1
|
Kamal MM, El-Abhar HS, Abdallah DM, Ahmed KA, Aly NES, Rabie MA. Mirabegron, dependent on β3-adrenergic receptor, alleviates mercuric chloride-induced kidney injury by reversing the impact on the inflammatory network, M1/M2 macrophages, and claudin-2. Int Immunopharmacol 2024; 126:111289. [PMID: 38016347 DOI: 10.1016/j.intimp.2023.111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
The β3-adrenergic receptor (β3-AR) agonism mirabegron is used to treat overactive urinary bladder syndrome; however, its role against acute kidney injury (AKI) is not unveiled, hence, we aim to repurpose mirabegron in the treatment of mercuric chloride (HgCl2)-induced AKI. Rats were allocated into normal, normal + mirabegron, HgCl2 untreated, HgCl2 + mirabegron, and HgCl2 + the β3-AR blocker SR59230A + mirabegron. The latter increased the mRNA of β3-AR and miR-127 besides downregulating NF-κB p65 protein expression and the contents of its downstream targets iNOS, IL-4, -13, and -17 but increased that of IL-10 to attest its anti-inflammatory capacity. Besides, mirabegron downregulated the protein expression of STAT-6, PI3K, and ERK1/2, the downstream targets of the above cytokines. Additionally, it enhanced the transcription factor PPAR-α but turned off the harmful hub HNF-4α/HNF-1α and the lipid peroxide marker MDA. Mirabegron also downregulated the CD-163 protein expression, which besides the inhibited correlated cytokines of M1 (NF-κB p65, iNOS, IL-17) and M2 (IL-4, IL-13, CD163, STAT6, ERK1/2), inactivated the macrophage phenotypes. The crosstalk between these parameters was echoed in the maintenance of claudin-2, kidney function-related early (cystatin-C, KIM-1, NGAL), and late (creatinine, BUN) injury markers, besides recovering the microscopic structures. Nonetheless, the pre-administration of SR59230A has nullified the beneficial effects of mirabegron on the aforementioned parameters. Here we verified that mirabegron can berepurposedto treat HgCl2-induced AKI by activating the β3-AR. Mirabegron signified its effect by inhibiting inflammation, oxidative stress, and the activated M1/M2 macrophages, events that preserved the proximal tubular tight junction claudin-2 via the intersection of several trajectories.
Collapse
Affiliation(s)
- Mahmoud M Kamal
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt (FUE), 11835 Cairo, Egypt
| | - Dalaal M Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Nour Eldin S Aly
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Mostafa A Rabie
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt; Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), 19346, Egypt
| |
Collapse
|
2
|
Kar A, Samanta A, Mukherjee S, Barik S, Biswas A. The HBV web: An insight into molecular interactomes between the hepatitis B virus and its host en route to hepatocellular carcinoma. J Med Virol 2023; 95:e28436. [PMID: 36573429 DOI: 10.1002/jmv.28436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/26/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Hepatitis B virus (HBV) is a major aetiology associated with the development and progression of hepatocellular carcinoma (HCC), the most common primary liver malignancy. Over the past few decades, direct and indirect mechanisms have been identified in the pathogenesis of HBV-associated HCC which include altered signaling pathways, genome integration, mutation-induced genomic instability, chromosomal deletions and rearrangements. Intertwining of the HBV counterparts with the host cellular factors, though well established, needs to be systemized to understand the dynamics of host-HBV crosstalk and its consequences on HCC progression. Existence of a vast array of protein-protein and protein-nucleic acid interaction databases has led to the uncoiling of the compendia of genes/gene products associated with these interactions. This review covers the existing knowledge about the HBV-host interplay and brings it down under one canopy emphasizing on the HBV-host interactomics; and thereby highlights new strategies for therapeutic advancements against HBV-induced HCC.
Collapse
Affiliation(s)
- Arpita Kar
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Abhisekh Samanta
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Soumyadeep Mukherjee
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Subhasis Barik
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Avik Biswas
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Yang J, Bai X, Liu G, Li X. A transcriptional regulatory network of HNF4α and HNF1α involved in human diseases and drug metabolism. Drug Metab Rev 2022; 54:361-385. [PMID: 35892182 DOI: 10.1080/03602532.2022.2103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
HNF4α and HNF1α are core transcription factors involved in the development and progression of a variety of human diseases and drug metabolism. They play critical roles in maintaining the normal growth and function of multiple organs, mainly the liver, and in the metabolism of endogenous and exogenous substances. The twelve isoforms of HNF4α may exhibit different physiological functions, and HNF4α and HNF1α show varying or even opposing effects in different types of diseases, particularly cancer. Additionally, the regulation of CYP450, phase II drug-metabolizing enzymes, and drug transporters is affected by several factors. This article aims to review the role of HNF4α and HNF1α in human diseases and drug metabolism, including their structures and physiological functions, affected diseases, regulated drug metabolism genes, influencing factors, and related mechanisms. We also propose a transcriptional regulatory network of HNF4α and HNF1α that regulates the expression of target genes related to disease and drug metabolism.
Collapse
Affiliation(s)
- Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xiangyang Li
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
4
|
Yang G, Wan P, Zhang Y, Tan Q, Qudus MS, Yue Z, Luo W, Zhang W, Ouyang J, Li Y, Wu J. Innate Immunity, Inflammation, and Intervention in HBV Infection. Viruses 2022; 14:2275. [PMID: 36298831 PMCID: PMC9609328 DOI: 10.3390/v14102275] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 07/30/2023] Open
Abstract
Hepatitis B virus (HBV) infection is still one of the most dangerous viral illnesses. HBV infects around 257 million individuals worldwide. Hepatitis B in many individuals ultimately develops hepatocellular carcinoma (HCC), which is the sixth most common cancer and the third leading cause of cancer-related deaths worldwide. The innate immunity acts as the first line of defense against HBV infection through activating antiviral genes. Along with the immune responses, pro-inflammatory cytokines are triggered to enhance the antiviral responses, but this may result in acute or chronic liver inflammation, especially when the clearance of virus is unsuccessful. To a degree, the host innate immune and inflammatory responses dominate the HBV infection and liver pathogenesis. Thus, it is crucial to figure out the signaling pathways involved in the activation of antiviral factors and inflammatory cytokines. Here, we review the interplay between HBV and the signal pathways that mediates innate immune responses and inflammation. In addition, we summarize current therapeutic strategies for HBV infection via modulating innate immunity or inflammation. Characterizing the mechanisms that underlie these HBV-host interplays might provide new approaches for the cure of chronic HBV infection.
Collapse
Affiliation(s)
- Ge Yang
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Yaru Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Qiaoru Tan
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhaoyang Yue
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Wei Luo
- Clinical Research Institute, The First People’s Hospital, Foshan 528000, China
| | - Wen Zhang
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Jianhua Ouyang
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Yongkui Li
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Jianguo Wu
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Sucajtys-Szulc E, Debska-Slizien A, Rutkowski B, Szolkiewicz M, Swierczynski J, Smolenski RT. Hepatocyte Nuclear Factor 1α Proinflammatory Effect Linked to the Overexpression of Liver Nuclear Factor–κB in Experimental Model of Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23168883. [PMID: 36012158 PMCID: PMC9408856 DOI: 10.3390/ijms23168883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with low-grade inflammation that activates nuclear factor–κB (NF–κB), which upregulates the expression of numerous NF–κB responsive genes, including the genes encoding IL-6, ICAM-1, VCAM-1, and MCP-1. Herein, we found the coordinated overexpression of genes encoding RelA/p65 (a subunit of NF–κB) and HNF1α in the livers of chronic renal failure (CRF) rats—an experimental model of CKD. The coordinated overexpression of RelA/p65 and HNF1α was associated with a significant increase in IL-6, ICAM-1, VCAM-1, and MCP-1 gene expressions. A positive correlation between liver RelA/p65 mRNA levels and a serum concentration of creatinine and BUN suggest that RelA/p65 gene transcription is tightly related to the progression of renal failure. The knockdown of HNF1α in the HepG2 cell line by siRNA led to a decrease in Rel A/p65 mRNA levels. This was associated with a decrease in IL-6, ICAM-1, VCAM-1, and MCP-1 gene expressions. The simultaneous repression of HNF-1α and RelA/p65 by clofibrate is tightly associated with the downregulation of IL-6, ICAM-1, VCAM-1, and MCP-1 gene expression. In conclusion, our findings suggest that NF–κB could be a downstream component of the HNF1α-initiated signaling pathway in the livers of CRF rats.
Collapse
Affiliation(s)
- Elzbieta Sucajtys-Szulc
- Department of Nephrology, Transplantology, and Internal Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Alicja Debska-Slizien
- Department of Nephrology, Transplantology, and Internal Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Boleslaw Rutkowski
- Department of Nephrology, Transplantology, and Internal Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Marek Szolkiewicz
- Department of Nephrology, Transplantology, and Internal Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
- Department of Cardiology and Interventional Angiology, Kashubian Center for Heart and Vascular Diseases in Wejherowo, Pomeranian Hospitals, 84-200 Wejherowo, Poland
| | - Julian Swierczynski
- Koszalin State Higher Vocational School, Lesna 1, 75-582 Koszalin, Poland
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Ryszard Tomasz Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-3491460
| |
Collapse
|
6
|
Ambagtsheer F, Columb S, AlBugami MM, Ivanovski N. Kidneys for Sale? A Commentary on Moeindarbari's and Feizi's Study on the Iranian Model. Transpl Int 2022; 35:10530. [PMID: 35812157 PMCID: PMC9266991 DOI: 10.3389/ti.2022.10530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Frederike Ambagtsheer
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sean Columb
- School of Law and Social Justice, The Liverpool Law School, University of Liverpool, Liverpool, United Kingdom
| | - Meteb M. AlBugami
- Multi-Organ Transplantation Center, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia
| | - Ninoslav Ivanovski
- Clinical Hospital Zan Mitrev, University “Sts Cyril and Methodius”, Skopje, North Macedonia
| |
Collapse
|
7
|
Ashouri S, Khor SS, Hitomi Y, Sawai H, Nishida N, Sugiyama M, Kawai Y, Posuwan N, Tangkijvanich P, Komolmit P, Tsuiji M, Shotelersuk V, Poovorawan Y, Mizokami M, Tokunaga K. Genome-Wide Association Study for Chronic Hepatitis B Infection in the Thai Population. Front Genet 2022; 13:887121. [PMID: 35769989 PMCID: PMC9234442 DOI: 10.3389/fgene.2022.887121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
To identify novel host genetic variants that predispose to hepatitis B virus (HBV) persistence, we performed the first genome-wide association study in the Thai population involving 318 cases of chronic hepatitis B and 309 healthy controls after quality control measures. We detected the genome-wide significant association of the HLA class II region (HLA-DPA1/DPB1, rs7770370, p-value = 7.71 × 10−10, OR = 0.49) with HBV chronicity. Subsequent HLA allele imputation revealed HLA-DPA1*01:03 (Pc = 1.21 × 10−6, OR = 0.53), HLA-DPB1*02:01 (Pc = 2.17 × 10−3, OR = 0.50), and HLA-DQB1*06:09 (Pc = 2.17 × 10−2, OR = 0.07) as protective alleles, and HLA-DPA1*02:02 (Pc = 6.32 × 10−5, OR = 1.63), HLA-DPB1*05:01 (Pc = 1.13 × 10−4, OR = 1.72), HLA-DPB1*13:01 (Pc = 4.68 × 10−2, OR = 1.60), and HLA-DQB1*03:03 (Pc = 1.11 × 10−3, OR = 1.84) as risk alleles for HBV persistence. We also detected suggestive associations in the PLSCR1 (rs35766154), PDLIM5 (rs62321986), SGPL1 (rs144998273), and MGST1 (rs1828682) loci. Among single-nucleotide polymorphisms in the PLSCR1 locus, rs1061307 was identified as the primary functional variant by in silico/in vitro functional analysis. In addition to replicating the association of the HLA class II region, we detected novel candidate loci that provide new insights into the pathophysiology of chronic hepatitis B.
Collapse
Affiliation(s)
- Saeideh Ashouri
- Genome Medical Science Project, National Center for Global Health and Medicine, Toyama, Tokyo,Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- *Correspondence: Saeideh Ashouri, ; Katsushi Tokunaga,
| | - Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Toyama, Tokyo,Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Hitomi
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Hiromi Sawai
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nao Nishida
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Masaya Sugiyama
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Toyama, Tokyo,Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nawarat Posuwan
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathum Thani, Thailand
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piyawat Komolmit
- Center of Excellence in Liver Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Liver Fibrosis and Cirrhosis Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Makoto Tsuiji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Vorasuk Shotelersuk
- Department of Pediatrics, Center of Excellence for Medical Genomics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Masashi Mizokami
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Toyama, Tokyo,Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- *Correspondence: Saeideh Ashouri, ; Katsushi Tokunaga,
| |
Collapse
|
8
|
Song Y, Shou S, Guo H, Gao Z, Liu N, Yang Y, Wang F, Deng Q, Liu J, Xie Y. Establishment and Characterization of a New Cell Culture System for Hepatitis B Virus Replication and Infection. Virol Sin 2022; 37:558-568. [PMID: 35568375 PMCID: PMC9437612 DOI: 10.1016/j.virs.2022.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatitis B virus (HBV) is a primary cause of chronic liver diseases in humans. HBV infection exhibits strict host and tissue tropism. HBV core promoter (Cp) drives transcription of pregenomic RNA (pgRNA) and plays a key role in the viral life cycle. Hepatocyte nuclear factor 4α (HNF4α) acts as a major transcriptional factor that stimulates Cp. In this work, we reported that BEL7404 cell line displayed a high efficiency of DNA transfection and high levels of HBV antigen expression after transfection of HBV replicons without prominent viral replication. The introduction of exogenous HNF4α and human sodium taurocholate cotransporting polypeptide (hNTCP) expression into BEL7404 made it permissive for HBV replication and susceptible to HBV infection. BEL7404-derived cell lines with induced HBV permissiveness and susceptibility were constructed by stable co-transfection of hNTCP and Tet-inducible HNF4α followed by limiting dilution cloning. HBV replication in such cells was sensitive to inhibition by nucleotide analog tenofovir, while the infection was inhibited by HBV entry inhibitors. This cell culture system provides a new and additional tool for the study of HBV replication and infection as well as the characterization of antiviral agents. BEL7404 cells are characterized by a high transfection efficiency, but do not support canonical HBV replication. BEL7404 cells lack endogenous HNF4α expression, and exogenous HNF4α rescues canonical HBV replication. BEL7404 cells with stable hNTCP and inducible HNF4α expression support HBV infection and inducible replication. BEL7404-derived cell lines supporting HBV infection retain high transfection efficiencies and allow testing of antivirals.
Collapse
Affiliation(s)
- Yingying Song
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shuyu Shou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huimin Guo
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen 518112, China; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Zixiang Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Nannan Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Feifei Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiang Deng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China; Children's Hospital, Fudan University, Shanghai 201102, China.
| |
Collapse
|
9
|
You H, Qin S, Zhang F, Hu W, Li X, Liu D, Kong F, Pan X, Zheng K, Tang R. Regulation of Pattern-Recognition Receptor Signaling by HBX During Hepatitis B Virus Infection. Front Immunol 2022; 13:829923. [PMID: 35251017 PMCID: PMC8891514 DOI: 10.3389/fimmu.2022.829923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
As a small DNA virus, hepatitis B virus (HBV) plays a pivotal role in the development of various liver diseases, including hepatitis, cirrhosis, and liver cancer. Among the molecules encoded by this virus, the HBV X protein (HBX) is a viral transactivator that plays a vital role in HBV replication and virus-associated diseases. Accumulating evidence so far indicates that pattern recognition receptors (PRRs) are at the front-line of the host defense responses to restrict the virus by inducing the expression of interferons and various inflammatory factors. However, depending on HBX, the virus can control PRR signaling by modulating the expression and activity of essential molecules involved in the toll-like receptor (TLR), retinoic acid inducible gene I (RIG-I)-like receptor (RLR), and NOD-like receptor (NLR) signaling pathways, to not only facilitate HBV replication, but also promote the development of viral diseases. In this review, we provide an overview of the mechanisms that are linked to the regulation of PRR signaling mediated by HBX to inhibit innate immunity, regulation of viral propagation, virus-induced inflammation, and hepatocarcinogenesis. Given the importance of PRRs in the control of HBV replication, we propose that a comprehensive understanding of the modulation of cellular factors involved in PRR signaling induced by the viral protein may open new avenues for the treatment of HBV infection.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Wei Hu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Dongsheng Liu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Lin J, Li J, Xie P, Han Y, Yu D, Chen J, Zhang X. Hepatitis B virus middle surface antigen loss promotes clinical variant persistence in mouse models. Virulence 2021; 12:2868-2882. [PMID: 34738866 PMCID: PMC8632123 DOI: 10.1080/21505594.2021.1999130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hepatitis B virus (HBV) middle surface antigen (MHBs) mutation or deletion occurs in patients with chronic HBV infection. However, the functional role of MHBs in HBV infection is still an enigma. Here, we reported that 7.33% (11/150) isolates of CHB patients had MHBs start codon mutations compared with 0.00% (0/146) in acute hepatitis B (AHB) patients. Interestingly, MHBs loss accounted for 11.88% (126/1061) isolates from NCBI GenBank, compared with 0.09% (1/1061) and 0.00% (0/1061) for HBV large surface antigen (LHBs) loss and HBV small surface antigen (SHBs) loss, respectively. One persistent HBV clone of genotype B (B56, MHBs loss) from a CHB patient was hydrodynamically injected into BALB/c mice. B56 persisted for >70 weeks in BALB/c mice, whereas B56 with restored MHBs (B56M+) was quickly cleared within 28 days. Serum cytokine assays demonstrated that CXCL1, CXCL2, IL-6 and IL-33 were significantly increased during rapid HBV clearance in B56M+ mice. Furthermore, the enhancers and promoters of B56 were proved to be required for B56 persistence in mice. Ablating MHBs expression improved the persistence of a new clone (HBV1.3, genotype B) which was recreated by using enhancers and promoters of B56. These data demonstrated that MHBs deletion can promote the persistence of specific HBV variants in a hydrodynamic mouse model. MHBs re-expression restored a rapid clearance of HBV, which was accompanied by cytokine responses including the elevation of CXCL1, CXCL2, IL-6 and IL-33.
Collapse
Affiliation(s)
- Junyu Lin
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Li
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilin Xie
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Han
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Demin Yu
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Chen
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Teeli AS, Łuczyńska K, Haque E, Gayas MA, Winiarczyk D, Taniguchi H. Disruption of Tumor Suppressors HNF4α/HNF1α Causes Tumorigenesis in Liver. Cancers (Basel) 2021; 13:cancers13215357. [PMID: 34771521 PMCID: PMC8582545 DOI: 10.3390/cancers13215357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
The hepatocyte nuclear factor-4α (HNF4α) and hepatocyte nuclear factor-1α (HNF1α) are transcription factors that influence the development and maintenance of homeostasis in a variety of tissues, including the liver. As such, disruptions in their transcriptional networks can herald a number of pathologies, such as tumorigenesis. Largely considered tumor suppressants in liver cancer, these transcription factors regulate key events of inflammation, epithelial-mesenchymal transition, metabolic reprogramming, and the differentiation status of the cell. High-throughput analysis of cancer cell genomes has identified a number of hotspot mutations in HNF1α and HNF4α in liver cancer. Such results also showcase HNF1α and HNF4α as important therapeutic targets helping us step into the era of personalized medicine. In this review, we update current findings on the roles of HNF1α and HNF4α in liver cancer development and progression. It covers the molecular mechanisms of HNF1α and HNF4α dysregulation and also highlights the potential of HNF4α as a therapeutic target in liver cancer.
Collapse
Affiliation(s)
- Aamir Salam Teeli
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Kamila Łuczyńska
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Effi Haque
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Mohmmad Abrar Gayas
- Department of Surgery and Radiology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Jammu 19000, India;
| | - Dawid Winiarczyk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
- Correspondence:
| |
Collapse
|
12
|
Van Damme E, Vanhove J, Severyn B, Verschueren L, Pauwels F. The Hepatitis B Virus Interactome: A Comprehensive Overview. Front Microbiol 2021; 12:724877. [PMID: 34603251 PMCID: PMC8482013 DOI: 10.3389/fmicb.2021.724877] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the availability of a prophylactic vaccine, chronic hepatitis B (CHB) caused by the hepatitis B virus (HBV) is a major health problem affecting an estimated 292 million people globally. Current therapeutic goals are to achieve functional cure characterized by HBsAg seroclearance and the absence of HBV-DNA after treatment cessation. However, at present, functional cure is thought to be complicated due to the presence of covalently closed circular DNA (cccDNA) and integrated HBV-DNA. Even if the episomal cccDNA is silenced or eliminated, it remains unclear how important the high level of HBsAg that is expressed from integrated HBV DNA is for the pathology. To identify therapies that could bring about high rates of functional cure, in-depth knowledge of the virus' biology is imperative to pinpoint mechanisms for novel therapeutic targets. The viral proteins and the episomal cccDNA are considered integral for the control and maintenance of the HBV life cycle and through direct interaction with the host proteome they help create the most optimal environment for the virus whilst avoiding immune detection. New HBV-host protein interactions are continuously being identified. Unfortunately, a compendium of the most recent information is lacking and an interactome is unavailable. This article provides a comprehensive review of the virus-host relationship from viral entry to release, as well as an interactome of cccDNA, HBc, and HBx.
Collapse
Affiliation(s)
- Ellen Van Damme
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Jolien Vanhove
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium.,Early Discovery Biology, Charles River Laboratories, Beerse, Belgium
| | - Bryan Severyn
- Janssen Research & Development, Janssen Pharmaceutical Companies, Springhouse, PA, United States
| | - Lore Verschueren
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Frederik Pauwels
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| |
Collapse
|
13
|
Qu B, Brown RJP. Strategies to Inhibit Hepatitis B Virus at the Transcript Level. Viruses 2021; 13:v13071327. [PMID: 34372533 PMCID: PMC8310268 DOI: 10.3390/v13071327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Approximately 240 million people are chronically infected with hepatitis B virus (HBV), despite four decades of effective HBV vaccination. During chronic infection, HBV forms two distinct templates responsible for viral transcription: (1) episomal covalently closed circular (ccc)DNA and (2) host genome-integrated viral templates. Multiple ubiquitous and liver-specific transcription factors are recruited onto these templates and modulate viral gene transcription. This review details the latest developments in antivirals that inhibit HBV gene transcription or destabilize viral transcripts. Notably, nuclear receptor agonists exhibit potent inhibition of viral gene transcription from cccDNA. Small molecule inhibitors repress HBV X protein-mediated transcription from cccDNA, while small interfering RNAs and single-stranded oligonucleotides result in transcript degradation from both cccDNA and integrated templates. These antivirals mediate their effects by reducing viral transcripts abundance, some leading to a loss of surface antigen expression, and they can potentially be added to the arsenal of drugs with demonstrable anti-HBV activity. Thus, these candidates deserve special attention for future repurposing or further development as anti-HBV therapeutics.
Collapse
Affiliation(s)
- Bingqian Qu
- Division of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany
- European Virus Bioinformatics Center, 07743 Jena, Germany
- Correspondence: (B.Q.); (R.J.P.B.)
| | - Richard J. P. Brown
- Division of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany
- Correspondence: (B.Q.); (R.J.P.B.)
| |
Collapse
|
14
|
Singh P, Kairuz D, Arbuthnot P, Bloom K. Silencing hepatitis B virus covalently closed circular DNA: The potential of an epigenetic therapy approach. World J Gastroenterol 2021; 27:3182-3207. [PMID: 34163105 PMCID: PMC8218364 DOI: 10.3748/wjg.v27.i23.3182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Global prophylactic vaccination programmes have helped to curb new hepatitis B virus (HBV) infections. However, it is estimated that nearly 300 million people are chronically infected and have a high risk of developing hepatocellular carcinoma. As such, HBV remains a serious health priority and the development of novel curative therapeutics is urgently needed. Chronic HBV infection has been attributed to the persistence of the covalently closed circular DNA (cccDNA) which establishes itself as a minichromosome in the nucleus of hepatocytes. As the viral transcription intermediate, the cccDNA is responsible for producing new virions and perpetuating infection. HBV is dependent on various host factors for cccDNA formation and the minichromosome is amenable to epigenetic modifications. Two HBV proteins, X (HBx) and core (HBc) promote viral replication by modulating the cccDNA epigenome and regulating host cell responses. This includes viral and host gene expression, chromatin remodeling, DNA methylation, the antiviral immune response, apoptosis, and ubiquitination. Elimination of the cccDNA minichromosome would result in a sterilizing cure; however, this may be difficult to achieve. Epigenetic therapies could permanently silence the cccDNA minichromosome and promote a functional cure. This review explores the cccDNA epigenome, how host and viral factors influence transcription, and the recent epigenetic therapies and epigenome engineering approaches that have been described.
Collapse
Affiliation(s)
- Prashika Singh
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| | - Dylan Kairuz
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| |
Collapse
|
15
|
Zhang Y, Hao J, Du Z, Li P, Hu J, Ruan M, Li S, Ma Y, Lou Q. Inhibition of hepatocyte nuclear factor 1β contributes to cisplatin nephrotoxicity via regulation of nf-κb pathway. J Cell Mol Med 2021; 25:2861-2871. [PMID: 33512774 PMCID: PMC7957194 DOI: 10.1111/jcmm.16316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Cisplatin nephrotoxicity has been considered as serious side effect caused by cisplatin‐based chemotherapy. Recent evidence indicates that renal tubular cell apoptosis and inflammation contribute to the progression of cisplatin‐induced acute kidney injury (AKI). Hepatocyte nuclear factor 1β (HNF1β) has been reported to regulate the development of kidney cystogenesis, diabetic nephrotoxicity, etc However, the regulatory mechanism of HNF1β in cisplatin nephrotoxicity is largely unknown. In the present study, we examined the effects of HNF1β deficiency on the development of cisplatin‐induced AKI in vitro and in vivo. HNF1β down‐regulation exacerbated cisplatin‐induced RPTC apoptosis by indirectly inducing NF‐κB p65 phosphorylation and nuclear translocation. HNF1β knockdown C57BL/6 mice were constructed by injecting intravenously with HNF1β‐interfering shRNA and PEI. The HNF1β scramble and knockdown mice were treated with 30 mg/kg cisplatin for 3 days to induce acute kidney injury. Cisplatin treatment caused increased caspase 3 cleavage and p65 phosphorylation, elevated serum urea nitrogen and creatinine, and obvious histological damage of kidney such as fractured tubules in control mice, which were enhanced in HNF1β knockdown mice. These results suggest that HNF1β may ameliorate cisplatin nephrotoxicity in vitro and in vivo, probably through regulating NF‐κB signalling pathway.
Collapse
Affiliation(s)
- Yan Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Jielu Hao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Zijun Du
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Peiyao Li
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Mengna Ruan
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shulian Li
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Qiang Lou
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| |
Collapse
|
16
|
Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Viruses 2020; 12:v12020160. [PMID: 32019103 PMCID: PMC7077322 DOI: 10.3390/v12020160] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) chronically infects over 250 million people worldwide and is one of the leading causes of liver cancer and hepatocellular carcinoma. HBV persistence is due in part to the highly stable HBV minichromosome or HBV covalently closed circular DNA (cccDNA) that resides in the nucleus. As HBV replication requires the help of host transcription factors to replicate, focusing on host protein–HBV genome interactions may reveal insights into new drug targets against cccDNA. The structural details on such complexes, however, remain poorly defined. In this review, the current literature regarding host transcription factors’ interactions with HBV cccDNA is discussed.
Collapse
|
17
|
Begum S. Hepatic Nuclear Factor 1 Alpha (HNF-1α) In Human Physiology and Molecular Medicine. Curr Mol Pharmacol 2019; 13:50-56. [PMID: 31566143 DOI: 10.2174/1874467212666190930144349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 11/22/2022]
Abstract
The transcription factors (TFs) play a crucial role in the modulation of specific gene transcription networks. One of the hepatocyte nuclear factors (HNFs) family's member, hepatocyte nuclear factor-1α (HNF-1α) has continuously become a principal TF to control the expression of genes. It is involved in the regulation of a variety of functions in various human organs including liver, pancreas, intestine, and kidney. It regulates the expression of enzymes involved in endocrine and xenobiotic activity through various metabolite transporters located in the above organs. Its expression is also required for organ-specific cell fate determination. Despite two decades of its first identification in hepatocytes, a review of its significance was not comprehended. Here, the role of HNF-1α in the above organs at the molecular level to intimate molecular mechanisms for regulating certain gene expression whose malfunctions are attributed to the disease conditions has been specifically encouraged. Moreover, the epigenetic effects of HNF-1α have been discussed here, which could help in advanced technologies for molecular pharmacological intervention and potential clinical implications for targeted therapies. HNF-1α plays an indispensable role in several physiological mechanisms in the liver, pancreas, intestine, and kidney. Loss of its operations leads to the non-functional or abnormal functional state of each organ. Specific molecular agents or epigenetic modifying drugs that reactivate HNF-1α are the current requirements for the medications of the diseases.
Collapse
Affiliation(s)
- Sumreen Begum
- Stem Cells Research Laboratory (SCRL), Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| |
Collapse
|
18
|
Mohebbi A, Lorestani N, Tahamtan A, Kargar NL, Tabarraei A. An Overview of Hepatitis B Virus Surface Antigen Secretion Inhibitors. Front Microbiol 2018; 9:662. [PMID: 29675010 PMCID: PMC5895781 DOI: 10.3389/fmicb.2018.00662] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022] Open
Abstract
Current anti-hepatitis B virus (HBV) regimen do not meet ideal result due to emerging resistance strains, cytotoxicity, and unfavorable adverse effects. In chronic HBV infection, high rates of sub-viral particles (SVPs) bearing HBV surface antigen (HBsAg) is a major obstacle regarding to raise effective immune responses and subsequently virus clearance. Development of potent HBsAg secretion inhibitors would provide a better insight into HBV immunopathogenesis and therapy. Investigating new non-toxic HBsAg secretion inhibitors targeting either viral or cellular factors could restore the immune response to remove virally infected hepatocytes after inhibiting SVPs. In this study, we overview several classes of HBV inhibitors with focus on their limitations and advantages over anti-HBsAg secretion potential.
Collapse
Affiliation(s)
- Alireza Mohebbi
- Student Research Committee, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nazanin Lorestani
- Student Research Committee, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Tahamtan
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Niki L Kargar
- Student Research Committee, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.,Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
19
|
Cui XX, Yang X, Wang HJ, Rong XY, Jing S, Xie YH, Huang DF, Zhao C. Luteolin-7- O-Glucoside Present in Lettuce Extracts Inhibits Hepatitis B Surface Antigen Production and Viral Replication by Human Hepatoma Cells in Vitro. Front Microbiol 2017; 8:2425. [PMID: 29270164 PMCID: PMC5723679 DOI: 10.3389/fmicb.2017.02425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/23/2017] [Indexed: 12/19/2022] Open
Abstract
Hepatitis B virus (HBV) infection is endemic in Asia and chronic hepatitis B (CHB) is a major public health issue worldwide. Current treatment strategies for CHB are not satisfactory as they induce a low rate of hepatitis B surface antigen (HBsAg) loss. Extracts were prepared from lettuce hydroponically cultivated in solutions containing glycine or nitrate as nitrogen sources. The lettuce extracts exerted potent anti-HBV effects in HepG2 cell lines in vitro, including significant HBsAg inhibition, HBV replication and transcription inhibition, without exerting cytotoxic effects. When used in combination interferon-alpha 2b (IFNα-2b) or lamivudine (3TC), the lettuce extracts synergistically inhibited HBsAg expression and HBV replication. By using differential metabolomics analysis, Luteolin-7-O-glucoside was identified and confirmed as a functional component of the lettuce extracts and exhibited similar anti-HBV activity as the lettuce extracts in vitro. The inhibition rate on HBsAg was up to 77.4%. Moreover, both the lettuce extracts and luteolin-7-O-glucoside functioned as organic antioxidants and, significantly attenuated HBV-induced intracellular reactive oxygen species (ROS) accumulation. Luteolin-7-O-glucoside also normalized ROS-induced mitochondrial membrane potential damage, which suggests luteolin-7-O-glucoside inhibits HBsAg and HBV replication via a mechanism involving the mitochondria. Our findings suggest luteolin-7-O-glucoside may have potential value for clinical application in CHB and may enhance HBsAg and HBV clearance when used as a combination therapy.
Collapse
Affiliation(s)
- Xiao-Xian Cui
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Yang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Jing Wang
- Laboratory of Neuropsychopharmacology, College of Fundamental Medicine, Shanghai University of Medicine and Health Science, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai, China
| | - Xing-Yu Rong
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Sha Jing
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - You-Hua Xie
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan-Feng Huang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Zhao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai, China
| |
Collapse
|