1
|
Sanganahalli BG, Thompson GJ, Parent M, Verhagen JV, Blumenfeld H, Herman P, Hyder F. Thalamic activations in rat brain by fMRI during tactile (forepaw, whisker) and non-tactile (visual, olfactory) sensory stimulations. PLoS One 2022; 17:e0267916. [PMID: 35522646 PMCID: PMC9075615 DOI: 10.1371/journal.pone.0267916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
The thalamus is a crucial subcortical hub that impacts cortical activity. Tracing experiments in animals and post-mortem humans suggest rich morphological specificity of the thalamus. Very few studies reported rodent thalamic activations by functional MRI (fMRI) as compared to cortical activations for different sensory stimuli. Here, we show different portions of the rat thalamus in response to tactile (forepaw, whisker) and non-tactile (visual, olfactory) sensory stimuli with high field fMRI (11.7T) using a custom-build quadrature surface coil to capture high sensitivity signals from superficial and deep brain regions simultaneously. Results demonstrate reproducible thalamic activations during both tactile and non-tactile stimuli. Forepaw and whisker stimuli activated broader regions within the thalamus: ventral posterior lateral (VPL), ventral posterior medial (VPM), lateral posterior mediorostral (LPMR) and posterior medial (POm) thalamic nuclei. Visual stimuli activated dorsal lateral geniculate nucleus (DLG) of the thalamus but also parts of the superior/inferior colliculus, whereas olfactory stimuli activated specifically the mediodorsal nucleus of the thalamus (MDT). BOLD activations in LGN and MDT were much stronger than in VPL, VPM, LPMR and POm. These fMRI-based thalamic activations suggest that forepaw and whisker (i.e., tactile) stimuli engage VPL, VPM, LPMR and POm whereas visual and olfactory (i.e., non-tactile) stimuli, respectively, recruit DLG and MDT exclusively.
Collapse
Affiliation(s)
- Basavaraju G. Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
| | - Garth J. Thompson
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Maxime Parent
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
| | - Justus V. Verhagen
- The John B. Pierce Laboratory, New Haven, Connecticut, United States of America
- Department of Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Hal Blumenfeld
- Department of Neuroscience, Yale University, New Haven, Connecticut, United States of America
- Department of Neurology, Yale University, New Haven, Connecticut, United States of America
- Department of Neurosurgery, Yale University, New Haven, Connecticut, United States of America
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
2
|
Li Y, Han H, Shi K, Cui D, Yang J, Alberts IL, Yuan L, Zhao G, Wang R, Cai X, Teng Z. The Mechanism of Downregulated Interstitial Fluid Drainage Following Neuronal Excitation. Aging Dis 2020; 11:1407-1422. [PMID: 33269097 PMCID: PMC7673848 DOI: 10.14336/ad.2020.0224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
The drainage of brain interstitial fluid (ISF) has been observed to slow down following neuronal excitation, although the mechanism underlying this phenomenon is yet to be elucidated. In searching for the changes in the brain extracellular space (ECS) induced by electrical pain stimuli in the rat thalamus, significantly decreased effective diffusion coefficient (DECS) and volume fraction (α) of the brain ECS were shown, accompanied by the slowdown of ISF drainage. The morphological basis for structural changes in the brain ECS was local spatial deformation of astrocyte foot processes following neuronal excitation. We further studied aquaporin-4 gene (APQ4) knockout rats in which the changes of the brain ECS structure were reversed and found that the slowed DECS and ISF drainage persisted, confirming that the down-regulation of ISF drainage following neuronal excitation was mainly attributable to the release of neurotransmitters rather than to structural changes of the brain ECS. Meanwhile, the dynamic changes in the DECS were synchronized with the release and elimination processes of neurotransmitters following neuronal excitation. In conclusion, the downregulation of ISF drainage following neuronal excitation was found to be caused by the restricted diffusion in the brain ECS, and DECS mapping may be used to track the neuronal activity in the deep brain.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Kuangyu Shi
- Department of Nuclear Medicine, University of Bern, 3010 Bern, Switzerland.
- Department of Informatics, Technical University of Munich, Garching 85748, Germany.
| | - Dehua Cui
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Jun Yang
- Department of Radiology, Peking University Third Hospital, Beijing, China.
| | - Ian Leigh Alberts
- Department of Nuclear Medicine, University of Bern, 3010 Bern, Switzerland.
| | - Lan Yuan
- Peking University Medical and Health Analysis Center, Peking University Health Science Center, Beijing, China.
| | - Guomei Zhao
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Rui Wang
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Xianjie Cai
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Ze Teng
- Department of Radiology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Relationship of Cerebral Hemodynamics and Cerebral Bioelectrical Activity in Patients with Cervical Osteochondrosis. ACTA BIOMEDICA SCIENTIFICA 2020. [DOI: 10.29413/abs.2020-5.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
Faulkner M, Hannan S, Aristovich K, Avery J, Holder D. Feasibility of imaging evoked activity throughout the rat brain using electrical impedance tomography. Neuroimage 2018; 178:1-10. [DOI: 10.1016/j.neuroimage.2018.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/26/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022] Open
|
5
|
Esmaeilpour Z, Marangolo P, Hampstead BM, Bestmann S, Galletta E, Knotkova H, Bikson M. Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimul 2017; 11:310-321. [PMID: 29258808 DOI: 10.1016/j.brs.2017.12.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is investigated to modulate neuronal function by applying a fixed low-intensity direct current to scalp. OBJECTIVES We critically discuss evidence for a monotonic response in effect size with increasing current intensity, with a specific focus on a question if increasing applied current enhance the efficacy of tDCS. METHODS We analyzed tDCS intensity does-response from different perspectives including biophysical modeling, animal modeling, human neurophysiology, neuroimaging and behavioral/clinical measures. Further, we discuss approaches to design dose-response trials. RESULTS Physical models predict electric field in the brain increases with applied tDCS intensity. Data from animal studies are lacking since a range of relevant low-intensities is rarely tested. Results from imaging studies are ambiguous while human neurophysiology, including using transcranial magnetic stimulation (TMS) as a probe, suggests a complex state-dependent non-monotonic dose response. The diffusivity of brain current flow produced by conventional tDCS montages complicates this analysis, with relatively few studies on focal High Definition (HD)-tDCS. In behavioral and clinical trials, only a limited range of intensities (1-2 mA), and typically just one intensity, are conventionally tested; moreover, outcomes are subject brain-state dependent. Measurements and models of current flow show that for the same applied current, substantial differences in brain current occur across individuals. Trials are thus subject to inter-individual differences that complicate consideration of population-level dose response. CONCLUSION The presence or absence of simple dose response does not impact how efficacious a given tDCS dose is for a given indication. Understanding dose-response in human applications of tDCS is needed for protocol optimization including individualized dose to reduce outcome variability, which requires intelligent design of dose-response studies.
Collapse
Affiliation(s)
- Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY 10031, USA; Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Paola Marangolo
- Dipartimento di Studi Umanistici, University Federico II, Naples and IRCCS Fondazione Santa Lucia, Rome Italy
| | - Benjamin M Hampstead
- VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Sven Bestmann
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, UK
| | - Elisabeth Galletta
- Rusk Rehabilitation Medicine, New York University Langone Medical Center, USA
| | - Helena Knotkova
- MJHS Institute for Innovation in Palliative Care, New York, NY, USA; Department of Family and Social Medicine, Albert Einstein College of Medicine, The Bronx, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY 10031, USA
| |
Collapse
|