1
|
Jurado Vélez J, Anderson N, Datcher I, Foster C, Jackson P, Hidalgo B. Striving Towards Equity in Cardiovascular Genomics Research. Curr Atheroscler Rep 2025; 27:34. [PMID: 39964583 PMCID: PMC11836143 DOI: 10.1007/s11883-025-01277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
PURPOSE OF REVIEW Our review emphasizes recent advancements and persisting gaps in cardiovascular genomics, particularly highlighting how emerging studies involving underrepresented populations have uncovered new genetic variants associated with cardiovascular diseases. RECENT FINDINGS Initiatives like the H3Africa project, the Million Veterans Program, and the All of Us Research Program are working to address this gap by focusing on underrepresented groups. Additionally, emerging research is centering on the interplay between genetic factors and socio-environmental determinants of health, which disproportionately impact marginalized communities. As cardiovascular genomics research grows, increasing the inclusion of underrepresented populations is essential for gaining a more comprehensive understanding of genetic variability. This will lead to more accurate and clinically meaningful strategies for preventing and treating cardiovascular diseases across all ancestral backgrounds and diverse populations.
Collapse
Affiliation(s)
- Javier Jurado Vélez
- Marnix E Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nekayla Anderson
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ivree Datcher
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christy Foster
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pamela Jackson
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bertha Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Damiani I, Solberg EH, Iyer M, Cheng P, Weldy CS, Kim JB. Environmental pollutants and atherosclerosis: Epigenetic mechanisms linking genetic risk and disease. Atherosclerosis 2025:119131. [PMID: 39986958 DOI: 10.1016/j.atherosclerosis.2025.119131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
Over the past half-century, significant strides have been made to identify key risk factors, genetic mechanisms, and treatments for atherosclerosis. Yet, coronary artery disease (CAD) remains a leading global public health challenge. While the heritability of CAD is well-documented, there is increasing focus on the role of environmental exposures, such as smoking, air pollution, and heavy metals, on global CAD risk. Recent research has shed light on the interplay between genetic variation and environmental factors, offering insights into gene-environment (GxE) interactions. Moreover, emerging evidence suggests that environmental toxicants can profoundly impact the epigenome, altering gene regulation beyond the genetic sequence itself, revealing novel mechanisms underlying disease. Epigenetic changes - such as modifications in DNA methylation, chromatin structure, and non-coding RNA function - are now recognized as key molecular determinants of atherosclerosis. These observations have created a foundational paradigm that environment, genetics, and epigenetic mechanisms influence risk through a highly complex interaction regulating cellular phenotype, pathology, and disease progression. In this review, we explore the mechanisms by which environmental exposures influence the epigenome and contribute to the regulation of atherosclerotic disease. Additionally, we examine the transgenerational epigenetic effects of these exposures on disease risk. Advancing our understanding of these mechanisms is essential for informing public health strategies aimed at mitigating harmful environmental exposures and reducing the global burden of cardiovascular disease.
Collapse
Affiliation(s)
- Isabella Damiani
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Elena Hurtado Solberg
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Meghana Iyer
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Paul Cheng
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chad S Weldy
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA; Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Rhee TM, Ji Y, Yang S, Lee H, Park JB, Kim HK, Kim YJ, Kim JB, Won S, Lee SP. Combined Effect of Air Pollution and Genetic Risk on Incident Cardiovascular Diseases. J Am Heart Assoc 2024; 13:e033497. [PMID: 39547964 DOI: 10.1161/jaha.123.033497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/09/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Whether genetic susceptibility to cardiovascular diseases (CVDs) enhances the vulnerability to adverse cardiovascular outcomes by air pollution is unknown. We assessed the combined effect of air pollution and genetic predispositions on CVD risk. METHODS AND RESULTS From the UK Biobank cohort, we selected genetically unrelated White British participants without CVD. Levels of ambient particulate matter with a diameter of <2.5 μm (PM2.5) and <10 μm were estimated using land use regression models. An individual's genetic predisposition to CVDs was determined by polygenic risk scores for coronary artery disease, myocardial infarction, stroke, ischemic stroke, heart failure, and atrial fibrillation. We stratified mortality and CVD risk by PM2.5 exposure across high and low genetic risk groups. A total of 249 082 participants (aged 56.9±8.0 years, 46.8% men) were followed for a median of 10.8 years. The combined effect of PM2.5 exposure and the genetic predisposition of CVD demonstrated the highest risk of cardiovascular death in the high genetic risk group with the greatest PM2.5 exposure (adjusted hazard ratios ranging from 1.73 to 2.12 across the polygenic risk score of each CVD). The combination of higher exposure to ambient PM2.5 and high genetic risk was associated with higher incidence of all CVDs, although no significant interactions were observed between genetic risk and PM2.5 exposure on cardiovascular death or CVD events. CONCLUSIONS A combination of greater PM2.5 exposure and higher genetic predisposition to particular CVDs was modestly associated with elevated risks of cardiovascular death and CVDs. Not only alleviating PM2.5 exposure in the general population but also implementing individualized preventive approach for those at high genetic risk might be beneficial.
Collapse
Affiliation(s)
- Tae-Min Rhee
- Department of Internal Medicine Seoul National University Hospital Seoul Republic of Korea
- Department of Internal Medicine Seoul National University Hospital Healthcare System Gangnam Center Seoul Republic of Korea
| | - Yunmi Ji
- College of Natural Sciences, Interdisciplinary Program in Bioinformatics Seoul National University Seoul Republic of Korea
| | - Seokhun Yang
- Department of Internal Medicine Seoul National University Hospital Seoul Republic of Korea
| | - Heesun Lee
- Department of Internal Medicine Seoul National University Hospital Seoul Republic of Korea
- Department of Internal Medicine Seoul National University Hospital Healthcare System Gangnam Center Seoul Republic of Korea
| | - Jun-Bean Park
- Department of Internal Medicine Seoul National University Hospital Seoul Republic of Korea
- Department of Internal Medicine Seoul National University College of Medicine Seoul Republic of Korea
| | - Hyung-Kwan Kim
- Department of Internal Medicine Seoul National University Hospital Seoul Republic of Korea
- Department of Internal Medicine Seoul National University College of Medicine Seoul Republic of Korea
| | - Yong-Jin Kim
- Department of Internal Medicine Seoul National University Hospital Seoul Republic of Korea
- Department of Internal Medicine Seoul National University College of Medicine Seoul Republic of Korea
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine, Department of Internal Medicine Stanford University Stanford CA
| | - Sungho Won
- College of Natural Sciences, Interdisciplinary Program in Bioinformatics Seoul National University Seoul Republic of Korea
- Department of Public Health Sciences Seoul National University Seoul Republic of Korea
| | - Seung-Pyo Lee
- Department of Internal Medicine Seoul National University Hospital Seoul Republic of Korea
- Department of Internal Medicine Seoul National University College of Medicine Seoul Republic of Korea
- Center for Precision Medicine Seoul National University Hospital Seoul Republic of Korea
| |
Collapse
|
4
|
Bekenova N, Sibagatova A, Aitkaliyev A, Vochshenkova T, Kassiyeva B, Benberin V. Genetic markers of cardiac autonomic neuropathy in the Kazakh population. BMC Cardiovasc Disord 2024; 24:242. [PMID: 38724937 PMCID: PMC11080244 DOI: 10.1186/s12872-024-03912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Cardiac autonomic neuropathy (CAN) is a complication of diabetes mellitus (DM) that increases the risk of morbidity and mortality by disrupting cardiac innervation. Recent evidence suggests that CAN may manifest even before the onset of DM, with prediabetes and metabolic syndrome potentially serving as precursors. This study aims to identify genetic markers associated with CAN development in the Kazakh population by investigating the SNPs of specific genes. MATERIALS AND METHODS A case-control study involved 82 patients with CAN (cases) and 100 patients without CAN (controls). A total of 182 individuals of Kazakh nationality were enrolled from a hospital affiliated with the RSE "Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan". 7 SNPs of genes FTO, PPARG, SNCA, XRCC1, FLACC1/CASP8 were studied. Statistical analysis was performed using Chi-square methods, calculation of odds ratios (OR) with 95% confidence intervals (CI), and logistic regression in SPSS 26.0. RESULTS Among the SNCA gene polymorphisms, rs2737029 was significantly associated with CAN, almost doubling the risk of CAN (OR 2.03(1.09-3.77), p = 0.03). However, no statistically significant association with CAN was detected with the rs2736990 of the SNCA gene (OR 1.00 CI (0.63-1.59), p = 0.99). rs12149832 of the FTO gene increased the risk of CAN threefold (OR 3.22(1.04-9.95), p = 0.04), while rs1801282 of the PPARG gene and rs13016963 of the FLACC1 gene increased the risk twofold (OR 2.56(1.19-5.49), p = 0.02) and (OR 2.34(1.00-5.46), p = 0.05) respectively. rs1108775 and rs1799782 of the XRCC1 gene were associated with reduced chances of developing CAN both before and after adjustment (OR 0.24, CI (0.09-0.68), p = 0.007, and OR 0.43, CI (0.22-0.84), p = 0.02, respectively). CONCLUSION The study suggests that rs2737029 (SNCA gene), rs12149832 (FTO gene), rs1801282 (PPARG gene), and rs13016963 (FLACC1 gene) may be predisposing factors for CAN development. Additionally, SNPs rs1108775 and rs1799782 (XRCC1 gene) may confer resistance to CAN. Only one polymorphism rs2736990 of the SNCA gene was not associated with CAN.
Collapse
Affiliation(s)
- Nazira Bekenova
- Gerontology Center, Medical Centre Hospital of President's Affairs Administration of the Republic of Kazakhstan, Mangilik El 80, Astana City, 010000, Kazakhstan.
| | - Ainur Sibagatova
- Gerontology Center, Medical Centre Hospital of President's Affairs Administration of the Republic of Kazakhstan, Mangilik El 80, Astana City, 010000, Kazakhstan
| | - Alisher Aitkaliyev
- Gerontology Center, Medical Centre Hospital of President's Affairs Administration of the Republic of Kazakhstan, Mangilik El 80, Astana City, 010000, Kazakhstan
| | - Tamara Vochshenkova
- Gerontology Center, Medical Centre Hospital of President's Affairs Administration of the Republic of Kazakhstan, Mangilik El 80, Astana City, 010000, Kazakhstan
| | - Balzhan Kassiyeva
- Gerontology Center, Medical Centre Hospital of President's Affairs Administration of the Republic of Kazakhstan, Mangilik El 80, Astana City, 010000, Kazakhstan
| | - Valeriy Benberin
- Gerontology Center, Medical Centre Hospital of President's Affairs Administration of the Republic of Kazakhstan, Mangilik El 80, Astana City, 010000, Kazakhstan
| |
Collapse
|
5
|
Mohd Isa NI, Syafruddin SE, Mokhtar MH, Zainal Abidin S, Jaffar FHF, Ugusman A, Hamid AA. Potential Roles of microRNAs for Assessing Cardiovascular Risk in Pre-Eclampsia-Exposed Postpartum Women and Offspring. Int J Mol Sci 2023; 24:16842. [PMID: 38069164 PMCID: PMC10706476 DOI: 10.3390/ijms242316842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Pre-eclampsia, which is part of the spectrum of hypertensive pregnancy disorders, poses a significant health burden, contributing to maternal and infant morbidity and mortality. Pre-eclampsia is widely associated with persistent adverse effects on the cardiovascular health of women with a history of pre-eclampsia. Additionally, there is increasing evidence demonstrating that offspring of pre-eclamptic pregnancies have altered cardiac structure and function, as well as different vascular physiology due to the decrease in endothelial function. Therefore, early detection of the likelihood of developing pre-eclampsia-associated cardiovascular diseases is vital, as this could facilitate the undertaking of the necessary clinical measures to avoid disease progression. The utilisation of microRNAs as biomarkers is currently on the rise as microRNAs have been found to play important roles in regulating various physiological and pathophysiological processes. In regard to pre-eclampsia, recent studies have shown that the expression of microRNAs is altered in postpartum women and their offspring who have been exposed to pre-eclampsia, and that these alterations may persist for several years. This review, therefore, addresses changes in microRNA expression found in postpartum women and offspring exposed to pre-eclampsia, their involvement in cardiovascular disease, and the potential role of microRNAs to be used as predictive tools and therapeutic targets in future cardiovascular disease research.
Collapse
Affiliation(s)
- Nurul Iffah Mohd Isa
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.I.M.I.); (M.H.M.); (F.H.F.J.); (A.U.)
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.I.M.I.); (M.H.M.); (F.H.F.J.); (A.U.)
| | - Shahidee Zainal Abidin
- Faculty of Science and Marine Environment, University Malaysia Terengganu, Kuala Nerus 21030, Malaysia;
| | - Farah Hanan Fathihah Jaffar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.I.M.I.); (M.H.M.); (F.H.F.J.); (A.U.)
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.I.M.I.); (M.H.M.); (F.H.F.J.); (A.U.)
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.I.M.I.); (M.H.M.); (F.H.F.J.); (A.U.)
| |
Collapse
|
6
|
Li C, Pan Y, Zhang R, Huang Z, Li D, Han Y, Larkin C, Rao V, Sun X, Kelly TN. Genomic Innovation in Early Life Cardiovascular Disease Prevention and Treatment. Circ Res 2023; 132:1628-1647. [PMID: 37289909 PMCID: PMC10328558 DOI: 10.1161/circresaha.123.321999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality globally. Although CVD events do not typically manifest until older adulthood, CVD develops gradually across the life-course, beginning with the elevation of risk factors observed as early as childhood or adolescence and the emergence of subclinical disease that can occur in young adulthood or midlife. Genomic background, which is determined at zygote formation, is among the earliest risk factors for CVD. With major advances in molecular technology, including the emergence of gene-editing techniques, along with deep whole-genome sequencing and high-throughput array-based genotyping, scientists now have the opportunity to not only discover genomic mechanisms underlying CVD but use this knowledge for the life-course prevention and treatment of these conditions. The current review focuses on innovations in the field of genomics and their applications to monogenic and polygenic CVD prevention and treatment. With respect to monogenic CVD, we discuss how the emergence of whole-genome sequencing technology has accelerated the discovery of disease-causing variants, allowing comprehensive screening and early, aggressive CVD mitigation strategies in patients and their families. We further describe advances in gene editing technology, which might soon make possible cures for CVD conditions once thought untreatable. In relation to polygenic CVD, we focus on recent innovations that leverage findings of genome-wide association studies to identify druggable gene targets and develop predictive genomic models of disease, which are already facilitating breakthroughs in the life-course treatment and prevention of CVD. Gaps in current research and future directions of genomics studies are also discussed. In aggregate, we hope to underline the value of leveraging genomics and broader multiomics information for characterizing CVD conditions, work which promises to expand precision approaches for the life-course prevention and treatment of CVD.
Collapse
Affiliation(s)
- Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (C. Li, R.Z., Z.H., X.S.)
| | - Yang Pan
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (C. Li, R.Z., Z.H., X.S.)
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (C. Li, R.Z., Z.H., X.S.)
| | - Davey Li
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Yunan Han
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Claire Larkin
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Varun Rao
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Xiao Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (C. Li, R.Z., Z.H., X.S.)
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| |
Collapse
|
7
|
Pant P, Chitme H, Sircar R, Prasad R, Prasad HO. Genome-wide association study for single nucleotide polymorphism associated with mural and cumulus granulosa cells of PCOS (polycystic ovary syndrome) and non-PCOS patients. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Abstract
Background
The genetic make-up of local granulosa cells and their function in the pathophysiology of polycystic ovary syndrome (PCOS) is crucial to a full comprehension of the disorder. The major purpose of this study was to compare the Single Nucleotide Polymorphism (SNP) of cumulus granulosa cells (CGCs) and mural granulosa cells (MGCs) between healthy individuals and women with PCOS using genome-wide association analysis (GWA). A case–control study was conducted in a total of 24 women diagnosed with PCOS and 24 healthy non-PCOS women of reproductive age aggregated into 4 samples of 6 patients each. GWA studies entail several processes, such as cell separation, cellular DNA extraction, library preparation followed by interpretation using bioinformatics databases. SNP locations were identified by reference gene also involves the use of Matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry (MS) (MALDI-TOF-MS) for the first sorting. Hybridization with the gene chip was followed by reading the SNP genotypes according to the publications in the literature. TASSEL (Trait Analysis by aSSociation, Evolution and Linkage) program and methods were used for GWA studies.
Results
An aggregate of 21,039 SNP calls were obtained from our samples. Genes of autoimmune illnesses, obesity, inflammatory illnesses, nervous system diseases such as retinitis pigmentosa, autism, neural tube defects, and Alzheimer's disease; and various malignancies such as lung cancer, colorectal cancer, breast cancer were also identified in these cells. Gene ranking score reveals that granulosa cells carry key genes of neurological system and reproductive systems especially in brain and testis, respectively.
Conclusions
Mural and Cumulus Granulosa cells were shown to have the PCOS directly and indirectly related genes MMP9, PRKAA2, COMT and HP. We found that the expression of ARID4B, MUC5AC, NID2, CREBBP, GNB1, KIF2C, COL18A1, and HNRNPC by these cells may contribute to PCOS.
Graphical abstract
Collapse
|
8
|
Wang Y, Gan Z, Zhang J, Wanchana S, Guo X. Suppression of SAMSN1 contributes to neuroprotection in neonatal rats suffering from hypoxic-ischemic encephalopathy injury. IBRAIN 2022; 9:3-12. [PMID: 37786523 PMCID: PMC10528993 DOI: 10.1002/ibra.12078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 10/04/2023]
Abstract
This article aims to detect the effect of SAM domain, SH3 domain, and nuclear localization signal 1 (SAMSN1) in neonatal rats with neurological dysfunction induced by hypoxia and ischemia (HI). The HI model was created using 7-day postnatal rats. Zea-longa score was utilized to validate the neurological injury after HI. Then, the differentially expressed genes (DEGs) were detected by gene sequencing and bioinformatics analysis methods. The oxygen and glucose deprivation (OGD) models were established in the SY5Y cells and fetal human cortical neurons. In addition, SAMSN1-small interfering RNA, methyl thiazolyl tetrazolium assay, and cell growth curve were employed to evaluate the cell viability variation. Obviously, Zea-longa scores increased in rats with HI insult. Subsequently, SAMSN1 was screened out, and it was found that SAMSN1 was strikingly upregulated in SY5Y cells and fetal neurons post-OGD. Interestingly, we found that SAMSN1 silencing could markedly enhance cell viability and cell growth after OGD. These data suggested that downregulation of SAMSN1 may exert a neuroprotective effect on damaged neurons after HI by improving cell viability and cell survival, which provides a potential theoretical basis for clinical trials in the future to treat neonatal hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Yi‐Bo Wang
- School of Basic Medical SciencesJinzhou Medical UniversityJinzhouLiaoning ProvinceChina
| | - Zong‐Jin Gan
- Class of 2019, Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuan ProvinceChina
| | - Jun‐Yan Zhang
- Class of 2019, Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuan ProvinceChina
| | | | - Xi‐Liang Guo
- Department of Human Anatomy, School of Basic Medical ScienceJinzhou Medical UniversityJinzhouChina
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive DysfunctionJinzhou Medical UniversityJinzhouChina
| |
Collapse
|
9
|
Djalinac N, Kolesnik E, Maechler H, Scheruebel-Posch S, Pelzmann B, Rainer PP, Foessl I, Wallner M, Scherr D, Heinemann A, Sedej S, Ljubojevic-Holzer S, von Lewinski D, Bisping E. miR-1183 Is a Key Marker of Remodeling upon Stretch and Tachycardia in Human Myocardium. Int J Mol Sci 2022; 23:ijms23136962. [PMID: 35805966 PMCID: PMC9266684 DOI: 10.3390/ijms23136962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Many cardiac insults causing atrial remodeling are linked to either stretch or tachycardia, but a comparative characterization of their effects on early remodeling events in human myocardium is lacking. Here, we applied isometric stretch or sustained tachycardia at 2.5 Hz in human atrial trabeculae for 6 h followed by microarray gene expression profiling. Among largely independent expression patterns, we found a small common fraction with the microRNA miR-1183 as the highest up-regulated transcript (up to 4-fold). Both, acute stretch and tachycardia induced down-regulation of the predicted miR-1183 target genes ADAM20 and PLA2G7. Furthermore, miR-1183 was also significantly up-regulated in chronically remodeled atrial samples from patients with persistent atrial fibrillation (3-fold up-regulation versus sinus rhythm samples), and in ventricular myocardium from dilative cardiomyopathy hearts (2-fold up-regulation) as compared to non-failing controls. In sum, although stretch and tachycardia show distinct transcriptomic signatures in human atrial myocardium, both cardiac insults consistently regulate the expression of miR-1183 and its downstream targets in acute and chronic remodeling. Thus, elevated expression of miR-1183 might serve as a tissue biomarker for atrial remodeling and might be of potential functional significance in cardiac disease.
Collapse
Affiliation(s)
- Natasa Djalinac
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (N.D.); (E.K.); (P.P.R.); (D.S.); (S.S.); (S.L.-H.); (E.B.)
- Unit of Human Molecular Genetics and Functional Genomics, Department of Biology, University of Padua, 35121 Padua, Italy
| | - Ewald Kolesnik
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (N.D.); (E.K.); (P.P.R.); (D.S.); (S.S.); (S.L.-H.); (E.B.)
| | - Heinrich Maechler
- Department of Cardiothoracic Surgery, Medical University of Graz, 8036 Graz, Austria;
| | - Susanne Scheruebel-Posch
- Gottfried Schatz Research Center, Institute of Biophysics, Medical University of Graz, 8010 Graz, Austria; (S.S.-P.); (B.P.)
| | - Brigitte Pelzmann
- Gottfried Schatz Research Center, Institute of Biophysics, Medical University of Graz, 8010 Graz, Austria; (S.S.-P.); (B.P.)
| | - Peter P. Rainer
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (N.D.); (E.K.); (P.P.R.); (D.S.); (S.S.); (S.L.-H.); (E.B.)
- BioTechMed Graz, 8036 Graz, Austria
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8010 Graz, Austria;
| | - Markus Wallner
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (N.D.); (E.K.); (P.P.R.); (D.S.); (S.S.); (S.L.-H.); (E.B.)
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Correspondence: (M.W.); (D.v.L.); Tel.: +43-316-385-31261 (M.W.); +43-316-385-80684 (D.v.L.)
| | - Daniel Scherr
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (N.D.); (E.K.); (P.P.R.); (D.S.); (S.S.); (S.L.-H.); (E.B.)
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria;
| | - Simon Sedej
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (N.D.); (E.K.); (P.P.R.); (D.S.); (S.S.); (S.L.-H.); (E.B.)
- BioTechMed Graz, 8036 Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Senka Ljubojevic-Holzer
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (N.D.); (E.K.); (P.P.R.); (D.S.); (S.S.); (S.L.-H.); (E.B.)
- BioTechMed Graz, 8036 Graz, Austria
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (N.D.); (E.K.); (P.P.R.); (D.S.); (S.S.); (S.L.-H.); (E.B.)
- Correspondence: (M.W.); (D.v.L.); Tel.: +43-316-385-31261 (M.W.); +43-316-385-80684 (D.v.L.)
| | - Egbert Bisping
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (N.D.); (E.K.); (P.P.R.); (D.S.); (S.S.); (S.L.-H.); (E.B.)
| |
Collapse
|
10
|
Crosstalk between Venous Thromboembolism and Periodontal Diseases: A Bioinformatics Analysis. DISEASE MARKERS 2021; 2021:1776567. [PMID: 34925639 PMCID: PMC8683231 DOI: 10.1155/2021/1776567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Background This current study applied bioinformatics analysis to reveal the crosstalk between venous thromboembolism (VTE) and periodontitis, as well as the potential role of immune-related genes in this context. Methods Expression data were downloaded from the GEO database. Blood samples from venous thromboembolism (VTE) were used (GSE19151), while for periodontal disease, we used gingival tissue samples (GSE10334, GSE16134, and GSE23586). After batch correction, we used “limma” packages of R language for differential expression analysis (p value < 0.05, ∣logFC | ≥0.5). We used Venn diagrams to extract the differentially expressed genes common to VTE and periodontitis as potential crosstalk genes and applied functional enrichment analysis (GO biological process and KEGG pathway). The protein-protein interaction (PPI) network of crosstalk genes was constructed by Cytoscape software. The immune-related genes were downloaded from the literature. The Wilcoxon test was used to test the scores of immune infiltrating cells. The crosstalk genes were further screened by LASSO Logistic Regression. Results For periodontitis, 427 case and 136 control samples, and for VTE, 70 case and 63 control samples were included. The obtained PPI network had 1879 nodes and 2257 edges. Moreover, 782 immune genes and 28 cell types were included in the analysis. Over 90% of immune cells had different expressions in VTE and periodontitis. We obtained 12 significant pathways corresponding to crosstalk genes. CD3D, CSF3R, and CXCR4 acted as an immune gene and a crosstalk gene. We obtained a total of 12 shared biomarker crosstalk genes. Among those 12 biomarker crosstalk genes, 4 were immune genes (LGALS1, LSP1, SAMSN1, and WIPF1). Conclusion Four biomarker crosstalk genes between periodontitis and VTE were also immune genes, i.e., LGALS1, LSP1, SAMSN1, and WIPF1. The findings of the current study need further validation and are a basis for development of biomarkers.
Collapse
|
11
|
Hartiala JA, Hilser JR, Biswas S, Lusis AJ, Allayee H. Gene-Environment Interactions for Cardiovascular Disease. Curr Atheroscler Rep 2021; 23:75. [PMID: 34648097 PMCID: PMC8903169 DOI: 10.1007/s11883-021-00974-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW We provide an overview of recent findings with respect to gene-environment (GxE) interactions for cardiovascular disease (CVD) risk and discuss future opportunities for advancing the field. RECENT FINDINGS Over the last several years, GxE interactions for CVD have mostly been identified for smoking and coronary artery disease (CAD) or related risk factors. By comparison, there is more limited evidence for GxE interactions between CVD outcomes and other exposures, such as physical activity, air pollution, diet, and sex. The establishment of large consortia and population-based cohorts, in combination with new computational tools and mouse genetics platforms, can potentially overcome some of the limitations that have hindered human GxE interaction studies and reveal additional association signals for CVD-related traits. The identification of novel GxE interactions is likely to provide a better understanding of the pathogenesis and genetic liability of CVD, with significant implications for healthy lifestyles and therapeutic strategies.
Collapse
Affiliation(s)
- Jaana A Hartiala
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA, 90033, USA
| | - James R Hilser
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA, 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Subarna Biswas
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA, 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Aldons J Lusis
- Department of Medicine, David Geffen School of Medicine of UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, David Geffen School of Medicine of UCLA, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA, 90095, USA
| | - Hooman Allayee
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA, 90033, USA.
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
12
|
Siew WS, Tang YQ, Kong CK, Goh BH, Zacchigna S, Dua K, Chellappan DK, Duangjai A, Saokaew S, Phisalprapa P, Yap WH. Harnessing the Potential of CRISPR/Cas in Atherosclerosis: Disease Modeling and Therapeutic Applications. Int J Mol Sci 2021; 22:8422. [PMID: 34445123 PMCID: PMC8395110 DOI: 10.3390/ijms22168422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis represents one of the major causes of death globally. The high mortality rates and limitations of current therapeutic modalities have urged researchers to explore potential alternative therapies. The clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system is commonly deployed for investigating the genetic aspects of Atherosclerosis. Besides, advances in CRISPR/Cas system has led to extensive options for researchers to study the pathogenesis of this disease. The recent discovery of Cas9 variants, such as dCas9, Cas9n, and xCas9 have been established for various applications, including single base editing, regulation of gene expression, live-cell imaging, epigenetic modification, and genome landscaping. Meanwhile, other Cas proteins, such as Cas12 and Cas13, are gaining popularity for their applications in nucleic acid detection and single-base DNA/RNA modifications. To date, many studies have utilized the CRISPR/Cas9 system to generate disease models of atherosclerosis and identify potential molecular targets that are associated with atherosclerosis. These studies provided proof-of-concept evidence which have established the feasibility of implementing the CRISPR/Cas system in correcting disease-causing alleles. The CRISPR/Cas system holds great potential to be developed as a targeted treatment for patients who are suffering from atherosclerosis. This review highlights the advances in CRISPR/Cas systems and their applications in establishing pathogenetic and therapeutic role of specific genes in atherosclerosis.
Collapse
Affiliation(s)
- Wei Sheng Siew
- School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.S.S.); (Y.Q.T.)
| | - Yin Quan Tang
- School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.S.S.); (Y.Q.T.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences (FHMS), Taylor’s University, Subang Jaya 47500, Malaysia
| | - Chee Kei Kong
- Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Serena Zacchigna
- Centre for Translational Cardiology, Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, Strada di Fiume 447, 34149 Trieste, Italy;
- International Center for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil 57000, Malaysia;
| | - Acharaporn Duangjai
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.D.); (S.S.)
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Surasak Saokaew
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.D.); (S.S.)
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Department of Pharmaceutical Care, Division of Pharmacy Practice, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Pochamana Phisalprapa
- Department of Medicine, Division of Ambulatory Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wei Hsum Yap
- School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.S.S.); (Y.Q.T.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences (FHMS), Taylor’s University, Subang Jaya 47500, Malaysia
| |
Collapse
|
13
|
Prashanth G, Vastrad B, Tengli A, Vastrad C, Kotturshetti I. Identification of hub genes related to the progression of type 1 diabetes by computational analysis. BMC Endocr Disord 2021; 21:61. [PMID: 33827531 PMCID: PMC8028841 DOI: 10.1186/s12902-021-00709-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a serious threat to childhood life and has fairly complicated pathogenesis. Profound attempts have been made to enlighten the pathogenesis, but the molecular mechanisms of T1D are still not well known. METHODS To identify the candidate genes in the progression of T1D, expression profiling by high throughput sequencing dataset GSE123658 was downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and gene ontology (GO) and pathway enrichment analyses were performed. The protein-protein interaction network (PPI), modules, target gene - miRNA regulatory network and target gene - TF regulatory network analysis were constructed and analyzed using HIPPIE, miRNet, NetworkAnalyst and Cytoscape. Finally, validation of hub genes was conducted by using ROC (Receiver operating characteristic) curve and RT-PCR analysis. A molecular docking study was performed. RESULTS A total of 284 DEGs were identified, consisting of 142 up regulated genes and 142 down regulated genes. The gene ontology (GO) and pathways of the DEGs include cell-cell signaling, vesicle fusion, plasma membrane, signaling receptor activity, lipid binding, signaling by GPCR and innate immune system. Four hub genes were identified and biological process analysis revealed that these genes were mainly enriched in cell-cell signaling, cytokine signaling in immune system, signaling by GPCR and innate immune system. ROC curve and RT-PCR analysis showed that EGFR, GRIN2B, GJA1, CAP2, MIF, POLR2A, PRKACA, GABARAP, TLN1 and PXN might be involved in the advancement of T1D. Molecular docking studies showed high docking score. CONCLUSIONS DEGs and hub genes identified in the present investigation help us understand the molecular mechanisms underlying the advancement of T1D, and provide candidate targets for diagnosis and treatment of T1D.
Collapse
Affiliation(s)
- G Prashanth
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, Karnataka, 577501, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka, 582103, India
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karanataka, 580001, India.
| | - Iranna Kotturshetti
- Department of Ayurveda, Rajiv Gandhi Education Society's Ayurvedic Medical College, Ron, Karanataka, 582209, India
| |
Collapse
|
14
|
Choi S, Lee S, Huh I, Hwang H, Park T. HisCoM-G×E: Hierarchical Structural Component Analysis of Gene-Based Gene-Environment Interactions. Int J Mol Sci 2020; 21:E6724. [PMID: 32937825 PMCID: PMC7555026 DOI: 10.3390/ijms21186724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 11/30/2022] Open
Abstract
Gene-environment interaction (G×E) studies are one of the most important solutions for understanding the "missing heritability" problem in genome-wide association studies (GWAS). Although many statistical methods have been proposed for detecting and identifying G×E, most employ single nucleotide polymorphism (SNP)-level analysis. In this study, we propose a new statistical method, Hierarchical structural CoMponent analysis of gene-based Gene-Environment interactions (HisCoM-G×E). HisCoM-G×E is based on the hierarchical structural relationship among all SNPs within a gene, and can accommodate all possible SNP-level effects into a single latent variable, by imposing a ridge penalty, and thus more efficiently takes into account the latent interaction term of G×E. The performance of the proposed method was evaluated in simulation studies, and we applied the proposed method to investigate gene-alcohol intake interactions affecting systolic blood pressure (SBP), using samples from the Korea Associated REsource (KARE) consortium data.
Collapse
Affiliation(s)
- Sungkyoung Choi
- Department of Applied Mathematics, Hanyang University (ERICA), Ansan 15588, Korea;
| | - Sungyoung Lee
- Center for Precision Medicine, Seoul National University Hospital, Seoul 03080, Korea;
| | - Iksoo Huh
- Department of nursing, College of Nursing and Research Institute of Nursing Science, Seoul National University, Seoul 03080, Korea;
| | - Heungsun Hwang
- Department of Psychology, McGill University, Montreal, QC H3A 1G1, Canada;
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul 08826, Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
15
|
He T, Siwy J, Metzger J, Mullen W, Mischak H, Schanstra JP, Zürbig P, Jankowski V. Associations of urinary polymeric immunoglobulin receptor peptides in the context of cardio-renal syndrome. Sci Rep 2020; 10:8291. [PMID: 32427855 PMCID: PMC7237418 DOI: 10.1038/s41598-020-65154-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/24/2020] [Indexed: 11/09/2022] Open
Abstract
The polymeric immunoglobulin receptor (pIgR) transports immunoglobulins from the basolateral to the apical surface of epithelial cells. PIgR was recently shown to be associated with kidney dysfunction. The immune defense is initiated at the apical surface of epithelial cells where the N-terminal domain of pIgR, termed secretory component (SC), is proteolytically cleaved and released either unbound (free SC) or bound to immunoglobulins. The aim of our study was to evaluate the association of pIgR peptides with the cardio-renal syndrome in a large cohort and to obtain information on how the SC is released. We investigated urinary peptides of 2964 individuals available in the Human Urine Proteome Database generated using capillary electrophoresis coupled to mass spectrometry. The mean amplitude of 23 different pIgR peptides correlated negatively with the estimated glomerular filtration rate (eGFR, rho = −0.309, p < 0.0001). Furthermore, pIgR peptides were significantly increased in cardiovascular disease (coronary artery disease and heart failure) after adjustment for eGFR. We further predicted potential proteases involved in urinary peptide generation using the Proteasix algorithm. Peptide cleavage site analysis suggested that several, and not one, proteases are involved in the generation of the SC. In this large cohort, we could demonstrate that pIgR is associated with the cardio-renal syndrome and provided a more detailed insight on how pIgR can be potentially cleaved to release the SC.
Collapse
Affiliation(s)
- Tianlin He
- Mosaiques Diagnostics GmbH, Hannover, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | | | | | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, Hannover, Germany.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Joost P Schanstra
- INSERM U1048, Institute of Cardiovascular and Metabolic Diseases, Toulouse, France. .,Université Toulouse III Paul-Sabatier, Toulouse, France.
| | | | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
16
|
Fuertes E, van der Plaat DA, Minelli C. Antioxidant genes and susceptibility to air pollution for respiratory and cardiovascular health. Free Radic Biol Med 2020; 151:88-98. [PMID: 32007521 DOI: 10.1016/j.freeradbiomed.2020.01.181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/25/2022]
Abstract
Oxidative stress occurs when antioxidant defences, which are regulated by a complex network of genes, are insufficient to maintain the level of reactive oxygen species below a toxic threshold. Outdoor air pollution has long been known to adversely affect health and one prominent mechanism of action common to all pollutants is the induction of oxidative stress. An individual's susceptibility to the effects of air pollution partly depends on variation in their antioxidant genes. Thus, understanding antioxidant gene-pollution interactions has significant potential clinical and public health impacts, including the development of targeted and cost-effective preventive measures, such as setting appropriate standards which protect all members of the population. In this review, we aimed to summarize the latest epidemiological evidence on interactions between antioxidant genes and outdoor air pollution, in the context of respiratory and cardiovascular health. The evidence supporting the existence of interactions between antioxidant genes and outdoor air pollution is strongest for childhood asthma and wheeze, especially for interactions with GSTT1, GSTM1 and GSTP1, for lung function in both children and adults for several antioxidant genes (GSTT1, GSTM1, GSTP1, HMOX1, NQO1, and SOD2) and, to a more limited extent, for heart rate variability in adults for GSTM1 and HMOX1. Methodological challenges hampering a clear interpretation of these findings and understanding of true potential heterogeneity are discussed.
Collapse
Affiliation(s)
- Elaine Fuertes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | | | - Cosetta Minelli
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Boua PR, Brandenburg JT, Choudhury A, Hazelhurst S, Sengupta D, Agongo G, Nonterah EA, Oduro AR, Tinto H, Mathew CG, Sorgho H, Ramsay M. Novel and Known Gene-Smoking Interactions With cIMT Identified as Potential Drivers for Atherosclerosis Risk in West-African Populations of the AWI-Gen Study. Front Genet 2020; 10:1354. [PMID: 32117412 PMCID: PMC7025492 DOI: 10.3389/fgene.2019.01354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022] Open
Abstract
Introduction Atherosclerosis is a key contributor to the burden of cardiovascular diseases (CVDs) and many epidemiological studies have reported on the effect of smoking on carotid intima-media thickness (cIMT) and its subsequent effect on CVD risk. Gene-environment interaction studies have contributed towards understanding some of the missing heritability of genome-wide association studies. Gene-smoking interactions on cIMT have been studied in non-African populations (European, Latino-American, and African American) but no comparable African research has been reported. Our aim was to investigate smoking-SNP interactions on cIMT in two West African populations by genome-wide analysis. Materials and methods Only male participants from Burkina Faso (Nanoro = 993) and Ghana (Navrongo = 783) were included, as smoking was extremely rare among women. Phenotype and genotype data underwent stringent QC and genotype imputation was performed using the Sanger African Imputation Panel. Smoking prevalence among men was 13.3% in Nanoro and 42.5% in Navrongo. We analyzed gene-smoking interactions with PLINK after adjusting for covariates: age and 6 PCs (Model 1); age, BMI, blood pressure, fasting glucose, cholesterol levels, MVPA, and 6 PCs (Model 2). All analyses were performed at site level and for the combined data set. Results In Nanoro, we identified new gene-smoking interaction variants for cIMT within the previously described RCBTB1 region (rs112017404, rs144170770, and rs4941649) (Model 1: p = 1.35E-07; Model 2: p = 3.08E-08). In the combined sample, two novel intergenic interacting variants were identified, rs1192824 in the regulatory region of TBC1D8 (p = 5.90E-09) and rs77461169 (p = 4.48E-06) located in an upstream region of open chromatin. In silico functional analysis suggests the involvement of genes implicated in biological processes related to cell or biological adhesion and regulatory processes in gene-smoking interactions with cIMT (as evidenced by chromatin interactions and eQTLs). Discussion This is the first gene-smoking interaction study for cIMT, as a risk factor for atherosclerosis, in sub-Saharan African populations. In addition to replicating previously known signals for RCBTB1, we identified two novel genomic regions (TBC1D8, near BCHE) involved in this gene-environment interaction.
Collapse
Affiliation(s)
- Palwende Romuald Boua
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso.,Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg, South Africa.,Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jean-Tristan Brandenburg
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg, South Africa
| | - Ananyo Choudhury
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg, South Africa
| | - Scott Hazelhurst
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg, South Africa.,School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Dhriti Sengupta
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg, South Africa
| | - Godfred Agongo
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg, South Africa.,Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Engelbert A Nonterah
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Abraham R Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Halidou Tinto
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Christopher G Mathew
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg, South Africa.,Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Hermann Sorgho
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Michèle Ramsay
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg, South Africa.,Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
18
|
Ward-Caviness CK. A review of gene-by-air pollution interactions for cardiovascular disease, risk factors, and biomarkers. Hum Genet 2019; 138:547-561. [DOI: 10.1007/s00439-019-02004-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
|
19
|
Huang L, Sun C, Peng R, Liu Z. A study on the mechanism of agonists in regulating transcriptional level of pIgR in salivary gland epithelial cells. Exp Ther Med 2018; 16:4367-4372. [PMID: 30542385 PMCID: PMC6257701 DOI: 10.3892/etm.2018.6792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/25/2018] [Indexed: 11/24/2022] Open
Abstract
The aim of the present study was to explore the mechanism of agonists in regulating transcriptional level of polymeric immunoglobulin receptor (pIgR) in salivary gland epithelial cells, thus revealing the defense effect of salivary immune on bacteria in the oral cavity. Sixty patients with oral bacterial infection and 70 patients suffering from oral diseases without bacterial infection were selected randomly from patients in Renmin Hospital of Wuhan University from April 2015 to April 2017. Ribonucleic acid (RNA) was extracted from salivary gland epithelial cells of all patients. Fluorescent quantitative polymerase chain reaction (FQ-PCR) and western blotting methods were adopted to detect and compare the transcriptional level of pIgR. The salivary gland epithelial cells of the 60 patients with oral bacterial infection were isolated and extracted, and they were divided into two groups (observation group and control group) randomly. Agonists were added to the observation group for acting for 24 h. FQ-PCR and immunofluorescence (IF) were adopted to detect and compare the transcriptional level of pIgR after acting with agonists. The toxicity of agonists on the cells was detected with Cell Counting kit-8 (CCK-8). The isolated salivary gland epithelial cells conformed to the morphology of epithelial cells, and adhered to the wall for growing. The transcriptional level of pIgR in the bacterial infection group was lower than that in the non-bacterial infection group (p<0.05). The transcriptional level of pIgR in the observation group was higher than that in the control group (p<0.05) after acting with agonists. Agonists can promote the rise of transcriptional level of pIgR in salivary gland epithelial cells, and the increase in pIgR is closely related to the cure of oral bacterial infection. Therefore, agonists can improve the oral immune function by regulating the transcription of pIgR.
Collapse
Affiliation(s)
- Li Huang
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chuankong Sun
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ruobing Peng
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhiming Liu
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
20
|
Gene-by-environment interactions in urban populations modulate risk phenotypes. Nat Commun 2018; 9:827. [PMID: 29511166 PMCID: PMC5840419 DOI: 10.1038/s41467-018-03202-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/26/2018] [Indexed: 01/21/2023] Open
Abstract
Uncovering the interaction between genomes and the environment is a principal challenge of modern genomics and preventive medicine. While theoretical models are well defined, little is known of the G × E interactions in humans. We used an integrative approach to comprehensively assess the interactions between 1.6 million data points, encompassing a range of environmental exposures, health, and gene expression levels, coupled with whole-genome genetic variation. From ∼1000 individuals of a founder population in Quebec, we reveal a substantial impact of the environment on the transcriptome and clinical endophenotypes, overpowering that of genetic ancestry. Air pollution impacts gene expression and pathways affecting cardio-metabolic and respiratory traits, when controlling for genetic ancestry. Finally, we capture four expression quantitative trait loci that interact with the environment (air pollution). Our findings demonstrate how the local environment directly affects disease risk phenotypes and that genetic variation, including less common variants, can modulate individual’s response to environmental challenges. Individuals with different genotypes may respond differently to environmental variation. Here, Favé et al. find substantial impacts of different environment exposures on the transcriptome and clinical endophenotypes when controlling for genetic ancestry by analyzing data from ∼1000 individuals from a founder population in Quebec.
Collapse
|
21
|
Ward-Caviness CK, Kraus WE, Blach C, Haynes CS, Dowdy E, Miranda ML, Devlin R, Diaz-Sanchez D, Cascio WE, Mukerjee S, Stallings C, Smith LA, Gregory SG, Shah SH, Neas LM, Hauser ER. Associations Between Residential Proximity to Traffic and Vascular Disease in a Cardiac Catheterization Cohort. Arterioscler Thromb Vasc Biol 2017; 38:275-282. [PMID: 29191927 DOI: 10.1161/atvbaha.117.310003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/10/2017] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Exposure to mobile source emissions is nearly ubiquitous in developed nations and is associated with multiple adverse health outcomes. There is an ongoing need to understand the specificity of traffic exposure associations with vascular outcomes, particularly in individuals with cardiovascular disease. APPROACH AND RESULTS We performed a cross-sectional study using 2124 individuals residing in North Carolina, United States, who received a cardiac catheterization at the Duke University Medical Center. Traffic-related exposure was assessed via 2 metrics: (1) the distance between the primary residence and the nearest major roadway; and (2) location of the primary residence in regions defined based on local traffic patterns. We examined 4 cardiovascular disease outcomes: hypertension, peripheral arterial disease, the number of diseased coronary vessels, and recent myocardial infarction. Statistical models were adjusted for race, sex, smoking, type 2 diabetes mellitus, body mass index, hyperlipidemia, and home value. Results are expressed in terms of the odds ratio (OR). A 23% decrease in residential distance to major roadways was associated with higher prevalence of peripheral arterial disease (OR=1.29; 95% confidence interval, 1.08-1.55) and hypertension (OR=1.15; 95% confidence interval, 1.01-1.31). Associations with peripheral arterial disease were strongest in men (OR=1.42; 95% confidence interval, 1.17-1.74) while associations with hypertension were strongest in women (OR=1.21; 95% confidence interval, 0.99-1.49). Neither myocardial infarction nor the number of diseased coronary vessels were associated with traffic exposure. CONCLUSIONS Traffic-related exposure is associated with peripheral arterial disease and hypertension while no associations are observed for 2 coronary-specific vascular outcomes.
Collapse
Affiliation(s)
- Cavin K Ward-Caviness
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.).
| | - William E Kraus
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Colette Blach
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Carol S Haynes
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Elaine Dowdy
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Marie Lynn Miranda
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Robert Devlin
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - David Diaz-Sanchez
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Wayne E Cascio
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Shaibal Mukerjee
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Casson Stallings
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Luther A Smith
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Simon G Gregory
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Svati H Shah
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Lucas M Neas
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Elizabeth R Hauser
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| |
Collapse
|