1
|
Sun Y, Li J, Li Y, Wu Z. Molecular characterization and transcriptional regulation between PPAR and CPT1 in freshwater bivalve Hyriopsis cumingii. Int J Biol Macromol 2024:135647. [PMID: 39278449 DOI: 10.1016/j.ijbiomac.2024.135647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Peroxisome proliferator activated receptors (PPARs) exert their roles in lipid metabolism and adaptive immunity by transactivating carnitine palmitoyltransferase 1 (CPT1). However, it remains unclear whether the PPAR-CPT1 signaling pathway exists in mollusks that only carry out innate immunity. This study cloned and characterized PPAR and CPT1 genes from Hyriopsis cumingii for the first time, designated as HcPPARs and HcCPT1s, respectively. The bioinformatics analysis revealed conservative molecular characteristics of these genes across species. Real-time quantitative PCR results indicated that higher expression levels of HcPPARs and HcCPT1s in the blood, mantle, and intestine suggested their potential involvement in lipid metabolism and innate immunity of mollusks. Treatments with agonists and inhibitors demonstrated a correlation in the expression of HcPPARs and HcCPT1s. Dual luciferase reporter assay identified regions with high transcriptional activities on promoters of HcCPT1s and potential binding sites for HcPPARs through prediction and mutation sites. These results suggested that the PPAR-CPT1 signaling might exist in H. cumingii. This research provides a necessary foundation for exploring the role of the PPAR-CPT1 signaling in innate immunity, and offers new theoretical evidence for the molecular regulatory mechanism of mollusks and the treatment of metabolic disorders and inflammatory diseases.
Collapse
Affiliation(s)
- Yu Sun
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jie Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yanhong Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Madaloz TZ, Dos Santos K, Zacchi FL, Bainy ACD, Razzera G. Nuclear receptor superfamily structural diversity in pacific oyster: In silico identification of estradiol binding candidates. CHEMOSPHERE 2023; 340:139877. [PMID: 37619748 DOI: 10.1016/j.chemosphere.2023.139877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
The increasing presence of anthropogenic contaminants in aquatic environments poses challenges for species inhabiting contaminated sites. Due to their structural binding characteristics to ligands that inhibit or activate gene transcription, these xenobiotic compounds frequently target the nuclear receptor superfamily. The present work aims to understand the potential interaction between the hormone 17-β-estradiol, an environmental contaminant, and the nuclear receptors of Crassostrea gigas, the Pacific oyster. This filter-feeding, sessile oyster species is subject to environmental changes and exposure to contaminants. In the Pacific oyster, the estrogen-binding nuclear receptor is not able to bind this hormone as it does in vertebrates. However, another receptor may exhibit responsiveness to estrogen-like molecules and derivatives. We employed high-performance in silico methodologies, including three-dimensional modeling, molecular docking and atomistic molecular dynamics to identify likely binding candidates with the target moecule. Our approach revealed that among the C. gigas nuclear receptor superfamily, candidates with the most favorable interaction with the molecule of interest belonged to the NR1D, NR1H, NR1P, NR2E, NHR42, and NR0B groups. Interestingly, NR1H and NR0B were associated with planktonic/larval life cycle stages, while NR1P, NR2E, and NR0B were associated with sessile/adult life stages. The application of this computational methodological strategy demonstrated high performance in the virtual screening of candidates for binding with the target xenobiotic molecule and can be employed in other studies in the field of ecotoxicology in non-model organisms.
Collapse
Affiliation(s)
- Tâmela Zamboni Madaloz
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Karin Dos Santos
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Flávia Lucena Zacchi
- Laboratório de Moluscos Marinhos, Universidade Federal de Santa Catarina, Florianópolis, SC, 88061-600, Brazil
| | - Afonso Celso Dias Bainy
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Guilherme Razzera
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
3
|
Zapata-Restrepio LM, Hauton C, Hudson MD, Williams ID, Hauton D. Toxicity of tributyltin to the European flat oyster Ostrea edulis: Metabolomic responses indicate impacts to energy metabolism, biochemical composition and reproductive maturation. PLoS One 2023; 18:e0280777. [PMID: 36745593 PMCID: PMC9901812 DOI: 10.1371/journal.pone.0280777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/10/2023] [Indexed: 02/07/2023] Open
Abstract
Tri-Butyl Tin (TBT) remains as a legacy pollutant in the benthic environments. Although the toxic impacts and endocrine disruption caused by TBT to gastropod molluscs have been established, the changes in energy reserves allocated to maintenance, growth, reproduction and survival of European oysters Ostrea edulis, a target species of concerted benthic habitat restoration projects, have not been explored. This study was designed to evaluate the effect of TBT chloride (TBTCl) on potential ions and relevant metabolomic pathways and its association with changes in physiological, biochemical and reproductive parameters in O. edulis exposed to environmental relevant concentrations of TBTCl. Oysters were exposed to TBTCl 20 ng/L (n = 30), 200 ng/L (n = 30) and 2000 ng/L (n = 30) for nine weeks. At the end of the exposure, gametogenic stage, sex, energy reserve content and metabolomic profiling analysis were conducted to elucidate the metabolic alterations that occur in individuals exposed to those compounds. Metabolite analysis showed significant changes in the digestive gland biochemistry in oysters exposed to TBTCl, decreasing tissue ATP concentrations through a combination of the disruption of the TCA cycle and other important molecular pathways involved in homeostasis, mitochondrial metabolism and antioxidant response. TBTCl exposure increased mortality and caused changes in the gametogenesis with cycle arrest in stages G0 and G1. Sex determination was affected by TBTCl exposure, increasing the proportion of oysters identified as males in O. edulis treated at 20ng/l TBTCl, and with an increased proportion of inactive stages in oysters treated with 2000 ng/l TBTCl. The presence and persistence of environmental pollutants, such as TBT, could represent an additional threat to the declining O. edulis populations and related taxa around the world, by increasing mortality, changing reproductive maturation, and disrupting metabolism. Our findings identify the need to consider additional factors (e.g. legacy pollution) when identifying coastal locations for shellfish restoration.
Collapse
Affiliation(s)
- Lina M. Zapata-Restrepio
- School of Geography and Environmental Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
- * E-mail:
| | - Chris Hauton
- Ocean and Earth Sciences, National Oceanography Centre, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Malcolm D. Hudson
- School of Geography and Environmental Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
| | - Ian D. Williams
- Faculty of Engineering and Physical Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
| | - David Hauton
- Metabolomics Research Group, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Wang Q, Miao J, Zhao A, Wu M, Pan L. Use of GAL4 factor-based yeast assay to quantify the effects of xenobiotics on RXR homodimer and RXR/PPAR heterodimer in scallop Chlamys farreri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158526. [PMID: 36063929 DOI: 10.1016/j.scitotenv.2022.158526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Retinoid X receptor (RXR) and peroxisome proliferators-activated receptors (PPAR) have been shown as important targets of endocrine disrupting effects caused by organotin compounds (OTCs). In vitro methods for non-model species are instrumental in revealing not only mechanism of toxicity but also basic biology. In the present study, we constructed the GAL4 factor-based recombinant yeast systems of RXRα/RXRα (RR), RXRα/PPARα (RPα) and RXRα/PPARγ (RPγ) of the scallop Chlamys farreri to investigate their transcriptional activity under the induction of OTCs (tributyltin chloride, triphenyltin chloride, tripropyltin chloride and bis(tributyltin)oxide), their spiked sediments and five other non‑tin compounds (Wy14643, rosiglitazone, benzyl butyl phthalate, dicyclohexyl phthalate and bis(2-ethylhexyl) phthalate). The results showed that the natural ligand of RXR, 9-cis-retinoic acid (9cRA), induces transcriptional activity in all three systems, while four OTCs induced the transcriptional activity of the RR and RPα systems. None of the five potential non‑tin endocrine disruptors induced effects on the RPα and RPγ systems. The spiked sediment experiment demonstrated the feasibility of the recombinant yeast systems constructed in this study for environmental sample detection. These results suggest that OTCs pose a threat to affect function of RXRα and PPARα of bivalve mollusks. The newly developed GAL4 factor-based yeast two-hybrid system can be used as a valuable tool for identification and quantification of compounds active in disturbing RXR and PPAR of bivalves.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Anran Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Manni Wu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
5
|
Jin Q, Huo C, Yang W, Jin K, Cai S, Zheng Y, Huang B, Wei L, Zhang M, Han Y, Zhang X, Liu Y, Wang X. Regulation of Tyrosinase Gene Expression by Retinoic Acid Pathway in the Pacific Oyster Crassostrea gigas. Int J Mol Sci 2022; 23:12840. [PMID: 36361629 PMCID: PMC9656583 DOI: 10.3390/ijms232112840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 08/26/2023] Open
Abstract
Retinoic acid (RA) plays important roles in various biological processes in animals. RA signaling is mediated by two types of nuclear receptors, namely retinoic acid receptor (RAR) and retinoid x receptor (RXR), which regulate gene expression by binding to retinoic acid response elements (RAREs) in the promoters of target genes. Here, we explored the effect of all-trans retinoic acid (ATRA) on the Pacific oyster Crassostera gigas at the transcriptome level. A total of 586 differentially expressed genes (DEGs) were identified in C. gigas upon ATRA treatment, with 309 upregulated and 277 downregulated genes. Bioinformatic analysis revealed that ATRA affects the development, metabolism, reproduction, and immunity of C. gigas. Four tyrosinase genes, including Tyr-6 (LOC105331209), Tyr-9 (LOC105346503), Tyr-20 (LOC105330910), and Tyr-12 (LOC105320007), were upregulated by ATRA according to the transcriptome data and these results were verified by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. In addition, increased expression of Tyr (a melanin-related TYR gene in C. gigas) and Tyr-2 were detected after ATRA treatment. The yeast one-hybrid assay revealed the DNA-binding activity of the RA receptors CgRAR and CgRXR, and the interaction of CgRAR with RARE present in the Tyr-2 promoter. These results provide evidence for the further studies on the role of ATRA and the mechanism of RA receptors in mollusks.
Collapse
Affiliation(s)
- Qianqian Jin
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Chuncao Huo
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Wenhao Yang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Kaidi Jin
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Shuai Cai
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai 265800, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai 265800, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xuekai Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| |
Collapse
|
6
|
Wan S, Li Q, Yu H, Liu S, Kong L. A nuclear receptor heterodimer, CgPPAR2-CgRXR, acts as a regulator of carotenoid metabolism in Crassostrea gigas. Gene 2022; 827:146473. [PMID: 35390448 DOI: 10.1016/j.gene.2022.146473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
Nuclear receptors (NRs) are mostly ligand-activated transcription factors in animals and play essential roles in metabolism and homeostasis. The NR heterodimer composed of PPAR/RXR (peroxisome proliferator-activated receptor/retinoid X receptor) is considered a key regulator of lipid metabolism in vertebrate. However, in molluscs, how this heterodimer is involved in carotenoid metabolism remains unclear. To elucidate how this heterodimer regulates carotenoid metabolism, we identified a PPAR gene in C. gigas, designated as CgPPAR2 (LOC105323212), and functionally characterized it using two-hybrid and reporter systems. CgPPAR2 is a direct orthologue of vertebrate PPARs and the second PPAR gene identified in C. gigas genome in addition to CgPPAR1 (LOC105317849). The results demonstrated that CgPPAR2 protein can form heterodimer with C. gigas RXR (CgRXR), and then regulate carotenoid metabolism by controlling carotenoid cleavage oxygenases with different carotenoid cleavage efficiencies. This regulation can be affected by retinoid ligands, i.e., carotenoid derivatives, validating a negative feedback regulation mechanism of carotenoid cleavage for retinoid production. Besides, organotins may disrupt this regulatory process through the mediation of CgPPAR2/CgRXR heterodimer. This is the first report of PPAR/RXR heterodimer regulating carotenoid metabolism in mollusks, contributing to a better understanding of the evolution and conservation of this nuclear receptor heterodimer.
Collapse
Affiliation(s)
- Sai Wan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
7
|
Yeung KWY, Lai RWS, Zhou GJ, Leung KMY. Concentration-response of six marine species to all-trans-retinoic acid and its ecological risk to the marine environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113455. [PMID: 35358921 DOI: 10.1016/j.ecoenv.2022.113455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Being a class of vitamin A's main derivatives, retinoic acids (RAs) are important to animals' growth and development. Previous studies demonstrated that exposure of excessive amounts of RAs would lead to malformation and abnormal development in aquatic animals such as amphibians and fishes. Currently, there are only limited toxicity data of RAs available for freshwater species, while those for marine species are seriously lacking. This study aimed to fill such data gap by conducting toxicity tests on six marine species (i.e., one microalga, four invertebrates and one fish) towards the exposure to all-trans-RA (at-RA), which is the most widely distributed RA in the environment. Results showed that the embryo of medaka fish Oryzias melastigma was the most sensitive towards the exposure of at-RA while the gastropod Monodonta labio was the least sensitive. A species sensitivity distribution (SSD) was constructed based on the experimental results generated from the present study. An interim marine-specific predicted no-effect concentration (PNEC) of at-RA was derived at 2300 ng/L. By computing the hazard quotients using the interim marine-specific PNEC and available measured and predicted concentrations of RAs, we found the current levels of RAs posed no immediate risks to the marine environment of Hong Kong. The interim marine-specific PNEC was more than 500-fold of freshwater-specific PNEC (i.e., 3.93 ng/L), indicating that marine species were generally less sensitive than their freshwater counterparts towards RAs. This was the first study to document the concentration-response of various marine species towards at-RA exposure and construct the marine-specific SSD for assessing the ecological risk of at-RA towards the marine environment. Since various forms of RAs and their metabolites often coexist in aquatic environments, further studies should investigate their combined toxicity to an array of marine species of different trophic levels with consideration of chronic exposure scenarios.
Collapse
Affiliation(s)
- Katie Wan Yee Yeung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Racliffe Weng Seng Lai
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guang-Jie Zhou
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
8
|
Wan S, Li Q, Yu H, Liu S, Kong L. Transcriptome analysis based on dietary beta-carotene supplement reveals genes potentially involved in carotenoid metabolism in Crassostrea gigas. Gene 2022; 818:146226. [PMID: 35063572 DOI: 10.1016/j.gene.2022.146226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/18/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Carotenoids are essential micronutrients for animals, and they can only be obtained from the diet for mollusk as well as other animals. In the body, carotenoids undergo processes including absorption, transport, deposition, and metabolic conversion; however, knowledge of the involved genes is still limited. To elucidate the molecular mechanisms of carotenoid processing and identify the related genes in Pacific oyster (Crassostrea gigas), we performed a comparative transcriptome analysis using digestive gland tissues of oysters on a beta-carotene supplemented diet or a normal diet. A total of 718 differentially expressed genes were obtained, including 505 upregulated and 213 downregulated genes in the beta-carotene supplemented group. Function Annotation and enrichment analyses revealed enrichment in genes possibly involved in carotenoid transport and storage (e.g., LOC105342035), carotenoid cleavage (e.g., LOC105341121), retinoid homeostasis (e.g., LOC105339597) and PPAR signaling pathway (e.g., LOC105323212). Notably, down-regulation of mRNA expressions of two apolipoprotein genes (LOC105342035 and LOC105342186) by RNA interference significantly decreased the carotenoid level in the digestive gland, supporting their role in carotenoid transport and storage. Based on these differentially expressed genes, we propose that there may be a negative feedback mechanism regulated by nuclear receptor transcription factors controlling carotenoid oxygenases. Our findings provide useful hints for elucidating the molecular basis of carotenoid metabolism and functions of carotenoid-related genes in the oyster.
Collapse
Affiliation(s)
- Sai Wan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
9
|
Zhao A, Miao J, Liu L, Pan L. Potencies of organotin compounds in scallop RXRa responsive activity with a GAL4-based reconstituted yeast assay in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19890-19897. [PMID: 35084679 DOI: 10.1007/s11356-022-18620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Retinoid X receptor (RXR) has been found to be a major target in various processes of endocrine disruption from the exposure to organotin compounds (OTCs), including imposex in gastropod mollusks. It was also reported in bivalves that OTCs caused intersex and skewed sex ratio. In order to evaluate the effect of these ligand-like OTCs, we constructed a reconstituted yeast system (CfRE system) based on GAL4 yeast two-hybrid principle using scallop Chlamys farreri retinoid X receptor (CfRXRa) and retinoid X response element (RXRE) to investigate the ligand-induced transactivation of CfRXRa. Responses of CfRXRa to 9-cis retinoic acid (9cRA) and tested four OTCs showed concentration-dependent response which is comparable with reported RXRa in vitro assay of human and gastropods. The detective limits of the CfRE system were found to be 100 nM for 9cRA and 10-1000 nM for the tested OTCs. While the tested non-Sn endocrine disrupting chemicals, including Benzo[a]pyrene, 2,4-Dichlorophenol, Nonylphenol, and Tetrabromobisphenol A, showed no effect on CfRXRa response. The present assay system may provide a valuable tool for screening assessments of unidentified environmental ligand chemicals on bivalve mollusks. It is also useful for comparison of sensitivity differences among species exposed to EDCs.
Collapse
Affiliation(s)
- Anran Zhao
- Ministry of Education, The Key Laboratory of Mariculture (Ocean University of China), Qingdao, 266003, People's Republic of China
| | - Jingjing Miao
- Ministry of Education, The Key Laboratory of Mariculture (Ocean University of China), Qingdao, 266003, People's Republic of China.
| | - Liru Liu
- Ministry of Education, The Key Laboratory of Mariculture (Ocean University of China), Qingdao, 266003, People's Republic of China
| | - Luqing Pan
- Ministry of Education, The Key Laboratory of Mariculture (Ocean University of China), Qingdao, 266003, People's Republic of China
| |
Collapse
|
10
|
Capitão AMF, Lopes-Marques M, Páscoa I, Sainath SB, Hiromori Y, Matsumaru D, Nakanishi T, Ruivo R, Santos MM, Castro LFC. An ancestral nuclear receptor couple, PPAR-RXR, is exploited by organotins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149044. [PMID: 34303232 DOI: 10.1016/j.scitotenv.2021.149044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Environmental chemicals have been reported to greatly disturb the endocrine and metabolic systems of multiple animal species. A recent example involves the exploitation of the nuclear receptor (NR) heterodimeric pair composed by PPAR/RXR (peroxisome proliferator-activated receptor/retinoid X receptor), which shows lipid perturbation in mammalian species. While gene orthologues of both of these receptors have been described outside vertebrates, no functional characterization of PPAR has been carried in protostome lineages. We provide the first functional analysis of PPAR in Patella sp. (Mollusca), using model obesogens such as tributyltin (TBT), triphenyltin (TPT), and proposed natural ligands (fatty acid molecules). To gain further insights, we used site-directed mutagenesis to PPAR and replaced the tyrosine 277 by a cysteine (the human homologous amino acid and TBT anchor residue) and an alanine. Additionally, we explored the alterations in the fatty acid profiles after an exposure to the model obesogen TBT, in vivo. Our results show that TBT and TPT behave as an antagonist of Patella sp. PPAR/RXR and that the tyrosine 277 is important, but not essential in the response to TBT. Overall, these results suggest a relation between the response of the mollusc PPAR-RXR to TBT and the lipid profile alterations reported at environmentally relevant concentrations. Our findings highlight the importance of comparative analysis between protostome and deuterostome lineages to decipher the differential impact of environmental chemicals.
Collapse
Affiliation(s)
- Ana M F Capitão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), University of Porto (U.Porto), Department of Biology, Porto, Portugal
| | - Mónica Lopes-Marques
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - Inês Páscoa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - S B Sainath
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Department of Biotechnology, Vikrama Simhapuri University, Nellore 524 003, AP, India
| | - Youhei Hiromori
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu, Japan
| | - Daisuke Matsumaru
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu, Japan
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu, Japan
| | - Raquel Ruivo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - Miguel M Santos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), University of Porto (U.Porto), Department of Biology, Porto, Portugal.
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), University of Porto (U.Porto), Department of Biology, Porto, Portugal.
| |
Collapse
|
11
|
Ip JCH, Leung PTY, Qiu JW, Lam PKS, Wong CKC, Chan LL, Leung KMY. Transcriptomics reveal triphenyltin-induced molecular toxicity in the marine mussel Perna viridis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148040. [PMID: 34091345 DOI: 10.1016/j.scitotenv.2021.148040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Triphenyltin (TPT) is widely used as an active ingredient in antifouling paints and fungicides, and continuous release of this highly toxic endocrine disruptor has caused serious pollution to coastal marine ecosystems and organisms worldwide. Using bioassays and transcriptome sequencing, this study comprehensively investigated the molecular toxicity of TPT chloride (TPTCl) to the marine mussel Perna viridis which is a commercially important species and a common biomonitor for marine pollution in Southeast Asia. Our results indicated that TPTCl was highly toxic to adult P. viridis, with a 96-h LC10 and a 96-h EC10 at 18.7 μg/L and 2.7 μg/L, respectively. A 21-day chronic exposure to 2.7 μg/L TPTCl revealed a strong bioaccumulation of TPT in gills (up to 36.48 μg/g dry weight) and hepatopancreas (71.19 μg/g dry weight) of P. viridis. Transcriptome analysis indicated a time course dependent gene expression pattern in both gills and hepatopancreas. Higher numbers of differentially expressed genes were detected at Day 21 (gills: 1686 genes; hepatopancreas: 1450 genes) and at Day 28 (gills: 628 genes; hepatopancreas: 238 genes) when compared with that at Day 7 (gills: 104 genes, hepatopancreas: 112 genes). Exposure to TPT strongly impaired the endocrine system through targeting on nuclear receptors and putative steroid metabolic genes. Moreover, TPT widely disrupted cellular functions, including lipid metabolism, xenobiotic detoxification, immune response and endoplasmic-reticulum-associated degradation expression, which might have caused the bioaccumulation of TPT in the tissues and aggregation of peptides and proteins in cells that further activated the apoptosis process in P. viridis. Overall, this study has advanced our understanding on both ecotoxicity and molecular toxic mechanisms of TPT to marine mussels, and contributed empirical toxicity data for risk assessment and management of TPT contamination.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Biology and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jian-Wen Qiu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Biology and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Chris K C Wong
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Biology and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Leo L Chan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.
| |
Collapse
|
12
|
Lesoway MP, Henry JQ. Retinoids promote penis development in sequentially hermaphroditic snails. Dev Biol 2021; 478:122-132. [PMID: 34224682 DOI: 10.1016/j.ydbio.2021.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022]
Abstract
Sexual systems are surprisingly diverse, considering the ubiquity of sexual reproduction. Sequential hermaphroditism, the ability of an individual to change sex, has emerged multiple times independently across the animal kingdom. In molluscs, repeated shifts between ancestrally separate sexes and hermaphroditism are generally found at the level of family and above, suggesting recruitment of deeply conserved mechanisms. Despite this, molecular mechanisms of sexual development are poorly known. In molluscs with separate sexes, endocrine disrupting toxins bind the retinoid X receptor (RXR), activating ectopic male development in females, suggesting the retinoid pathway as a candidate controlling sexual transitions in sequential hermaphrodites. We therefore tested the role of retinoic acid signaling in sequentially hermaphroditic Crepidula snails, which develop first into males, then change sex, maturing into females. We show that retinoid agonists induce precocious penis growth in juveniles and superimposition of male development in females. Combining RXR antagonists with retinoid agonists significantly reduces penis length in induced juveniles, while similar treatments using retinoic acid receptor (RAR) antagonists increase penis length. Transcripts of both receptors are expressed in the induced penis. Our findings therefore show that retinoid signaling can initiate molluscan male genital development, and regulate penis length. Further, we show that retinoids induce ectopic male development in multiple Crepidula species. Species-specific influence of conspecific induction of sexual transitions correlates with responsiveness to retinoids. We propose that retinoid signaling plays a conserved role in molluscan male development, and that shifts in the timing of retinoid signaling may have been important for the origins of sequential hermaphroditism within molluscs.
Collapse
Affiliation(s)
- Maryna P Lesoway
- Department of Cell and Developmental Biology University of Illinois, 601 S Goodwin Avenue Urbana, IL, USA, 61801.
| | - Jonathan Q Henry
- Department of Cell and Developmental Biology University of Illinois, 601 S Goodwin Avenue Urbana, IL, USA, 61801
| |
Collapse
|
13
|
Jin K, Jin Q, Cai Z, Huang B, Wei L, Zhang M, Guo W, Liu Y, Wang X. Molecular Characterization of Retinoic Acid Receptor CgRAR in Pacific Oyster ( Crassostrea gigas). Front Physiol 2021; 12:666842. [PMID: 33897474 PMCID: PMC8060629 DOI: 10.3389/fphys.2021.666842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Retinoic acid (RA) signaling pathways mediated by RA receptors (RARs) are essential for many physiological processes such as organ development, regeneration, and differentiation in animals. Recent studies reveal that RARs identified in several mollusks, including Pacific oyster Crassostrea gigas, have a different function mechanism compared with that in chordates. In this report, we identified the molecular characteristics of CgRAR to further explore the mechanism of RAR in mollusks. RT-qPCR analysis shows that CgRAR has a higher expression level in the hemocytes and gonads, indicating that CgRAR may play roles in the processes of development and metabolism. The mRNA expression level of both CgRAR and CgRXR was analyzed by RT-qPCR after injection with RA. The elevated expression of CgRAR and CgRXR was detected upon all-trans-RA (ATRA) exposure. Finally, according to the results of Yeast Two-Hybrid assay and co-immunoprecipitation analysis, CgRAR and CgRXR can interact with each other through the C-terminal region. Taken together, our results suggest that CgRAR shows a higher expression level in gonads and hemocytes. ATRA exposure up-regulates the expression of CgRAR and CgRXR. Besides, CgRAR can interact with CgRXR to form a heterodimer complex.
Collapse
Affiliation(s)
- Kaidi Jin
- School of Agriculture, Ludong University, Yantai, China
| | - Qianqian Jin
- School of Agriculture, Ludong University, Yantai, China
| | - Zhongqiang Cai
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changdao, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Wen Guo
- Center for Mollusc Study and Development, Marine Biology Institute of Shandong Province, Qingdao, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
14
|
Miglioli A, Canesi L, Gomes IDL, Schubert M, Dumollard R. Nuclear Receptors and Development of Marine Invertebrates. Genes (Basel) 2021; 12:genes12010083. [PMID: 33440651 PMCID: PMC7827873 DOI: 10.3390/genes12010083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear Receptors (NRs) are a superfamily of transcription factors specific to metazoans that have the unique ability to directly translate the message of a signaling molecule into a transcriptional response. In vertebrates, NRs are pivotal players in countless processes of both embryonic and adult physiology, with embryonic development being one of the most dynamic periods of NR activity. Accumulating evidence suggests that NR signaling is also a major regulator of development in marine invertebrates, although ligands and transactivation dynamics are not necessarily conserved with respect to vertebrates. The explosion of genome sequencing projects and the interpretation of the resulting data in a phylogenetic context allowed significant progress toward an understanding of NR superfamily evolution, both in terms of molecular activities and developmental functions. In this context, marine invertebrates have been crucial for characterizing the ancestral states of NR-ligand interactions, further strengthening the importance of these organisms in the field of evolutionary developmental biology.
Collapse
Affiliation(s)
- Angelica Miglioli
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Laura Canesi
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Isa D. L. Gomes
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
- Correspondence:
| |
Collapse
|
15
|
Cloning and characterisation of NMDA receptors in the Pacific oyster, Crassostrea gigas (Thunberg, 1793) in relation to metamorphosis and catecholamine synthesis. Dev Biol 2020; 469:144-159. [PMID: 33131707 DOI: 10.1016/j.ydbio.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/30/2023]
Abstract
Bivalve metamorphosis is a developmental transition from a free-living larva to a benthic juvenile (spat), regulated by a complex interaction of neurotransmitters and neurohormones such as L-DOPA and epinephrine (catecholamine). We recently suggested an N-Methyl-D-aspartate (NMDA) receptor pathway as an additional and previously unknown regulator of bivalve metamorphosis. To explore this theory further, we successfully induced metamorphosis in the Pacific oyster, Crassostrea gigas, by exposing competent larvae to L-DOPA, epinephrine, MK-801 and ifenprodil. Subsequently, we cloned three NMDA receptor subunits CgNR1, CgNR2A and CgNR2B, with sequence analysis suggesting successful assembly of functional NMDA receptor complexes and binding to natural occurring agonists and the channel blocker MK-801. NMDA receptor subunits are expressed in competent larvae, during metamorphosis and in spat, but this expression is neither self-regulated nor regulated by catecholamines. In-situ hybridisation of CgNR1 in competent larvae identified NMDA receptor presence in the apical organ/cerebral ganglia area with a potential sensory function, and in the nervous network of the foot indicating an additional putative muscle regulatory function. Furthermore, phylogenetic analyses identified molluscan-specific gene expansions of key enzymes involved in catecholamine biosynthesis. However, exposure to MK-801 did not alter the expression of selected key enzymes, suggesting that NMDA receptors do not regulate the biosynthesis of catecholamines via gene expression.
Collapse
|
16
|
Huang W, Wu Q, Xu F, Li L, Li J, Que H, Zhang G. Functional characterization of retinoid X receptor with an emphasis on the mediation of organotin poisoning in the Pacific oyster (Crassostrea gigas). Gene 2020; 753:144780. [DOI: 10.1016/j.gene.2020.144780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 11/27/2022]
|
17
|
Ferreira CP, Lima D, Souza P, Piazza TB, Zacchi FL, Mattos JJ, Jorge MB, Almeida EA, Bianchini A, Taniguchi S, Sasaki ST, Montone RC, Bícego MC, Bainy ACD, Lüchmann KH. Short-term spatiotemporal biomarker changes in oysters transplanted to an anthropized estuary in Southern Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136042. [PMID: 31905594 DOI: 10.1016/j.scitotenv.2019.136042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Estuarine ecosystems are increasingly being affected by pollution caused by anthropogenic activities. In this study, Crassostrea gasar oysters were transplanted and maintained for seven days at three sites (S1, S2, and S3) in the Laguna Estuarine System (LES)-situated in southern Brazil-that has been exposed to multiple anthropic stresses. On the basis of the concentrations of metal and organic pollutants in oysters, we identified marked spatial variations in pollutant levels, with S3 showing the highest concentration of Ag, Fe, Ni, Zn, and total polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and linear alkylbenzenes (LABs), followed by S2 and S1. Along with the concentrations of pollutants, a set of biomarkers was analyzed. Oysters maintained at S3 showed enhanced protective defenses in gills, as observed by the increased levels of superoxide dismutase (SOD-like) and heat shock protein 90 (HSP90-like) transcripts and catalase (CAT) activity, concomitant with reduced lipid peroxidation (MDA) levels. Decreased antioxidant activities together with increased MDA levels are indicative of the digestive gland being more susceptible to pollutant-induced oxidative damage. Oysters transplanted into LES showed lower levels of cytochrome P450 transcripts (CYP356A1-like and CYP2AU1), and decreased glutathione S-transferase (GST) enzyme activity, suggesting lower biotransformation capacity. By integrating information regarding the concentration of metal and organic pollutants with that of molecular as well as biochemical biomarkers, our study provides novel insights into pollutant exposure and the potential biological impacts of such exposure on estuarine organisms in southern Brazil.
Collapse
Affiliation(s)
- Clarissa P Ferreira
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna 88790-000, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Patrick Souza
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna 88790-000, Brazil
| | - Thiago B Piazza
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna 88790-000, Brazil
| | - Flávia L Zacchi
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Marianna B Jorge
- Oceanography and Limnology Department, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Eduardo A Almeida
- Department of Natural Sciences, Regional University of Blumenau, Blumenau 89012-170, Brazil
| | - Adalto Bianchini
- Institute of Marine Science - ICMar, University of Rio Grande do Sul, Rio Grande 96203-900, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Silvio T Sasaki
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil; Institute of Humanities, Arts and Sciences, Formation Center in Environmental Science, Federal University of Southern Bahia, Porto Seguro 45810-000, Brazil
| | - Rosalinda C Montone
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Márcia C Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis 88035-001, Brazil.
| |
Collapse
|
18
|
Fonseca ESS, Hiromori Y, Kaite Y, Ruivo R, Franco JN, Nakanishi T, Santos MM, Castro LFC. An Orthologue of the Retinoic Acid Receptor (RAR) Is Present in the Ecdysozoa Phylum Priapulida. Genes (Basel) 2019; 10:genes10120985. [PMID: 31795452 PMCID: PMC6947571 DOI: 10.3390/genes10120985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022] Open
Abstract
Signalling molecules and their cognate receptors are central components of the Metazoa endocrine system. Defining their presence or absence in extant animal lineages is critical to accurately devise evolutionary patterns, physiological shifts and the impact of endocrine disrupting chemicals. Here, we address the evolution of retinoic acid (RA) signalling in the Priapulida worm, Priapulus caudatus Lamarck, 1816, an Ecdysozoa. RA signalling has been shown to be central to chordate endocrine homeostasis, participating in multiple developmental and physiological processes. Priapulids, with their slow rate of molecular evolution and phylogenetic position, represent a key taxon to investigate the early phases of Ecdysozoa evolution. By exploring a draft genome assembly, we show, by means of phylogenetics and functional assays, that an orthologue of the nuclear receptor retinoic acid receptor (RAR) subfamily, a central mediator of RA signalling, is present in Ecdysozoa, contrary to previous perception. We further demonstrate that the Priapulida RAR displays low-affinity for retinoids (similar to annelids), and is not responsive to common endocrine disruptors acting via RAR. Our findings provide a timeline for RA signalling evolution in the Bilateria and give support to the hypothesis that the increase in RA affinity towards RAR is a late acquisition in the evolution of the Metazoa.
Collapse
Affiliation(s)
- Elza S. S. Fonseca
- CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; (E.S.S.F.); (R.R.); (J.N.F.)
- FCUP—Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal
| | - Youhei Hiromori
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.H.); (Y.K.)
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Yoshifumi Kaite
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.H.); (Y.K.)
| | - Raquel Ruivo
- CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; (E.S.S.F.); (R.R.); (J.N.F.)
| | - João N. Franco
- CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; (E.S.S.F.); (R.R.); (J.N.F.)
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.H.); (Y.K.)
- Correspondence: (T.N.); (M.M.S.); (L.F.C.C.)
| | - Miguel M. Santos
- CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; (E.S.S.F.); (R.R.); (J.N.F.)
- FCUP—Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal
- Correspondence: (T.N.); (M.M.S.); (L.F.C.C.)
| | - L. Filipe C. Castro
- CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; (E.S.S.F.); (R.R.); (J.N.F.)
- FCUP—Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal
- Correspondence: (T.N.); (M.M.S.); (L.F.C.C.)
| |
Collapse
|
19
|
Balbi T, Ciacci C, Canesi L. Estrogenic compounds as exogenous modulators of physiological functions in molluscs: Signaling pathways and biological responses. Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:135-144. [PMID: 31055067 DOI: 10.1016/j.cbpc.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022]
Abstract
Molluscs have been widely utilized to evaluate the effects of estrogenic compounds, one of the most widespread classes of Endocrine Disrupting Chemicals-EDCs. However, knowledge on steroid signaling and metabolism in molluscs has considerably increased in the last decade: from these studies, a considerable debate emerged on the role of 'natural' steroids in physiology, in particular in reproduction, of this invertebrate group. In this work, available information on the effects and mechanisms of action of estrogens in molluscs will be reviewed, with particular emphasis on bivalves that, widespread in aquatic ecosystems, are most likely affected by exposure to estrogenic EDCs. Recent advances in steroid uptake and metabolism, and estrogen receptors-ERs in molluscs, as well as in estrogen signaling in vertebrates, will be considered. The results so far obtained with 17β-estradiol and different estrogenic compounds in the model bivalve Mytilus spp., demonstrate specific effects on immune function, development and metabolism. Transcriptomic data reveal non genomic estrogen signaling pathways in mussel tissues that are supported by new observations at the cellular level. In vitro and in vivo data show, through independent lines of evidence, that estrogens act through non-genomic signaling pathways in bivalves. In this light, regardless of whether molluscs synthesize estrogens de novo or not, and despite their ERs are not directly activated by ligand binding, estrogens can interact with multiple signaling components, leading to modulation of different physiological functions. Increasing knowledge in endocrine physiology of molluscs will provide a framework for a better evaluation and interpretation of data on the impact of estrogenic EDCs in this invertebrate group.
Collapse
Affiliation(s)
- Teresa Balbi
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Caterina Ciacci
- Dept. of Biomolecular Sciences (DIBS), University 'Carlo Bo' of Urbino, Urbino, Italy
| | - Laura Canesi
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy.
| |
Collapse
|
20
|
Johnson A, de Hoog E, Tolentino M, Nasser T, Spencer GE. Pharmacological evidence for the role of RAR in axon guidance and embryonic development of a protostome species. Genesis 2019; 57:e23301. [PMID: 31038837 DOI: 10.1002/dvg.23301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 04/08/2019] [Indexed: 01/26/2023]
Abstract
Retinoic acid (RA), the active metabolite of vitamin A, functions through nuclear receptors, one of which is the retinoic acid receptor (RAR). Though the RAR is essential for various aspects of vertebrate development, little is known about the role of RAR in nonchordate invertebrates. Here, we examined the potential role of an invertebrate RAR in mediating chemotropic effects of retinoic acid. The RAR of the protostome Lymnaea stagnalis is present in the growth cones of regenerating cultured motorneurons, and a synthetic RAR agonist (EC23), was able to mimic the effects of retinoic acid in inducing growth cone turning. We also examined the ability of the natural retinoids, all-trans RA and 9-cis RA, as well as the synthetic RAR agonists, to disrupt embryonic development in Lymnaea. Developmental defects included delays in embryo hatching, arrested eye, and shell development, as well as more severe abnormalities such as halted development. Developmental defects induced by some (but not all) synthetic RAR agonists were found to mimic those induced by addition of high concentrations of the natural retinoid isomers. These pharmacological data support a possible physiological role for the RAR in axon guidance and embryonic development of an invertebrate protostome species.
Collapse
Affiliation(s)
- Alysha Johnson
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Eric de Hoog
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Michael Tolentino
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Tamara Nasser
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
21
|
André A, Ruivo R, Fonseca E, Froufe E, Castro LFC, Santos MM. The retinoic acid receptor (RAR) in molluscs: Function, evolution and endocrine disruption insights. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:80-89. [PMID: 30639747 DOI: 10.1016/j.aquatox.2019.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Retinoid acid receptor (RAR)-dependent signalling pathways are essential for the regulation and maintenance of essential biological functions and are recognized targets of disruptive anthropogenic compounds. Recent studies put forward the inability of mollusc RARs to bind and respond to the canonical vertebrate ligand, retinoic acid: a feature that seems to have been lost during evolution. Yet, these studies were carried out in a limited number of molluscs. Therefore, using an in vitro transactivation assay, the present work aimed to characterize phylogenetically relevant mollusc RARs, as monomers or as functional units with RXR, not only in the presence of vertebrate bone fine ligands but also known endocrine disruptors, described to modulate retinoid-dependent pathways. In general, none of the tested mollusc RARs were able to activate reporter gene transcription when exposed to retinoic acid isomers, suggesting that the ability to respond to retinoic acid was lost across molluscs. Similarly, the analysed mollusc RAR were unresponsive towards organochloride pesticides. In contrast, transcriptional repressions were observed with the RAR/RXR unit upon exposure to retinoids or RXR-specific ligands. Loss-of-function and gain-of-function mutations further corroborate the obtained results and suggest that the repressive behaviour, observed with mollusc and human RAR/RXR heterodimers, is possibly mediated by ligand biding to RXR.
Collapse
Affiliation(s)
- Ana André
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal; ICBAS - Institute of biomedical Sciences Abel Salazar, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Raquel Ruivo
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Elza Fonseca
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Elsa Froufe
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - L Filipe C Castro
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Miguel M Santos
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
22
|
Capitão AMF, Lopes-Marques MS, Ishii Y, Ruivo R, Fonseca ESS, Páscoa I, Jorge RP, Barbosa MAG, Hiromori Y, Miyagi T, Nakanishi T, Santos MM, Castro LFC. Evolutionary Exploitation of Vertebrate Peroxisome Proliferator-Activated Receptor γ by Organotins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13951-13959. [PMID: 30398865 DOI: 10.1021/acs.est.8b04399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Globally persistent man-made chemicals display ever-growing ecosystemic consequences, a hallmark of the Anthropocene epoch. In this context, the assessment of how lineage-specific gene repertoires influence organism sensitivity toward endocrine disruptors is a central question in toxicology. A striking example highlights the role of a group of compounds known as obesogens. In mammals, most examples involve the modulation of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ). To address the structural and biological determinants of PPARγ exploitation by a model obesogen, tributyltin (TBT), in chordates, we employed comparative genomics, transactivation and ligand binding assays, homology modeling, and site-directed-mutagenesis. We show that the emergence of multiple PPARs (α, β and γ) in vertebrate ancestry coincides with the acquisition of TBT agonist affinity, as can be deduced from the conserved transactivation and binding affinity of the chondrichthyan and mammalian PPARγ. The amphioxus single-copy PPAR is irresponsive to TBT; as well as the investigated teleosts, this is a probable consequence of a specific mutational remodeling of the ligand binding pocket. Our findings endorse the modulatory ability of man-made chemicals and suggest an evolutionarily diverse setting, with impacts for environmental risk assessment.
Collapse
Affiliation(s)
- Ana M F Capitão
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| | - Mónica S Lopes-Marques
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
| | - Yoichiro Ishii
- Laboratory of Hygienic Chemistry and Molecular Toxicology , Gifu Pharmaceutical University , 1-25-4 Daigaku-nishi , Gifu , Gifu 501-1196 , Japan
| | - Raquel Ruivo
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
| | - Elza S S Fonseca
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| | - Inês Páscoa
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
| | - Rodolfo P Jorge
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
| | - Mélanie A G Barbosa
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| | - Youhei Hiromori
- Laboratory of Hygienic Chemistry and Molecular Toxicology , Gifu Pharmaceutical University , 1-25-4 Daigaku-nishi , Gifu , Gifu 501-1196 , Japan
- Faculty of Pharmaceutical Sciences , Suzuka University of Medical Science 3500-3 Minamitamagaki , Suzuka , Mie 513-8670 , Japan
| | - Takayuki Miyagi
- Laboratory of Hygienic Chemistry and Molecular Toxicology , Gifu Pharmaceutical University , 1-25-4 Daigaku-nishi , Gifu , Gifu 501-1196 , Japan
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology , Gifu Pharmaceutical University , 1-25-4 Daigaku-nishi , Gifu , Gifu 501-1196 , Japan
| | - Miguel M Santos
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| |
Collapse
|
23
|
Markov GV, Girard J, Laudet V, Leblanc C. Hormonally active phytochemicals from macroalgae: A largely untapped source of ligands to deorphanize nuclear receptors in emerging marine animal models. Gen Comp Endocrinol 2018; 265:41-45. [PMID: 29908834 DOI: 10.1016/j.ygcen.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/30/2018] [Accepted: 06/13/2018] [Indexed: 02/09/2023]
Abstract
Hormonally active phytochemicals (HAPs) are signaling molecules produced by plants that alter hormonal signaling in animals, due to consumption or environmental exposure. To date, HAPs have been investigated mainly in terrestrial ecosystems. To gain a full understanding of the origin and evolution of plant-animal interactions, it is necessary also to study these interactions in the marine environment, where the major photosynthetic lineages are very distant from the terrestrial plants. Here we focus on chemicals from red and brown macroalgae and point out their potential role as modulators of the endocrine system of aquatic animals through nuclear hormone receptors. We show that, regarding steroids and oxylipins, there are already some candidates available for further functional investigations of ligand-receptor interactions. Furthermore, several carotenoids, produced by cyanobacteria provide candidates that could be investigated with respect to their presence in macroalgae. Finally, regarding halogenated compounds, it is not clear yet which molecules could bridge the gap to explain the transition from lipid sensing to thyroid hormone high affinity binding among nuclear receptors.
Collapse
Affiliation(s)
- Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France.
| | - Jean Girard
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Vincent Laudet
- Sorbonne Université, Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| |
Collapse
|