1
|
Rojo M, Pérez H, Millán AL, Pautasso MC, Frechtel GD, Cerrone GE. Relationship of Mitochondrial DNA Oxidation and Content with Metabolic Syndrome and Cardiovascular Risk in Obesity Phenotypes. J Obes 2024; 2024:3008093. [PMID: 39297082 PMCID: PMC11410407 DOI: 10.1155/2024/3008093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 09/21/2024] Open
Abstract
Objective Obesity, chronic inflammation, and oxidative stress can influence mitochondrial DNA (mtDNA) content. Our objective was to evaluate the oxidation level and content of mtDNA and its relationship with metabolic parameters in metabolically healthy obese (MHO) compared to metabolically unhealthy obese (MUO) and normal weight (NW) controls. Materials and Methods We studied 94 NW, 95 MHO, and 97 MUO individuals between 18 and 80 years old. Relative mtDNA content and mtDNA oxidation level (8-oxoguanine, 8-OxoG) were determined in peripheral blood leukocytes by the SYBR Green method of real-time PCR. One-way ANOVA and Tukey test were used to compare biochemical, clinical, and anthropometric characteristics, as well as mtDNA content and 8-OxoG. Results A progressive decrease in mtDNA content was observed between NW, MHO, and MUO with significant differences in MUO vs. NW (p: 0.04). An increase in 8-OxoG was observed in MUO patients compared to the other groups (MUO vs. MHO p: 0.01; MUO vs. NW p: 0.04). mtDNA content was directly correlated with HDL-c (p < 0.01) and inversely with waist circumference (p: 0.01) and LDL-c (p: 0.05). mtDNA content decreased, and the oxidation level increased concomitantly with the presence of obesity, the number of MS components, higher coronary risk, and insulin resistance parameters. Conclusion MHO presented a similar mtDNA oxidation level to NW and mtDNA content to the MUO, placing the MHO individuals as having an intermediate phenotype. Changes in mtDNA content and oxidation were correlated to the lipid profile related to obesity and/or MS presence, probably associated with oxidative stress and chronic low-grade inflammation.
Collapse
Affiliation(s)
- Mailén Rojo
- Universidad de Buenos Aires Facultad de Farmacia y Bioquímica Departamento de Microbiología, Inmunología, Biotecnología y Genética, Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET Instituto de Inmunología Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Hernán Pérez
- Universidad de Buenos Aires-CONICET Instituto de Inmunología Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
- Servicio de Nutrición-Hospital de Clínicas José de San Martin, Buenos Aires, Argentina
| | - Andrea Liliana Millán
- Universidad de Buenos Aires Facultad de Farmacia y Bioquímica Departamento de Microbiología, Inmunología, Biotecnología y Genética, Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET Instituto de Inmunología Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - María Constanza Pautasso
- Universidad de Buenos Aires-CONICET Instituto de Inmunología Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Gustavo Daniel Frechtel
- Universidad de Buenos Aires-CONICET Instituto de Inmunología Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
- Servicio de Nutrición-Hospital de Clínicas José de San Martin, Buenos Aires, Argentina
- Fundación Héctor Alejandro (H.A) Barceló Instituto Universitario de Ciencias de la Salud, Buenos Aires, Argentina
| | - Gloria Edith Cerrone
- Universidad de Buenos Aires Facultad de Farmacia y Bioquímica Departamento de Microbiología, Inmunología, Biotecnología y Genética, Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET Instituto de Inmunología Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| |
Collapse
|
2
|
Ibraheem Shelash Al-Hawary S, Ali Alzahrani A, Ghaleb Maabreh H, Abed Jawad M, Alsaadi SB, Kareem Jabber N, Alawadi A, Alsalamy A, Alizadeh F. The association of metabolic syndrome with telomere length as a marker of cellular aging: a systematic review and meta-analysis. Front Genet 2024; 15:1390198. [PMID: 39045323 PMCID: PMC11263212 DOI: 10.3389/fgene.2024.1390198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024] Open
Abstract
Background It has been suggested that metabolic syndrome (MetS) accelerates the aging process, potentially contributing to the development of age-related complications. Available studies examining the relation of MetS to telomere length (TL), a putative biological marker of aging, have yielded inconclusive findings. This meta-analysis was performed to investigate the association between MetS and TL. Methods A comprehensive systematic search was conducted in PubMed and Scopus databases to identify relevant literature published up to February 2024. Standard mean difference (SMD) and standardized beta coefficient (β) with their 95% confidence intervals (CI) were used as effect sizes to measure the associations using the random effects model. Results A total of nine studies, comprising a total sample size of 8,606 participants, were eligible for the meta-analysis. No significant difference in mean TL was found between patients with and without MetS (SMD = -0.03, 95%CI = -0.17 to 0.10), with a significant heterogeneity across the studies (I 2 = 89.7.0%, p ≤ 0.001). In contrast, it was revealed that MetS is negatively related to TL (β = -0.08, 95%CI = -0.15 to -0.004). In the subgroup analysis, this finding was supported by the International Diabetes Federation (IDF) definition of MetS. Conclusion This meta-analysis highlighted that MetS may be linked to a shorter TL. Additional studies are required to confirm this finding.
Collapse
Affiliation(s)
| | | | - Hatem Ghaleb Maabreh
- Department of Dermatovenerology, Foreign Languages, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | | | - Salim B. Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, Iraq
| | - Noura Kareem Jabber
- College of Health and Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al‐Sadiq University, Samawah, Iraq
| | - Farideh Alizadeh
- Department of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Su Z, Efremov L, Mikolajczyk R. Differences in the levels of inflammatory markers between metabolically healthy obese and other obesity phenotypes in adults: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2024; 34:251-269. [PMID: 37968171 DOI: 10.1016/j.numecd.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/28/2023] [Accepted: 09/04/2023] [Indexed: 11/17/2023]
Abstract
AIMS The aim of this study was to systematically review and analyze differences in the levels of C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) comparing metabolically healthy but obese (MHO) with metabolically healthy non-obese (MHNO), metabolically unhealthy non-obese (MUNO), and metabolically unhealthy obese (MUO) subjects. DATA SYNTHESIS We searched PubMed, Embase, Web of Science, and Scopus for studies that matched the relevant search terms. Differences in inflammatory marker levels between MHO and the other three phenotypes were pooled as standardized mean differences (SMD) or differences of medians (DM) using a random-effects model. We included 91 studies reporting data on 435,007 individuals. The CRP levels were higher in MHO than in MHNO subjects (SMD = 0.63, 95% CI: 0.49, 0.76; DM = 0.83 mg/L, 95% CI: 0.56, 1.11). The CRP levels were higher in MHO than in MUNO subjects (SMD = 0.16, 95% CI: 0.05, 0.28; DM = 0.39 mg/L, 95% CI: 0.09, 0.69). The CRP levels were lower in MHO than in MUO individuals (SMD = -0.43, 95% CI: -0.54, -0.31; DM = -0.82 mg/L, 95% CI: -1.16, -0.48). The IL-6 levels in MHO were higher than in MHNO while lower than in MUO subjects. The TNF-α levels in MHO were higher than in MHNO individuals. CONCLUSIONS This review provides evidence that CRP levels in MHO are higher than in MHNO and MUNO subjects but lower than in MUO individuals. Additionally, IL-6 levels in MHO are higher than in MHNO but lower than in MUO subjects, and TNF-α levels in MHO are higher than in MHNO individuals. SYSTEMATIC REVIEW REGISTRATION PROSPERO number: CRD42021234948.
Collapse
Affiliation(s)
- Zhouli Su
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Martin-Luther-University Halle-Wittenberg, D-06112 Halle (Saale), Germany
| | - Ljupcho Efremov
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Martin-Luther-University Halle-Wittenberg, D-06112 Halle (Saale), Germany; Department of Radiation Oncology, Martin-Luther-University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Rafael Mikolajczyk
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Martin-Luther-University Halle-Wittenberg, D-06112 Halle (Saale), Germany.
| |
Collapse
|
4
|
Gavia-García G, Rosado-Pérez J, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. The consumption of Sechium edule (chayote) has antioxidant effect and prevents telomere attrition in older adults with metabolic syndrome. Redox Rep 2023; 28:2207323. [PMID: 37140004 PMCID: PMC10165935 DOI: 10.1080/13510002.2023.2207323] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
OBJECTIVE To determine the effect of the consumption of Sechium edule (1.5 g/day) for six months on oxidative stress (OxS) and inflammation markers and its association with telomere length (TL) in older adults with metabolic syndrome (MetS). METHODS The study was conducted in a sample of 48 older adults: placebo (EP) and experimental (EG) groups. Lipoperoxides, protein carbonylation, 8-OHdG, total oxidant status (TOS), SOD, GPx, H2O2 inhibition, total antioxidant status (TAS), inflammatory cytokines (IL6, IL10, TNF-α), and TL were measured before and six months post-treatment. RESULTS We found a significant decrease in the levels of lipoperoxides, protein carbonylation, 8-OHdG, TOS in the EG in comparison PG. Likewise, a significante increase of TAS, IL-6, and IL-10 levels was found at six months post-treatment in EG in comparison with PG. TL showed a statistically significant decrease in PG compared to post-treatment EG. CONCLUSIONS Our findigns showed that the supplementation of Sechium edule has antioxidant, and anti-inflammatory effects, and diminushion of shortening of telomeric DNA in older adults with MetS. This would be the first study that shows that the intervention with Sechium edule has a possible geroprotective effect by preventing telomeres from shortening as usually happens in these patients. Therefore, suggesting a protection of telomeric DNA and genomic DNA.
Collapse
Affiliation(s)
- Graciela Gavia-García
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City, Mexico
| | - Juana Rosado-Pérez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City, Mexico
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City, Mexico
| | | |
Collapse
|
5
|
Harlan TS, Gow RV, Kornstädt A, Alderson PW, Lustig RH. The Metabolic Matrix: Re-engineering ultraprocessed foods to feed the gut, protect the liver, and support the brain. Front Nutr 2023; 10:1098453. [PMID: 37063330 PMCID: PMC10097968 DOI: 10.3389/fnut.2023.1098453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Ultraprocessed food is established as a metabolic disruptor acting to increase adiposity, reduce mitochondrial efficiency, drive insulin resistance, alter growth, and contribute to human morbidity and mortality. Consumer packaged goods (CPG) companies are beginning to understand the detrimental impact of the food they market, and have employed substitution strategies to reduce salt, sugar, and fat. However, the harms of ultraprocessed foods are far more complex than any single component, and are not ameliorated by such simple substitutions. Over the past 2 years, the authors have worked with the Kuwaiti Danish Dairy Company (KDD) to conduct a comprehensive scientific evaluation of their entire commercial food and beverage portfolio. Assay of the macronutrients, micronutrients, additives, and toxins contained in each of their products was undertaken to determine the precise nature of each product's ingredients as well as the health impacts of processing. The authors formed a Scientific Advisory Team (SAT) and developed a tiered "Metabolic Matrix" founded in three science-based principles: (1) protect the liver, (2) feed the gut, and (3) support the brain. The Metabolic Matrix categorizes each product and provides the criteria, metrics, and recommendations for improvement or reformulation. Real-time consultation with the KDD Executive and Operations teams was vital to see these procedures through to fruition. This scientific exercise has enabled KDD to lay the groundwork for improving the health, well-being, and sustainability of their entire product line, while maintaining flavor, economic, and fiscal viability. This process is easily transferrable, and we are sharing this effort and its approaches as a proof-of-concept. The key aim of our work is to not only make ultraprocessed food healthier but to urge other food companies to implement similar analysis and reformulation of their product lines to improve the metabolic health and well-being of consumers worldwide.
Collapse
Affiliation(s)
- Timothy S. Harlan
- Division of General Internal Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Rachel V. Gow
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | | | - P. Wolfram Alderson
- Human & Environmental Health Department, Kuwaiti Danish Dairy Company, Kuwait City, Kuwait
| | - Robert H. Lustig
- Department of Pediatrics and Institute for Health Policy Studies, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
6
|
Su L, Pan Y, Chen H. The Harm of Metabolically Healthy Obese and the Effect of Exercise on Their Health Promotion. Front Physiol 2022; 13:924649. [PMID: 35910571 PMCID: PMC9329531 DOI: 10.3389/fphys.2022.924649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity and obesity-related diseases [type 2 diabetes, cardiovascular disease (CVD), and cancer] are becoming more common, which is a major public health concern. Metabolically healthy obesity (MHO) has become a type of obesity, accounting for a large proportion of obese people. MHO is still harmful to health. It was discovered that MHO screening criteria could not well reflect health hazards, whereas visceral fat, adiponectin pathway, oxidative stress, chronic inflammation, and histological indicators at the microlevel could clearly distinguish MHO from health control, and the biological pathways involved in these micro indicators were related to MHO pathogenesis. This review reveals that MHO’s micro metabolic abnormality is the initial cause of the increase of disease risk in the future. Exploring the biological pathway of MHO is important in order to develop an effective mechanism-based preventive and treatment intervention strategy. Exercise can correct the abnormal micro metabolic pathway of MHO, regulate metabolic homeostasis, and enhance metabolic flexibility. It is a supplementary or possible alternative to the traditional healthcare prevention/treatment strategy as well as an important strategy for reducing MHO-related health hazards.
Collapse
Affiliation(s)
- Liqiang Su
- Physical Education of College, Jiangxi Normal University, Nanchang, China
| | - Yihe Pan
- Physical Education of College, Jiangxi Normal University, Nanchang, China
| | - Haichun Chen
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, China
- *Correspondence: Haichun Chen,
| |
Collapse
|
7
|
Gavia-García G, Rosado-Pérez J, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. Telomere Length and Oxidative Stress and Its Relation with Metabolic Syndrome Components in the Aging. BIOLOGY 2021; 10:253. [PMID: 33804844 PMCID: PMC8063797 DOI: 10.3390/biology10040253] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022]
Abstract
A great amount of scientific evidence supports that Oxidative Stress (OxS) can contribute to telomeric attrition and also plays an important role in the development of certain age-related diseases, among them the metabolic syndrome (MetS), which is characterised by clinical and biochemical alterations such as obesity, dyslipidaemia, arterial hypertension, hyperglycaemia, and insulin resistance, all of which are considered as risk factors for type 2 diabetes mellitus (T2DM) and cardiovascular diseases, which are associated in turn with an increase of OxS. In this sense, we review scientific evidence that supports the association between OxS with telomere length (TL) dynamics and the relationship with MetS components in aging. It was analysed whether each MetS component affects the telomere length separately or if they all affect it together. Likewise, this review provides a summary of the structure and function of telomeres and telomerase, the mechanisms of telomeric DNA repair, how telomere length may influence the fate of cells or be linked to inflammation and the development of age-related diseases, and finally, how the lifestyles can affect telomere length.
Collapse
Affiliation(s)
- Graciela Gavia-García
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (J.R.-P.); (T.L.A.-U.)
| | - Juana Rosado-Pérez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (J.R.-P.); (T.L.A.-U.)
| | - Taide Laurita Arista-Ugalde
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (J.R.-P.); (T.L.A.-U.)
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (I.A.-S.); (E.S.-O.)
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (I.A.-S.); (E.S.-O.)
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (J.R.-P.); (T.L.A.-U.)
| |
Collapse
|
8
|
Dragović G, Andjić M, Toljić B, Jevtović D, Lukić R, de Luka S, Trbovich A, Milašin J. Correlation between metabolic syndrome and relative telomere length shortening in HIV/AIDS patients on combined antiretroviral therapy. Exp Gerontol 2021; 147:111269. [PMID: 33529748 DOI: 10.1016/j.exger.2021.111269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 01/29/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Components of the metabolic syndrome (MetS) play an important role in the accelerated aging process. Relative telomere length (RTL) is a marker of biological aging. The aim of our study was to determine RTL and its possible association with MetS and the components of MetS in HIV-infected patients treated with cART. METHODS We included 24 HIV-infected men, all Caucasians, with successful cART (<50 HIV-RNA copies/mL) and on stable cART for at least 24 months. The presence of MetS and its components was determined by the criteria prescribed by the International Diabetes Federation. RTL was determined by Real-Time PCR and ΔΔCt method. We performed a multiple linear regression modeling on log-transformed RTL (dependant variable) to evaluate which components of the metabolic syndrome as well as cART duration and cART type, had an impact on RTL. RESULTS Eleven (45.8%) patients had and 13 (54.2%) had not MetS. All patients, had an undetectable viral RNA and a relatively good immune status. The mean RTL was 0.62 ± 0.15 and 0.95 ± 0.36 in patients with and without MetS, respectively (p = 0.01). Multiple linear regression model showed no significant association between duration of cART, cART type and RTL (p = 0.2165, p = 0.8628, respectively). The same analysis showed that an increase in number of MetS components was associated with shorter telomere length (β = -0.4982, p = 0.042). CONCLUSIONS We showed for the first time association between RTL shortening in HIV-infected men with metabolic syndrome. Furthermore, our study also indicated that an increment of metabolic syndrome components is strongly associated with shorter telomere length.
Collapse
Affiliation(s)
- Gordana Dragović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Mladen Andjić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Boško Toljić
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Djordje Jevtović
- Infectious and Tropical Diseases Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Relja Lukić
- Obstetrics/Gynaecology Clinic "Narodni front", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Silvio de Luka
- Institute of Pathological Physiology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Alexander Trbovich
- Institute of Pathological Physiology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milašin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Association of Metabolically Healthy and Unhealthy Obesity Phenotypes with Oxidative Stress Parameters and Telomere Length in Healthy Young Adult Men. Analysis of the MAGNETIC Study. Antioxidants (Basel) 2021; 10:antiox10010093. [PMID: 33440881 PMCID: PMC7826733 DOI: 10.3390/antiox10010093] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is a significant factor related to metabolic disturbances that can lead to metabolic syndrome (MetS). Metabolic dysregulation causes oxidative stress, which affects telomere structure. The current study aimed to evaluate the relationships between telomere length, oxidative stress and the metabolically healthy and unhealthy phenotypes in healthy young men. Ninety-eight participants were included in the study (49 healthy slim and 49 obese patients). Study participants were divided into three subgroups according to body mass index and metabolic health. Selected oxidative stress markers were measured in serum. Relative telomere length (rTL) was measured using quantitative polymerase chain reaction. The analysis showed associations between laboratory markers, oxidative stress markers and rTL in metabolically healthy and unhealthy participants. Total oxidation status (TOS), total antioxidant capacity (TAC) and rTL were significantly connected with metabolically unhealthy obesity. TAC was associated with metabolically healthy obesity. Telomeres shorten in patients with metabolic dysregulation related to oxidative stress and obesity linked to MetS. Further studies among young metabolically healthy and unhealthy individuals are needed to determine the pathways related to metabolic disturbances that cause oxidative stress that leads to MetS.
Collapse
|
10
|
Velazquez ME, Millan AL, Rojo M, Abruzzese GA, Cocucci SE, Iglesias Molli AE, Frechtel GD, Motta AB, Cerrone GE. Telomere Length Differently Associated to Obesity and Hyperandrogenism in Women With Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2021; 12:604215. [PMID: 34054718 PMCID: PMC8162376 DOI: 10.3389/fendo.2021.604215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/12/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Polycystic Ovary Syndrome (PCOS) often present metabolic disorders and hyperandrogenism (HA), facts that may influence the telomere length (TL). AIMS To compare the absolute TL (aTL) between women with PCOS and control women, and their association with the presence of obesity and HA parameters. MATERIALS AND METHODS The PCOS group included 170 unrelated women outpatients and the control group, 64 unrelated donor women. Anthropometric, biochemical-clinical parameters and androgen profile were determined. The PCOS patients were divided accordingly to the presence of obesity and androgenic condition. The aTL was determined from peripheral blood leukocytes by Real Time quantitative PCR. RESULTS Women with PCOS exhibited a significantly longer aTL than controls after age adjustment (p=0.001). A stepwise multivariate linear regression in PCOS women, showed that WC (waist circumference) contributed negatively (b=-0.17) while testosterone levels contributed positively (b=7.24) to aTL. The non-Obese PCOS (noOB-PCOS) presented the longest aTL when compared to controls (p=0.001). Meanwhile, the aTL was significantly higher in the hyperandrogenic PCOS phenotype (HA-PCOS) than in the controls (p=0.001) and non hyperandrogenic PCOS phenotype (NHA-PCOS) (p=0.04). Interestingly, when considering obesity and HA parameters in PCOS, HA exerts the major effect over the aTL as non-obese HA exhibited the lengthiest aTL (23.9 ± 13.13 Kbp). Conversely, the obese NHA patients showed the shortest aTL (16.5 ± 10.59 Kbp). CONCLUSIONS Whilst a shorter aTL could be related to the presence of obesity, a longer aTL would be associated with HA phenotype. These findings suggest a balance between the effect produced by the different metabolic and hormonal components, in PCOS women.
Collapse
Affiliation(s)
- Mariela Edith Velazquez
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea L. Millan
- Universidad de Buenos Aires, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmaciay Bioquímica, Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Laboratorio de Diabetes y Metabolismo, Buenos Aires, Argentina
| | - Mailén Rojo
- Universidad de Buenos Aires, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmaciay Bioquímica, Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Laboratorio de Diabetes y Metabolismo, Buenos Aires, Argentina
| | - Giselle Adriana Abruzzese
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvina Ema Cocucci
- Universidad de Buenos Aires, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmaciay Bioquímica, Cátedra de Genética, Buenos Aires, Argentina
| | - Andrea Elena Iglesias Molli
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Laboratorio de Diabetes y Metabolismo, Buenos Aires, Argentina
| | - Gustavo Daniel Frechtel
- Universidad de Buenos Aires, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmaciay Bioquímica, Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Laboratorio de Diabetes y Metabolismo, Buenos Aires, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gloria Edith Cerrone
- Universidad de Buenos Aires, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmaciay Bioquímica, Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Laboratorio de Diabetes y Metabolismo, Buenos Aires, Argentina
- *Correspondence: Gloria Edith Cerrone,
| |
Collapse
|
11
|
Dong K, Peng X, Huang J, Xia S, Yang Y. Association of leukocyte telomere length with metabolic syndrome in type 2 diabetes mellitus. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2021; 26:43. [PMID: 34484375 PMCID: PMC8384009 DOI: 10.4103/jrms.jrms_793_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/06/2020] [Accepted: 02/10/2021] [Indexed: 11/18/2022]
Abstract
Background: Leukocyte telomere length (LTL) has been revealed to be associated with aging-related diseases such as metabolic syndrome (MetS) and Type 2 diabetes mellitus (T2DM). We aimed to investigate the correlation of LTL with MetS and its components in T2DM patients in this cross-sectional study. Materials and Methods: A total of 344 T2DM patients were enrolled into this study. LTL was measured by Southern blot-based terminal restriction fragment length analysis. MetS was clinically defined by 2007 Chinese Guidelines on Prevention and Treatment of Dyslipidemia in Adults. Results: Of 344 T2DM patients, 53% had MetS. T2DM patients with MetS had significantly longer LTL than those without MetS (6451.95 ± 51.10 base pairs vs. 6076.13 ± 55.13 base pairs, P < 0.001), especially when T2DM patients had poor glycemic control (hemoglobin A1c ≥7%). Meanwhile, the trend of longer LTL was associated with the increased components of MetS in T2DM patient. Finally, LTL had a significant association with MetS (odds ratio [OR]: 2.096, 95% confidence interval [CI] 1.337–3.285, P = 0.001), low levels of high-density lipoprotein-cholesterol (HDL-C) (OR: 2.412, 95% CI 1.350–4.308, P = 0.003) in T2DM patients. Conclusion: T2DM patients with MetS had a significantly longer LTL than those without MetS. The longer LTL was especially evident in T2DM patients with poor glycemic control. Longer LTL was positively associated with MetS, particularly low levels of HDL-C in T2DM patients.
Collapse
|
12
|
Leukocyte telomere length is associated with iron overload in male adults with hereditary hemochromatosis. Biosci Rep 2020; 40:226596. [PMID: 33026063 PMCID: PMC7584811 DOI: 10.1042/bsr20201916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Hereditary hemochromatosis (HH) is a primary iron overload (IO) condition. Absolute telomere length (ATL) is a marker of cellular aging and DNA damage associated with chronic diseases and mortality. Aim: To evaluate the relationship between ATL and IO in patients with HH. Methods: Cross-sectional study including 25 patients with HH: 8 with IO and 17 without IO (ferritin < 300 ng/ml) and 25 healthy controls. Inclusion criteria were: age > 18 years, male sex and HH diagnosis. Patients with diabetes or other endocrine and autoimmune diseases were excluded. ATL was measured by real-time PCR. Results: HH patients with IO were older (P<0.001) and showed higher ferritin concentration (P<0.001). Patients with HH, disregarding the iron status, showed higher glucose and body mass index (BMI) than controls (both P<0.01). ATL was shorter in patients with IO than controls [with IO: 8 (6–14), without IO: 13 (9–20), and controls: 19 (15–25) kilobase pairs, P<0.01]; with a linear trend within groups (P for trend <0.01). Differences in ATL remained statistically significant after adjusting by age, BMI and glucose (P<0.05). Discussion: Patients with IO featured shorter ATL while patients without IO showed only mild alterations vs. controls. Screening for IO is encouraged to prevent iron-associated cellular damage and early telomere attrition.
Collapse
|
13
|
Mangge H, Renner W, Almer G, Gruber HJ, Zelzer S, Moeller R, Horejsi R, Herrmann M. Subcutaneous adipose tissue distribution and telomere length. Clin Chem Lab Med 2020; 57:1358-1363. [PMID: 30913032 DOI: 10.1515/cclm-2018-0801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/01/2019] [Indexed: 01/07/2023]
Abstract
Background Overweight and obese individuals have a reduced life expectancy due to cardiovascular disease (CVD), type 2 diabetes, stroke and cancer. Systemic inflammation and premature telomere shortening have been discussed as potential mechanisms linking these conditions. We investigated the relation of subcutaneous adipose tissue (SAT) distribution to leukocyte relative telomere length (RTL). Methods We measured RTL in 375 participants of the observational STYJOBS/EDECTA cohort (ClinicalTrials.gov Identifier NCT00482924) using a qPCR based method. SAT distribution was determined by lipometry yielding a percent body fat value and SAT thicknesses at 15 standardized locations across the entire body. A correlation analysis between RTL, age, sex, lipometry data and conventional body measures (body mass index [BMI], waist-, hip circumference, waist-to-hip ratio, waist-to-height ratio) was calculated. The strongest determinants of RTL were determined by a stepwise multiple regression analysis. Results RTL was not associated with age or sex. RTL was significantly negatively correlated with BMI, percent body fat, waist-, hip circumference and waist-to-height ratio. Furthermore, RTL correlated with SAT at the following locations: neck, triceps, biceps, upper back, front chest, lateral chest, upper abdomen, lower abdomen, lower back, hip, front thigh, lateral thigh, rear thigh and calf. Stepwise regression analysis revealed nuchal and hip SAT as the strongest predictors of RTL. No significant association was seen between RTL and waist-to-hip ratio. Conclusions RTL is negatively associated with parameters describing body fat composure. Nuchal and hip SAT thicknesses are the strongest predictors of RTL. Central obesity appears to correlate with premature genomic aging.
Collapse
Affiliation(s)
- Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Wilfried Renner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Gunter Almer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Sieglinde Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Reinhard Moeller
- Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Medical University of Graz, Graz, Austria
| | - Renate Horejsi
- Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Medical University of Graz, Graz, Austria
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
14
|
Mangge H, Herrmann M, Almer G, Zelzer S, Moeller R, Horejsi R, Renner W. Telomere shortening associates with elevated insulin and nuchal fat accumulation. Sci Rep 2020; 10:6863. [PMID: 32322021 PMCID: PMC7176638 DOI: 10.1038/s41598-020-63916-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity and relative leucocyte telomere length (RTL) are both linked to accelerated aging and premature mortality. We examined if nuchal subcutaneous adipose tissue (SAT) thickness, a surrogate marker of central trunk-weighted obesity, is an independent predictor of RTL that provides information beyond BMI, metabolic and inflammatory markers. RTL and nuchal SAT thickness were determined in 362 participants of the STYJOBS/EDECTA study (STYrian Juvenile Obesity Study, Early DEteCTion of atherosclerosis), which included overweight individuals and matched eutrophic controls. Fasting plasma samples were used for the measurement of leptin, resistin, adiponectin, glucose, insulin, high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), liver enzymes, creatinine, cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, oxidized LDL, triglycerides, homocysteine and uric acid. Furthermore, all participants underwent carotid artery ultrasound. Obese individuals had markedly higher body mass index (BMI), nuchal SAT thickness, hip and waist circumferences and carotid intima media thickness (IMT) than eutrophic controls. In addition, they showed typical biochemical abnormalities related to energy metabolism, systemic inflammation and liver function. RTL was inversely correlated with nuchal SAT thickness, IMT, hs-CRP, alkaline phosphatase, insulin, resistin, and leptin. Positive correlations were seen with homocysteine and creatinine. Stepwise linear regression analyses identified nuchal SAT thickness and insulin as the only significant predictors of RTL. In conclusion, nuchal SAT thickness is a robust predictor of RTL that provides information beyond traditional obesity-related metabolic and inflammatory biomarkers. This suggests an important role of fat depots at the neck for accelerated telomere shortening.
Collapse
Affiliation(s)
- Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Gunter Almer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Sieglinde Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Reinhard Moeller
- Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Medical University of Graz, Graz, Austria
| | - Renate Horejsi
- Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Medical University of Graz, Graz, Austria
| | - Wilfried Renner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
15
|
Khalangot MD, Krasnienkov DS, Chizhova VP, Korkushko OV, Shatilo VB, Kukharsky VM, Kravchenko VI, Kovtun VA, Guryanov VG, Vaiserman AM. Additional Impact of Glucose Tolerance on Telomere Length in Persons With and Without Metabolic Syndrome in the Elderly Ukraine Population. Front Endocrinol (Lausanne) 2019; 10:128. [PMID: 30873125 PMCID: PMC6404635 DOI: 10.3389/fendo.2019.00128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/11/2019] [Indexed: 12/30/2022] Open
Abstract
Rationale: Association between different components of metabolic syndrome and the rate of age-related telomere shortening was reported repeatedly, although some findings are inconsistent across studies, suggesting the need for further research on the topic. In the present study, we examined relationships between different components of metabolic syndrome (MetS); glucose tolerance reflected in 2-h post-load plasma glucose (2hPG) levels and age on the leukocyte telomere length (LTL) in Ukraine population. Methods: The study was conducted on the 115 adult individuals residing in the Kyiv region (Ukraine). Among them, 79 were diagnosed with MetS according to the International Diabetes Federation definition. LTL were determined by a qPCR-based method. Multivariate logistic regression (MLR) and artificial neural networks (ANN) modeling were used for the analysis of the results. ROC-analysis was also performed to compare the predictively values of this models. Results: MetS was associated with a high (OR = 3.0 CI 1.3-6.7; p = 0.01) risk of having shorter telomeres that remained significant after adjusting for age, gender and 2hPG levels. Fasting plasma glucose (FPG) levels and other MetS components did not affect the magnitude of the relationship and did not reveal the independent influence of these factors. The level of 2hPG in turn, demonstrated a significant relationship (OR = 1.3 CI 1.0-1.6 per 1 mmol/l; p = 0.04) with LTL regardless of the presence of MetS. The non-linearity of the interactions between age, gender and 2hPG level was revealed by neural network modeling (AUC = 0.76 CI 0.68-0.84). Conclusion: Our study found that impaired glucose tolerance, but not FPG levels, affected the association between LTL and MetS, which may be also indicative for pathophysiological differences in these hyperglycemia categories. 2hPG levels can provide an opportunity for a more accurate diagnostics of MetS and for evaluating the rate of aging in patients with MetS. Further research, however, is needed to verify this assumption.
Collapse
Affiliation(s)
- Mykola D. Khalangot
- Epidemiology Department, Komisarenko Institute of Endocrinology and Metabolism, Kyiv, Ukraine
- Endocrinology Department, Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
- *Correspondence: Mykola D. Khalangot
| | | | | | - Oleg V. Korkushko
- Laboratory of Epigenetics, Chebotariov Institute of Gerontology, Kyiv, Ukraine
| | - Valery B. Shatilo
- Laboratory of Epigenetics, Chebotariov Institute of Gerontology, Kyiv, Ukraine
| | - Vitaly M. Kukharsky
- Laboratory of Epigenetics, Chebotariov Institute of Gerontology, Kyiv, Ukraine
| | - Victor I. Kravchenko
- Epidemiology Department, Komisarenko Institute of Endocrinology and Metabolism, Kyiv, Ukraine
| | - Volodymyr A. Kovtun
- Epidemiology Department, Komisarenko Institute of Endocrinology and Metabolism, Kyiv, Ukraine
| | - Vitaly G. Guryanov
- Public Health Management Department, Bogomolets National Medical University, Kyiv, Ukraine
| | | |
Collapse
|
16
|
Gielen M, Hageman GJ, Antoniou EE, Nordfjall K, Mangino M, Balasubramanyam M, de Meyer T, Hendricks AE, Giltay EJ, Hunt SC, Nettleton JA, Salpea KD, Diaz VA, Farzaneh-Far R, Atzmon G, Harris SE, Hou L, Gilley D, Hovatta I, Kark JD, Nassar H, Kurz DJ, Mather KA, Willeit P, Zheng YL, Pavanello S, Demerath EW, Rode L, Bunout D, Steptoe A, Boardman L, Marti A, Needham B, Zheng W, Ramsey-Goldman R, Pellatt AJ, Kaprio J, Hofmann JN, Gieger C, Paolisso G, Hjelmborg JBH, Mirabello L, Seeman T, Wong J, van der Harst P, Broer L, Kronenberg F, Kollerits B, Strandberg T, Eisenberg DTA, Duggan C, Verhoeven JE, Schaakxs R, Zannolli R, dos Reis RMR, Charchar FJ, Tomaszewski M, Mons U, Demuth I, Iglesias Molli AE, Cheng G, Krasnienkov D, D'Antono B, Kasielski M, McDonnell BJ, Ebstein RP, Sundquist K, Pare G, Chong M, Zeegers MP. Body mass index is negatively associated with telomere length: a collaborative cross-sectional meta-analysis of 87 observational studies. Am J Clin Nutr 2018; 108:453-475. [PMID: 30535086 PMCID: PMC6454526 DOI: 10.1093/ajcn/nqy107] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 04/27/2018] [Indexed: 12/12/2022] Open
Abstract
Background Even before the onset of age-related diseases, obesity might be a contributing factor to the cumulative burden of oxidative stress and chronic inflammation throughout the life course. Obesity may therefore contribute to accelerated shortening of telomeres. Consequently, obese persons are more likely to have shorter telomeres, but the association between body mass index (BMI) and leukocyte telomere length (TL) might differ across the life span and between ethnicities and sexes. Objective A collaborative cross-sectional meta-analysis of observational studies was conducted to investigate the associations between BMI and TL across the life span. Design Eighty-seven distinct study samples were included in the meta-analysis capturing data from 146,114 individuals. Study-specific age- and sex-adjusted regression coefficients were combined by using a random-effects model in which absolute [base pairs (bp)] and relative telomere to single-copy gene ratio (T/S ratio) TLs were regressed against BMI. Stratified analysis was performed by 3 age categories ("young": 18-60 y; "middle": 61-75 y; and "old": >75 y), sex, and ethnicity. Results Each unit increase in BMI corresponded to a -3.99 bp (95% CI: -5.17, -2.81 bp) difference in TL in the total pooled sample; among young adults, each unit increase in BMI corresponded to a -7.67 bp (95% CI: -10.03, -5.31 bp) difference. Each unit increase in BMI corresponded to a -1.58 × 10(-3) unit T/S ratio (0.16% decrease; 95% CI: -2.14 × 10(-3), -1.01 × 10(-3)) difference in age- and sex-adjusted relative TL in the total pooled sample; among young adults, each unit increase in BMI corresponded to a -2.58 × 10(-3) unit T/S ratio (0.26% decrease; 95% CI: -3.92 × 10(-3), -1.25 × 10(-3)). The associations were predominantly for the white pooled population. No sex differences were observed. Conclusions A higher BMI is associated with shorter telomeres, especially in younger individuals. The presently observed difference is not negligible. Meta-analyses of longitudinal studies evaluating change in body weight alongside change in TL are warranted.
Collapse
Affiliation(s)
| | - Geja J Hageman
- Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht University, Netherlands
| | - Evangelia E Antoniou
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | | | - Massimo Mangino
- Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- NIHR Biomedical Research Center at Guy's and St. Thomas’ Foundation Trust, London, United Kingdom
| | | | - Tim de Meyer
- Department of Mathematical Modeling, Statistics, and Bioinformatics, Ghent University, Ghent, Belgium
| | - Audrey E Hendricks
- Population Sciences Branch of the National Heart, Lung, and Blood Institute (NHLBI), NIH, NHLBI's Framingham Heart Study, Framingham, MA
- Department of Mathematical and Statistical Sciences, University of Colorado–Denver, Denver, CO
| | - Erik J Giltay
- Department of Psychiatry, Leiden University Medical Center, Leiden, Netherlands
| | - Steven C Hunt
- Cardiovascular Genetics Division, Department of Medicine, University of Utah, Salt Lake City, UT
| | - Jennifer A Nettleton
- Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX
| | - Klelia D Salpea
- Department of Molecular Biology and Genetics, BSRC “Alexander Fleming,” Athens, Greece
| | - Vanessa A Diaz
- Department of Family Medicine, Medical University of South Carolina, Charleston, SC
| | - Ramin Farzaneh-Far
- Division of Cardiology, San Francisco General Hospital, San Francisco, CA
| | - Gil Atzmon
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, and Department of Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Sarah E Harris
- Center for Cognitive Aging and Cognitive Epidemiology and Medical Genetics Section and Center for Genomics and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Lifang Hou
- Department of Preventive Medicine and Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - David Gilley
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Iiris Hovatta
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Jeremy D Kark
- Epidemiology Unit, Hebrew University–Hadassah School of Public Health and Community Medicine, Jerusalem, Israel
| | - Hisham Nassar
- Department of Cardiology, Hadassah University Medical Center, Jerusalem, Israel
| | - David J Kurz
- Department of Cardiology, Triemli Hospital, Zurich, Switzerland
| | - Karen A Mather
- Centre for Healthy Brain Ageing, Psychiatry, UNSW Australia, Sydney, Australia
| | - Peter Willeit
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria, and Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Yun-Ling Zheng
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC
| | - Sofia Pavanello
- Department of Cardiac, Thoracic, and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova, Italy
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN
| | - Line Rode
- The Copenhagen General Population Study, Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Daniel Bunout
- Institute of Nutrition and Food Technology University of Chile, Santiago, Chile
| | - Andrew Steptoe
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Lisa Boardman
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | - Amelia Marti
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Belinda Needham
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | | | | | - Jaakko Kaprio
- Department of Public Health
- Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD
| | - Christian Gieger
- Research Unit of Molecular Epidemiology and Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Giuseppe Paolisso
- Department of Medical, Surgical, Neurological, Metabolic, and Geriatric Sciences, Second University of Naples, Naples, Italy
| | - Jacob B H Hjelmborg
- Department of Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of Southern Denmark, Odense C, Denmark
| | - Lisa Mirabello
- Department of Medical, Surgical, Neurological, Metabolic, and Geriatric Sciences, Second University of Naples, Naples, Italy
| | - Teresa Seeman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jason Wong
- Stanford University School of Medicine, Stanford, CA
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, Groningen, Netherlands
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular, and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Kollerits
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular, and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Timo Strandberg
- University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Center for Life Course Epidemiology, University of Oulu, Oulu, Finland
| | - Dan T A Eisenberg
- Department of Anthropology and Center for Studies in Demography and Ecology, University of Washington, Seattle, WA
| | | | - Josine E Verhoeven
- Department of Psychiatry, VU University Medical Center, Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Roxanne Schaakxs
- Department of Psychiatry, VU University Medical Center, Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Raffaela Zannolli
- Pediatrics Unit, Azienda Ospedaliera Universitaria, Senese/University of Siena, Policlinico Le Scotte, Siena, Italy
| | - Rosana M R dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fadi J Charchar
- School of Science and Technology, Federation University Australia, Department of Physiology, University of Melbourne, Melbourne, Australia, and Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology, and Health, University of Manchester, Manchester, United Kingdom
- Division of Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ute Mons
- Division of Clinical Epidemiology and Aging Research
- Cancer Prevention Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ilja Demuth
- Charité–Universitätsmedizin Berlin (corporate member of Freie Universität Berlin), Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Berlin, Germany
| | - Andrea Elena Iglesias Molli
- CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM). Laboratorio de Diabetes y Metabolismo, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Guo Cheng
- Department of Nutrition, Food Safety, and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Dmytro Krasnienkov
- Department of Epigenetics, DF Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
| | - Bianca D'Antono
- Research Center, Montreal Heart Institute, and Psychology Department, University of Montreal, Montreal, Quebec, Canada
| | - Marek Kasielski
- Bases of Clinical Medicine Teaching Center, Medical University of Lodz, Lodz, Poland
| | - Barry J McDonnell
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | | | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University, Region Skåne, Lund, Sweden
| | - Guillaume Pare
- Population Health Research Institute and McMaster University, Hamilton, Canada
| | - Michael Chong
- Population Health Research Institute and McMaster University, Hamilton, Canada
| | - Maurice P Zeegers
- Departments of Complex Genetics
- CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, Netherlands
| | | |
Collapse
|