 promotes immunosuppression in the pancreatic tumor microenvironment. J Immunother Cancer 2020; 8:e000189. [PMID: 32581043 PMCID: PMC7312341 DOI: 10.1136/jitc-2019-000189] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A significant challenge to overcome in pancreatic ductal adenocarcinoma (PDAC) is the profound systemic immunosuppression that renders this disease non-responsive to immunotherapy. Our supporting data provide evidence that CD200, a regulator of myeloid cell activity, is expressed in the PDAC microenvironment. Additionally, myeloid-derived suppressor cells (MDSC) isolated from patients with PDAC express elevated levels of the CD200 receptor (CD200R). Thus, we hypothesize that CD200 expression in the PDAC microenvironment limits responses to immunotherapy by promoting expansion and activity of MDSC. METHODS Immunofluorescent staining was used to determine expression of CD200 in murine and human PDAC tissue. Flow cytometry was utilized to test for CD200R expression by immune populations in patient blood samples. In vivo antibody blocking of CD200 was conducted in subcutaneous MT-5 tumor-bearing mice and in a genetically engineered PDAC model (KPC-Brca2 mice). Peripheral blood mononuclear cells (PBMC) from patients with PDAC were analyzed by single-cell RNA sequencing. MDSC expansion assays were completed using healthy donor PBMC stimulated with IL-6/GM-CSF in the presence of recombinant CD200 protein. RESULTS We found expression of CD200 by human pancreatic cell lines (BxPC3, MiaPaca2, and PANC-1) as well as on primary epithelial pancreatic tumor cells and smooth muscle actin+ stromal cells. CD200R expression was found to be elevated on CD11b+CD33+HLA-DRlo/- MDSC immune populations from patients with PDAC (p=0.0106). Higher expression levels of CD200R were observed in CD15+ MDSC compared with CD14+ MDSC (p<0.001). In vivo studies demonstrated that CD200 antibody blockade limited tumor progression in MT-5 subcutaneous tumor-bearing and in KPC-Brca2 mice (p<0.05). The percentage of intratumoral MDSC was significantly reduced in anti-CD200 treated mice compared with controls. Additionally, in vivo blockade of CD200 can also significantly enhance the efficacy of PD-1 checkpoint antibodies compared with single antibody therapies (p<0.05). Single-cell RNA sequencing of PBMC from patients revealed that CD200R+ MDSC expressed genes involved in cytokine signaling and MDSC expansion. Further, in vitro cytokine-driven expansion and the suppressive activity of human MDSC was enhanced when cocultured with recombinant CD200 protein. CONCLUSIONS These results indicate that CD200 expression in the PDAC microenvironment may regulate MDSC expansion and that targeting CD200 may enhance activity of checkpoint immunotherapy.
Collapse
Affiliation(s)
- Fouad Choueiry
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Molly Torok
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Reena Shakya
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Kriti Agrawal
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
- Biomedical Science Undergaduate Program, The Ohio State University, Columbus, Ohio, United States
| | - Anna Deems
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Brooke Benner
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Alice Hinton
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio, United States
| | - Jami Shaffer
- Division of Hematology, The Ohio State University, Columbus, Ohio, United States
| | - Bradley W Blaser
- Division of Hematology, The Ohio State University, Columbus, Ohio, United States
| | - Anne M Noonan
- Division of Medical Oncology, The Ohio State University, Columbus, Ohio, United States
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio, United States
| | - Mary Dillhoff
- Division of Surgical Oncology, The Ohio State University, Columbus, Ohio, United States
| | - Darwin L Conwell
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Zobeida Cruz-Monserrate
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Xue-Feng Bai
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States
| | - William E Carson
- Division of Surgical Oncology, The Ohio State University, Columbus, Ohio, United States
| | - Thomas A Mace
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
10
|
Pachynski RK, Wang P, Salazar N, Zheng Y, Nease L, Rosalez J, Leong WI, Virdi G, Rennier K, Shin WJ, Nguyen V, Butcher EC, Zabel BA. Chemerin Suppresses Breast Cancer Growth by Recruiting Immune Effector Cells Into the Tumor Microenvironment. Front Immunol 2019; 10:983. [PMID: 31139180 PMCID: PMC6518384 DOI: 10.3389/fimmu.2019.00983] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Infiltration of immune cells into the tumor microenvironment (TME) can regulate growth and survival of neoplastic cells, impacting tumorigenesis and tumor progression. Correlations between the number of effector immune cells present in a tumor and clinical outcomes in many human tumors, including breast, have been widely described. Current immunotherapies utilizing checkpoint inhibitors or co-stimulatory molecule agonists aim to activate effector immune cells. However, tumors often lack adequate effector cell numbers within the TME, resulting in suboptimal responses to these agents. Chemerin (RARRES2) is a leukocyte chemoattractant widely expressed in many tissues and is known to recruit innate leukocytes. CMKLR1 is a chemotactic cellular receptor for chemerin and is expressed on subsets of dendritic cells, NK cells, and macrophages. We have previously shown that chemerin acts as a tumor suppressive cytokine in mouse melanoma models by recruiting innate immune defenses into the TME. Chemerin/RARRES2 is down-regulated in many tumors, including breast, compared to normal tissue counterparts. Here, using a syngeneic orthotopic EMT6 breast carcinoma model, we show that forced overexpression of chemerin by tumor cells results in significant recruitment of NK cells and T cells within the TME. While chemerin secretion by EMT6 cells did not alter their phenotypic behavior in vitro, it did significantly suppress tumor growth in vivo. To define the cellular effectors required for this anti-tumor phenotype, we depleted NK cells or CD8+ T cells and found that either cell type is required for chemerin-dependent suppression of EMT6 tumor growth. Finally, we show significantly reduced levels of RARRES2 mRNA in human breast cancer samples compared to matched normal tissues. Thus, for the first time we have shown that increasing chemerin expression within the breast carcinoma TME can suppress growth by recruitment of NK and T cells, thereby supporting this approach as a promising immunotherapeutic strategy.
Collapse
Affiliation(s)
- Russell K Pachynski
- Division of Oncology, Department of Medicine, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, United States
| | - Ping Wang
- Division of Oncology, Department of Medicine, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, United States
| | - Nicole Salazar
- Department of Research and Development, Palo Alto Veterans Institute for Research, Palo Alto, CA, United States.,Department of Pathology, Stanford University, Stanford, CA, United States.,Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Yayue Zheng
- Department of Research and Development, Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
| | - Leona Nease
- Department of Research and Development, Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
| | - Jesse Rosalez
- Department of Industrial and Systems Engineering, San José State University, San José, CA, United States
| | | | - Gurpal Virdi
- Division of Oncology, Department of Medicine, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, United States
| | - Keith Rennier
- Division of Oncology, Department of Medicine, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, United States
| | - Woo Jae Shin
- Division of Oncology, Department of Medicine, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, United States
| | - Viet Nguyen
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Eugene C Butcher
- Department of Pathology, Stanford University, Stanford, CA, United States.,Laboratory of Immunology and Vascular Biology, VA Palo Alto Health Care Systems, Palo Alto, CA, United States
| | - Brian A Zabel
- Department of Research and Development, Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
| |
Collapse
|
11
|
Chen Z, Kapus A, Khatri I, Kos O, Zhu F, Gorczynski RM. Cell membrane-bound CD200 signals both via an extracellular domain and following nuclear translocation of a cytoplasmic fragment. Leuk Res 2018; 69:72-80. [DOI: 10.1016/j.leukres.2018.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022]
|
12
|
Kuwabara J, Umakoshi A, Abe N, Sumida Y, Ohsumi S, Usa E, Taguchi K, Choudhury ME, Yano H, Matsumoto S, Kunieda T, Takahashi H, Yorozuya T, Watanabe Y, Tanaka J. Truncated CD200 stimulates tumor immunity leading to fewer lung metastases in a novel Wistar rat metastasis model. Biochem Biophys Res Commun 2018; 496:542-548. [DOI: 10.1016/j.bbrc.2018.01.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/04/2018] [Accepted: 01/10/2018] [Indexed: 11/16/2022]
|