1
|
Zhao T, Gu C, Qi J, Liu J, Wang Y, Chen X, Guo F, Li Y. In vitro and in vivo performance of amorphous solid dispersions of ursolic acid as a function of polymer type and excipient addition. J Pharm Pharmacol 2024:rgae125. [PMID: 39393786 DOI: 10.1093/jpp/rgae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/14/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVES The objective of this research was to enhance the bioavailability of ursolic acid (UA) by preparing multielement amorphous solid dispersion (ASD) systems comprising excipients. METHODS The ASDs were prepared via the solvent evaporation method, characterized by a range of techniques, and investigated with respect to permeability of human colorectal adenocarcinoma cell line (Caco-2) cells monolayers and pharmacokinetics, with comparisons made to the physical mixture and the pure drug. KEY FINDINGS The (UA-choline)-Polyethylcaprolactam-polyvinyl acetate-polyethylene glycol grafted copolymer (Soluplus)-Vitamin E polyethylene glycol succinate (TPGS) ASD demonstrated superior dissolution properties compared to the corresponding binary solid dispersions and ternary solid dispersions (P < .05). The permeability studies of Caco-2 cell monolayers revealed that the ASD exhibited moderate permeability, with an efflux rate that was significantly lower than that of the UA raw material (P < .05). Pharmacokinetic studies in rats demonstrated that the oral bioavailability of the ASD was 19.0 times higher than that of UA (P < .01). CONCLUSIONS The research indicated that the multielement ASD could be employed as an efficacious drug delivery system for UA. Furthermore, the Soluplus/TPGS/choline combination represents a promising candidate for the fabrication of ASDs that can load weakly acidic and poorly soluble drugs.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, 369 Tianxiong Road, Shanghai 201318, People's Republic of China
| | - Chenming Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Jianbo Qi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Jingwen Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Yajun Wang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, 369 Tianxiong Road, Shanghai 201318, People's Republic of China
| | - Xiaojing Chen
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, 369 Tianxiong Road, Shanghai 201318, People's Republic of China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
2
|
Qiu K, Wang S, Duan F, Sang Z, Wei S, Liu H, Tan H. Rosemary: Unrevealing an old aromatic crop as a new source of promising functional food additive-A review. Compr Rev Food Sci Food Saf 2024; 23:e13273. [PMID: 38284599 DOI: 10.1111/1541-4337.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/19/2023] [Accepted: 10/30/2023] [Indexed: 01/30/2024]
Abstract
Rosemary (Rosmarinus officinalis L.) is one of the most famous spice plants belonging to the Lamiaceae family as a remarkably beautiful horticultural plant and economically agricultural crop. The essential oil of rosemary has been enthusiastically welcome in the whole world for hundreds of years. Now, it is wildly prevailing as a promising functional food additive for human health. More importantly, due to its significant aroma, food, and nutritional value, rosemary also plays an essential role in the food/feed additive and food packaging industries. Modern industrial development and fundamental scientific research have extensively revealed its unique phytochemical constituents with biologically meaningful activities, which closely related to diverse human health functions. In this review, we provide a comprehensively systematic perspective on rosemary by summarizing the structures of various pharmacological and nutritional components, biologically functional activities and their molecular regulatory networks required in food developments, and the recent advances in their applications in the food industry. Finally, the temporary limitations and future research trends regarding the development of rosemary components are also discussed and prospected. Hence, the review covering the fundamental research advances and developing prospects of rosemary is a desirable demand to facilitate their better understanding, and it will also serve as a reference to provide many insights for the future promotion of the research and development of functional foods related to rosemary.
Collapse
Affiliation(s)
- Kaidi Qiu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Sasa Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, China
| | - Fangfang Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zihuan Sang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shanshan Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxin Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Haibo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
| |
Collapse
|
3
|
Kus M, Ibragimow I, Piotrowska-Kempisty H. Caco-2 Cell Line Standardization with Pharmaceutical Requirements and In Vitro Model Suitability for Permeability Assays. Pharmaceutics 2023; 15:2523. [PMID: 38004503 PMCID: PMC10674574 DOI: 10.3390/pharmaceutics15112523] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
The Caco-2 cell line derived from human colon carcinoma is commonly used to assess the permeability of compounds in in vitro conditions. Due to the significant increase in permeability studies using the Caco-2 cell line in recent years, the need to standardize this biological model seems necessary. The pharmaceutical requirements define only the acceptance criteria for the validation of the Caco-2 cell line and do not specify the protocol for its implementation. Therefore, the aim of this study is to review the conditions for permeability studies across the Caco-2 monolayer reported in the available literature concerning validation guidelines. We summarized the main aspects affecting the validation process of the Caco-2 cell line, including the culture conditions, cytotoxicity, cell differentiation process, and monolayer transport conditions, and the main conclusions may be useful in developing individual methods for preparing the cell line for validation purposes and further permeability research.
Collapse
Affiliation(s)
- Marta Kus
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland;
- Research and Development Department of Ethifarm, Ethifarm Manufacturing Plant, 9 Stefana Zeromskiego St., 60-544 Poznan, Poland;
| | - Izabela Ibragimow
- Research and Development Department of Ethifarm, Ethifarm Manufacturing Plant, 9 Stefana Zeromskiego St., 60-544 Poznan, Poland;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland;
- Department of Basic and Preclinical Science, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 7 Gagarina St., 87-100 Torun, Poland
| |
Collapse
|
4
|
Pagano K, Listro R, Linciano P, Rossi D, Longhi E, Taraboletti G, Molinari H, Collina S, Ragona L. Identification of a novel extracellular inhibitor of FGF2/FGFR signaling axis by combined virtual screening and NMR spectroscopy approach. Bioorg Chem 2023; 136:106529. [PMID: 37084585 DOI: 10.1016/j.bioorg.2023.106529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
The aberrant activation of the fibroblast growth factor 2 (FGF2)/fibroblast growth factor receptor (FGFR) signalling pathway drives severe pathologies, including cancer development and angiogenesis-driven pathologies. The perturbation of the FGF2/FGFR axis via extracellular allosteric small inhibitors is a promising strategy for developing FGFR inhibitors with improved safety and efficacy for cancer treatment. We have previously investigated the role of new extracellular inhibitors, such as rosmarinic acid (RA), which bind the FGFR-D2 domain and directly compete with FGF2 for the same binding site, enabling the disruption of the functional FGF2/FGFR interaction. To select ligands for the previously identified FGF2/FGFR RA binding site, NMR data-driven virtual screening has been performed on an in-house library of non-commercial small molecules and metabolites. A novel drug-like compound, a resorcinol derivative named RBA4 has been identified. NMR interaction studies demonstrate that RBA4 binds the FGF2/FGFR complex, in agreement with docking prediction. Residue-level NMR perturbations analysis highlights that the mode of action of RBA4 is similar to RA in terms of its ability to target the FGF2/FGFR-D2 complex, inducing perturbations on both proteins and triggering complex dissociation. Biological assays proved that RBA4 inhibited FGF2 proliferative activity at a level comparable to the previously reported natural product, RA. Identification of RBA4 chemical groups involved in direct interactions represents a starting point for further optimization of drug-like extracellular inhibitors with improved activity.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, via Corti 12, 20133 Milano, Italy
| | - Roberta Listro
- University of Pavia, Department of Drug Sciences, Via Taramelli 12, 27100 Pavia, Italy
| | - Pasquale Linciano
- University of Pavia, Department of Drug Sciences, Via Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- University of Pavia, Department of Drug Sciences, Via Taramelli 12, 27100 Pavia, Italy.
| | - Elisa Longhi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche, Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Giulia Taraboletti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche, Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Henriette Molinari
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, via Corti 12, 20133 Milano, Italy
| | - Simona Collina
- University of Pavia, Department of Drug Sciences, Via Taramelli 12, 27100 Pavia, Italy
| | - Laura Ragona
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, via Corti 12, 20133 Milano, Italy.
| |
Collapse
|
5
|
Gautam AK, Kumar P, Maity B, Routholla G, Ghosh B, Chidambaram K, Begum MY, Al Fatease A, Rajinikanth P, Singh S, Saha S, M. R. V. Synthesis and appraisal of dalbergin-loaded PLGA nanoparticles modified with galactose against hepatocellular carcinoma: In-vitro, pharmacokinetic, and in-silico studies. Front Pharmacol 2022; 13:1021867. [PMID: 36386226 PMCID: PMC9650263 DOI: 10.3389/fphar.2022.1021867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 07/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy which affects a substantial number of individuals all over the globe. It is the third primary cause of death among persons with neoplasm and has the fifth largest mortality rate among men and the seventh highest mortality rate among women. Dalbergin (DL) is described to be effective in breast cancer via changing mRNA levels of apoptosis-related proteins. DL belongs to neoflavonoids, a drug category with low solubility and poor bioavailability. We created a synthetic version of this naturally occurring chemical, DL, and then analyzed it using 1H-NMR, 13C-NMR, and LC-MS. We also made PLGA nanoparticles and then coated them with galactose. The design of experiment software was used to optimize DL-loaded galactose-modified PLGA nanoparticles. The optimized DL-nanoformulations (DLF) and DL-modified nanoformulations (DLMF) were analyzed for particle size, polydispersity index, shape, and potential interactions. In-vitro experiments on liver cancer cell lines (HepG2) are used to validate the anti-proliferative efficacy of the modified DLMF. The in-vitro research on HepG2 cell lines also demonstrated cellular accumulation of DLF and DLMF by FITC level. The in-vitro result suggested that DLMF has high therapeutic effectiveness against HCC. In-vivo pharmacokinetics and bio-distribution experiments revealed that DLMF excelled pristine DL in terms of pharmacokinetic performance and targeted delivery, which is related to galactose's targeting activity on the asialoglycoprotein receptor (ASGPR) in hepatic cells. Additionally, we performed an in-silico study of DL on caspase 3 and 9 proteins, and the results were found to be -6.7 kcal/mol and -6.6 kcal/mol, respectively. Our in-silico analysis revealed that the DL had strong apoptotic properties against HCC.
Collapse
Affiliation(s)
- Anurag Kumar Gautam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
- Department of Pharmacology, Aryakul College of Pharmacy & Research, Lucknow, Uttar Pradesh, India
| | - Biswanath Maity
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| | - Ganesh Routholla
- Department of Pharmacy, BITS-Pilani Hyderabad Campus Hyderabad, Hyderabad, India
| | - Balaram Ghosh
- Department of Pharmacy, BITS-Pilani Hyderabad Campus Hyderabad, Hyderabad, India
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, School of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - M. Yasmin Begum
- Department of Pharmaceutics, King Khalid University, Abha, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, King Khalid University, Abha, Saudi Arabia
| | - P.S. Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sanjay Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Vijayakumar M. R.
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
The Current State of Knowledge in Biological Properties of Cirsimaritin. Antioxidants (Basel) 2022; 11:antiox11091842. [PMID: 36139916 PMCID: PMC9495358 DOI: 10.3390/antiox11091842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The search for natural plant-based products as new pharmacological alternatives to treat various human pathologies has taken on great importance for researchers and research laboratories. In this context, research has intensified to extract and identify natural molecules endowed with biological effects. The objective of this study is to review the source and pharmacological properties of cirsimaritin. The identification and isolation of this flavonoid from various natural sources, including medicinal plants such as Artemisia judaica, Cirsium japonicum, Lithocarpus dealbatus, Microtea debilis, and Ocimum sanctum, has been carried out and verified using different spectral techniques. Biological effect investigations are carried out with a wide variety of experimental models in vitro and in vivo and laboratory techniques. The results of these research works showed the biological properties of cirsimaritin including anticancer, antimicrobial, antidiabetic, antiparasitic, antioxidant, and anti-inflammatory effects. The mechanisms involved in the multiple activities of this molecule are diverse and include sub-cellular, cellular, and molecular levels. Indeed, this bioactive induces anti-inflammatory and antiproliferative effects by inhibiting cell membrane receptors, interference with signaling pathways, and inhibiting transcriptional factors such as Nf-κB involved in cell promotion and proliferation. In the light of these results, cirsimaritin appears as a promising and viable alternative natural bioactive drug to treat many pathological conditions.
Collapse
|
7
|
Su YH, Lin JY. Menthone supplementation protects from allergic inflammation in the lungs of asthmatic mice. Eur J Pharmacol 2022; 931:175222. [PMID: 35988786 DOI: 10.1016/j.ejphar.2022.175222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
Abstract
To screen potent terpenoid compounds against allergic inflammation in vitro and in vivo, five terpenoid compounds including menthone, farnesol, oridonin, β-escin and lupeol, were first selected to compare their anti-allergic inflammation potential using mouse lung mast cells in vitro. Among five selected terpenoid compounds, just menthone treatment decreased TNF-α/IL-10 secretion ratios in lipopolysaccharide -stimulated mast cells in vitro. As a result, menthone was further chosen to treat ovalbumin (OVA)-sensitized and challenged BALB/c mice by gavage for 5 weeks. There were six groups including dietary control (DC group, 0 mg menthone/kg b.w./day), 8 (ML group), 40 (MM group) as well as 200 mg menthone/kg b.w./day (MH group) by gavage, positive control (PC group, 3 mg dexamethasone/kg b.w. by gavage before OVA challenge) and non-treatment control (NTC group, normal mice without treatment) in the experiment. Changes of inflammatory mediators, cell distribution, Th1/Th2 and pro-/anti-inflammatory cytokines secretion as well as relative gene expression amounts of six receptors related to allergic inflammation in the lungs and airways were measured. The results showed that middle menthone supplementation (40 mg menthone/kg b.w./day) in vivo decreased protein and eotaxin, but increased Th1 cytokine levels in the bronchoalveolar lavage fluid. Menthone supplementation inhibited eosinophilia, mast cell degranulation, chemokine (C-C motif) receptor 3 (CC receptor 3) and chemokine (C-X-C motif) receptor 1 (CXC receptor 1) gene expression amounts in the lungs, but restored the percentage of monocytes/macrophages. Our results suggest that menthone supplementation may alleviate allergic asthma through regulating airway allergic inflammation, protein overproduction, eosinophils infiltration, Th1/Th2 immune balance, CC receptor 3 and CXC receptor 1 gene expression amounts in the lungs but restoring the percentage of monocytes/macrophages in allergic asthmatic mice.
Collapse
Affiliation(s)
- Yi-Hsuan Su
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, 40227, Taiwan
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, 40227, Taiwan.
| |
Collapse
|
8
|
Antiproliferative and Antimicrobial Effects of Rosmarinus officinalis L. Loaded Liposomes. Molecules 2022; 27:molecules27133988. [PMID: 35807229 PMCID: PMC9268459 DOI: 10.3390/molecules27133988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Rosmarinus officinalis L. is a species that is widely known for its culinary and medicinal uses. The purpose of the present study consisted of the evaluation of the antiproliferative and antimicrobial effects of R. officinalis-loaded liposomes (L-R). Characterization of the liposomes was performed by establishing specific parameters. The load of the obtained liposomes was analyzed using an LC-MS method, and antiproliferative assays evaluated the cell viability on a liver adenocarcinoma cell line and on a human hepatic stellate cell line. Antimicrobial assays were performed by agar–well diffusion and by broth microdilution assays. The obtained liposomes showed high encapsulation efficiency, suitable particle size, and good stability. High amounts of caffeic (81.07 ± 0.76), chlorogenic (14.10 ± 0.12), carnosic (20.03 ± 0.16), rosmarinic (39.81 ± 0.35), and ellagic (880.02 ± 0.14) acids were found in their composition, together with other polyphenols. Viability and apoptosis assays showed an intense effect on the cancerous cell line and a totally different pattern on the normal cells, indicating a selective toxicity towards the cancerous ones and an anti-proliferative mechanism. Antimicrobial potential was noticed against all tested bacteria, with a better efficacy towards Gram-positive species. These results further confirm the biological activities of R. officinalis leaf extract, and proposes and characterizes novel delivery systems for their encapsulation, enhancing the biological activities of polyphenols, and overcoming their limitations.
Collapse
|
9
|
Woottisin N, Sukprasert S, Kulsirirat T, Tharavanij T, Sathirakul K. Evaluation of the Intestinal Permeability of Rosmarinic Acid from Thunbergia laurifolia Leaf Water Extract in a Caco-2 Cell Model. Molecules 2022; 27:3884. [PMID: 35745006 PMCID: PMC9227994 DOI: 10.3390/molecules27123884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022] Open
Abstract
Thunbergia laurifolia (TL) has been traditionally used as an antidote and an antipyretic drug by folk healers for centuries in Thailand. Rosmarinic acid (RA) is major compound in TL extract and has attracted great interest due to its potential broad pharmacological effects. Herein, the permeability of RA was investigated in TL extract and as a pure compound in a Caco-2 cell model by using high-performance liquid chromatography with a photodiode array detector (HPLC-PDA). The results reveal that the apparent permeability coefficient (Papp) values of RA in TL extracts and pure RA significantly increased after deconjugation by β-glucuronidase/sulfatase enzymes. Our findings exhibit possible saturable biotransformation of RA and/or membrane transport while penetrated through Caco-2 cells. The cumulative amounts of RA as pure compounds and in TL extracts increased with the exposure time, and the efflux ratio (ER) was 0.27-1.14. RA in the TL extract has a similar absorption in the conjugated form and in the pure compound. The intestinal absorption of them is through passive diffusion. Therefore, our findings conclude that the intestinal transport of RA in TL extracts was mainly penetrated as conjugated forms with glucuronic acid and/or sulfate across Caco-2 cells and transported via passive diffusion.
Collapse
Affiliation(s)
- Nanthakarn Woottisin
- Graduate Program in Integrative Medicine, Chulabhorn International College of Medicine, Thammasart University (Rangsit Campus), Pathum Thani 12120, Thailand;
| | - Sophida Sukprasert
- Division of Integrative Medicine, Chulabhorn International College of Medicine, Thammasart University (Rangsit Campus), Pathum Thani 12120, Thailand
| | - Thitianan Kulsirirat
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Thipaporn Tharavanij
- Endocrinology and Metabolism Unit, Department of Internal Medicine, Faculty of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12120, Thailand;
- Center of Excellence in Applied Epidemiology, Thammasat University (Rangsit Campus), Pathum Thani 12120, Thailand
| | - Korbtham Sathirakul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
10
|
Tchabo W, Kaptso GK, Bao G, Wang K, Afoakwah NA, Mbofung CM, Wang X. Impact of encapsulation techniques (drying methods and carrier materials) on the nutraceuticals release and absorption mechanism of mulberry leaf. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- William Tchabo
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou P.R. China
- Department of Food Science and Nutrition National Advanced School of Agro‐Industrial Sciences (ENSAI) University of Ngaoundere Ngaoundere Cameroon
| | - Giscard Kuate Kaptso
- Department of Social Economy and Family Management, Higher Technical Teacher’s Training College (HTTTC) University of Buea Buea Road Kumba Cameroon
- Department of Chemical Engineering School of Chemical Engineering and Mineral industries (EGCIM) University of Ngaoundere Ngaoundere Cameroon
| | - Guifeng Bao
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou P.R. China
| | - Kenuo Wang
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou P.R. China
| | - Newlove A. Afoakwah
- Department of Food Science and Technology, Faculty of Agriculture, Food and Consumer Sciences University for Development Studies Tamale NR Ghana
| | - Carl Moses Mbofung
- Department of Food Science and Nutrition National Advanced School of Agro‐Industrial Sciences (ENSAI) University of Ngaoundere Ngaoundere Cameroon
| | - Xiangyang Wang
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou P.R. China
| |
Collapse
|
11
|
Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Fernández-Moreno P, Rojas-García A, Arráez-Román D, Segura-Carretero A. Recent Analytical Approaches for the Study of Bioavailability and Metabolism of Bioactive Phenolic Compounds. Molecules 2022; 27:777. [PMID: 35164041 PMCID: PMC8838714 DOI: 10.3390/molecules27030777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/14/2022] Open
Abstract
The study of the bioavailability of bioactive compounds is a fundamental step for the development of applications based on them, such as nutraceuticals, functional foods or cosmeceuticals. It is well-known that these compounds can undergo metabolic reactions before reaching therapeutic targets, which may also affect their bioactivity and possible applications. All recent studies that have focused on bioavailability and metabolism of phenolic and terpenoid compounds have been developed because of the advances in analytical chemistry and metabolomics approaches. The purpose of this review is to show the role of analytical chemistry and metabolomics in this field of knowledge. In this context, the different steps of the analytical chemistry workflow (design study, sample treatment, analytical techniques and data processing) applied in bioavailability and metabolism in vivo studies are detailed, as well as the most relevant results obtained from them.
Collapse
Affiliation(s)
- Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Berlin Institute of Health, Metabolomics Platform, 10178 Berlin, Germany
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain; (M.d.l.L.C.-G.); (P.F.-M.); (A.R.-G.); (A.S.-C.)
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain; (M.d.l.L.C.-G.); (P.F.-M.); (A.R.-G.); (A.S.-C.)
| | - Patricia Fernández-Moreno
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain; (M.d.l.L.C.-G.); (P.F.-M.); (A.R.-G.); (A.S.-C.)
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain; (M.d.l.L.C.-G.); (P.F.-M.); (A.R.-G.); (A.S.-C.)
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain; (M.d.l.L.C.-G.); (P.F.-M.); (A.R.-G.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain; (M.d.l.L.C.-G.); (P.F.-M.); (A.R.-G.); (A.S.-C.)
| |
Collapse
|
12
|
Renaud V, Houde VP, Pilon G, Varin TV, Roblet C, Marette A, Boutin Y, Bazinet L. The Concentration of Organic Acids in Cranberry Juice Modulates the Gut Microbiota in Mice. Int J Mol Sci 2021; 22:11537. [PMID: 34768966 PMCID: PMC8584276 DOI: 10.3390/ijms222111537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
A daily consumption of cranberry juice (CJ) is linked to many beneficial health effects due to its richness in polyphenols but could also awake some intestinal discomforts due to its organic acid content and possibly lead to intestinal inflammation. Additionally, the impact of such a juice on the gut microbiota is still unknown. Thus, this study aimed to determine the impacts of a daily consumption of CJ and its successive deacidification on the intestinal inflammation and on the gut microbiota in mice. Four deacidified CJs (DCJs) (deacidification rates of 0, 40, 60, and 80%) were produced by electrodialysis with bipolar membrane (EDBM) and administered to C57BL/6J mice for four weeks, while the diet (CHOW) and the water were ad libitum. Different parameters were measured to determine intestinal inflammation when the gut microbiota was profiled. Treatment with a 0% DCJ did not induce intestinal inflammation but increased the gut microbiota diversity and induced a modulation of its functions in comparison with control (water). The effect of the removal of the organic acid content of CJ on the decrease of intestinal inflammation could not be observed. However, deacidification by EDBM of CJ induced an additional increase, in comparison with a 0% DCJ, in the Lachnospiraceae family which have beneficial effects and functions associated with protection of the intestine: the lower the organic acid content, the more bacteria of the Lachnospiraceae family and functions having a positive impact on the gut microbiota.
Collapse
Affiliation(s)
- Valentine Renaud
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (V.P.H.); (G.P.); (T.V.V.); (A.M.); (Y.B.)
- Laboratoire de Transformation Alimentaire et Procédés ElectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Québec, QC G1V 0A6, Canada
| | - Vanessa P. Houde
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (V.P.H.); (G.P.); (T.V.V.); (A.M.); (Y.B.)
- Québec Heart and Lung Institute, Department of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - Geneviève Pilon
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (V.P.H.); (G.P.); (T.V.V.); (A.M.); (Y.B.)
- Québec Heart and Lung Institute, Department of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - Thibault V. Varin
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (V.P.H.); (G.P.); (T.V.V.); (A.M.); (Y.B.)
- Québec Heart and Lung Institute, Department of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | | | - André Marette
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (V.P.H.); (G.P.); (T.V.V.); (A.M.); (Y.B.)
- Québec Heart and Lung Institute, Department of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - Yvan Boutin
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (V.P.H.); (G.P.); (T.V.V.); (A.M.); (Y.B.)
- TransBioTech, Lévis, QC G6V 6Z3, Canada
| | - Laurent Bazinet
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (V.P.H.); (G.P.); (T.V.V.); (A.M.); (Y.B.)
- Laboratoire de Transformation Alimentaire et Procédés ElectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
13
|
An Overview on Dietary Polyphenols and Their Biopharmaceutical Classification System (BCS). Int J Mol Sci 2021; 22:ijms22115514. [PMID: 34073709 PMCID: PMC8197262 DOI: 10.3390/ijms22115514] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Polyphenols are natural organic compounds produced by plants, acting as antioxidants by reacting with ROS. These compounds are widely consumed in daily diet and many studies report several benefits to human health thanks to their bioavailability in humans. However, the digestion process of phenolic compounds is still not completely clear. Moreover, bioavailability is dependent on the metabolic phase of these compounds. The LogP value can be managed as a simplified measure of the lipophilicity of a substance ingested within the human body, which affects resultant absorption. The biopharmaceutical classification system (BCS), a method used to classify drugs intended for gastrointestinal absorption, correlates the solubility and permeability of the drug with both the rate and extent of oral absorption. BCS may be helpful to measure the bioactive constituents of foods, such as polyphenols, in order to understand their nutraceutical potential. There are many literature studies that focus on permeability, absorption, and bioavailability of polyphenols and their resultant metabolic byproducts, but there is still confusion about their respective LogP values and BCS classification. This review will provide an overview of the information regarding 10 dietarypolyphenols (ferulic acid, chlorogenic acid, rutin, quercetin, apigenin, cirsimaritin, daidzein, resveratrol, ellagic acid, and curcumin) and their association with the BCS classification.
Collapse
|
14
|
Comprehensive Phenolic and Free Amino Acid Analysis of Rosemary Infusions: Influence on the Antioxidant Potential. Antioxidants (Basel) 2021; 10:antiox10030500. [PMID: 33807074 PMCID: PMC8004834 DOI: 10.3390/antiox10030500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
The phenolics profile, free amino acids composition, and antioxidant potential of rosemary infusions were studied. Forty-four compounds belonging to nine different groups (hydroxybenzoic acids, hydroxycinnamic acids, flavan-3-ols, flavanones, flavones, phenolic diterpenes, hydroxybenzaldehydes, coumarins, and pyranochromanones) were identified by UHPLC-ESI-Q-TOF-MS. Of these, seven were firstly described in rosemary infusions: a rosmanol derivative, two dihydroxycoumarin hexosides, a hydroxybenzaldehyde, a dihydroxybenzoic acid hexoside, coumaric acid hexoside, and isocalolongic acid. The free amino acid profile of the beverages was also reported by the first time with seven amino acids found (asparagine, threonine, alanine, tyrosine, phenylalanine, isoleucine, and proline). Furthermore, DPPH• scavenging ability, Ferric Reducing Antioxidant Power and Oxygen Radical Absorbance Capacity, as well as total phenolics and flavonoids contents, were assessed. Overall, rosemary infusions showed to be a very good source of antioxidants. A 200 mL cup of this infusion contributes to the ingestion of ~30 mg of phenolic compounds and about 0.5–1.1 μg of free amino acids. This type of beverages may present a positive impact on the maintenance of the body antioxidant status and contribute to the prevention of oxidative stress related diseases.
Collapse
|
15
|
Yin HF, Yin CM, Ouyang T, Sun SD, Chen WG, Yang XL, He X, Zhang CF. Self-Nanoemulsifying Drug Delivery System of Genkwanin: A Novel Approach for Anti-Colitis-Associated Colorectal Cancer. Drug Des Devel Ther 2021; 15:557-576. [PMID: 33603345 PMCID: PMC7886095 DOI: 10.2147/dddt.s292417] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 01/26/2023] Open
Abstract
PURPOSE The aim of the present study was to develop an optimized Genkwanin (GKA)-loaded self-nanoemulsifying drug delivery system (SNEDDS) formulation to enhance the solubility, intestinal permeability, oral bioavailability and anti-colitis-associated colorectal cancer (CAC) activity of GKA. METHODS We designed a SNEDDS comprised oil phase, surfactants and co-surfactants for oral administration of GKA, the best of which were selected by investigating the saturation solubility, constructing pseudo-ternary phase diagrams, followed by optimizing thermodynamic stability, emulsification efficacy, self-nanoemulsification time, droplet size, transmission electron microscopy (TEM), drug release and intestinal permeability. In addition, the physicochemical properties and pharmacokinetics of GKA-SNEDDS were characterized, and its anti-colitis-associated colorectal cancer (CAC) activity and potential mechanisms were evaluated in AOM/DSS-induced C57BL/6J mice model. RESULTS The optimized nanoemulsion formula (OF) consists of Maisine CC, Labrasol ALF and Transcutol HP in a weight ratio of 20:60:20 (w/w/w), in which ratio the OF shows multiple improvements, specifically small mean droplet size, excellent stability, fast release properties as well as enhanced solubility and permeability. Pharmacokinetic studies demonstrated that compared with GKA suspension, the relative bioavailability of GKA-SNEDDS was increased by 353.28%. Moreover, GKA-SNEDDS not only significantly prevents weight loss and improves disease activity index (DAI) but also reduces the histological scores of inflammatory cytokine levels as well as inhibiting the formation of colon tumors via inducing tumor cell apoptosis in the AOM/DSS-induced CAC mice model. CONCLUSION Our results show that the developed GKA-SNEDDS exhibited enhanced oral bioavailability and excellent anti-CAC efficacy. In summary, GKA-SNEDDS, using lipid nanoparticles as the drug delivery carrier, can be applied as a potential drug delivery system for improving the clinical application of GKA.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Colitis/drug therapy
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Daphne/chemistry
- Dose-Response Relationship, Drug
- Drug Compounding
- Drug Delivery Systems
- Emulsions
- Flavones/administration & dosage
- Flavones/chemistry
- Flavones/pharmacology
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Structure
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Rats
- Rats, Sprague-Dawley
- Solubility
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Hua-Feng Yin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
- Jiangxi QingFeng Pharmaceutical Co., Ltd, Ganzhou, 341000, Jiangxi, People’s Republic of China
| | - Chun-Ming Yin
- Emergency Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People’s Republic of China
| | - Ting Ouyang
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shu-Ding Sun
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| | - Wei-Guo Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| | - Xiao-Lin Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| |
Collapse
|
16
|
Yu D, Kan Z, Shan F, Zang J, Zhou J. Triple Strategies to Improve Oral Bioavailability by Fabricating Coamorphous Forms of Ursolic Acid with Piperine: Enhancing Water-Solubility, Permeability, and Inhibiting Cytochrome P450 Isozymes. Mol Pharm 2020; 17:4443-4462. [PMID: 32926628 DOI: 10.1021/acs.molpharmaceut.0c00443] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a BCS IV drug, ursolic acid (UA) has low oral bioavailability mainly because of its poor aqueous solubility/dissolution, poor permeability, and metabolism by cytochrome P450 (CYP) isozymes, such as CYP3A4. Most UA preparations demonstrated a much higher dissolution than that of its crystalline form yet a low drug concentration in plasma due to their lower consideration or evaluation for the permeability and metabolism issues. In the current study, a supramolecular coamorphous system of UA with piperine (PIP) was prepared and characterized by powder X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy. In comparison to crystalline UA and UA in physical mixture, such coamorphous system enhanced solubility (5.3-7-fold in the physiological solution) and dissolution (7-8-fold in the physiological solution within 2 h) of UA and exhibited excellent physical stability under 90-day storage conditions. More importantly, the pharmacokinetic study of coamorphous UA in rats exhibited 5.8-fold and 2.47-fold improvement in AUC0-∞ value, respectively, compared with its free and mixed crystalline counterparts. In order to further explore the mechanism of such improvement, the molecular interactions of a coamorphous system in the solid state were investigated. Fourier transform infrared spectroscopy, solid-state 13C nuclear magnetic resonance spectroscopy, and density functional theory modeling suggested that intermolecular hydrogen bonds with strong interactions newly formed between UA and PIP after coamorphization. The in vitro permeability studies across Caco-2 cell monolayer and metabolism studies by rat hepatic microsomes indicated that free PIP significantly increased the permeability of UA and inhibited the enzymatic metabolism of UA by CYP3A4. However, PIP in the coamorphous combination exhibited a much lower level in the bioenhancing than its free form arising from the synchronized dissolution characteristic of the preparation (only 60% of PIP released in comparison to its free counterpart in 2 h). The in situ loop study in rats proposed that the acid-sensitive dissolution in the stomach of the coamorphous preparation helped to improve the effective free drug concentration, thereby facilitating PIP to play its role in bioenhancing. The current study offers an exploratory strategy to overcome poor solubility/dissolution, poor permeability, and metabolism by cytochrome P450 isozymes of the BCS IV drug to improve its oral bioavailability.
Collapse
Affiliation(s)
- Danni Yu
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, PR China
| | - Zigui Kan
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, PR China
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing 210093, PR China
| | - Fei Shan
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jing Zang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jianping Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| |
Collapse
|
17
|
Chemical Profile, Antioxidant, Anti-Inflammatory, and Anti-Cancer Effects of Italian Salvia rosmarinus Spenn. Methanol Leaves Extracts. Antioxidants (Basel) 2020; 9:antiox9090826. [PMID: 32899385 PMCID: PMC7556042 DOI: 10.3390/antiox9090826] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, we evaluated and compared the chemical composition, the antioxidant, anti-inflammatory, and anti-proliferative effects of four methanol extracts (R1–R4), of Salvia rosmarinus Spenn. in two different sites of Southern Italy obtained by maceration or ultrasound-assisted extraction. Extracts of S. rosmarinus collected on the Ionian coast are indicated with the abbreviations R1 (maceration) and R2 (ultrasound-assisted extraction). Extracts of S. rosmarinus collected on the Tyrrhenian coast are indicated with the abbreviations R3 (maceration) and R4 (ultrasound-assisted extraction). The chemical composition was analyzed using High Pressure liquid chromatography–Diod-Array detection–Electrospray ionization–Quadrupole–Mass Spectroscopy (HPLC-DAD-ESI-Q-MS). The antioxidant activity was analyzed by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene bleaching, and Ferric Reducing Antioxidant Power (FRAP) assays. Antioxidant features were also assessed in lipopolysaccharide (LPS)-stimulated RAW-264.7 murine macrophages, evaluating Reactive Oxygen Species (ROS) production; in the same experimental model, the anti-inflammatory activity of the extracts was investigated. Interestingly, all extracts displayed antioxidant and anti-inflammatory properties. They exhibited significative nitrite production inhibitory activity, whith IC50 values ranging from 3.46 to 5.53 µg/mL, without impairing cell viability. The anti-inflammatory activity was also investigated by Western Blotting and immunofluorescence assay, highlighting the R3 and R4 extracts ability to reduce NF-κB translocation, as well as to disrupt the MAPKs signaling pathway. Extracts exhibited both potential anti-proliferative activity on breast cancer cells, inducing apoptosis, without affecting non-tumorigenic cells, and the ability to inhibit MDA-MB-231 cells’ motility. Finally, the rosemary extracts treatment significantly reduced the power of conditioned media, from MCF-7 or MDA-MB-231 cells to induce nitrite production on RAW 264.7 cells, confirming their promising anti-inflammatory activity.
Collapse
|
18
|
Dai H, Chen X, Peng L, Ma L, Sun Y, Li L, Wang Q, Zhang Y. The mechanism of improved myosin gel properties by low dose rosmarinic acid addition during gel formation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105869] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Xu R, Zhu H, Hu L, Yu B, Zhan X, Yuan Y, Zhou P. Characterization of the intestinal absorption of morroniside from Cornus officinalis Sieb. et Zucc via a Caco-2 cell monolayer model. PLoS One 2020; 15:e0227844. [PMID: 32470043 PMCID: PMC7259638 DOI: 10.1371/journal.pone.0227844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/15/2020] [Indexed: 12/27/2022] Open
Abstract
Morroniside is a biologically active polyphenol found in Cornus officinalis Sieb. et Zucc (CO) that exhibits a broad spectrum of pharmacological activities, such as protecting nerves, and preventing diabetic liver damage and renal damage. However, little data are available regarding the mechanism of its intestinal absorption. Here, an in vitro human intestinal epithelial cell model of cultured Caco-2 cells was applied to study the absorption and transport of morroniside. The effects of donor concentration, pH and inhibitors were investigated. The bidirectional permeability of morroniside from the apical (AP) to the basolateral (BL) side and in the reverse direction was studied. When administered at three tested concentrations (5, 25 and 100 μM), the apparent permeability coefficient (Papp) values in the AP-to-BL direction ranged from 1.59 × 10-6 to 2.66 × 10-6 cm/s. In the reverse direction, BL-to-AP, the value was ranged from 2.67 × 10-6 to 4.10 × 10-6 cm/s. The data indicated that morroniside transport was pH-dependent. The permeability of morroniside was affected by treatment with various inhibitors, such as multidrug resistance protein inhibitors MK571 and indomethacin, as well as the breast cancer resistance protein inhibitor apigenin. The mechanisms of the intestinal absorption of morroniside may involve multiple transport pathways, such as the passive diffusion and efflux protein-mediated active transport especially involving multidrug resistance protein 2 and breast cancer resistance protein. After the addition of CO, the Papp values in the AP-to-BL direction increased significantly, therefore, it can be assumed that some ingredients in the CO promote morroniside absorption in the small intestine.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- Caco-2 Cells
- Cell Proliferation/drug effects
- Cornus/chemistry
- Epithelial Cells/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Glycosides/pharmacology
- Humans
- Indomethacin/pharmacology
- Intestinal Absorption/drug effects
- Intestinal Absorption/genetics
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasms/drug therapy
- Neoplasms/pathology
- Permeability/drug effects
- Propionates/pharmacology
- Quinolines/pharmacology
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Renjie Xu
- Department of Clinical pharmacy, Shaoxing Women and Children’s Hospital, Shaoxing, Zhejiang, China
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongdan Zhu
- Neonatal Intensive Care Unit, Shaoxing Women and Children’s Hospital, Shaoxing, Zhejiang, China
| | - Lingmin Hu
- Department of Laboratory, Shaoxing Seventh People’s Hospital, Shaoxing, Zhejiang, China
| | - Beimeng Yu
- Neonatal Intensive Care Unit, Shaoxing Women and Children’s Hospital, Shaoxing, Zhejiang, China
| | - Xiaohua Zhan
- The Third Maternal wards, Shaoxing Women and Children’s Hospital, Shaoxing, Zhejiang, China
| | - Yichu Yuan
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ping Zhou
- Department of Clinical pharmacy, Shaoxing Women and Children’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
20
|
Domínguez Moré GP, Feltrin C, Brambila PF, Cardona MI, Echeverry SM, Simões CMO, Aragón DM. Matrix effects of the hydroethanolic extract and the butanol fraction of calyces from Physalis peruviana L. on the biopharmaceutics classification of rutin. ACTA ACUST UNITED AC 2020; 72:738-747. [PMID: 32162346 DOI: 10.1111/jphp.13248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/09/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The Biopharmaceutics Classification System (BCS) categorizes active pharmaceutical ingredients according to their solubility and permeability properties, which are susceptible to matrix or formulation effects. The aim of this research was to evaluate the matrix effects of a hydroethanolic extract of calyces from Physalis peruviana L. (HEE) and its butanol fraction (BF), on the biopharmaceutics classification of their major compound, quercetin-3-O-rutinoside (rutin, RU). METHODS Rutin was quantified by HPLC-UV, and Caco-2 cell monolayer transport studies were performed to obtain the apparent permeability values (Papp ). Aqueous solubility was determined at pH 6.8 and 7.4. KEY FINDINGS The Papp values followed this order: BF > HEE > RU (1.77 ± 0.02 > 1.53 ± 0.07 > 0.90 ± 0.03 × 10-5 cm/s). The lowest solubility values followed this order: HEE > RU > BF (2.988 ± 0.07 > 0.205 ± 0.002 > 0.189 ± 0.005 mg/ml). CONCLUSIONS According to these results, rutin could be classified as BCS classes III (high solubility/low permeability) and IV (low solubility/low permeability), depending on the plant matrix. Further work needs to be done in order to establish how apply the BCS for research and development of new botanical drugs or for bioequivalence purposes.
Collapse
Affiliation(s)
- Gina Paola Domínguez Moré
- Programa de Farmacia, Facultad de Química y Farmacia, Centro de Servicios Farmacéuticos y Monitoreo de Fármacos, Universidad del Atlántico, Atlántico, Colombia.,Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Clarissa Feltrin
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Paula Freire Brambila
- Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - María Isabel Cardona
- Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Sandra Milena Echeverry
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Diana Marcela Aragón
- Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| |
Collapse
|
21
|
Zhang JL, Bai QY, Peng YZ, Fan J, Jin CC, Cao YX, Yuan YJ. High production of triterpenoids in Yarrowia lipolytica through manipulation of lipid components. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:133. [PMID: 32760447 PMCID: PMC7392732 DOI: 10.1186/s13068-020-01773-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Lupeol exhibits novel physiological and pharmacological activities, such as anticancer and immunity-enhancing activities. However, cytotoxicity remains a challenge for triterpenoid overproduction in microbial cell factories. As lipophilic and relatively small molecular compounds, triterpenes are generally secreted into the extracellular space. The effect of increasing triterpene efflux on the synthesis capacity remains unknown. RESULTS In this study, we developed a strategy to enhance triterpene efflux through manipulation of lipid components in Y. lipolytica by overexpressing the enzyme Δ9-fatty acid desaturase (OLE1) and disturbing phosphatidic acid phosphatase (PAH1) and diacylglycerol kinase (DGK1). By this strategy combined with two-phase fermentation, the highest lupeol production reported to date was achieved, where the titer in the organic phase reached 381.67 mg/L and the total production was 411.72 mg/L in shake flasks, exhibiting a 33.20-fold improvement over the initial strain. Lipid manipulation led to a twofold increase in the unsaturated fatty acid (UFA) content, up to 61-73%, and an exceptionally elongated cell morphology, which might have been caused by enhanced membrane phospholipid biosynthesis flux. Both phenotypes accelerated the export of toxic products to the extracellular space and ultimately stimulated the capacity for triterpenoid synthesis, which was proven by the 5.11-fold higher ratio of extra/intracellular lupeol concentrations, 2.79-fold higher biomass accumulation and 2.56-fold higher lupeol productivity per unit OD in the modified strains. This strategy was also highly efficient for the biosynthesis of other triterpenes and sesquiterpenes, including α-amyrin, β-amyrin, longifolene, longipinene and longicyclene. CONCLUSIONS In conclusion, we successfully created a high-yield lupeol-producing strain via lipid manipulation. We demonstrated that the enhancement of lupeol efflux and synthesis capacity was induced by the increased UFA content and elongated cell morphology. Our study provides a novel strategy to promote the biosynthesis of valuable but toxic products in microbial cell factories.
Collapse
Affiliation(s)
- Jin-Lai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Qiu-Yan Bai
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Yang-Zi Peng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Jie Fan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Cong-Cong Jin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Ying-Xiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Ying-Jin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| |
Collapse
|
22
|
Diril M, Türkyılmaz GY, Karasulu HY. Formulation and In Vitro Evaluation of Self Microemulsifying Drug Delivery System Containing Atorvastatin Calcium. Curr Drug Deliv 2019; 16:768-779. [PMID: 31429689 DOI: 10.2174/1567201816666190820143957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to develop a new dosage form as an alternative to the classical tablet forms of atorvastatin calcium (AtrCa). The formulation strategy was to prepare an optimum self micro emulsifying drug delivery system (SMEDDS) to overcome the problem of low solubility of the active substance. METHODS In this study, pseudo ternary phase diagrams were plotted determined by the solubility studies. According to the solubility studies; oleic acid was used as the oil phase, Tween 20 and Span 80 were used as the surfactants and ethanol was used as the co-surfactant. SMEDDS formulations were characterized according to pH, electrical conductivity, density, refractive index, viscosity, emulsification time, dispersibility, robustness of dilution stability, droplet size, polidispersity index, zeta potential, transmittance %, cloud point, content quantification %, chemical and physical stability. The lipolysis study was conducted under fed and fasted conditions. In vitro release studies and kinetic evaluation were carried out. Permeability studies were also examined with Caco-2 cell culture. RESULTS The droplet size of the optimized formulation did not change significantly in different medias over the test time period. Improved SMEDDS formulation will progress steadily without precipitating along the gastrointestinal tract. Lipolysis studies showed that the oil solution had been exposed to high amount of lipolysis compared to the SMEDDS formulation. The release rate of AtrCa from AtrCa- SMEDDS formulation (93.8%, at 15 minutes) was found as increased when the results were compared with commercial tablet formulation and pure drug. The permeability value of AtrCa from AtrCa- SMEDDS formulation was found higher than pure AtrCa and commercial tablet formulation, approximately 9.94 and 1.64 times, respectively. CONCLUSION Thus, lipid-based SMEDDS formulation is a potential formulation candidate for lymphatic route in terms of the increased solubility of AtrCa.
Collapse
Affiliation(s)
- Mine Diril
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Gülbeyaz Yıldız Türkyılmaz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey.,Ege University, Center For Drug Research & Development and Pharmacokinetic Applications (ARGEFAR), Izmir, Turkey
| | - H Yeşim Karasulu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
23
|
Pérez-Sánchez A, Cuyàs E, Ruiz-Torres V, Agulló-Chazarra L, Verdura S, González-Álvarez I, Bermejo M, Joven J, Micol V, Bosch-Barrera J, Menendez JA. Intestinal Permeability Study of Clinically Relevant Formulations of Silibinin in Caco-2 Cell Monolayers. Int J Mol Sci 2019; 20:E1606. [PMID: 30935093 PMCID: PMC6480586 DOI: 10.3390/ijms20071606] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
An ever-growing number of preclinical studies have investigated the tumoricidal activity of the milk thistle flavonolignan silibinin. The clinical value of silibinin as a bona fide anti-cancer therapy, however, remains uncertain with respect to its bioavailability and blood⁻brain barrier (BBB) permeability. To shed some light on the absorption and bioavailability of silibinin, we utilized the Caco-2 cell monolayer model of human intestinal absorption to evaluate the permeation properties of three different formulations of silibinin: silibinin-meglumine, a water-soluble form of silibinin complexed with the amino-sugar meglumine; silibinin-phosphatidylcholine, the phytolipid delivery system Siliphos; and Eurosil85/Euromed, a milk thistle extract that is the active component of the nutraceutical Legasil with enhanced bioavailability. Our approach predicted differential mechanisms of transport and blood⁻brain barrier permeabilities between the silibinin formulations tested. Our assessment might provide valuable information about an idoneous silibinin formulation capable of reaching target cancer tissues and accounting for the observed clinical effects of silibinin, including a recently reported meaningful central nervous system activity against brain metastases.
Collapse
Affiliation(s)
- Almudena Pérez-Sánchez
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain.
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain.
| | - Verónica Ruiz-Torres
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| | - Luz Agulló-Chazarra
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain.
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain.
| | - Isabel González-Álvarez
- Pharmacokinetics and Pharmaceutical Technology Area, Engineering Department, Universidad Miguel Hernández (UMH), San Juan de Alicante, 03202 Alicante, Spain.
| | - Marival Bermejo
- Pharmacokinetics and Pharmaceutical Technology Area, Engineering Department, Universidad Miguel Hernández (UMH), San Juan de Alicante, 03202 Alicante, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain.
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), 07122 Palma de Mallorca, Spain.
| | - Joaquim Bosch-Barrera
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain.
- Department of Medical Sciences, Medical School University of Girona, 17003 Girona, Spain.
- Medical Oncology, Catalan Institute of Oncology (ICO), Dr. Josep Trueta University Hospital, 17007 Girona, Spain.
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain.
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain.
| |
Collapse
|
24
|
Rosemary (Rosmarinus officinalis) extract causes ROS-induced necrotic cell death and inhibits tumor growth in vivo. Sci Rep 2019; 9:808. [PMID: 30692565 PMCID: PMC6349921 DOI: 10.1038/s41598-018-37173-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/29/2018] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer is the third most common diagnosed cancer globally. Although substantial advances have been obtained both in treatment and survival rates, there is still a need for new therapeutical approaches. Natural compounds are a realistic source of new bioactive compounds with anticancer activity. Among them, rosemary polyphenols have shown a vast antiproliferative capacity against colon cancer cells in vitro and in animal models. We have investigated the antitumor activity of a rosemary extract (RE) obtained by using supercritical fluid extraction through its capacity to inhibit various signatures of cancer progression and metastasis such as proliferation, migration, invasion and clonogenic survival. RE strongly inhibited proliferation, migration and colony formation of colon cancer cells regardless their phenotype. Treatment with RE led to a sharp increase of intracellular ROS that resulted in necrosis cell death. Nrf2 gene silencing increased RE cytotoxic effects, thus suggesting that this pathway was involved in cell survival. These in vitro results were in line with a reduction of tumor growth by oral administration of RE in a xenograft model of colon cancer cells using athymic nude mice. These findings indicate that targeting colon cancer cells by increasing intracellular ROS and decreasing cell survival mechanisms may suppose a therapeutic option in colon cancer through the combination of rosemary compounds and chemotherapeutic drugs.
Collapse
|
25
|
Ben Hlel T, Borges T, Rueda A, Smaali I, Marzouki MN, Seiquer I. Polyphenols bioaccessibility and bioavailability assessment in ipecac infusion using a combined assay of simulated
in vitro
digestion and Caco‐2 cell model. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Takoua Ben Hlel
- LIP‐MB Laboratory (LR11ES24) National Institute of Applied Sciences and Technology, University of Carthage Centre urbain nord de Tunis, B.P. 676 Tunis Cedex 1080 Tunisia
- Department of Biology Faculty of Tunis University of Tunis El Manar Rue de Tolède 2092 Tunis Tunisia
| | - Thays Borges
- Department of Physiology and Biochemistry of Animal Nutrition Estación Experimental del Zaidín (CSIC) Camino del Jueves s/n 18100 Armilla Granada Spain
| | - Ascensión Rueda
- Institute of Nutrition and Food Technology José Mataix Verdú Avenida del Conocimiento s/n. Parque Tecnológico de la Salud 18071 Armilla Granada Spain
| | - Issam Smaali
- LIP‐MB Laboratory (LR11ES24) National Institute of Applied Sciences and Technology, University of Carthage Centre urbain nord de Tunis, B.P. 676 Tunis Cedex 1080 Tunisia
| | - M. Nejib Marzouki
- LIP‐MB Laboratory (LR11ES24) National Institute of Applied Sciences and Technology, University of Carthage Centre urbain nord de Tunis, B.P. 676 Tunis Cedex 1080 Tunisia
| | - Isabel Seiquer
- Department of Physiology and Biochemistry of Animal Nutrition Estación Experimental del Zaidín (CSIC) Camino del Jueves s/n 18100 Armilla Granada Spain
| |
Collapse
|
26
|
Achour M, Saguem S, Sarriá B, Bravo L, Mateos R. Bioavailability and metabolism of rosemary infusion polyphenols using Caco-2 and HepG2 cell model systems. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3741-3751. [PMID: 29327407 DOI: 10.1002/jsfa.8886] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/21/2017] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND Rosmarinus officinalis is an aromatic plant used in folk medicine as a result of the therapeutic properties associated with its phenolic composition, being rich in rosmarinic acid (RA) and caffeic acid (CA). To better understand the bioactivity of these compounds, their absorption and metabolism were assessed in human Caco-2 and HepG2 cells, as small intestine and liver models, respectively, using RA and CA standards, as well as a rosemary infusion and ferulic acid (FA). RESULTS Test compounds were partially up-taken and metabolized by Caco-2 and HepG2 cells, although a higher metabolization rate was observed after hepatic incubation compared to intestinal incubation. CA was the compound best absorbed followed by RA and FA, showing metabolites percentages of 30.4%, 11.8% and 4.4% in Caco-2 and 34.3%, 10.3% and 3.2% in HepG2 cells, respectively. RA in the rosemary infusion showed improved bioavailability compared to pure RA. Methyl derivatives were the main metabolites detected for CA and RA after intestinal and hepatic metabolism, followed by methyl-glucuronidates and glucuronidates. RA was also minimally hydrolyzed into CA, whereas FA only was glucuronidated. Rosemary polyphenols followed the same biotransformation pathways as the standards. In addition, phase II derivatives of luteolin were observed. CONCLUSION Rosemary polyphenols are partially metabolized in both the intestine and liver. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mariem Achour
- Laboratory of Metabolic Biophysics and Applied Pharmacology (LR12ES02), Department of Biophysics, Faculty of Medicine Ibn El Jazzar of Sousse, University of Sousse, Sousse, Tunisia
| | - Saad Saguem
- Laboratory of Metabolic Biophysics and Applied Pharmacology (LR12ES02), Department of Biophysics, Faculty of Medicine Ibn El Jazzar of Sousse, University of Sousse, Sousse, Tunisia
| | - Beatriz Sarriá
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Laura Bravo
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
27
|
Malapert A, Tomao V, Dangles O, Reboul E. Effect of Foods and β-Cyclodextrin on the Bioaccessibility and the Uptake by Caco-2 Cells of Hydroxytyrosol from Either a Pure Standard or Alperujo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4614-4620. [PMID: 29663812 DOI: 10.1021/acs.jafc.8b00556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydroxytyrosol bioaccessibility and absorption by the intestinal cells were studied using an in vitro digestion model and Caco-2 TC7 monolayers cells in culture in the presence and absence of β-cyclodextrin and foods. Hydroxytyrosol was either provided as a pure standard or in an alperujo powder. The presence of foods significantly decreased hydroxytyrosol bioaccessibility and absorption (-20 and -10%, respectively), while β-cyclodextrin had no effect. Moreover, the presence of other compounds from alperujo in the intestinal compartment reduced hydroxytyrosol absorption by Caco-2 cells compared to pure standard (-60%). The final bioavailability of hydroxytyrosol, defined as its quantity at the basolateral side of cultured cell monolayers compared to the initial amount in the test meal, was 6.9 ± 0.4, 31.1 ± 1.1, and 40.9 ± 1.5% when hydroxytyrosol was from alperujo or a standard administered with or without food, respectively. Our results show that conversely to foods, β-cyclodextrin does not alter hydroxytyrosol bioavailability.
Collapse
Affiliation(s)
- Aurélia Malapert
- University of Avignon, INRA , UMR408 SQPOV, 84000 Avignon , France
| | - Valérie Tomao
- University of Avignon, INRA , UMR408 SQPOV, 84000 Avignon , France
| | - Olivier Dangles
- University of Avignon, INRA , UMR408 SQPOV, 84000 Avignon , France
| | - Emmanuelle Reboul
- INRA, INSERM , Aix-Marseille University , C2VN, 13005 Marseille , France
| |
Collapse
|
28
|
Du T, Zeng M, Chen L, Cao Z, Cai H, Yang G. Chemical and Absorption Signatures of Xiao Chai Hu Tang. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1107-1125. [PMID: 29572987 DOI: 10.1002/rcm.8114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/05/2018] [Accepted: 03/09/2018] [Indexed: 05/11/2023]
Abstract
RATIONALE Xiao Chai Hu Tang (XCHT, Sho-saiko-to in Japanese) is a well-known medicine formula used in Asia for centuries. However, the quality control and the absorption of XCHT components are the major remaining concerns.. The study was to develop a sensitive and robust method to characterize the chemical components in XCHT and evaluate their absorptions. METHODS An ultra-high pressure liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF MS/MS) was used to identify the compounds in XCHT. The Caco-2 cell culture model was employed to determine the absorption of the identified components. RESULTS The results showed that 109 compounds were identified including organic acids, flavonoids, saikosaponins, ginsenosides, licoricesaponins and gingerols. The absorption study showed that among those identified, 33 compounds have decent absorption permerbilities ranging from 1.46 ± 0.24×10-7 to 3.10±0.61×10-5 cm/sec. These compounds were classified as classes II and IV in the biopharmaceutical classification system (BCS). CONCLUSIONS These identified compounds could be used to characterize quality of XCHT and those absorbed compounds with decent permreabiliteis are the potential active components in XCHT. Future pharmacodynamics studies should focus on these absorbed compounds.
Collapse
Affiliation(s)
- Ting Du
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Yanta West road, Xi'an, 710061, China
- Department of Pharmacy, Affiliated Taihe Hospital of Xi'an Jiaotong University Health science center, 32 South Renmin Road, Shiyan, Hubei, 442000, China
- Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Min Zeng
- Department of Thoracic and Cardiomacrovascular surgery, ShiyanTaihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Li Chen
- Department of Pharmacy, Affiliated Taihe Hospital of Xi'an Jiaotong University Health science center, 32 South Renmin Road, Shiyan, Hubei, 442000, China
| | - Zheng Cao
- Department of Cardiology, Affiliated Taihe Hospital of Xi'an Jiaotong University Health science center, 32 South Renmin Road, Shiyan, Hubei, 442000, China
| | - Hua Cai
- Department of Pharmacy, Affiliated Taihe Hospital of Xi'an Jiaotong University Health science center, 32 South Renmin Road, Shiyan, Hubei, 442000, China
| | - Guangde Yang
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Yanta West road, Xi'an, 710061, China
| |
Collapse
|
29
|
Perry NSL, Menzies R, Hodgson F, Wedgewood P, Howes MJR, Brooker HJ, Wesnes KA, Perry EK. A randomised double-blind placebo-controlled pilot trial of a combined extract of sage, rosemary and melissa, traditional herbal medicines, on the enhancement of memory in normal healthy subjects, including influence of age. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 39:42-48. [PMID: 29433682 DOI: 10.1016/j.phymed.2017.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/11/2017] [Accepted: 08/15/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To evaluate for the first time the effects of a combination of sage, rosemary and melissa (Salvia officinalis L., Rosmarinus officinalis L. and Melissa officinalis L.; SRM), traditional European medicines, on verbal recall in normal healthy subjects. To devise a suitable study design for assessing the clinical efficacy of traditional herbal medicines for memory and brain function. METHODS Forty-four normal healthy subjects (mean age 61 ± 9.26y SD; m/f 6/38) participated in this study. A double-blind, randomised, placebo-controlled pilot study was performed with subjects randomised into an active and placebo group. The study consisted of a single 2-week term ethanol extract of SRM that was chemically-characterised using high resolution LC-UV-MS/MS analysis. Immediate and delayed word recall were used to assess memory after taking SRM or placebo (ethanol extract of Myrrhis odorata (L.) Scop.). In addition analysis was performed with subjects divided into younger and older subgroups (≤ 62 years mean age n = 26: SRM n = 10, Placebo n = 16; ≥ 63 years n = 19: SRM n = 13, Placebo n = 6). RESULTS Overall there were no significant differences between treatment and placebo change from baseline for immediate or delayed word recall. However subgroup analysis showed significant improvements to delayed word recall in the under 63 year age group (p < 0.0123) with Cohen's effect size d = 0.92. No adverse effects were observed. CONCLUSION This pilot study indicates that an oral preparation of SRM at the selected dose and for the period of administration is more effective than a placebo in supported verbal episodic memory in healthy subjects under 63 years of age. Short- and long- term supplementation with SRM extract merits more robust investigation as an adjunctive treatment for patients with Alzheimer's disease and in the general ageing population. The study design proved a simple cost effective trial protocol to test the efficacy of herbal medicines on verbal episodic memory, with future studies including broader cognitive assessment.
Collapse
Affiliation(s)
- N S L Perry
- Dilston Physic Garden, Corbridge, Northumberland, UK.
| | - R Menzies
- The Body Works Centre, 4 Eastgate, Hexham, UK
| | - F Hodgson
- The Body Works Centre, 4 Eastgate, Hexham, UK
| | - P Wedgewood
- The Body Works Centre, 4 Eastgate, Hexham, UK
| | - M-J R Howes
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - H J Brooker
- Wesnes Cognition Limited, Little Paddock, Streatley Hill, Streatley On Thames, UK
| | - K A Wesnes
- Wesnes Cognition Limited, Little Paddock, Streatley Hill, Streatley On Thames, UK
| | - E K Perry
- Dilston Physic Garden, Corbridge, Northumberland, UK
| |
Collapse
|
30
|
Braconi D, Bernardini G, Millucci L, Santucci A. Foodomics for human health: current status and perspectives. Expert Rev Proteomics 2017; 15:153-164. [PMID: 29271263 DOI: 10.1080/14789450.2018.1421072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In the post-genomic era, the opportunity to combine and integrate cutting-edge analytical platforms and data processing systems allowed the birth of foodomics, 'a discipline that studies the Food and Nutrition domains through the application of advanced omics technologies to improve consumer's well-being, health, and confidence'. Since then, this discipline has rapidly evolved and researchers are now facing the daunting tasks to meet consumers' needs in terms of food traceability, sustainability, quality, safety and integrity. Most importantly, today it is imperative to provide solid evidence of the mechanisms through which food can promote human health and well-being. Areas covered: In this review, the complex relationships connecting food, nutrition and human health will be discussed, with emphasis on the relapses for the development of functional foods and nutraceuticals, personalized nutrition approaches, and the study of the interplay among gut microbiota, diet and health/diseases. Expert commentary: Evidence has been provided supporting the role of various omic platforms in studying the health-promoting effects of food and customized dietary interventions. However, although associated to major analytical challenges, only the proper integration of multi-omics studies and the implementation of bioinformatics tools and databases will help translate findings from clinical practice into effective personalized treatment strategies.
Collapse
Affiliation(s)
- Daniela Braconi
- a Dipartimento di Biotecnologie, Chimica e Farmacia , Università degli Studi di Siena , Siena , Italy
| | - Giulia Bernardini
- a Dipartimento di Biotecnologie, Chimica e Farmacia , Università degli Studi di Siena , Siena , Italy
| | - Lia Millucci
- a Dipartimento di Biotecnologie, Chimica e Farmacia , Università degli Studi di Siena , Siena , Italy
| | - Annalisa Santucci
- a Dipartimento di Biotecnologie, Chimica e Farmacia , Università degli Studi di Siena , Siena , Italy
| |
Collapse
|