1
|
Tumenbayar BI, Pham K, Biber JC, Drewes R, Bae Y. Transcriptomic and Multi-scale Network Analyses Reveal Key Drivers of Cardiovascular Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612437. [PMID: 39345636 PMCID: PMC11429675 DOI: 10.1101/2024.09.11.612437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Cardiovascular diseases (CVDs) and pathologies are often driven by changes in molecular signaling and communication, as well as in cellular and tissue components, particularly those involving the extracellular matrix (ECM), cytoskeleton, and immune response. The fine-wire vascular injury model is commonly used to study neointimal hyperplasia and vessel stiffening, but it is not typically considered a model for CVDs. In this paper, we hypothesize that vascular injury induces changes in gene expression, molecular communication, and biological processes similar to those observed in CVDs at both the transcriptome and protein levels. To investigate this, we analyzed gene expression in microarray datasets from injured and uninjured femoral arteries in mice two weeks post-injury, identifying 1,467 significantly and differentially expressed genes involved in several CVDs such as including vaso-occlusion, arrhythmia, and atherosclerosis. We further constructed a protein-protein interaction network with seven functionally distinct clusters, with notable enrichment in ECM, metabolic processes, actin-based process, and immune response. Significant molecular communications were observed between the clusters, most prominently among those involved in ECM and cytoskeleton organizations, inflammation, and cell cycle. Machine Learning Disease pathway analysis revealed that vascular injury-induced crosstalk between ECM remodeling and immune response clusters contributed to aortic aneurysm, neovascularization of choroid, and kidney failure. Additionally, we found that interactions between ECM and actin cytoskeletal reorganization clusters were linked to cardiac damage, carotid artery occlusion, and cardiac lesions. Overall, through multi-scale bioinformatic analyses, we demonstrated the robustness of the vascular injury model in eliciting transcriptomic and molecular network changes associated with CVDs, highlighting its potential for use in cardiovascular research.
Collapse
Affiliation(s)
- Bat-Ider Tumenbayar
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Khanh Pham
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - John C. Biber
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Rhonda Drewes
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
2
|
Aradhyula V, Breidenbach JD, Khatib-Shahidi BZ, Slogar JN, Eyong SA, Faleel D, Dube P, Gupta R, Khouri SJ, Haller ST, Kennedy DJ. Transcriptomic Analysis of Arachidonic Acid Pathway Genes Provides Mechanistic Insight into Multi-Organ Inflammatory and Vascular Diseases. Genes (Basel) 2024; 15:954. [PMID: 39062733 PMCID: PMC11275336 DOI: 10.3390/genes15070954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Arachidonic acid (AA) metabolites have been associated with several diseases across various organ systems, including the cardiovascular, pulmonary, and renal systems. Lipid mediators generated from AA oxidation have been studied to control macrophages, T-cells, cytokines, and fibroblasts, and regulate inflammatory mediators that induce vascular remodeling and dysfunction. AA is metabolized by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) to generate anti-inflammatory, pro-inflammatory, and pro-resolutory oxidized lipids. As comorbid states such as diabetes, hypertension, and obesity become more prevalent in cardiovascular disease, studying the expression of AA pathway genes and their association with these diseases can provide unique pathophysiological insights. In addition, the AA pathway of oxidized lipids exhibits diverse functions across different organ systems, where a lipid can be both anti-inflammatory and pro-inflammatory depending on the location of metabolic activity. Therefore, we aimed to characterize the gene expression of these lipid enzymes and receptors throughout multi-organ diseases via a transcriptomic meta-analysis using the Gene Expression Omnibus (GEO) Database. In our study, we found that distinct AA pathways were expressed in various comorbid conditions, especially those with prominent inflammatory risk factors. Comorbidities, such as hypertension, diabetes, and obesity appeared to contribute to elevated expression of pro-inflammatory lipid mediator genes. Our results demonstrate that expression of inflammatory AA pathway genes may potentiate and attenuate disease; therefore, we suggest further exploration of these pathways as therapeutic targets to improve outcomes.
Collapse
Affiliation(s)
- Vaishnavi Aradhyula
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Joshua D. Breidenbach
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Bella Z. Khatib-Shahidi
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Julia N. Slogar
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Sonia A. Eyong
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Dhilhani Faleel
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Prabhatchandra Dube
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rajesh Gupta
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Samer J. Khouri
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Steven T. Haller
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - David J. Kennedy
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
3
|
Kim J, Shin BS, Kim DH, Shin DI, Ahn SH, Kim JG, Ryu SH, Moon HR, Kang HG, Jeong H, Yum KS, Chae HY, Kim DH, Kang K, Kim J. Molecular genomic and epigenomic characteristics related to aspirin and clopidogrel resistance. BMC Med Genomics 2024; 17:166. [PMID: 38902747 PMCID: PMC11188263 DOI: 10.1186/s12920-024-01936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Mediators, genomic and epigenomic characteristics involving in metabolism of arachidonic acid by cyclooxygenase (COX) and lipoxygenase (ALOX) and hepatic activation of clopidogrel have been individually suggested as factors associated with resistance against aspirin and clopidogrel. The present multi-center prospective cohort study evaluated whether the mediators, genomic and epigenomic characteristics participating in arachidonic acid metabolism and clopidogrel activation could be factors that improve the prediction of the aspirin and clopidogrel resistance in addition to cardiovascular risks. METHODS We enrolled 988 patients with transient ischemic attack and ischemic stroke who were evaluated for a recurrence of ischemic stroke to confirm clinical resistance, and measured aspirin (ARU) and P2Y12 reaction units (PRU) using VerifyNow to assess laboratory resistance 12 weeks after aspirin and clopidogrel administration. We investigated whether mediators, genotypes, and promoter methylation of genes involved in COX and ALOX metabolisms and clopidogrel activation could synergistically improve the prediction of ischemic stroke recurrence and the ARU and PRU levels by integrating to the established cardiovascular risk factors. RESULTS The logistic model to predict the recurrence used thromboxane A synthase 1 (TXAS1, rs41708) A/A genotype and ALOX12 promoter methylation as independent variables, and, improved sensitivity of recurrence prediction from 3.4% before to 13.8% after adding the mediators, genomic and epigenomic variables to the cardiovascular risks. The linear model we used to predict the ARU level included leukotriene B4, COX2 (rs20417) C/G and thromboxane A2 receptor (rs1131882) A/A genotypes with the addition of COX1 and ALOX15 promoter methylations as variables. The linear PRU prediction model included G/A and prostaglandin I receptor (rs4987262) G/A genotypes, COX2 and TXAS1 promoter methylation, as well as cytochrome P450 2C19*2 (rs4244285) A/A, G/A, and *3 (rs4986893) A/A genotypes as variables. The linear models for predicting ARU (r = 0.291, R2 = 0.033, p < 0.01) and PRU (r = 0.503, R2 = 0.210, p < 0.001) levels had improved prediction performance after adding the genomic and epigenomic variables to the cardiovascular risks. CONCLUSIONS This study demonstrates that different mediators, genomic and epigenomic characteristics of arachidonic acid metabolism and clopidogrel activation synergistically improved the prediction of the aspirin and clopidogrel resistance together with the cardiovascular risk factors. TRIAL REGISTRATION URL: https://www. CLINICALTRIALS gov ; Unique identifier: NCT03823274.
Collapse
Grants
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
Collapse
Affiliation(s)
- Jei Kim
- Department of Neurology, College of Medicine and Hospital, Daejeon-Chungnam Regional Cardiocerebrovascular Disease Center, Chungnam National University, Daejeon, South Korea.
- Department of Anatomy, College of Medicine, Chungnam National University, 266 Moonhwaro, Joongku, Daejeon, 35015, South Korea.
| | - Byoung-Soo Shin
- Department of Neurology, Research Institute of Clinical Medicine and Biomedical Research Institute, Medical School and Hospital, Jeonbuk National University, Jeonju, South Korea
| | - Dae-Hyun Kim
- Department of Neurology, Busan Regional Cardiocerebrovascular Disease Center, Dong-A University Hospital, Busan, South Korea
| | - Dong-Ick Shin
- Department of Neurology, Chungbuk Regional Cardiocerebrovascular Disease Center, Chungbuk National University Hospital, Cheongju, South Korea
| | - Seong Hwan Ahn
- Department of Neurology, Chosun University Hospital, Gwangju, South Korea
| | - Jae Guk Kim
- Department of Neurology, Eulji University Hospital, Daejeon, South Korea
| | - Su Hyun Ryu
- Department of Neurology, College of Medicine and Hospital, Daejeon-Chungnam Regional Cardiocerebrovascular Disease Center, Chungnam National University, Daejeon, South Korea
| | - Hye Rin Moon
- Department of Neurology, College of Medicine and Hospital, Daejeon-Chungnam Regional Cardiocerebrovascular Disease Center, Chungnam National University, Daejeon, South Korea
| | - Hyun Goo Kang
- Department of Neurology, Research Institute of Clinical Medicine and Biomedical Research Institute, Medical School and Hospital, Jeonbuk National University, Jeonju, South Korea
| | - Hyeseon Jeong
- Department of Neurology, College of Medicine and Hospital, Daejeon-Chungnam Regional Cardiocerebrovascular Disease Center, Chungnam National University, Daejeon, South Korea
| | - Kyu Sun Yum
- Department of Neurology, Chungbuk Regional Cardiocerebrovascular Disease Center, Chungbuk National University Hospital, Cheongju, South Korea
| | - Hee-Yun Chae
- Department of Neurology, Chungbuk Regional Cardiocerebrovascular Disease Center, Chungbuk National University Hospital, Cheongju, South Korea
| | - Do-Hyung Kim
- Department of Neurology, Eulji University Hospital, Daejeon, South Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, South Korea
| | - Jeeyeon Kim
- Department of Neurology, College of Medicine and Hospital, Daejeon-Chungnam Regional Cardiocerebrovascular Disease Center, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
4
|
Chen H, Qing T, Luo H, Yu M, Wang Y, Wei W, Xie Y, Yi X. Inflammation and endothelial function relevant genetic polymorphisms, carotid atherosclerosis, and vascular events in high-risk stroke population. Front Neurol 2024; 15:1405183. [PMID: 38827573 PMCID: PMC11144032 DOI: 10.3389/fneur.2024.1405183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024] Open
Abstract
Aim To identify the associations of 19 single nucleotide polymorphisms (SNPs) in genes involved in inflammation and endothelial function and carotid atherosclerosis with subsequent ischemic stroke and other vascular events in the high-risk stroke population. Methods This was a multicenter community-based sectional survey and prospective cohort study in Sichuan, southwestern China. Eight communities were randomly selected, and the residents in each community were surveyed using a structured face-to-face questionnaire. Carotid ultrasonography and DNA information were obtained from 2,377 out of 2,893 individuals belonging to a high-risk stroke population. Genotypes of the 19 SNPs in genes involved in inflammation and endothelial function were measured. All the 2,377 subjects were followed up for 4.7 years after the face-to-face survey. The primary outcome was ischemic stroke, and the secondary outcome was a composite of vascular events. Results Among the 2,377 subjects, 2,205 (92.8%) completed a 4.7-year follow-up, 947 (42.9%) had carotid atherosclerosis [372 (16.9%) carotid vulnerable plaque, 405 (18.4%) mean IMT > 0.9 mm, 285 (12.0%) carotid stenosis ≥15%]. Outcomes occurred in 158 (7.2%) subjects [92 (4.2%) ischemic stroke, 17 (0.8%) hemorrhagic stroke, 48 (2.2%) myocardial infarction, and 26 (1.2%) death] during follow-up. There was a significant gene-gene interaction among ITGA2 rs1991013, IL1A rs1609682, and HABP2 rs7923349 in the 19 SNPs. The multivariate logistic regression model revealed that carotid atherosclerosis and the high-risk interactive genotypes among the three SNPs were independent with a higher risk for ischemic stroke (OR = 2.67, 95% CI: 1.52-6.78, p = 0.004; and OR = 3.11, 95% CI: 2.12-9.27, p < 0.001, respectively) and composite vascular events (OR = 3.04, 95% CI: 1.46-6.35, p < 0.001; and OR = 3.23, 95% CI: 1.97-8.52, p < 0.001, respectively). Conclusion The prevalence of carotid atherosclerosis was shown to be very high in the high-risk stroke population. Specific SNPs, interactions among them, and carotid atherosclerosis were independently associated with a higher risk of ischemic stroke and other vascular events.
Collapse
Affiliation(s)
- Hong Chen
- Department of Neurology, The People’s Hospital of Deyang City, Deyang, Sichuan, China
| | - Ting Qing
- Department of Neurology, The Second People’s Hospital of Deyang City, Deyang, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Yu
- Department of Neurology, The Suining Central Hospital, Suining, Sichuan, China
| | - Yanfen Wang
- Department of Neurology, The People’s Hospital of Deyang City, Deyang, Sichuan, China
| | - Wei Wei
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Xie
- Department of Neurology, The People’s Hospital of Deyang City, Deyang, Sichuan, China
| | - Xingyang Yi
- Department of Neurology, The People’s Hospital of Deyang City, Deyang, Sichuan, China
| |
Collapse
|
5
|
Ricciotti E, Haines PG, Chai W, FitzGerald GA. Prostanoids in Cardiac and Vascular Remodeling. Arterioscler Thromb Vasc Biol 2024; 44:558-583. [PMID: 38269585 PMCID: PMC10922399 DOI: 10.1161/atvbaha.123.320045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Prostanoids are biologically active lipids generated from arachidonic acid by the action of the COX (cyclooxygenase) isozymes. NSAIDs, which reduce the biosynthesis of prostanoids by inhibiting COX activity, are effective anti-inflammatory, antipyretic, and analgesic drugs. However, their use is limited by cardiovascular adverse effects, including myocardial infarction, stroke, hypertension, and heart failure. While it is well established that NSAIDs increase the risk of atherothrombotic events and hypertension by suppressing vasoprotective prostanoids, less is known about the link between NSAIDs and heart failure risk. Current evidence indicates that NSAIDs may increase the risk for heart failure by promoting adverse myocardial and vascular remodeling. Indeed, prostanoids play an important role in modulating structural and functional changes occurring in the myocardium and in the vasculature in response to physiological and pathological stimuli. This review will summarize current knowledge of the role of the different prostanoids in myocardial and vascular remodeling and explore how maladaptive remodeling can be counteracted by targeting specific prostanoids.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Institute for Translational Medicine and Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Philip G Haines
- Rhode Island Hospital, Department of Medicine, Warren Alpert Medical School of Brown University, Providence (P.G.H.)
| | - William Chai
- Health and Human Biology, Division of Biology and Medicine, Brown University, Providence, RI (W.C.)
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Institute for Translational Medicine and Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Department of Medicine (G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
6
|
Xie Y, Yu M, Qing T, Luo H, Shao M, Wei W, Yi X. Variants in genes related to inflammation and endothelial function can increase the risk for carotid atherosclerosis in southwestern China. Front Neurol 2023; 14:1174425. [PMID: 37292135 PMCID: PMC10244594 DOI: 10.3389/fneur.2023.1174425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Aim To investigate the potential association between polymorphisms in genes involved in endothelial function, inflammation and carotid atherosclerosis. Methods This was a three-center, population-based sectional survey conducted in Sichuan province of southwestern China. We randomly selected 8 different communities in Sichuan, and the residents in each community volunteered to participate in the survey by face-to-face questionnaire. A total of 2,377 residents with high stroke risk population in the 8 communities were included. Carotid atherosclerosis was evaluated by carotid ultrasound, and the 19 single nucleotide polymorphisms (SNPs) in 10 endothelial function as well as inflammation relevant genes were measured in the high stroke risk population. Carotid atherosclerosis was defined by the presence of carotid plaque or any carotid stenosis ≥15% or mean intima-media thickness (IMT) > 0.9 mm. Generalized multifactor dimensionality reduction (GMDR) approach was used to analyze gene-gene interactions among the 19 SNPs. Results Among the 2,377 subjects with high stroke risk, 1,028 subjects had carotid atherosclerosis (43.2%), of which 852 (35.8%) cases had carotid plaque, 295 (12.4%) cases had ≥15% carotid stenosis, whereas 445 (18.7%) had mean IMT > 0.9 mm. Multivariate logistic regression revealed that IL1A rs1609682 TT and HABP2 rs7923349 TT served as independent risk factors for carotid atherosclerosis (OR, 1.45, 95% CI: 1.034-2.032, p = 0.031, and OR, 1.829, 95% CI: 1.228-2.723, p = 0.003). GMDR analysis indicated that there was a significant gene-gene interaction found among IL1A rs1609682, ITGA2 rs1991013, and HABP2 rs7923349. After adjusting the covariates, the high-risk interactive genotypes in the 3 variants were significantly associated with a significantly higher risk for carotid atherosclerosis (OR, 2.08, 95% CI: 1.257-5.98, p < 0.001). Conclusion The prevalence of carotid atherosclerosis was observed to be extremely high in the high-risk stroke population in southwestern China. There were associations observed between the specific variants in inflammation and endothelial function relevant genes and carotid atherosclerosis. The high-risk interactive genotypes among IL1A rs1609682, ITGA2 rs1991013, and HABP2 rs7923349 significantly increased the risk of carotid atherosclerosis. These results are expected to provide novel strategies for the prevention of carotid atherosclerosis. The gene-gene interactive analysis used in this study may be very helpful to elucidate complex genetic risk factors for carotid atherosclerosis.
Collapse
Affiliation(s)
- Yong Xie
- Department of Neurology, The People’s Hospital of Deyang City, Deyang, Sichuan, China
| | - Ming Yu
- Department of Neurology, The Suining Central Hospital, Suining, Sichuan, China
| | - Ting Qing
- Department of Neurology, The Second People’s Hospital of Deyang City, Deyang, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Minjie Shao
- Department of Neurology, The First People’s Hospital of Wenling, Wenling, Zhejiang, China
| | - Wei Wei
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xingyang Yi
- Department of Neurology, The People’s Hospital of Deyang City, Deyang, Sichuan, China
| |
Collapse
|
7
|
Lu J, Peng W, Yi X, Fan D, Li J, Wang C, Luo H, Yu M. Inflammation and endothelial function-related gene polymorphisms are associated with carotid atherosclerosis-A study of community population in Southwest China. Brain Behav 2023:e3045. [PMID: 37137812 DOI: 10.1002/brb3.3045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
OBJECTIVES To investigate the relationships between 18 single nucleotide polymorphisms with carotid atherosclerosis and whether interactions among these genes were associated with an increased risk of carotid atherosclerosis. METHODS Face-to-face surveys were conducted with individuals aged 40 or older in eight communities. A total of 2377 individuals were included in the study. Ultrasound was used to detect carotid atherosclerosis in the included population. 18 loci of 10 genes associated with inflammation and endothelial function were detected. Gene-gene interactions were analyzed using generalized multifactor dimensionality reduction (GMDR). RESULTS Among the 2377 subjects, 445 (18.7%) subjects had increased intima-media thickness in the common carotid artery (CCA-IMT), and 398 (16.7%) subjects were detected with vulnerable plaque. In addition, NOS2A rs2297518 polymorphism was associated with increased CCA-IMT, IL1A rs1609682, and HABP2 rs7923349 polymorphisms were associated with vulnerable plaque. Besides, GMDR analysis showed significant gene-gene interactions among TNFSF4 rs1234313, IL1A rs1609682, TLR4 rs1927911, ITGA2 rs1991013, NOS2A rs2297518, IL6R rs4845625, ITGA2 rs4865756, HABP2 rs7923349, NOS2A rs8081248, HABP2 rs932650. CONCLUSION The prevalences of increased CCA-IMT and vulnerable plaque were high in Southwestern China's high-risk stroke population. Furthermore, inflammation and endothelial function-related gene polymorphisms were associated with carotid atherosclerosis.
Collapse
Affiliation(s)
- Jing Lu
- Department of Neurology, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Wei Peng
- Department of Gastrointestinal Surgery, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Xingyang Yi
- Department of Neurology, the People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Daofeng Fan
- Department of Neurology, Longyan First Hospital Affiliated to Fujian Medical University, Fujian, China
| | - Jie Li
- Department of Neurology, the People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Chun Wang
- Department of Neurology, the People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Hua Luo
- Department of Neurology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Yu
- Department of Neurology, the Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
8
|
Beccacece L, Abondio P, Bini C, Pelotti S, Luiselli D. The Link between Prostanoids and Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24044193. [PMID: 36835616 PMCID: PMC9962914 DOI: 10.3390/ijms24044193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiovascular diseases are the leading cause of global deaths, and many risk factors contribute to their pathogenesis. In this context, prostanoids, which derive from arachidonic acid, have attracted attention for their involvement in cardiovascular homeostasis and inflammatory processes. Prostanoids are the target of several drugs, but it has been shown that some of them increase the risk of thrombosis. Overall, many studies have shown that prostanoids are tightly associated with cardiovascular diseases and that several polymorphisms in genes involved in their synthesis and function increase the risk of developing these pathologies. In this review, we focus on molecular mechanisms linking prostanoids to cardiovascular diseases and we provide an overview of genetic polymorphisms that increase the risk for cardiovascular disease.
Collapse
Affiliation(s)
- Livia Beccacece
- Computational Genomics Lab, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Paolo Abondio
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Carla Bini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
| |
Collapse
|
9
|
PTGIS May Be a Predictive Marker for Ovarian Cancer by Regulating Fatty Acid Metabolism. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:2397728. [PMID: 36785673 PMCID: PMC9918844 DOI: 10.1155/2023/2397728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 11/24/2022] [Indexed: 02/05/2023]
Abstract
Background Ovarian cancer tends to metastasize to the omentum, which is an organ mainly composed of adipose tissue. Many studies have found that fatty acid metabolism is related to the occurrence and metastasis of cancers. Therefore, it is possible that fatty acid metabolism-related genes (FAMRG) affect the prognosis of ovarian cancer patients. Methods First, profiles of ovarian cancer and normal ovarian tissue transcriptomes were acquired from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. A LASSO regression predictive model was developed via the "glmnet" R package. The nomogram was created via the "regplot." Gene Set Variation Analysis (GSVA), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) analyses were conducted to determine the FAMRGs' roles. The percentage of immunocyte infiltration was calculated via CIBERSORT. Using "pRRophetic," the sensitivity of eight regularly used medications and immunotherapy was anticipated. Results 125 genes were determined as different expression genes (DEGs). Based on RXRA, ECI2, PTGIS, and ACACB, a prognostic model is created and the risk score is calculated. Analyses of univariate and multivariate regressions revealed that the risk score was a distinct prognostic factor (univariate: HR: 2.855, 95% CI: 1.756-4.739, P < 0.001; multivariate: HR: 2.943, 95% CI: 1.800-4.812, P < 0.001). The nomogram demonstrated that it properly predicted the 1-year survival rate. The expression of memory B molecular units, follicular helper T molecular units, regulatory T molecular units, and M1 macrophages differed remarkably between the groups at high and low risk (P < 0.05). Adipocytokine signaling pathways, cancer pathways, and degradation of valine, leucine, and isoleucine vary between high- and low-risk populations. The findings of the GO enrichment revealed that the extracellular matrix and cellular structure were the two most enriched pathways. PTGIS, which is an important gene in fatty acid metabolism, was identified as the hub gene. This result was verified in ovarian cancer and ovarian tissues. The connection between the gene and survival was statistically remarkable (P = 0.015). The pRRophetic algorithm revealed that the low-risk group was more adaptable to cisplatin, doxorubicin, 5-fluorouracil, and etoposide (P < 0.001). Conclusion PTGIS may be an indicator of prognosis and a possible therapeutic target for the therapy of ovarian cancer patients. The fatty acid metabolism of immune cells may be controlled, which has an indirect effect on cancer cell growth.
Collapse
|
10
|
Liu L, Yi X, Luo H, Yu M. Inflammation and endothelial function relevant genetic polymorphisms in carotid stenosis in southwestern China. Front Neurol 2023; 13:1076898. [PMID: 36686520 PMCID: PMC9848733 DOI: 10.3389/fneur.2022.1076898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Aim To evaluate the relationship between carotid stenosis with variants in genes referred to inflammation and endothelial function. Methods There was a multi-center, cross sectional survey in southwestern China. The eight communities were selected at random in southwestern China. The residents aged ≥40 years volunteered to participate in face-to-face survey. Subjects with at least three of the aforementioned eight stroke related risk factors or a history of stroke were classified as high-risk population for stroke. A total of 2,377 subjects were the high-risk population for stroke in the eight communities, and degree of carotid stenosis was assessed by carotid ultrasound. Genotypes of 6 variants in 3 genes related to inflammation and endothelial function were examined. Gene-gene interaction was analyzed by generalized multifactor dimensionality reduction (GMDR). Results Carotid stenosis were found in 295 (12.41%) subjects, of whom 51 (17.29%) had moderate or severe stenosis. According to multivariate logistic regression analysis, we found that HABP2rs7923349TT was independent risk factor for carotid stenosis (OR, 1.96, 95% CI: 1.22-3.13, P = 0.005) and ITGA2rs1991013AG and HABP2rs7923349TT were independent risk factors for moderate to severe carotid stenosis (OR, 2.28, 95% CI: 1.28-4.07, P = 0.005; OR, 2.90, 95% CI: 1.19-7.08, P = 0.019). GMDR analysis showed that there was a significant gene-gene interaction between ITGA2 rs4865756 and HABP2 rs7923349, and the high-risk interactive genotype in the two variants was independently associated with a higher risk for carotid stenosis after adjusting the covariates (OR,1. 42, 95% CI 1.10-1.84, P = 0.008). Conclusions Prevalence of carotid stenosis was very high in the high-risk stroke population in southwestern China. Variants in genes referred in endothelial function were associated with the carotid stenosis. The high-risk interactive genotype in ITGA2 rs4865756 and HABP2 rs7923349 was independently associated with a higher risk for carotid stenosis.
Collapse
Affiliation(s)
- Lin Liu
- Department of Neurology, The People's Hospital of Deyang City, Deyang, China
| | - Xingyang Yi
- Department of Neurology, The People's Hospital of Deyang City, Deyang, China,*Correspondence: Xingyang Yi ✉
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ming Yu
- Department of Neurology, The Suining Central Hospital, Suining, China
| |
Collapse
|
11
|
Bao H, Li J, Zhang B, Huang J, Su D, Liu L. Integrated bioinformatics and machine-learning screening for immune-related genes in diagnosing non-alcoholic fatty liver disease with ischemic stroke and RRS1 pan-cancer analysis. Front Immunol 2023; 14:1113634. [PMID: 37090698 PMCID: PMC10115222 DOI: 10.3389/fimmu.2023.1113634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Background The occurrence of ischemic stroke (IS) is associated with nonalcoholic fatty liver disease (NAFLD). The cancer burden of NAFLD complicated by IS also warrants attention. This study aimed to identify candidate immune biomarkers linked to NAFLD and IS and analyze their association with cancer. Methods Two of each of the NAFLD and IS datasets were downloaded, differentially expressed genes (DEGs) were identified, and module genes were screened via weighted gene coexpression network analysis (WGCNA). Subsequently, utilizing machine learning (least absolute shrinkage and selection operator regression, random forest and support vector machine-recursive feature elimination) and immune cell infiltration analysis, immune-related candidate biomarkers for NAFLD with IS were determined. Simultaneously, a nomogram was established, the diagnostic efficacy was assessed, and the role of candidate biomarkers in cancer was ascertained through pan-cancer analyses. Results In this study, 117 and 98 DEGs were identified from the combined NAFLD and IS datasets, respectively, and 279 genes were obtained from the most significant modules of NAFLD. NAFLD module genes and IS DEGs were intersected to obtain nine genes, which were enriched in the inflammatory response and immune regulation. After overlapping the results of the three machine learning algorithms, six candidate genes were obtained, based on which a nomogram was constructed. The calibration curve demonstrated good accuracy, and the candidate genes had high diagnostic values. The genes were found to be related to the immune dysregulation of stroke, and RRS1 was strongly associated with the prognosis, immune cell infiltration, microsatellite instability (MSI), and tumor mutation burden (TMB). Conclusion Six common candidate immune-related genes (PTGS2, FCGR1A, MMP9, VNN3, S100A12, and RRS1) of NAFLD and IS were identified, and a nomogram for diagnosing NAFLD with IS was established. RRS1 may serve as a candidate gene for predicting the prognosis of patients with cancer who have NAFLD complicated by IS, which could aid in their diagnosis and treatment.
Collapse
Affiliation(s)
- Huayan Bao
- Department of Medical Imaging Center; Guangxi Key Clinical Specialty (Medical Imaging Department); Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital (Medical Imaging Department), Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jianwen Li
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Boyang Zhang
- Department of Medical Imaging Center; Guangxi Key Clinical Specialty (Medical Imaging Department); Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital (Medical Imaging Department), Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ju Huang
- Department of Medical Imaging Center; Guangxi Key Clinical Specialty (Medical Imaging Department); Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital (Medical Imaging Department), Guangxi Medical University Cancer Hospital, Nanning, China
| | - Danke Su
- Department of Medical Imaging Center; Guangxi Key Clinical Specialty (Medical Imaging Department); Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital (Medical Imaging Department), Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Danke Su, ; Lidong Liu,
| | - Lidong Liu
- Department of Medical Imaging Center; Guangxi Key Clinical Specialty (Medical Imaging Department); Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital (Medical Imaging Department), Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Danke Su, ; Lidong Liu,
| |
Collapse
|
12
|
Zijie W, Anan J, Hongmei X, Xiaofan Y, Shaoru Z, Xinyue Q. Exploring the potential mechanism of Fritiliariae Irrhosae Bulbus on ischemic stroke based on network pharmacology and experimental validation. Front Pharmacol 2022; 13:1049586. [DOI: 10.3389/fphar.2022.1049586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: To study the potential targets and molecular mechanisms of Fritiliariae Irrhosae Bulbus (FIB) in the treatment of ischemic strokes based on a network pharmacology strategy, with a combination of molecular docking and animal experiments.Methods: The active components and targets of FIB were screened by TCMSP database and TCMIP database, and the related targets of ischemic strokes were screened by GeneCards, OMIM, CTD, and DrugBank, then the intersection targets of the two were taken. The protein interaction network was constructed by STRING, the PPI network diagram was drawn by using Cytoscape software, and the key targets of FIB treatment of ischemic strokes were analyzed by MCODE. The DAVID database was used for GO and KEGG enrichment analysis, and the potential pathway of FIB against ischemic strokes was obtained. Molecular docking was performed by using AutoDock Tools 1.5.6 software. Finally, a mouse model of ischemic stroke was established, and the results of network pharmacology were verified by in vivo experiments. Realtime Polymerase Chain Reaction was used to detect the expression levels of relevant mRNAs in the mouse brain tissue. Western blot was used to detect the expression levels of related proteins in the mouse brain tissue.Results: 13 kinds of active components of FIB were screened, 31 targets were found in the intersection of FIB and ischemic strokes, 10 key targets were obtained by MCODE analysis, 236 biological processes were involved in GO enrichment analysis, and key targets of KEGG enrichment analysis were mainly concentrated in Neuroactive light receptor interaction, Calcium signaling pathway, Cholinergic synapse, Hepatitis B, Apoptosis—multiple specifications, Pathways in cancer and other significantly related pathways. There was good binding activity between the screened main active components and target proteins when molecular docking was performed. Animal experiments showed that the infarct volume of brain tissue in the FIB treatment group was considerably reduced. RT-qPCR and the results of Western Blot showed that FIB could inhibit the expression of active-Caspase3, HSP90AA1, phosphorylated C-JUN, and COX2.Conclusion: Based on network pharmacology, the effect of FIB in the treatment of ischemic strokes was discussed through the multi-component-multi-target-multi-pathway. The therapeutic effect and potential mechanisms of FIB on ischemic strokes were preliminarily explored, which provided a ground work for further researches on the pharmacodynamic material basis, mechanism of action and clinical application.
Collapse
|
13
|
Dong R, Huang R, Shi X, Xu Z, Mang J. Exploration of the mechanism of luteolin against ischemic stroke based on network pharmacology, molecular docking and experimental verification. Bioengineered 2021; 12:12274-12293. [PMID: 34898370 PMCID: PMC8810201 DOI: 10.1080/21655979.2021.2006966] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 11/06/2022] Open
Abstract
Stroke is a leading cause of morbidity and mortality worldwide. As the most common type of stroke cases, treatment effectiveness is still limited despite intensive research. Recently, traditional Chinese medicine has attracted attention because of potential benefits for stroke treatment. Among these, luteolin, a natural plant flavonoid compound, offers neuroprotection following against ischemic stroke, although the specific mechanisms are unknown. Here we used network pharmacology, molecular docking, and experimental verification to explore the mechanisms whereby luteolin can benefit stroke recovery. The pharmacological and molecular properties of luteolin were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. The potential targets of luteolin and ischemic stroke were collected from interrogating public databases. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed by Funrich and Database for Annotation, Visualization and Integrated Discovery respectively, a luteolin-target-pathway network constructed using Cytoscape, Autodock vina was used for molecular docking simulation with Discovery Studio was used to visualize and analyze the docked conformations. Lastly, we employed an in vitro model of stroke injury to evaluate the effects of luteolin on cell survival and expression of the putative targets. From 95 candidate luteolin target genes, our analysis identified six core targets . KEGG analysis of the candidate targets identified that luteolin provides therapeutic effects on stroke through TNF signaling and other pathways. Our experimental analyses confirmed the conclusions analyzed above. In summary, the molecular and pharmacological mechanisms of luteolin against stroke are indicated in our study from a systematic perspective.
Collapse
Affiliation(s)
- Rui Dong
- Department of Neurology, China-Japan Union Hospital of Jilin University
| | - Renxuan Huang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University
| | - Xiaohua Shi
- Department of Neurology, China-Japan Union Hospital of Jilin University
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University
| | - Jing Mang
- Department of Neurology, China-Japan Union Hospital of Jilin University
| |
Collapse
|
14
|
Xu H, Ge Y, Liu Y, Zheng Y, Hu R, Ren C, Liu Q. Identification of the key genes and immune infiltrating cells determined by sex differences in ischaemic stroke through co-expression network module. IET Syst Biol 2021; 16:28-41. [PMID: 34792838 PMCID: PMC8849259 DOI: 10.1049/syb2.12039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 01/14/2023] Open
Abstract
Stroke is one of the leading causes of patients' death and long-term disability worldwide, and ischaemic stroke (IS) accounts for nearly 80% of all strokes. Differential genes and weighted gene co-expression network analysis (WGCNA) in male and female patients with IS were compared. The authors used cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT) to analyse the distribution pattern of immune subtypes between male and female patients. In this study, 141 up-regulated and 61 down-regulated genes were gathered and distributed into five modules in response to their correlation degree to clinical traits. The criterion for Gene Ontology (GO) term and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway indicated that detailed analysis had the potential to enhance clinical prediction and to identify the gender-related mechanism. After that, the expression levels of hub genes were measured via the quantitative real-time PCR (qRT-PCR) method. Finally, CCL20, ICAM1 and PTGS2 were identified and these may be some promising targets for sex differences in IS. Besides, the hub genes were further verified by rat experiments. Furthermore, these CIBERSORT results showed that T cells CD8 and Monocytes may be the target for the treatment of male and female patients, respectively.
Collapse
Affiliation(s)
- Haipeng Xu
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanzhi Ge
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yang Liu
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yang Zheng
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rong Hu
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Conglin Ren
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qianqian Liu
- Department of Respiratory, The First People's Hospital of Lanzhou City, Lanzhou, Gansu, China
| |
Collapse
|
15
|
The Role of Thromboxane in the Course and Treatment of Ischemic Stroke: Review. Int J Mol Sci 2021; 22:ijms222111644. [PMID: 34769074 PMCID: PMC8584264 DOI: 10.3390/ijms222111644] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are currently among the leading causes of morbidity and mortality in many developed countries. They are distinguished by chronic and latent development, a course with stages of worsening of symptoms and a period of improvement, and a constant potential threat to life. One of the most important disorders in cardiovascular disease is ischemic stroke. The causes of ischemic stroke can be divided into non-modifiable and modifiable causes. One treatment modality from a neurological point of view is acetylsalicylic acid (ASA), which blocks cyclooxygenase and, thus, thromboxane synthesis. The legitimacy of its administration does not raise any doubts in the case of the acute phase of stroke in patients in whom thrombolytic treatment cannot be initiated. The measurement of thromboxane B2 (TxB2) in serum (a stable metabolic product of TxA2) is the only test that measures the effect of aspirin on the activity of COX-1 in platelets. Measurement of thromboxane B2 may be a potential biomarker of vascular disease risk in patients treated with aspirin. The aim of this study is to present the role of thromboxane B2 in ischemic stroke and to present effective therapies for the treatment of ischemic stroke. Scientific articles from the PubMed database were used for the work, which were selected on the basis of a search for “thromboxane and stroke”. Subsequently, a restriction was introduced for works older than 10 years, those concerning animals, and those without full text access. Ultimately, 58 articles were selected. It was shown that a high concentration of TXB2 may be a risk factor for ischemic stroke or ischemic heart disease. However, there is insufficient evidence to suggest that thromboxane could be used in clinical practice as a marker of ischemic stroke. The inclusion of ASA in the prevention of stroke has a beneficial effect that is associated with the effect on thromboxane. However, its insufficient power in 25% or even 50% of the population should be taken into account. An alternative and/or additional therapy could be a selective antagonist of the thromboxane receptor. Thromboxane A2 production is inhibited by estrogen; therefore, the risk of CVD after the menopause and among men is higher. More research is needed in this area.
Collapse
|
16
|
Li JM, Mu ZN, Zhang TT, Li X, Shang Y, Hu GH. Exploring the Potential Mechanism of Shennao Fuyuan Tang for Ischemic Stroke Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6015702. [PMID: 34603472 PMCID: PMC8486536 DOI: 10.1155/2021/6015702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022]
Abstract
METHODS Screen the biologically active components and potential targets of SNFYT through Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicines Integrated Database (TCMID), and related literature. In addition, DrugBank, OMIM, DisGeNET, and the Therapeutic Target Database were searched to explore the therapeutic targets of IS. The cross-targets of SNFYT potential targets and IS treatment targets were taken as candidate gene targets, and GO and KEGG enrichment analyses were performed on the candidate targets. On this basis, the SNFYT-component-target network and protein-protein interaction (PPI) network were constructed using Cytoscape 3.7.2. Finally, AutoDock was used to verify the molecular docking of core components and core targets. RESULTS We screened out 95 potentially active components and 143 candidate targets. SNFYT-component-target network, PPI network, and Cytoscape analysis identified four core active ingredients and 14 core targets. GO enrichment analyzed 2333 biological processes, 79 cell components, and 149 molecular functions. There are 170 KEGG-related signal pathways (P < 0.05), including the IL-17 signal pathway, TNF signal pathway, and HIF-1 signal pathway. The molecular docking results of the core components and the core targets showed good binding power. CONCLUSIONS SNFYT may achieve the effect of treating ischemic stroke through its anti-inflammatory effect through a signal pathway with core targets as the core.
Collapse
Affiliation(s)
- Jia Min Li
- Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Zhen Ni Mu
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Tian Tian Zhang
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xin Li
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Yan Shang
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Guo Heng Hu
- Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
17
|
Touir A, Boumiza S, Nasr HB, Bchir S, Tabka Z, Norel X, Chahed K. Prostaglandin Endoperoxide H Synthase-2 (PGHS-2) Variants and Risk of Obesity and Microvascular Dysfunction Among Tunisians: Relevance of rs5277 (306G/C) and rs5275 (8473T/C) Genetic Markers. Biochem Genet 2021; 59:1457-1486. [PMID: 33929697 DOI: 10.1007/s10528-021-10071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to determine the impact of six PGHS-2 genetic variants on obesity development and microvascular dysfunction. The study included 305 Tunisian subjects (186 normal weights, 35 overweights and 84 obeses). PCR analyses were used for allelic discrimination between polymorphisms. Prostaglandin (PGE2, PGI2), leptin, and matrix metalloproteinase (MMP1, 2, 3, 9) levels were evaluated by ELISA. Fatty acid composition was performed by gas chromatography-mass spectrometry. Our results revealed that subjects carrying the PGHS-2 306CC (rs5277) and 8473CC (rs5275) genotypes present higher anthropometric values compared to wild-type genotypes (306GG, BMI (Kg/m2): 27.11 ± 0.58; WC (cm): 93.09 ± 1.58; 306CC, BMI: 33.83 ± 2.46; WC: 109.93 ± 5.41; 8473TT, BMI: 27.75 ± 0.68; WC: 93.96 ± 1.75; 8473CC, BMI: 33.72 ± 2.2; WC: 117.89 ± 2.94). A reduced microvascular reactivity and a higher PGE2 level were also found in individuals with the 306CC and 8473CC genotypes in comparison to 306GG and 8473TT carriers (306GG, Peak Ach-CVC (PU/mmHg): 0.46 ± 0.03; PGE2 (pg/ml): 7933.1 ± 702; 306CC, Peak Ach-CVC: 0.24 ± 0.01; PGE2: 13,380.3 ± 966.2; 8473TT, Peak Ach-CVC: 0.48 ± 0.05; PGE2: 7086.41 ± 700.31; 8473CC, Peak Ach-CVC: 0.23 ± 0.01; PGE2: 13,175.7 ± 1165.8). Fatty acid analysis showed a significant increase of palmitic acid (PA) (34.2 ± 2.09 vs. 16.82% ± 1.76, P < 0.001), stearic acid (SA) (25.76 ± 3.29 vs. 9.05% ± 2.53, P < 0.001), and linoleic acid (LA) (5.25 ± 1.18 vs. 0.5% ± 0.09, P < 0.001) levels in individuals carrying the PGHS-2 306CC genotype when compared to GG genotype individuals. Subjects with the 8473CC genotype showed also a significant increase of PA, SA ,and LA levels when compared to TT genotype carriers (PA: 38.02 ± 1.51 vs. 12.65% ± 1.54, P < 0.001; SA: 32.96 ± 1.87 vs. 1.38% ± 0.56, P < 0.001; LA: 26.84 ± 2.09 vs. 3.7% ± 1.54, P < 0.001). Logistic regression analysis revealed that PGHS-2 306CC and 8473CC variants are significantly associated with obesity status (OR 6.25, CI (1.8-21.6), P = 0.004; OR 3.01, CI (1.13-8.52), P = 0.03, respectively). Haplotypes containing the C306:T8473 (OR 2.91; P = 0.01) and G306:C8473 (OR 5.25; P = 0.002) combinations were associated with an enhanced risk for obesity development in the studied population. In conclusion, our results highlight that PGHS-2 306G/C and 8473T/C variants could be useful indicators of obesity development, inflammation, and microvascular dysfunction among Tunisians.
Collapse
Affiliation(s)
- Ahlem Touir
- Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia. .,Laboratoire de Recherche LR19ES09, Physiologie de L'Exercice Et Physiopathologie: de L'Intégré Au Moléculaire "Biologie, Médecine Et Santé, Université de Sousse, Sousse, Tunisia.
| | - Soumaya Boumiza
- Laboratoire de Recherche LR19ES09, Physiologie de L'Exercice Et Physiopathologie: de L'Intégré Au Moléculaire "Biologie, Médecine Et Santé, Université de Sousse, Sousse, Tunisia
| | - Hela Ben Nasr
- Laboratoire de Recherche LR19ES09, Physiologie de L'Exercice Et Physiopathologie: de L'Intégré Au Moléculaire "Biologie, Médecine Et Santé, Université de Sousse, Sousse, Tunisia.,Institut Des Sciences Infirmières, Sousse, Tunisia
| | - Sarra Bchir
- Laboratoire de Recherche LR19ES09, Physiologie de L'Exercice Et Physiopathologie: de L'Intégré Au Moléculaire "Biologie, Médecine Et Santé, Université de Sousse, Sousse, Tunisia
| | - Zouhair Tabka
- Laboratoire de Recherche LR19ES09, Physiologie de L'Exercice Et Physiopathologie: de L'Intégré Au Moléculaire "Biologie, Médecine Et Santé, Université de Sousse, Sousse, Tunisia
| | - Xavier Norel
- INSERM U1148, Laboratory for Vascular Translational Science, CHU X. Bichat, 46 rue Huchard, 75018, Paris, France
| | - Karim Chahed
- Laboratoire de Recherche LR19ES09, Physiologie de L'Exercice Et Physiopathologie: de L'Intégré Au Moléculaire "Biologie, Médecine Et Santé, Université de Sousse, Sousse, Tunisia.,Faculté Des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
18
|
Li J, Gao L, Zhang P, Liu Y, Zhou J, Yi X, Wang C. Vulnerable Plaque Is More Prevalent in Male Individuals at High Risk of Stroke: A Propensity Score-Matched Study. Front Physiol 2021; 12:642192. [PMID: 33897453 PMCID: PMC8062966 DOI: 10.3389/fphys.2021.642192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/18/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To assess the gender differences in the prevalence of carotid vulnerable plaques in high-risk individuals for stroke in a multicenter, cross-sectional study. METHODS In the year 2015, 18595 residents who were at the age of 40 or older participated in a face-to-face study in eight communities in southwestern China. Totally 2,644 participants at high risk of stroke were enrolled. Before and after propensity score matching (PSM), the prevalence of carotid plaques and vulnerable plaques were compared between men and women. Multivariate analyses were applied to explore the association between the gender and carotid plaques. Stratified analyses and interaction tests were performed to identify factors that might modify the association between the gender and carotid plaques. RESULTS Among 2644 high-risk individuals enrolled, there were 1,202 (45.5%) men and 1442 (54.5%) women. Carotid plaques were detected in 904 (34.2%) participants, while vulnerable plaques were found in 425 (16.1%) participants. Before PSM, carotid plaques were more prevalent in male individuals than the female (36.7% vs. 32.1%, p = 0.01), as well as vulnerable plaque (20.0% vs. 12.8%, p < 0.01). Men tend to have a higher prevalence of vulnerable plaques in multivariate analyses (adjusted OR 1.70, 95% CI 1.10-2.62, p = 0.02). Stratified analyses and interaction tests demonstrated that the association between male sex and vulnerable carotid plaque did not change by age, family history of stroke, histories of chronic disease, smoking status, drinking status, physical activity, and BMI (all p for interaction > 0.05). After PSM, vulnerable plaques were still more prevalent in male individuals than the female (17.03% vs. 12.07%, p = 0.032). CONCLUSION Male individuals had a higher risk of vulnerable carotid plaque independent of classical vascular risk factors. Whether there is a gender-specific association between variations in genes related to inflammation, lipid metabolis, and endothelial function and plaque vulnerability needs to be further studied.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurology, People’s Hospital of Deyang City, Deyang, China
| | - Lijie Gao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhang
- Department of Neurology, People’s Hospital of Deyang City, Deyang, China
| | - Yingying Liu
- Department of Neurology, People’s Hospital of Deyang City, Deyang, China
| | - Ju Zhou
- Department of Neurology, People’s Hospital of Deyang City, Deyang, China
| | - Xingyang Yi
- Department of Neurology, People’s Hospital of Deyang City, Deyang, China
| | - Chun Wang
- Department of Neurology, People’s Hospital of Deyang City, Deyang, China
| |
Collapse
|
19
|
The association between thromboxane A 2 receptor gene polymorphisms and the risk of cerebral infarction. Clin Neurol Neurosurg 2020; 198:106134. [PMID: 32810763 DOI: 10.1016/j.clineuro.2020.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/24/2022]
Abstract
To explore the association between thromboxane A2 receptor (TXA2R) gene polymorphisms and the risk of cerebral infarction. We screened the relevant publications through the search engines in PubMed, Google Scholar, Embase, Web of Science, and China National Knowledge Infrastructure (the latest search update was performed on July 1, 2020). Gene-disease associations were measured using the estimation of OR (95 % CI) based on five genetic inheritance models. Totally three studies were included in this meta-analysis. TXA2R rs768963 polymorphism in homozygote comparison (OR = 1.86, 95 % CI: 1.35-2.56), heterozygote comparison (OR = 1.81, 95 % CI: 1.37-2.39), and dominant model (OR = 1.82, 95 % CI: 1.39-2.37) emerged as risk factors for cerebral infarction. Besides, an increased cerebral infarction risk was observed in the heterozygote comparison (OR = 1.39, 95 % CI: 1.03-1.88) for TXA2R rs2271875 polymorphism. None of the five models showed any association between TXA2R rs4523 polymorphism and cerebral infarction risk. In conclusion, this is the first meta-analysis verifying that TXA2R rs768963 polymorphism and TXA2R rs2271875 polymorphism may be associated with the risk of cerebral infarction.
Collapse
|
20
|
Yi X, Zhu L, Sui G, Li J, Luo H, Yu M, Wang C, Chen X, Wei W, Bao S. Inflammation and Endothelial Function Relevant Genetic Polymorphisms and Carotid Plaque in Chinese Population. J Atheroscler Thromb 2020; 27:978-994. [PMID: 31956237 PMCID: PMC7508723 DOI: 10.5551/jat.53074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: To examine the association between carotid plaque and variants in genes involved in inflammation and endothelial function. Methods: This was a multicenter, cross-sectional survey in southwestern China. The residents aged ≥ 40 years volunteered to participate in the face-to-face survey in eight communities. A total of 2,377 subjects with high stroke risk were enrolled. Carotid plaque and plaque phenotype were assessed by carotid ultrasound. Genotypes of 19 variants in 10 genes related to inflammation and endothelial function were examined. Gene-gene interaction was analyzed by generalized multifactor dimensionality reduction (GMDR). Results: Carotid plaques were found in 852 (35.8%) subjects, and 454 (53.3%) had stable plaques, whereas 398 (46.7%) had vulnerable plaques. PPARA rs4253655, HABP2 rs7923349, and IL1A rs1609682 were associated with the presence of carotid plaque, and NOS2A rs2297518 and PPARA rs4253655 were associated with vulnerable plaque in univariate analysis. The GMDR analysis revealed that there was a significant gene–gene interaction among HABP2 rs7923349, ITGA2 rs1991013, IL1A rs1609682, and NOS2A rs8081248, and the high-risk interactive genotype among the four variants was independently associated with a higher risk of carotid vulnerable plaque after adjusting the covariates (OR, 2.86, 95% CI: 1.32–7.13, P = 0.003). Conclusion: The prevalence of carotid plaque was very high in the high-risk stroke population in southwestern China. Variants in genes involved in the endothelial function and inflammation were associated with the carotid plaque. The high-risk interactive genotype among rs7923349, rs1991013, rs1609682, and rs8081248 was independently associated with a higher risk of vulnerable plaque.
Collapse
Affiliation(s)
- Xingyang Yi
- Department of Neurology, the People's Hospital of Deyang City.,Department of Psychosomatic, the Affiliated Hospital of Southwest Medical University
| | - Ling Zhu
- Department of Psychosomatic, the Affiliated Hospital of Southwest Medical University
| | - Guo Sui
- Nursing department, People's Hospital of Deyang City
| | - Jie Li
- Department of Neurology, the People's Hospital of Deyang City
| | - Hua Luo
- Department of Neurology, the Affiliated Hospital of Southwest Medical University
| | - Ming Yu
- Department of Neurology, the Suining Central Hospital
| | - Chun Wang
- Department of Neurology, the People's Hospital of Deyang City
| | - Xiaorong Chen
- Department of Neurology, the Suining Central Hospital
| | - Wei Wei
- Department of Neurology, the Affiliated Hospital of Southwest Medical University
| | - Shaozhi Bao
- Department of Neurology, the Third Affiliated Hospital of Wenzhou Medical University
| |
Collapse
|
21
|
A Systems Pharmacology Approach for Identifying the Multiple Mechanisms of Action for the Rougui-Fuzi Herb Pair in the Treatment of Cardiocerebral Vascular Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5196302. [PMID: 32025235 PMCID: PMC6982690 DOI: 10.1155/2020/5196302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023]
Abstract
Cardiocerebral vascular diseases (CCVDs) are the main reasons for high morbidity and mortality all over the world, including atherosclerosis, hypertension, myocardial infarction, stroke, and so on. Chinese herbs pair of the Cinnamomum cassia Presl (Chinese name, rougui) and the Aconitum carmichaelii Debx (Chinese name, fuzi) can be effective in CCVDs, which is recorded in the ancient classic book Shennong Bencao Jing, Mingyibielu and Thousand Golden Prescriptions. However, the active ingredients and the molecular mechanisms of rougui-fuzi in treatment of CCVDs are still unclear. This study was designed to apply a system pharmacology approach to reveal the molecular mechanisms of the rougui-fuzi anti-CCVDs. The 163 candidate compounds were retrieved from Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP). And 84 potential active compounds and the corresponding 42 targets were obtained from systematic model. The underlying mechanisms of the therapeutic effect for rougui-fuzi were investigated with gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Then, component-target-disease (C-T-D) and target-pathway (T-P) networks were constructed to further dissect the core pathways, potential targets, and active compounds in treatment of CCVDs for rougui-fuzi. We also constituted protein-protein in interaction (PPI) network by the reflect target protein of the crucial pathways against CCVDs. As a result, 21 key compounds, 8 key targets, and 3 key pathways were obtained for rougui-fuzi. Afterwards, molecular docking was performed to validate the reliability of the interactions between some compounds and their corresponding targets. Finally, UPLC-Q-Exactive-MSE and GC-MS/MS were analyzed to detect the active ingredients of rougui-fuzi. Our results may provide a new approach to clarify the molecular mechanisms of Chinese herb pair in treatment with CCVDs at a systematic level.
Collapse
|
22
|
Li B, Rui J, Ding X, Chen Y, Yang X. Deciphering the multicomponent synergy mechanisms of SiNiSan prescription on irritable bowel syndrome using a bioinformatics/network topology based strategy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:152982. [PMID: 31299593 DOI: 10.1016/j.phymed.2019.152982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND SiNiSan (SNS) is a traditional Chinese medicine (TCM) prescription that has been widely used in the clinical treatment of irritable bowel syndrome (IBS). However, the underlying active substances and molecular mechanisms remain obscure. PURPOSE A bioinformatics/topology based strategy was proposed for identification of the drug targets, therapeutic agents and molecular mechanisms of SiNiSan against irritable bowel syndrome. MATERIALS AND METHODS In this work, a bioinformatics/network topology based strategy was employed by integrating ADME filtering, text mining, bioinformatics, network topology, Venn analysis and molecular docking to uncover systematically the multicomponent synergy mechanisms. In vivo experimental validation was executed in a Visceral Hypersensitivity (VHS) rat model. RESULTS 76 protein targets and 109 active components of SNS were identified. Bioinformatics analysis revealed that 116 disease pathways associated with IBS therapy could be classified into the 19 statistically enriched functional sub-groups. The multi-functional co-synergism of SNS against IBS were predicted, including inflammatory reaction regulation, oxidative-stress depression regulation and hormone and immune regulation. The multi-component synergetic effects were also revealed on the herbal combination of SNS. The hub-bottleneck genes of the protein networks including PTGS2, CALM2, NOS2, SLC6A3 and MAOB, MAOA, CREB1 could become potential drug targets and Paeoniflorin, Naringin, Glycyrrhizic acid may be candidate agents. Experimental results showed that the potential mechanisms of SiNiSan treatment involved in the suppression of activation of Dopaminergic synapse and Amphetamine addiction signaling pathways, which are congruent with the prediction by the systematic approach. CONCLUSION The integrative investigation based on bioinformatics/network topology strategy may elaborate the multicomponent synergy mechanisms of SNS against IBS and provide the way out to develop new combination medicines for IBS.
Collapse
Affiliation(s)
- Bangjie Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Junqian Rui
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xuejian Ding
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yifan Chen
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xinghao Yang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
23
|
de Araujo NNF, Lin-Wang HT, Germano JDF, Farsky PS, Feldman A, Rossi FH, Izukawa NM, Higuchi MDL, Savioli Neto F, Hirata MH, Bertolami MC. Dysregulation of microRNAs and target genes networks in human abdominal aortic aneurysm tissues. PLoS One 2019; 14:e0222782. [PMID: 31539405 PMCID: PMC6754147 DOI: 10.1371/journal.pone.0222782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/06/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a pathological enlargement of infrarenal aorta close to the aortic bifurcation, and it is an important cause of mortality in the elderly. Therefore, the biomarker identification for early diagnosis is of great interest for clinical benefit. It is known that microRNAs (miRNAs) have important roles via target genes regulation in many diseases. This study aimed to identify miRNAs and their target genes involved in the pathogenesis of AAA. METHODS Tissue samples were obtained from patients who underwent AAA surgery and from organ donors (control group). Quantitative PCR Array was applied to assess 84 genes and 384 miRNAs aiming to identify differentially expressed targets (AAA n = 6, control n = 6), followed by validation in a new cohort (AAA n = 18, control n = 6) by regular qPCR. The functional interaction between validated miRNAs and target genes was performed by the Ingenuity Pathway Analysis (IPA) software. RESULTS The screening cohort assessed by PCR array identified 10 genes and 59 miRNAs differentially expressed (≥2-fold change, p<0.05). Among these, IPA identified 5 genes and 9 miRNAs with paired interaction. ALOX5, PTGIS, CX3CL1 genes, and miR-193a-3p, 125b-5p, 150-5p maintained a statistical significance in the validation cohort. IPA analysis based on the validated genes and miRNAs revealed that eicosanoid and metalloproteinase/TIMP synthesis are potentially involved in AAA. CONCLUSION Paired interactions of differentially expressed ALOX5, PTGIS, CX3CL1 genes, and miR-193b-3p, 125b-5p, 150-5p revealed a potentially significant role of the eicosanoid synthesis and metalloproteinase/TIMP pathways in the AAA pathogenesis.
Collapse
Affiliation(s)
| | - Hui Tzu Lin-Wang
- Laboratory of Molecular Investigation in Cardiology, Dante Pazzanese Institute of Cardiology, Sao Paulo, Brazil
| | | | - Pedro Silvio Farsky
- Department of Clinical Cardiology, Dante Pazzanese Institute of Cardiology, Sao Paulo, Brazil
| | - Andre Feldman
- Department of Clinical Cardiology, Dante Pazzanese Institute of Cardiology, Sao Paulo, Brazil
| | - Fabio Henrique Rossi
- Department of Vascular Surgery, Dante Pazzanese Institute of Cardiology, Sao Paulo, Brazil
| | - Nilo Mitsuru Izukawa
- Department of Vascular Surgery, Dante Pazzanese Institute of Cardiology, Sao Paulo, Brazil
| | - Maria de Lourdes Higuchi
- Laboratory of Cardiac Pathology, Heart Institute, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Felicio Savioli Neto
- Department of Clinical Cardiology, Dante Pazzanese Institute of Cardiology, Sao Paulo, Brazil
| | - Mario Hiroyuki Hirata
- Laboratory of Molecular Investigation in Cardiology, Dante Pazzanese Institute of Cardiology, Sao Paulo, Brazil
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
24
|
Pang J, Hu P, Wang J, Jiang J, Lai J. Vorapaxar stabilizes permeability of the endothelial barrier under cholesterol stimulation via the AKT/JNK and NF‑κB signaling pathways. Mol Med Rep 2019; 19:5291-5300. [PMID: 31059055 PMCID: PMC6522885 DOI: 10.3892/mmr.2019.10211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/15/2019] [Indexed: 01/20/2023] Open
Abstract
Atherosclerosis (AS) is an inflammatory disease that occurs in the arterial wall and is characterized by progressive lipid accumulation within the intima of large arteries, leading to the dysfunction of endothelial cells and further destruction of the endothelial barrier and vascular tone. Arterial intima injury accelerates the adhesion and activation of platelets at the injury site. The activation of platelets results in the secretion of growth factors, leading to the migration and proliferation of vascular smooth muscle cells (VSMCs), promoting the formation of plaque, resulting in the formation of thrombus. The present study found that vorapaxar could alleviate the inflammatory response induced by a high concentration of cholesterol stimulation and increase the release of nitric oxide (NO) via the protein kinase B (AKT) signaling pathway and regulation of the intracellular concentration of Ca2+ ([Ca2+]i). We also found that vorapaxar could reduce the damage of DNA caused by cholesterol stimulation and regulate the cell cycle via the AKT/JNK signaling pathway and its downstream molecules glycogen synthase kinase 3β (GSK‑3β) and connexin 43, maintaining the integrity of the endothelial barrier and proliferation of endothelial cells, serving a protective role in endothelial cells.
Collapse
Affiliation(s)
- Jianliang Pang
- Department of Vascular Surgery, Tiantai People's Hospital of Zhejiang Province, Taizhou, Zhejiang 317200, P.R. China
| | - Peiyang Hu
- Department of Surgery, Tiantai People's Hospital of Zhejiang Province, Taizhou, Zhejiang 317200, P.R. China
| | - Junwei Wang
- Department of Internal Medicine, Tiantai People's Hospital of Zhejiang Province, Taizhou, Zhejiang 317200, P.R. China
| | - Jinsong Jiang
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jifu Lai
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
25
|
Ramazi S, Heydari-Zarnagh H, Goudarzian M, Khalaj-Kondori M, Bonyadi M. Thromboxane A synthase 1 gene expression and promotor haplotypes are associated with risk of large artery-atherosclerosis stroke in Iranian population. J Cell Biochem 2019; 120:15222-15232. [PMID: 31026093 DOI: 10.1002/jcb.28787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 12/16/2022]
Abstract
Large artery atherosclerosis (LAA) is known as an important cause of ischemic stroke (IS), which is a multifactorial disorder. Many candidate genes have been proposed for IS like (TBXAS1) that plays a significant role in LAA stroke pathogenesis. This is the first study on the evaluation of the association of the five single-nucleotide polymorphisms (SNPs) in TBXAS1 promoter region and the level of TBXAS1 transcript with large-artery atherosclerosis stroke. Five SNPs in TBXAS1 genes were investigated in 248 patients with large-artery atherosclerosis stroke and 199 healthy controls in Iranian population in this case-control study through using the high-resolution melting assay. In addition, the relationships between the selected SNPs with alteration of TBXAS1 gene expressions were investigated in terms of blood platelets through the reverse transcription-quantitative polymerase chain reaction. Multivariate logistic analysis with adjustments indicated that rs10256282CC, rs10237429CC, and rs4590360GG genotypes were associated with large-artery atherosclerosis stroke (adjusted odds ratio = 2.804, 2.872, and 2.432, respectively; P < 0.05, q < 0.05). Furthermore, the frequency of CACCG haplotype in the patients was greatly higher than that in the controls (OR = 1.424, 95% CI: 1.071-1.893, P = 0.014738). In addition, TBXAS1 expression was higher in patients compared to the controls (P = 0.021), and individuals with the homozygous mutated genotypes of these SNPs showed a higher expression level compared to other genotype (P < 0.05). In total, our findings indicate a significant association of TBXAS1 gene rs10256282CC, rs10237429CC, and rs4590360GG polymorphisms with large-artery atherosclerosis stroke susceptibility and the level of TBXAS1 expression, which was not previously reported in any population.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hafez Heydari-Zarnagh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Maryam Goudarzian
- Iranian Research Center on Healthy Aging (IRCHA), Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mortaza Bonyadi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
26
|
Li B, Rui J, Ding X, Yang X. Exploring the multicomponent synergy mechanism of Banxia Xiexin Decoction on irritable bowel syndrome by a systems pharmacology strategy. JOURNAL OF ETHNOPHARMACOLOGY 2019; 233:158-168. [PMID: 30590198 DOI: 10.1016/j.jep.2018.12.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin Decoction (BXD) is a representative prescription to regulate spleen and stomach in "Treatise on Febrile Diseases", which has been proven effective for the clinical treatment of irritable bowel syndrome (IBS) in the past decades. However, the active principles and molecular mechanisms involved in BXD against IBS are vague yet. AIM OF THE STUDY To unfold multicomponent synergy mechanism of BXD on irritable bowel syndrome, this work explored active principles, drug targets and crucial pathways using a systems pharmacology strategy. MATERIALS AND METHODS In this study, a systems pharmacology based strategy was applied by the procedures integrating compound database construction, ADME evaluation, target identification, functional annotation, pathway enrichment analysis, network analysis, and molecular docking verification. The 158 compounds from BXD were selected for the screening. The Compound-Target network (C-T) and the Target-Pathway network (T-P) were constructed. The bioinformatics and network topology were employed to systematically reveal multicomponent-target interactions of BXD. The affinity between important ingredients and the kernel targets was validated using molecular mechanics simulation. RESULTS The 35 potential important ingredients and the 16 associated kernel targets were identified. 27 crucial pathways, in which the kernel targets participated, could regulate the biological processes, such as synthesis of inflammatory mediators, smooth muscle relaxation and synaptic plasticity, closely related to pathological mechanism of IBS. The cross-talk interactions were revealed between TNF signaling pathway, Dopaminergic synapse and cGMP-PKG signaling pathway, which would exert the synergistic influences on the occurrence and treatment of the IBS. PTGS2, CALM, NOS2, SCN5A, and PRSS1 might become novel drug targets for IBS. CONCLUSIONS The study demonstrated that the synergy molecular mechanisms of BXD mainly involved three therapeutic modules including inhibiting inflammatory reaction, maintaining intestinal function and improving psychological regulation via the multicomponent-target interaction networks. It may also provide the promising drug targets and therapeutic agents for the development of new medicines.
Collapse
Affiliation(s)
- Bangjie Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Junqian Rui
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xuejian Ding
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xinghao Yang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
27
|
Yi X, Lin J, Zhou Q, Huang R, Chai Z. The TXA2R rs1131882, P2Y1 rs1371097 and GPIIIa rs2317676 three-loci interactions may increase the risk of carotid stenosis in patients with ischemic stroke. BMC Neurol 2019; 19:44. [PMID: 30914039 PMCID: PMC6436214 DOI: 10.1186/s12883-019-1271-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 03/12/2019] [Indexed: 11/27/2022] Open
Abstract
Background The genetic risk factors for carotid stenosis are not fully understood. The aim of this study is to investigate the relationship between variants in platelet activation-relevant genes and carotid stenosis in patients with ischemic stroke (IS). Methods Eleven variants of platelet activation-relevant genes, aggregates of platelet-leukocyte, and platelet aggregation were examined in 236 IS patients with carotid stenosis and 378 patients without carotid stenosis. High-resolution B-mode ultrasound was used to assess carotid stenosis. Generalized multifactor dimensionality reduction (GMDR) methods were applied in analyzing gene-gene interactions to determine whether there was any interactive role of assessed variants in affecting risk of carotid stenosis. Results Platelet aggregation and aggregates of platelet-leukocyte showed higher value in patients with carotid stenosis, compared with patients without carotid stenosis. Excluding potential disturbance variables, these 11 variants were not associated with carotid stenosis. However, according to the GMDR analysis, gene-gene interactions among TXA2R rs1131882, P2Y1 rs1371097 and GPIIIa rs2317676 had a synergistic influence on carotid stenosis. The high-risk interactions between the three variants showed a relationship with higher platelet activation, and have independent associations with risk of carotid stenosis (OR = 2.72, 95% CI: 1.28–7.82, P = 0.001). Conclusion The interactions among rs1131882, rs1371097 and rs2317676 perhaps increase the risk of symptomatic carotid stenosis, and maybe a potential marker for carotid stenosis. In this study, the combinatorial analysis made good use in elucidating complex risk factors in the heredity of carotid stenosis.
Collapse
Affiliation(s)
- Xingyang Yi
- Department of Neurology, People's Hospital of Deyang City, Deyang, 618000, Sichuan, China
| | - Jing Lin
- Department of Neurology, the Third Affiliated Hospital of Wenzhou Medical University, No 108 Wanson road, Ruan City, Wenzhou, 325200, Zhejiang, China.
| | - Qiang Zhou
- Department of Neurology, the Third Affiliated Hospital of Wenzhou Medical University, No 108 Wanson road, Ruan City, Wenzhou, 325200, Zhejiang, China
| | - Ruyue Huang
- Department of Neurology, the Third Affiliated Hospital of Wenzhou Medical University, No 108 Wanson road, Ruan City, Wenzhou, 325200, Zhejiang, China
| | - Zhenxiao Chai
- Department of Neurology, the Third Affiliated Hospital of Wenzhou Medical University, No 108 Wanson road, Ruan City, Wenzhou, 325200, Zhejiang, China
| |
Collapse
|
28
|
Khasanova LT, Stakhovskaya LV, Koltsova EA, Shamalov NA. [Genetic characteristics of stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:65-72. [PMID: 32207720 DOI: 10.17116/jnevro201911912265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the recent years there is a growing interest in identification of additional genetic factors of stroke. A growing body of evidence supports the role of genetic factors in determining the risk of both hemorrhagic and ischemic stroke. The article considers the main genes associated with susceptibility to stroke and genetic polymorphisms associated with the disease. Genetic factors, modulating inflammation process, coagulation, lipid metabolism, NO formation, renin-angiotensin-aldosterone system and homeostasis play a significant role in stroke development. A comprehensive analysis of different genes associated with stroke may help to detect individuals with extremely high risk of stroke and implement timely preventive measures to decrease stroke burden.
Collapse
Affiliation(s)
- L T Khasanova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - L V Stakhovskaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E A Koltsova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - N A Shamalov
- Federal Center for Cerebrovascular Pathology and Stroke, Moscow, Russia
| |
Collapse
|
29
|
Yang C, Fan F, Sawmiller D, Tan J, Wang Q, Xiang Y. C1q/TNF‐related protein 9: A novel therapeutic target in ischemic stroke? J Neurosci Res 2018; 97:128-136. [PMID: 30378715 DOI: 10.1002/jnr.24353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Cui Yang
- Department of Clinical MedicineChengdu Medical College Chengdu China
- Department of Neurology Chengdu Military General Hospital Chengdu China
| | - Fan Fan
- Department of Clinical MedicineChengdu Medical College Chengdu China
- Department of Neurology Chengdu Military General Hospital Chengdu China
| | - Darrell Sawmiller
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine University of South Florida Tampa FL
| | - Jun Tan
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine University of South Florida Tampa FL
| | - Qingsong Wang
- Department of Neurology Chengdu Military General Hospital Chengdu China
| | - Yang Xiang
- Department of Neurology Chengdu Military General Hospital Chengdu China
| |
Collapse
|
30
|
Strisciuglio T, Franco D, Di Gioia G, De Biase C, Morisco C, Trimarco B, Barbato E. Impact of genetic polymorphisms on platelet function and response to anti platelet drugs. Cardiovasc Diagn Ther 2018; 8:610-620. [PMID: 30498685 DOI: 10.21037/cdt.2018.05.06] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiovascular genomic consists in the identification of polymorphic genes responsible for the susceptibility to cardiovascular disease including coronary artery disease (CAD). Genes involved in platelet activation and aggregation play a key role in the predisposition to CAD. A considerable inter-variability of platelet response to agonists and to drugs exists and in particular the hyper-reactivity phenotype seems to be heritable. Besides glycoproteins and receptors expressed on platelets surface whose mutations significantly impact on platelet function, moreover researchers in the last decades have paid great attention to the genes involved in the response to anti-platelet drugs, considering their pivotal role in the treatment and outcomes of CAD patients especially those undergoing PCI. With the outbreak of advanced techniques developed to analyse human genetic footprints, researchers nowadays have shifted from genetic linkage analysis and a candidate gene approach toward genome-wide association (GWAS) studies and the analysis of miRNA-mRNA expression profiles.
Collapse
Affiliation(s)
- Teresa Strisciuglio
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Danilo Franco
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppe Di Gioia
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Chiara De Biase
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Carmine Morisco
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Bruno Trimarco
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Emanuele Barbato
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
31
|
TBXA2R rs4523 G allele is associated with decreased susceptibility to Kawasaki disease. Cytokine 2018; 111:216-221. [PMID: 30179800 DOI: 10.1016/j.cyto.2018.08.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/03/2018] [Accepted: 08/25/2018] [Indexed: 02/06/2023]
Abstract
Kawasaki disease is a multi-system vasculitis and a primary cause of acquired heart disease among children. Genetic factors may increase susceptibility to Kawasaki disease. TBXA2R is a G-protein-coupled receptor that participates in tissue inflammation and is associated with susceptibility to several diseases, but its relevance in Kawasaki disease is unclear. We genotyped TBXA2R (rs1131882 and rs4523) in 694 Kawasaki disease cases and 657 healthy controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the intensity of the associations. We found a significantly decreased risk of Kawasaki disease associated with TBXA2R rs4523 G variant genotypes (AG vs AA: adjusted OR = 0.788, 95%CI = 0.626-0.993; GG vs AA: adjusted OR = 0.459, 95%CI = 0.258-0.815; AG/GG vs AA: adjusted OR = 0.744, 95%CI = 0.595-0.929; GG vs AG/AA: adjusted OR = 0.497, 95% CI = 0.281-0.879). In the combined analysis of the two single-nucleotide polymorphisms (SNPs), we found that individuals with two unfavorable genotypes exhibited decreased risk for Kawasaki disease (adjusted OR = 0.754, 95%CI = 0.577-0.985) compared with those who did not have or one unfavorable genotypes. This cumulative effect on protection is effect-genotype dose-dependent (ptrend = 0.022). Moreover, the combined analysis indicated that the two unfavorable genotypes were associated with a decreased risk of Kawasaki disease in children 12-60 months of age, females and the subgroup with non-coronary artery lesion (NCAL) formation compared with those who did not have or one unfavorable genotypes. In conclusion, the TBXA2R rs4523 G allele may contribute to protection against Kawasaki disease and decreased risk of coronary artery aneurysm complications in a southern Chinese population.
Collapse
|
32
|
Yi X, Lin J, Luo H, Zhou J, Zhou Q, Wang Y, Wang C. Interactions among variants in TXA2R, P2Y12 and GPIIIa are associated with carotid plaque vulnerability in Chinese population. Oncotarget 2018; 9:17597-17607. [PMID: 29707133 PMCID: PMC5915141 DOI: 10.18632/oncotarget.24801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/12/2018] [Indexed: 01/30/2023] Open
Abstract
PURPOSE The associations between variants in platelet activation-relevant genes and carotid plaque vulnerability are not fully understood. The aim of the present study was to investigate the associations of the variants in platelet activation-relevant genes and interactions among these variants with carotid plaque vulnerability. RESULTS There were no significant differences in the frequencies of genotypes of the 11 variants between patients and controls. Among 396 patients, 102 patients had not carotid plaque, 106 had VP, and 188 had SP. The 11 variants were not independently associated with risk of carotid plaque vulnerability after adjusting for potential confounding variables. However, the GMDR analysis showed that there were synergistic effects of gene-gene interactions among TXA2Rr s1131882, GPIIIa rs2317676 and P2Y12 rs16863323 on carotid plaque vulnerability. The high-risk interactions among the three variants were associated with high platelet activation, and independently associated with the risk of carotid plaque vulnerability. METHODS Eleven variants in platelet activation-relevant genes were examined using mass spectrometry methods in 396 ischemic stroke patients and 291controls. Platelet-leukocyte aggregates and platelet aggregation were also measured. Carotid plaques were assessed by B-mode ultrasound. According to the results of ultrasound, the patients were stratified into three groups: non-plaque group, vulnerable plaque (VP) group and stable plaque (SP) group. Furthermore, gene-gene interactions were analyzed using generalized multifactor dimensionality reduction (GMDR) methods. CONCLUSIONS The rs1131882, rs2317676, and rs16863323 three-loci interactions may confer a higher risk of carotid plaque vulnerability, and might be potential markers for plaque instability.
Collapse
Affiliation(s)
- Xingyang Yi
- Department of Neurology, The People's Hospital of Deyang City, Deyang 618000, Sichuan, China
| | - Jing Lin
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, Zhejiang, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ju Zhou
- Department of Neurology, The People's Hospital of Deyang City, Deyang 618000, Sichuan, China
| | - Qiang Zhou
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, Zhejiang, China
| | - Yanfen Wang
- Department of Neurology, The People's Hospital of Deyang City, Deyang 618000, Sichuan, China
| | - Chun Wang
- Department of Neurology, The People's Hospital of Deyang City, Deyang 618000, Sichuan, China
| |
Collapse
|
33
|
Li L, He ZY, Wang YZ, Liu X, Yuan LY. Associations between thromboxane A synthase 1 gene polymorphisms and the risk of ischemic stroke in a Chinese Han population. Neural Regen Res 2018; 13:463-469. [PMID: 29623931 PMCID: PMC5900509 DOI: 10.4103/1673-5374.228729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Thromboxane A synthase 1 (TBXAS1) catalyses the synthesis of thromboxane A2 (TXA2), which plays an important role in the pathogenesis of ischemic stroke. Thus, the TBXAS1 gene was investigated as a candidate gene involved in the formation of atherosclerosis. This case-control study collected peripheral blood specimens and clinical data of 370 ischemic stroke patients and 340 healthy controls in the Northern Chinese Han population from October 2010 to May 2011. Two TBXAS1 single-nucleotide polymorphisms, rs2267682 and rs10487667, were analyzed using a SNaPshot Multiplex sequencing assay to explore the relationships between the single-nucleotide polymorphisms in TBXAS1 and ischemic stroke. The TT genotype frequency and T allele frequency of rs2267682 in the patients with ischemic stroke were significantly higher than those in the controls (P < 0.01 and P = 0.02). Furthermore, compared with the GG + GT genotype, the TT rs2267682 genotype was associated with increased risk of ischemic stroke (odds ratio (OR) = 1.80, 95% confidence interval (CI): 1.16–2.79, P < 0.01). Multivariate logistic analysis with adjustments for confounding factors revealed that rs2267682 was still associated with ischemic stroke (OR = 1.94, 95% CI : 1.13–3.33, P = 0.02). The frequency of the T-G haplotype in the patients was significantly higher than that in the controls according haplotype analysis (OR = 1.49, 95% CI: 1.10–2.00, P < 0.01). These data reveal that the rs2267682 TBXAS1 polymorphism is associated with ischemic stroke. The TT genotype of TBXAS1 and T allele of rs2267682 increase susceptibility to ischemic stroke in this Northern Chinese Han population. The protocol has been registered with the Chinese Clinical Trial Registry (registration number: ChiCTR-COC-17013559).
Collapse
Affiliation(s)
- Lei Li
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhi-Yi He
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yan-Zhe Wang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Li-Ying Yuan
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|