1
|
Zhang X, Huang C, Hou Y, Jiang S, Zhang Y, Wang S, Chen J, Lai J, Wu L, Duan H, He S, Liu X, Yu S, Cai Y. Research progress on the role and mechanism of Sirtuin family in doxorubicin cardiotoxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155673. [PMID: 38677274 DOI: 10.1016/j.phymed.2024.155673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Doxorubicin (DOX) is a widely utilized anthracycline chemotherapy drug in cancer treatment, yet its efficacy is hindered by both short-term and long-term cardiotoxicity. Although oxidative stress, inflammation and mitochondrial dysfunction are established factors in DOX-induced cardiotoxicity, the precise molecular pathways remain elusive. Further exploration of the pathogenesis and identification of novel molecular targets are imperative. Recent studies have implicated the Sirtuins family in various physiological and pathological processes, suggesting their potential in ameliorating DOX-induced cardiotoxicity. Moreover, research on Sirtuins has discovered small-molecule compounds or medicinal plants with regulatory effects, representing a notable advancement in preventing and treating DOX-induced cardiac injury. PURPOSE In this review, we delve into the pathogenesis of DOX-induced cardiotoxicity and explore the therapeutic effects of Sirtuins in mitigating this condition, along with the associated molecular mechanisms. Furthermore, we delineate the roles and mechanisms of small-molecule regulators of Sirtuins in the prevention and treatment of DOX-induced cardiotoxicity. STUDY-DESIGN/METHODS Data for this review were sourced from various scientific databases (such as Web of Science, PubMed and Science Direct) up to March 2024. Search terms included "Sirtuins," "DOX-induced cardiotoxicity," "DOX," "Sirtuins regulators," "histone deacetylation," among others, as well as several combinations thereof. RESULTS Members of the Sirtuins family regulate both the onset and progression of DOX-induced cardiotoxicity through anti-inflammatory, antioxidative stress and anti-apoptotic mechanisms, as well as by maintaining mitochondrial stability. Moreover, natural plant-derived active compounds such as Resveratrol (RES), curcumin, berberine, along with synthetic small-molecule compounds like EX527, modulate the expression and activity of Sirtuins. CONCLUSION The therapeutic role of the Sirtuins family in mitigating DOX-induced cardiotoxicity represents a potential molecular target. However, further research is urgently needed to elucidate the relevant molecular mechanisms and to assess the safety and biological activity of Sirtuins regulators. This review offers an in-depth understanding of the therapeutic role of the Sirtuins family in mitigating DOX-induced cardiotoxicity, providing a preliminary basis for the clinical application of Sirtuins regulators in this condition.
Collapse
Affiliation(s)
- Xuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Chaoming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yanhong Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shisheng Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yu Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shulin Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, Qingyuan 511500, China
| | - Jiamin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianmei Lai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Lifeng Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Huiying Duan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuwen He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xinyi Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shanshan Yu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
2
|
Alhusaini AM, Alghibiwi HK, Sarawi WS, Alsaab JS, Alshehri SM, Alqahtani QH, Alshanwani AR, Aljassas EA, Alsultan EN, Hasan IH. Resveratrol-Based Liposomes Improve Cardiac Remodeling Induced by Isoproterenol Partially by Modulating MEF2, Cytochrome C and S100A1 Expression. Dose Response 2024; 22:15593258241247980. [PMID: 38645382 PMCID: PMC11027597 DOI: 10.1177/15593258241247980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 04/23/2024] Open
Abstract
Isoproterenol (ISO), a chemically synthesized catecholamine, belongs to β-adrenoceptor agonist used to treat bradycardia. The β-adrenergic agonist is an essential regulator of myocardial metabolism and contractility; however, excessive exposure to ISO can initiate oxidative stress and inflammation. This study aims to investigate the molecular mechanisms underlying ISO-induced cardiac remodeling, the protective efficacy of resveratrol (RSVR), and its liposomal formulation (L-RSVR) against such cardiac change. Wistar albino rats were evenly divided into 4 groups. Control group, ISO group received ISO (50 mg/kg, s.c.) twice a week for 2 weeks, and RSVR- and L-RSVR-treated groups in which rats received either RSVR or L-RSVR (20 mg/kg/day, p.o.) along with ISO for 2 weeks. ISO caused a significant elevation of the expression levels of BAX and MEF2 mRNA, S100A1 and cytochrome C proteins, as well as DNA fragmentation in cardiac tissue compared to the control group. Treatment with either RSVR or L-RSVR for 14 days significantly ameliorated the damage induced by ISO, as evidenced by the improvement of all measured parameters. The present study shows that L-RSVR provides better cardio-protection against ISO-induced cardiac injury in rats, most likely through modulation of cardiac S100A1 protein expression and inhibition of inflammation and apoptosis.
Collapse
Affiliation(s)
- Ahlam M. Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan K. Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wedad S. Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Juman S. Alsaab
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Samiyah M. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Qamraa H. Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aliah R. Alshanwani
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Ebtesam A. Aljassas
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ebtesam N. Alsultan
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Singh M, Kadhim MM, Turki Jalil A, Oudah SK, Aminov Z, Alsaikhan F, Jawhar ZH, Ramírez-Coronel AA, Farhood B. A systematic review of the protective effects of silymarin/silibinin against doxorubicin-induced cardiotoxicity. Cancer Cell Int 2023; 23:88. [PMID: 37165384 PMCID: PMC10173635 DOI: 10.1186/s12935-023-02936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
PURPOSE Although doxorubicin chemotherapy is commonly applied for treating different malignant tumors, cardiotoxicity induced by this chemotherapeutic agent restricts its clinical use. The use of silymarin/silibinin may mitigate the doxorubicin-induced cardiac adverse effects. For this aim, the potential cardioprotective effects of silymarin/silibinin against the doxorubicin-induced cardiotoxicity were systematically reviewed. METHODS In this study, we performed a systematic search in accordance with PRISMA guideline for identifying all relevant studies on "the role of silymarin/silibinin against doxorubicin-induced cardiotoxicity" in different electronic databases up to June 2022. Sixty-one articles were obtained and screened based on the predefined inclusion and exclusion criteria. Thirteen eligible papers were finally included in this review. RESULTS According to the echocardiographic and electrocardiographic findings, the doxorubicin-treated groups presented a significant reduction in ejection fraction, tissue Doppler peak mitral annulus systolic velocity, and fractional shortening as well as bradycardia, prolongation of QT and QRS interval. However, these echocardiographic abnormalities were obviously improved in the silymarin plus doxorubicin groups. As well, the doxorubicin administration led to induce histopathological and biochemical changes in the cardiac cells/tissue; in contrast, the silymarin/silibinin co-administration could mitigate these induced alterations (for most of the cases). CONCLUSION According to the findings, it was found that the co-administration of silymarin/silibinin alleviates the doxorubicin-induced cardiac adverse effects. Silymarin/silibinin exerts its cardioprotective effects via antioxidant, anti-inflammatory, anti-apoptotic activities, and other mechanisms.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Physical Education, University of Jammu, Srinagar, Jammu, India
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Feng J, Wu Y. Endothelial-to-Mesenchymal Transition: Potential Target of Doxorubicin-Induced Cardiotoxicity. Am J Cardiovasc Drugs 2023; 23:231-246. [PMID: 36841924 DOI: 10.1007/s40256-023-00573-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/27/2023]
Abstract
The use of chemotherapeutic agents is becoming more frequent as the proportion of new oncology patients increases worldwide, with prolonged survival after treatment. As one of the most popular chemotherapy drugs, doxorubicin plays a substantial role in the treatment of tumors. Unfortunately, the use of doxorubicin is associated with several adverse effects, particularly severe cardiotoxicity that can be life-threatening, which greatly limits its clinical use. For decades, scientists have tried to explore many cardioprotective agents and therapeutic approaches, but their efficacy remains controversial, and some drugs have even brought about significant adverse effects. The concrete molecular mechanism of doxorubicin-induced cardiotoxicity is still to be unraveled, yet endothelial damage is gradually being identified as an important mechanism triggering the development and progression of doxorubicin-induced cardiotoxicity. Endothelial-to-mesenchymal transition (EndMT), a fundamental process regulating morphogenesis in multicellular organisms, is recognized to be associated with endothelial damage repair and acts as an important factor in the progression of cardiovascular diseases, tumors, and rheumatic immune diseases. Mounting evidence suggests that endothelial-mesenchymal transition may play a non-negligible role in doxorubicin-induced cardiotoxicity. In this paper, we reviewed the molecular mechanisms and signaling pathways of EndMT and outlined the molecular mechanisms of doxorubicin-induced cardiotoxicity and the current therapeutic advances. Furthermore, we summarized the basic principles of doxorubicin-induced endothelial-mesenchymal transition that lead to endothelial dysfunction and cardiotoxicity, aiming to provide suggestions or new ideas for the prevention and treatment of doxorubicin-induced endothelial and cardiac injury.
Collapse
Affiliation(s)
- Jie Feng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
5
|
Sun J, Zhou J, Sun S, Lin H, Zhang H, Zhong Z, Chi J, Guo H. Protective effect of urotensin II receptor antagonist urantide and exercise training on doxorubicin-induced cardiotoxicity. Sci Rep 2023; 13:1279. [PMID: 36690700 PMCID: PMC9870887 DOI: 10.1038/s41598-023-28437-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Doxorubicin (DOX) has a wide antitumor spectrum, but its adverse cardiotoxicity may lead to heart failure. Urotensin II (UII) is the most potent vasoconstrictor in mammals. It plays a role by activating the UII receptor (UT), the orphan G protein-coupled receptor (GPR14), collectively referred to as the UII/UT system. In the new version of "Chinese expert consensus on cardiac rehabilitation of chronic heart failure," it is pointed out that exercise rehabilitation is the cornerstone of cardiac rehabilitation. In this study, in vitro and in vivo assessments were performed using DOX-treated H9C2 cells and rats. It was found that the UT antagonist Urantide and exercise training improved DOX-induced cardiac insufficiency, reduced DOX-induced cardiomyocyte apoptosis, improved the structural disorder of myocardial fibers, and inhibited DOX-induced myocardial fibrosis. Further studies showed that Urantide alleviated DOX-induced cardiotoxicity by downregulating the expression levels of the p38 mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Jing Sun
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jiedong Zhou
- Medical College of Shaoxing University, Shaoxing, China
| | - Shimin Sun
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Hui Lin
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Hanlin Zhang
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Zuoquan Zhong
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jufang Chi
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China.
| | - HangYuan Guo
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China.
| |
Collapse
|
6
|
Banerjee J, Hasan SN, Samanta S, Giri B, Bag BG, Dash SK. Self-Assembled Maslinic Acid Attenuates Doxorobucin Induced Cytotoxicity via Nrf2 Signaling Pathway: An In Vitro and In Silico Study in Human Healthy Cells. Cell Biochem Biophys 2022; 80:563-578. [PMID: 35849306 DOI: 10.1007/s12013-022-01083-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/03/2022] [Indexed: 11/03/2022]
Abstract
The clinical applications of some well-known chemotherapeutic drugs for cancer treatment have been restricted nowadays owing to their adverse effects on many physiological systems. In this experimental study, maslinic acid (MA) isolated from Olea europaea (Olive) fruit extract was used to mitigate the cytotoxicity induced by Doxorubicin (DOX) in human healthy peripheral blood mononuclear cells (hPBMCs). Self-assembled maslinic acid (SA-MA) was obtained in ethanol-water mixture (35.5 mM: 4:1 v/v). The morphology of SA-MA was analyzed by various physicochemical characterization techniques, which revealed its micro-metric vesicular architecture as well as nano-vesicular appearances. In this study, treatment of hPBMCs with DOX has been found to generate severe intracellular oxidative stress, which was significantly mitigated after pre-treatment with SA-MA. Alteration of hPBMC morphologies after DOX treatment was also restored notably by pre-treatment with SA-MA. Furthermore, pentoxifylline (TNF-α inhibitor) and indomethacin (COX-2 inhibitor) were used to investigate the responsible pathway by which SA-MA protected hPBMCs from DOX-induced cellular stress. Restoration of hPBMC viability above 92% in both cases confirmed that SA-MA protected the cells by inhibiting inflammatory pathways generated by DOX treatment. Subsequently, in molecular docking study, it was also evaluated that MA could successfully bind with the pocket region of Keap1, while Nrf2 was capable of upregulating cytoprotecting genes.
Collapse
Affiliation(s)
- Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India
| | - Sk Nurul Hasan
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India
| | - Braja Gopal Bag
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India.
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India.
| |
Collapse
|
7
|
Zhang XY, Yang KL, Li Y, Zhao Y, Jiang KW, Wang Q, Liu XN. Can Dietary Nutrients Prevent Cancer Chemotherapy-Induced Cardiotoxicity? An Evidence Mapping of Human Studies and Animal Models. Front Cardiovasc Med 2022; 9:921609. [PMID: 35845064 PMCID: PMC9277029 DOI: 10.3389/fcvm.2022.921609] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/06/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Chemotherapy has significantly improved cancer survival rates at the cost of irreversible and frequent cardiovascular toxicity. As the main dose-dependent adverse effect, cardiotoxic effects not only limit the usage of chemotherapeutic agents, but also cause the high risk of severe poor prognoses for cancer survivors. Therefore, it is of great significance to seek more effective cardioprotective strategies. Some nutrients have been reported to diminish cardiac oxidative damage associated with chemotherapy. However, the currently available evidence is unclear, which requires a rigorous summary. As such, we conducted a systematic review of all available evidence and demonstrated whether nutrients derived from food could prevent cardiotoxicity caused by chemotherapy. Methods We searched Medline (via PubMed), Embase and the Cochrane Library from inception to Nov 9, 2021 to identify studies reporting dietary nutrients against cancer chemotherapy-related cardiotoxicity. We performed descriptive summaries on the included studies, and used forest plots to demonstrate the effects of various dietary nutrients. Results Fifty-seven eligible studies were identified, involving 53 animal studies carried on rats or mice and four human studies in cancer patients. Seven types of dietary nutrients were recognized including polyphenols (mainly extracted from grapes, grape seeds, and tea), allicin (mainly extracted form garlic), lycopene (mainly extracted from tomatoes), polyunsaturated fatty acids, amino acids (mainly referring to glutamine), coenzyme Q10, and trace elements (mainly referring to zinc and selenium). Dietary nutrients ameliorated left ventricular dysfunctions and myocardial oxidative stress at varying degrees, which were caused by chemotherapy. The overall risk of bias of included studies was at moderate to high risk. Conclusion The results indicated that dietary nutrients might be a potential strategy to protect cardiovascular system exposed to the chemotherapeutic agents, but more human studies are urged in this field.Systematic Review Registration: https://inplasy.com/inplasy-2022-3-0015/.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Ambulatory Surgery Center, Xijing Hospital, Air Force Military Medical University, Xi'an, China.,Nursing Department, Chengdu BOE Hospital, Chengdu, China
| | - Ke-Lu Yang
- Academic Center for Nursing and Midwifery, Department of Public Health and Primary Care, University of Leuven (KU Leuven), Leuven, Belgium
| | - Yang Li
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China
| | - Yang Zhao
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Ke-Wei Jiang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China
| | - Quan Wang
- Ambulatory Surgery Center, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Xiao-Nan Liu
- Ambulatory Surgery Center, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Alhusaini AM, Fadda LM, Alanazi AM, Sarawi WS, Alomar HA, Ali HM, Hasan IH, Ali RA. Nano-Resveratrol: A Promising Candidate for the Treatment of Renal Toxicity Induced by Doxorubicin in Rats Through Modulation of Beclin-1 and mTOR. Front Pharmacol 2022; 13:826908. [PMID: 35281939 PMCID: PMC8913579 DOI: 10.3389/fphar.2022.826908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/30/2022] Open
Abstract
Background: Although doxorubicin (DXR) is one of the most used anticancer drugs, it can cause life-threatening renal damage. There has been no effective treatment for DXR-induced renal damage until now. Aim: This work aims at examining the potential impact of nano-resveratrol (N-Resv), native resveratrol (Resv), and their combination with carvedilol (Card) against DXR-induced renal toxicity in rats and to investigate the mechanisms through which these antioxidants act to ameliorate DXR nephrotoxicity. Method: DXR was administered to rats (2 mg/kg, i.p.) twice weekly over 5 weeks. The antioxidants in question were taken 1 week before the DXR dose for 6 weeks. Results: DXR exhibited an elevation in serum urea, creatinine, renal lipid peroxide levels, endoglin expression, kidney injury molecule-1 (KIM-1), and beclin-1. On the other hand, renal podocin and mTOR expression and GSH levels were declined. In addition, DNA fragmentation was markedly increased in the DXR-administered group. Treatment with either Resv or N-Resv alone or in combination with Card ameliorated the previously measured parameters. Conclusion: N-Resv showed superior effectiveness relative to Resv in most of the measured parameters. Histopathological examination revealed amelioration of renal structural and cellular changes after DXR by Card and N-Resv, thus validating the previous biochemical and molecular results.
Collapse
Affiliation(s)
- Ahlam M. Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Ahlam M. Alhusaini,
| | - Laila M. Fadda
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abeer M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wedad S. Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hatun A. Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanaa M. Ali
- Genetics and Cytology Department, National Research Centre, Cairo, Egypt
| | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rehab Ahmed Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
In Vitro and In Vivo Cardioprotective Effects of Curcumin against Doxorubicin-Induced Cardiotoxicity: A Systematic Review. JOURNAL OF ONCOLOGY 2022; 2022:7277562. [PMID: 35237323 PMCID: PMC8885194 DOI: 10.1155/2022/7277562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022]
Abstract
Objective This study aimed to review the potential chemoprotective effects of curcumin against the doxorubicin-induced cardiotoxicity. Methods According to the PRISMA guideline, a comprehensive systematic search was performed in different electronic databases (Web of Science, PubMed, and Scopus) up to July 2021. One hundred and sixty-four studies were screened in accordance with a predefined set of inclusion and exclusion criteria. Eighteen eligible articles were finally included in the current systematic review. Results According to the in vitro and in vivo findings, it was found that doxorubicin administration leads to decreased cell survival, increased mortality, decreased bodyweight, heart weight, and heart to the bodyweight ratio compared to the control groups. However, curcumin cotreatment demonstrated an opposite pattern in comparison with the doxorubicin-treated groups alone. Other findings showed that doxorubicin significantly induces biochemical changes in the cardiac cells/tissue. Furthermore, the histological changes on the cardiac tissue were observed following doxorubicin treatment. Nevertheless, for most of the cases, these biochemical and histological changes mediated by doxorubicin were reversed near to control groups following curcumin coadministration. Conclusion It can be mentioned that coadministration of curcumin alleviates the doxorubicin-induced cardiotoxicity. Curcumin exerts these cardioprotective effects through different mechanisms of antioxidant, antiapoptosis, and anti-inflammatory. Since the finding presented in this systematic review are based on in vitro and in vivo studies, suggesting the use of curcumin in cancer patients as a cardioprotector agent against cardiotoxicity mediated by doxorubicin requires further clinical studies.
Collapse
|
10
|
Hu LF, Lan HR, Li XM, Jin KT. A Systematic Review of the Potential Chemoprotective Effects of Resveratrol on Doxorubicin-Induced Cardiotoxicity: Focus on the Antioxidant, Antiapoptotic, and Anti-Inflammatory Activities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2951697. [PMID: 34471463 PMCID: PMC8405305 DOI: 10.1155/2021/2951697] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Although doxorubicin chemotherapeutic drug is commonly used to treat various solid and hematological tumors, its clinical use is restricted because of its adverse effects on the normal cells/tissues, especially cardiotoxicity. The use of resveratrol may mitigate the doxorubicin-induced cardiotoxic effects. For this aim, we systematically reviewed the potential chemoprotective effects of resveratrol against the doxorubicin-induced cardiotoxicity. METHODS In the current study, a systematic search was performed based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline for the identification of all relevant studies on "the role of resveratrol on doxorubicin-induced cardiotoxicity" in the electronic databases of Web of Science, PubMed, and Scopus up to March 2021 using search terms in their titles and abstracts. Two hundred and eighteen articles were screened in accordance with a predefined set of inclusion and exclusion criteria. Finally, 33 eligible articles were included in this systematic review. RESULTS The in vitro and in vivo findings demonstrated a decreased cell survival, increased mortality, decreased heart weight, and increased ascites in the doxorubicin-treated groups compared to the control groups. The combined treatment of resveratrol and doxorubicin showed an opposite pattern than the doxorubicin-treated groups alone. Furthermore, this chemotherapeutic agent induced the biochemical and histopathological changes on the cardiac cells/tissue; however, the results (for most of the cases) revealed that these alterations induced by doxorubicin were reversed near to normal levels (control groups) by resveratrol coadministration. CONCLUSION The results of this systematic review stated that coadministration of resveratrol alleviates the doxorubicin-induced cardiotoxicity. Resveratrol exerts these chemoprotective effects through several main mechanisms of antioxidant, antiapoptosis, and anti-inflammatory.
Collapse
Affiliation(s)
- Li-Feng Hu
- Department of Colorectal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000 Zhejiang Province, China
| | - Xue-Min Li
- Department of Hepatobiliary Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000 Zhejiang Province, China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000 Zhejiang Province, China
| |
Collapse
|
11
|
Zhu J, Zhang X, Xie H, Wang Y, Zhang X, Lin Z. Cardiomyocyte Stim1 Deficiency Exacerbates Doxorubicin Cardiotoxicity by Magnification of Endoplasmic Reticulum Stress. J Inflamm Res 2021; 14:3945-3958. [PMID: 34421306 PMCID: PMC8373307 DOI: 10.2147/jir.s304520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/08/2021] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Doxorubicin (Dox) is an effective anticancer agent; however, its cardiotoxicity remains a challenge. Dysfunction of intracellular calcium ion (Ca2+) is implicated in the process of Dox-induced cardiomyocyte apoptosis. Although store-operated Ca2+ entry (SOCE) is suggested to be responsible for Ca2+ entry in cardiomyocytes, the direct role of store-operated Ca2+ channels in Dox-related cardiomyocyte apoptosis is unknown. MATERIALS AND METHODS Cardiomyocyte Stim1-specific knockout or overexpression mice were treated with Dox. Cardiomyocytes were pretreated with Stim1 adenovirus or siRNA followed by Dox incubation in vitro. Cardiac function and underlying mechanisms echocardiography were assessed via immunofluorescence, flow cytometry, real-time PCR, Western blotting and immunoprecipitation. RESULTS We observed the inhibition of Stim1 expression, association of Stim1 to Orai1 or Trpc1, and SOCE in Dox-treated mouse myocardium and cardiomyocytes. Orai1 and Trpc1 expression remained unchanged. Cardiomyocyte-specific deficiency of Stim1 exacerbated Dox-induced cardiac dysfunction and myocardial apoptosis. However, specific overexpression of Stim1 in the myocardium was associated with amelioration of cardiac dysfunction and myocardial apoptosis. In vitro, STIM1 knockdown potentiated Dox-induced AC16 human cardiomyocyte apoptosis. This apoptosis was attenuated by STIM1 upregulation. Moreover, STIM1 downregulation enhanced Dox-induced endoplasmic reticulum (ER) stress in cardiomyocytes. In contrast, STIM1 overexpression inhibited the activation of the above molecular markers of ER stress. Immunoprecipitation assay showed that STIM1 interacted with GRP78 in cardiomyocytes. This interaction was attenuated in response to Dox treatment. CONCLUSION Our data demonstrate that cardiomyocyte STIM1 binding to GRP78 ameliorates Dox cardiotoxicity by inhibiting pro-apoptotic ER stress.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215008, Jiangsu, People’s Republic of China
| | - Xia Zhang
- Department of Anesthesiology, Wuzhong People’s Hospital, Suzhou, Jiangsu, 215128, People’s Republic of China
| | - Hong Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215008, Jiangsu, People’s Republic of China
| | - Yuye Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215008, Jiangsu, People’s Republic of China
| | - Xiaoxiao Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215008, Jiangsu, People’s Republic of China
| | - Zhaoheng Lin
- Intensive Care Unit, People’s Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Jinghong City, 666100, Yunnan, People’s Republic of China
| |
Collapse
|
12
|
Tang S, Kan J, Sun R, Cai H, Hong J, Jin C, Zong S. Anthocyanins from purple sweet potato alleviate doxorubicin-induced cardiotoxicity in vitro and in vivo. J Food Biochem 2021; 45:e13869. [PMID: 34287964 DOI: 10.1111/jfbc.13869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/16/2021] [Accepted: 07/03/2021] [Indexed: 12/21/2022]
Abstract
In this study, anthocyanins were extracted and purified from purple sweet potato anthocyanins (PSPA) and the alleviative effect of PSPA on doxorubicin (DOX)-induced cardiotoxicity was investigated. High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) results showed that 10 kinds of substances were identified in PSPA and the PSPA was mainly composed of cyanidin (62.9%) and peonidin (21.46%). In in vitro experiments, PSPA reduced the excessive release of inflammatory factors (NO and TNF-α) induced by DOX and decreased the secretion of trimethylamine oxide (TMAO), lactic dehydrogenase (LDH), and creatine kinase (CK) caused by myocardial injury. In in vivo experiments, PSPA inhibited the release of NO and MDA levels in heart tissue. Meanwhile, mice treated with PSPA decreased the levels of LDH, CK, TNF-α, and TMAO in serum and heart tissue when compared with the DOX group. In addition, the histopathological results of the heart tissue also showed a protective effect of PSPA on the pathological changes in heart. These results provide a reference for the application of PSPA as a functional food to intervene in DOX-induced cardiotoxicity. PRACTICAL APPLICATIONS: The effects of anthocyanins from purple sweet potato anthocyanins (PSPA) on doxorubicin (DOX)-induced cardiotoxicity were investigated in vitro and in vivo. The results indicated that PSPA could significantly ameliorate DOX-induced heart failure. The obtained results could provide the potential application of PSPA as an alternative therapy for cardiotoxicity caused by DOX in the functional food industry.
Collapse
Affiliation(s)
- Sixue Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Rui Sun
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Huahao Cai
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Jinhai Hong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Shuai Zong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
13
|
Resveratrol and endothelial function: A literature review. Pharmacol Res 2021; 170:105725. [PMID: 34119624 DOI: 10.1016/j.phrs.2021.105725] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
Endothelial dysfunction is a major contributing factor to diseases such as atherosclerosis, diabetes mellitus, obesity, hypertension, acute lung injury, preeclampsia, among others. Resveratrol (RSV) is a naturally occurring bioactive polyphenol found in grapes and red wine. According to experimental studies, RSV modulates several events involved in endothelial dysfunction such as impaired vasorelaxation, eNOS uncoupling, leukocyte adhesion, endothelial senescence, and endothelial mesenchymal transition. The endothelial protective effects of RSV are found to be mediated by numerous molecular targets (e.g. Silent Information Regulator 1 (SIRT1), 5' AMP-activated protein kinase (AMPK), endothelial nitric oxide synthase (eNOS), nuclear factor-erythroid-derived 2-related factor-2 (Nrf2), peroxisome proliferator-activated receptor (PPAR), Krüppel-like factor-2 (KLF2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)). Herein, we present an updated review addressing pharmacological effects and molecular targets of RSV in maintaining endothelial function, and the potential of this phytochemical for endothelial dysfunction-associated disorders.
Collapse
|
14
|
Monahan DS, Flaherty E, Hameed A, Duffy GP. Resveratrol significantly improves cell survival in comparison to dexrazoxane and carvedilol in a h9c2 model of doxorubicin induced cardiotoxicity. Biomed Pharmacother 2021; 140:111702. [PMID: 34015579 DOI: 10.1016/j.biopha.2021.111702] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of deaths worldwide with 18.1 million deaths per year. Although there have been significant advances in anti-cancer therapies, they can often result in side effects with cardiovascular complications being the most severe. Dexrazoxane is the only currently approved treatment for prevention of anthracycline induced cardiotoxicity but there are concerns about its use due to the development of secondary malignancies and myelodysplastic syndrome. Additionally, it is only recommended in patients who are due to receive a total cumulative dose of 300 mg/m2 of doxorubicin or 540 mg/m2 of epirubicin. Thus, there exists an urgent need to develop new therapeutic strategies to counteract anthracycline induced cardiotoxicity. The h9c2 cardiomyoblast was investigated for its differentiation capacity and used to screen and compare promising prophylactics for doxorubicin induced cardiotoxicity. The half maximal inhibitory concentration of doxorubicin was determined in differentiated h9c2 cells after 24 h of exposure, to establish a model for drug screening. Cells were treated with dexrazoxane, resveratrol, and carvedilol either 3 h or 24 h prior to doxorubicin treatment. The ability of these cardioprotectants to prevent cardiotoxicity was analysed using the cck-8 cell viability assay and the dichlorofluorescin diacetate (DCFDA) reactive oxygen species (ROS) assay. There was no significant increase in survival in treatment groups after 3 h, however, at 24 h, resveratrol significantly improved survival compared to all other groups (p < 0.05). Additionally, dexrazoxane and resveratrol significantly decreased ROS formation at 3 h (p < 0.05) and all groups significantly decreased ROS production at 24 h (p < 0.001). This work is the first comparison of these cardioprotectants and suggests that resveratrol may be a more effective treatment in the prevention of anthracycline induced cardiotoxicity, compared to dexrazoxane and carvedilol. However, further work will be needed in order to decipher the exact mechanism and potential of this drug in the clinic.
Collapse
Affiliation(s)
- David S Monahan
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; Centre for Research in Medical Devices (CύRAM), National University of Ireland Galway, Galway, Ireland.
| | - Eimhear Flaherty
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland.
| | - Aamir Hameed
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, Dublin, Ireland; Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin (TCD), Dublin, Ireland.
| | - Garry P Duffy
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; Centre for Research in Medical Devices (CύRAM), National University of Ireland Galway, Galway, Ireland; Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, Dublin, Ireland; Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin & National University of Ireland Galway, Ireland.
| |
Collapse
|
15
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
16
|
Poltronieri P, Xu B, Giovinazzo G. Resveratrol and other Stilbenes: Effects on Dysregulated Gene Expression in Cancers and Novel Delivery Systems. Anticancer Agents Med Chem 2021; 21:567-574. [PMID: 32628597 DOI: 10.2174/1871520620666200705220722] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/09/2020] [Accepted: 04/14/2020] [Indexed: 11/22/2022]
Abstract
Trans-resveratrol (RESV), pterostilbene, trans-piceid and trans-viniferins are bioactive stilbenes present in grapes and other plants. Several groups applied biotechnology to introduce their synthesis in plant crops. Biochemical interaction with enzymes, regulation of non-coding RNAs, and activation of signaling pathways and transcription factors are among the main effects described in literature. However, solubility in ethanol, short half-life, metabolism by gut bacteria, make the concentration responsible for the effects observed in cultured cells difficult to achieve. Derivatives obtained by synthesis, trans-resveratrol analogs and methoxylated stilbenes show to be more stable and allow the synthesis of bioactive compounds with higher bioavailability. However, changes in chemical structure may require testing for toxicity. Thus, the delivery of RESV and its natural analogs incorporated into liposomes or nanoparticles, is the best choice to ensure stability during administration and appropriate absorption. The application of RESV and its derivatives with anti-inflammatory and anticancer activity is presented with description of novel clinical trials.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Department of Agrofood and Biological Sciences, National Research Council, CNR-ISPA, Lecce, Italy
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Giovanna Giovinazzo
- Department of Agrofood and Biological Sciences, National Research Council, CNR-ISPA, Lecce, Italy
| |
Collapse
|
17
|
Georgiadis N, Tsarouhas K, Rezaee R, Nepka H, Kass GEN, Dorne JLCM, Stagkos D, Toutouzas K, Spandidos DA, Kouretas D, Tsitsimpikou C. What is considered cardiotoxicity of anthracyclines in animal studies. Oncol Rep 2020; 44:798-818. [PMID: 32705236 PMCID: PMC7388356 DOI: 10.3892/or.2020.7688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Anthracyclines are commonly used anticancer drugs with well-known and extensively studied cardiotoxic effects in humans. In the clinical setting guidelines for assessing cardiotoxicity are well-established with important therapeutic implications. Cardiotoxicity in terms of impairment of cardiac function is largely diagnosed by echocardiography and based on objective metrics of cardiac function. Until this day, cardiotoxicity is not an endpoint in the current general toxicology and safety pharmacology preclinical studies, although other classes of drugs apart from anthracyclines, along with everyday chemicals have been shown to manifest cardiotoxic properties. Also, in the relevant literature there are not well-established objective criteria or reference values in order to uniformly characterize cardiotoxic adverse effects in animal models. This in depth review focuses on the evaluation of two important echocardiographic indices, namely ejection fraction and fractional shortening, in the literature concerning anthracycline administration to rats as the reference laboratory animal model. The analysis of the gathered data gives promising results and solid prospects for both, defining anthracycline cardiotoxicity objective values and delineating the guidelines for assessing cardiotoxicity as a separate hazard class in animal preclinical studies for regulatory purposes.
Collapse
Affiliation(s)
| | | | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, 9177948564 Mashhad, Iran
| | - Haritini Nepka
- Department of Pathology, University Hospital of Larissa, 41334 Larissa, Greece
| | | | | | - Dimitrios Stagkos
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Konstantinos Toutouzas
- First Department of Cardiology, Hippokration Hospital, Medical School, University of Athens, 11527 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Christina Tsitsimpikou
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
18
|
Ashrafizadeh M, Javanmardi S, Moradi-Ozarlou M, Mohammadinejad R, Farkhondeh T, Samarghandian S, Garg M. Natural products and phytochemical nanoformulations targeting mitochondria in oncotherapy: an updated review on resveratrol. Biosci Rep 2020; 40:BSR20200257. [PMID: 32163546 PMCID: PMC7133519 DOI: 10.1042/bsr20200257] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are intracellular organelles with two distinct membranes, known as an outer mitochondrial membrane and inner cell membrane. Originally, mitochondria have been derived from bacteria. The main function of mitochondria is the production of ATP. However, this important organelle indirectly protects cells by consuming oxygen in the route of energy generation. It has been found that mitochondria are actively involved in the induction of the intrinsic pathways of apoptosis. So, there have been efforts to sustain mitochondrial homeostasis and inhibit its dysfunction. Notably, due to the potential role of mitochondria in the stimulation of apoptosis, this organelle is a promising target in cancer therapy. Resveratrol is a non-flavonoid polyphenol that exhibits significant pharmacological effects such as antioxidant, anti-diabetic, anti-inflammatory and anti-tumor. The anti-tumor activity of resveratrol may be a consequence of its effect on mitochondria. Multiple studies have investigated the relationship between resveratrol and mitochondria, and it has been demonstrated that resveratrol is able to significantly enhance the concentration of reactive oxygen species, leading to the mitochondrial dysfunction and consequently, apoptosis induction. A number of signaling pathways such as sirtuin and NF-κB may contribute to the mitochondrial-mediated apoptosis by resveratrol. Besides, resveratrol shifts cellular metabolism from glycolysis into mitochondrial respiration to induce cellular death in cancer cells. In the present review, we discuss the possible interactions between resveratrol and mitochondria, and its potential application in cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sara Javanmardi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoumeh Moradi-Ozarlou
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India
| |
Collapse
|
19
|
Alanazi A, Fadda L, Alhusaini A, Ahmad R. Antioxidant, antiapoptotic, and antifibrotic effects of the combination of liposomal resveratrol and carvedilol against doxorubicin‐induced cardiomyopathy in rats. J Biochem Mol Toxicol 2020; 34:e22492. [DOI: 10.1002/jbt.22492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/24/2020] [Accepted: 03/03/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Abeer Alanazi
- Department of Pharmacology and Toxicology, College of PharmacyKing Saud University Riyadh Saudi Arabia
| | - Laila Fadda
- Department of Pharmacology and Toxicology, College of PharmacyKing Saud University Riyadh Saudi Arabia
| | - Ahlam Alhusaini
- Department of Pharmacology and Toxicology, College of PharmacyKing Saud University Riyadh Saudi Arabia
| | - Rehab Ahmad
- Department of Pharmacology and Toxicology, College of PharmacyKing Saud University Riyadh Saudi Arabia
| |
Collapse
|
20
|
Chen J, Zhang S, Pan G, Lin L, Liu D, Liu Z, Mei S, Zhang L, Hu Z, Chen J, Luo H, Wang Y, Xin Y, You Z. Modulatory effect of metformin on cardiotoxicity induced by doxorubicin via the MAPK and AMPK pathways. Life Sci 2020; 249:117498. [PMID: 32142765 DOI: 10.1016/j.lfs.2020.117498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
AIMS Doxorubicin (DOX) is an effective anthracycline anticancer drug. However, the clinical usage of it is limited due to its severe cardiotoxicity side effects. Metformin (Met) is a kind of first-line antihyperglycemic drug which has a potential protective effect on the heart,it is often used for oral treatment of type 2 diabetes. In this study, we explored whether Met could attenuate cardiotoxicity induced by DOX. MATERIALS AND METHODS For the sake of exploring the Met protective effect and mechanism, we established the DOX-induced cardiotoxicity models both in H9C2 cells incubated with 5 μM DOX in vitro and Sprague-Dawley rats treated with 20 mg/kg cumulative dose of DOX. KEY FINDINGS Met is able to inhibit growth inhibition and apoptosis of H9C2 cells induced by DOX. The heart indexes of rats were examined to evaluate the Met cardiotoxicity protection. Met improved the abnormal indexes, serum markers of cardiac heart injury, echocardiography, electrocardiogram, cardiac pathology, cardiomyocyte apoptosis, and oxidative stress markers induced by DOX. Furthermore, in vivo and in vitro studies demonstrated that Met protected against DOX-induced increasing cleaved caspase-3 and Bax. Met also prevented the downregulation of Bcl-2, activated the AMPK pathway, and inhibited the MAPK pathway. SIGNIFICANCE Met showed protective effects on DOX-induced cardiotoxicity by reducing oxidative stress and apoptosis, as well as regulating AMPK and MAPK signaling pathways.
Collapse
Affiliation(s)
- Jiaoting Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China; Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sheng Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guixuan Pan
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lin Lin
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dongying Liu
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhen Liu
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Song Mei
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijing Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhihang Hu
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianguo Chen
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huaxing Luo
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yin Wang
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanfei Xin
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Zhenqiang You
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Alanazi AM, Fadda L, Alhusaini A, Ahmad R, Hasan IH, Mahmoud AM. Liposomal Resveratrol and/or Carvedilol Attenuate Doxorubicin-Induced Cardiotoxicity by Modulating Inflammation, Oxidative Stress and S100A1 in Rats. Antioxidants (Basel) 2020; 9:antiox9020159. [PMID: 32079097 PMCID: PMC7070570 DOI: 10.3390/antiox9020159] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/23/2022] Open
Abstract
Doxorubicin (DOX) is a cytotoxic anthracycline antibiotic and one of the important chemotherapeutic agents for different types of cancers. DOX treatment is associated with adverse effects, particularly cardiac dysfunction. This study examined the cardioprotective effects of carvedilol (CAR) and/or resveratrol (RES) and liposomal RES (LIPO-RES) against DOX-induced cardiomyopathy, pointing to their modulatory effect on oxidative stress, inflammation, S100A1 and sarco/endoplasmic reticulum calcium ATPase2a (SERCA2a). Rats received CAR (30 mg/kg) and/or RES (20 mg/kg) or LIPO-RES (20 mg/kg) for 6 weeks and were challenged with DOX (2 mg/kg) twice per week from week 2 to week 6. DOX-administered rats exhibited a significant increase in serum creatine kinase-MB (CK-MB), troponin-I and lactate dehydrogenase (LDH) along with histological alterations, reflecting cardiac cell injury. Cardiac toll-like receptor 4 (TLR-4), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α and interleukin (IL)-6 protein expression were up-regulated, and lipid peroxidation was increased in DOX-administered rats. Treatment with CAR, RES or LIPO-RES as well as their alternative combinations ameliorated all observed biochemical and histological alterations with the most potent effect exerted by CAR/LIPO-RES. All treatments increased cardiac antioxidants, and the expression of S100A1 and SERCA2a. In conclusion, the present study conferred new evidence on the protective effects of CAR and its combination with either RES or LIPO-RES on DOX-induced inflammation, oxidative stress and calcium dysregulation.
Collapse
Affiliation(s)
- Abeer M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (L.F.); (R.A.); (I.H.H.)
| | - Laila Fadda
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (L.F.); (R.A.); (I.H.H.)
| | - Ahlam Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (L.F.); (R.A.); (I.H.H.)
- Correspondence: (A.A.); (A.M.M.)
| | - Rehab Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (L.F.); (R.A.); (I.H.H.)
| | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (L.F.); (R.A.); (I.H.H.)
| | - Ayman M. Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Correspondence: (A.A.); (A.M.M.)
| |
Collapse
|
22
|
Audebrand A, Désaubry L, Nebigil CG. Targeting GPCRs Against Cardiotoxicity Induced by Anticancer Treatments. Front Cardiovasc Med 2020; 6:194. [PMID: 32039239 PMCID: PMC6993588 DOI: 10.3389/fcvm.2019.00194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
Novel anticancer medicines, including targeted therapies and immune checkpoint inhibitors, have greatly improved the management of cancers. However, both conventional and new anticancer treatments induce cardiac adverse effects, which remain a critical issue in clinic. Cardiotoxicity induced by anti-cancer treatments compromise vasospastic and thromboembolic ischemia, dysrhythmia, hypertension, myocarditis, and cardiac dysfunction that can result in heart failure. Importantly, none of the strategies to prevent cardiotoxicity from anticancer therapies is completely safe and satisfactory. Certain clinically used cardioprotective drugs can even contribute to cancer induction. Since G protein coupled receptors (GPCRs) are target of forty percent of clinically used drugs, here we discuss the newly identified cardioprotective agents that bind GPCRs of adrenalin, adenosine, melatonin, ghrelin, galanin, apelin, prokineticin and cannabidiol. We hope to provoke further drug development studies considering these GPCRs as potential targets to be translated to treatment of human heart failure induced by anticancer drugs.
Collapse
Affiliation(s)
| | | | - Canan G. Nebigil
- Laboratory of CardioOncology and Therapeutic Innovation, CNRS, Illkirch, France
| |
Collapse
|
23
|
Dexmedetomidine alleviates doxorubicin cardiotoxicity by inhibiting mitochondrial reactive oxygen species generation. Hum Cell 2019; 33:47-56. [PMID: 31643023 DOI: 10.1007/s13577-019-00282-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/14/2019] [Indexed: 10/25/2022]
Abstract
Cardiotoxicity largely limits the application of doxorubicin (Dox) for cancer treatment. Dexmedetomidine (Dex), a selective agonist of α2-adrenergic receptor, has been suggested to exert cardioprotection against myocardial injury. However, the effect and underlying mechanisms of Dex on Dox cardiotoxicity remain unknown. In this study, C57BL/6 mice were treated with Dox followed by Dex administration. Cardiomyocytes were co-incubated with Dox and Dex in vitro. The results showed that Dex markedly attenuated cardiac dysfunction induced by Dox. TUNEL staining exhibited that Dex inhibited Dox-induced cardiomyocyte apoptosis in myocardium. Moreover, the expression of anti-apoptotic protein Bcl-2 was increased, whereas the expression of pro-apoptotic protein Bax was decreased by Dex. Dox-induced the increase of reactive oxygen species (ROS), superoxide anion, and mitochondrial ROS (mROS) generation in myocardial tissues were significantly inhibited after Dex administration. In in vitro study, it was further confirmed that Dex prevented Dox-induced cardiomyocyte apoptosis and injury. However, the stimulation of mROS generation reversed the effect of Dex in cardiomyocytes. Mechanically, Dex blocked Dox-induced the ubiquitination of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), leading to the restoration of PGC-1α and downstream oxidative stress-protective molecules uncoupling protein 2 and manganese-dependent superoxide dismutase expression. Taken together, this study demonstrates that Dex exerts cardioprotection against Dox cardiotoxicity by attenuating mitochondrial dysfunction, oxidative stress, and cardiomyocyte apoptosis via inhibiting PGC-1α-signaling pathway inactivation. This suggests that Dex may be a potential therapeutic strategy for Dox cardiotoxicity treatment.
Collapse
|
24
|
Sun Y, Nemec-Bakk AS, Mallik AU, Bagchi AK, Singal PK, Khaper N. Blueberry extract attenuates doxorubicin-induced damage in H9c2 cardiac cells 1. Can J Physiol Pharmacol 2019; 97:880-884. [PMID: 31365282 DOI: 10.1139/cjpp-2019-0031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The objective of this study was to analyze the cardioprotective roles of 3 wild blueberry genotypes and one commercial blueberry genotype by measuring markers of oxidative stress and cell death in H9c2 cardiac cells exposed to doxorubicin. Ripe berries of the 3 wild blueberry genotypes were collected from a 10-year-old clearcut forest near Nipigon, Ontario, Canada (49°1'39″N, 87°52'21″W), whereas the commercial blueberries were purchased from a local grocery store. H9c2 cardiac cells were incubated with 15 μg gallic acid equivalent/mL blueberry extract for 4 h followed by 5 μM doxorubicin for 4 h, and oxidative stress and active caspase 3/7 were analyzed. The surface area as well as total phenolic content was significantly higher in all 3 wild blueberry genotypes compared with the commercial species. Increase in oxidative stress due to doxorubicin exposure was attenuated by pre-treatment with all 3 types of wild blueberries but not by commercial berries. Furthermore, increase in caspase 3/7 activity was also attenuated by all 3 wild genotypes as well. These data demonstrate that wild blueberry extracts can attenuate doxorubicin-induced damage to H9c2 cardiomyocytes through reduction in oxidative stress and apoptosis, whereas the commercial blueberry had little effect.
Collapse
Affiliation(s)
- Yue Sun
- Department of Biology, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | | | - Azim U Mallik
- Department of Biology, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Ashim K Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Pawan K Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Neelam Khaper
- Department of Biology, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON P7B 5E1, Canada.,Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
25
|
Zhang L, Zhu K, Zeng H, Zhang J, Pu Y, Wang Z, Zhang T, Wang B. Resveratrol solid lipid nanoparticles to trigger credible inhibition of doxorubicin cardiotoxicity. Int J Nanomedicine 2019; 14:6061-6071. [PMID: 31534336 PMCID: PMC6681569 DOI: 10.2147/ijn.s211130] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Doxorubicin (DOX), a broad-spectrum chemotherapy drug, is clinically employed to treat cancers especially for breast cancer and lung cancer. But its clinical applications are limited by the dose-dependent cardiac toxicity. Resveratrol (Res), a polyphenolic antitoxin, has been proved to be capable of improving the cardiomyocyte calcium cycling by up-regulating SIRT-1-mediated deacetylation to inhibit DOX-induced cardiotoxicity. Purpose: The objective of this study was to develop a solid lipid nanoparticle (SLN) loaded with Res to trigger inhibition of DOX-induced cardiotoxicity. Methods: Res-SLN was prepared by emulsification-diffusion method followed by sonication and optimized using central composite design/response surface method. The Res-SLN was further evaluated by dynamic light scattering, transmission electron microscopy for morphology and high performance liquid chromatography for drug loading and release profile. And the Res distribution in vivo was determined on rats while the effect of inhibit DOX-induced cardiotoxicity was investigated on mice. Results: Res-SLN with homogeneous particle size of 271.13 nm was successfully formulated and optimized. The prepared Res-SLN showed stable under storage and sustained release profile, improving the poor solubility of Res. Heart rate, ejection fractions and fractional shortening of Res-SLN treating mice were found higher than those on mice with cardiac toxicity induced by single high-dose intraperitoneal injection of DOX. And the degree of myocardial ultrastructural lesions on mice was also observed. Conclusion: Res-SLN has a certain therapeutic effect for protecting the myocardium and reducing DOX-induced cardiotoxicity in mice.
Collapse
Affiliation(s)
- Lili Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Kexin Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hairong Zeng
- Department of Pharmacy, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jiaxin Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhicheng Wang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Zhong LX, Wu ML, Li H, Liu J, Lin LZ. Efficacy and safety of intraperitoneally administered resveratrol against rat orthotopic ovarian cancers. Cancer Manag Res 2019; 11:6113-6124. [PMID: 31456648 PMCID: PMC6620774 DOI: 10.2147/cmar.s206301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/25/2019] [Indexed: 01/09/2023] Open
Abstract
Background Resveratrol (Res) inhibits ovarian cancer (OC) cell growth but its in vivo anti-OC effects are unclear due to the low bioavailability of systemically administered Res. Intraperitoneal administration may overcome this therapeutic dilemma because it makes Res directly affect the abdominal tumors. Ethanol and DMSO are common Res solvents, while their reliability and safety for long-term in vivo treatment remain unknown. Methods A rat orthotopic OC model was established using the rat NUTU-19 OC cell line. Res dissolved in 10% ethanol or 0.2% DMSO was injected intraperitoneally (20 mg/kg/day) into tumor-free and tumor-bearing rats for 2 weeks. The tumors were collected for gross, morphological and molecular examinations, and blood and ascitic samples were obtained for a CA125 ELISA. Res concentration in ovarian tissues was determined by high performance liquid chromatography (HPLC). Results The average tumor weight (0.187±0.065 g) of the Res-in-DMSO group was lower than that of untreated (0.426±0.091 g; P<0.01) and Res-in-ethanol (0.238±0.073 g; P<0.05) group. The average bloody ascitic volumes collected from untreated, Res-in-ethanol, and Res-in-DMSO groups were 5.65±0.27, 2.75±0.14, and 2.09±0.11 ml, respectively. Abundant TUNEL-positive cells, ARHI and PIAS3 upregulation, CA125 reduction, and decreased STAT3 nuclear translocation were found in the Res-in-ethanol and, especially, the Res-in-DMSO group. Widespread plaques of Res deposits were found on the abdominal serosa of the Res-in-ethanol group, but not in the Res-in-DMSO group. HPLC revealed a higher Res concentration in Res-in-DMSO-treated tumor tissues than in those treated by Res-in-ethanol (P<0.01). Fertility was maintained after long-term Res treatment. Conclusion Intraperitoneal administration of Res effectively inhibited rat orthotopic ovarian cancer growth without affecting normal tissues. The Res-in-DMSO group had the highest drug bioavailability and therefore stronger tumor-suppressive effects on ovarian cancer tissues.
Collapse
Affiliation(s)
- Li-Xia Zhong
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, Guangdong, People's Republic of China
| | - Mo-Li Wu
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Hong Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Jia Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Li-Zhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, Guangdong, People's Republic of China
| |
Collapse
|
27
|
Wenningmann N, Knapp M, Ande A, Vaidya TR, Ait-Oudhia S. Insights into Doxorubicin-induced Cardiotoxicity: Molecular Mechanisms, Preventive Strategies, and Early Monitoring. Mol Pharmacol 2019; 96:219-232. [PMID: 31164387 DOI: 10.1124/mol.119.115725] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/03/2019] [Indexed: 11/22/2022] Open
Abstract
Doxorubicin (DOX) is one of the most effective anticancer drugs to treat various forms of cancers; however, its therapeutic utility is severely limited by its associated cardiotoxicity. Despite the enormous amount of research conducted in this area, the exact molecular mechanisms underlying DOX toxic effects on the heart are still an area that warrants further investigations. In this study, we reviewed literature to gather the best-known molecular pathways related to DOX-induced cardiotoxicity (DIC). They include mechanisms dependent on mitochondrial dysfunction such as DOX influence on the mitochondrial electron transport chain, redox cycling, oxidative stress, calcium dysregulation, and apoptosis pathways. Furthermore, we discuss the existing strategies to prevent and/or alleviate DIC along with various techniques available for therapeutic drug monitoring (TDM) in cancer patients treated with DOX. Finally, we propose a stepwise flowchart for TDM of DOX and present our perspective at curtailing this deleterious side effect of DOX.
Collapse
Affiliation(s)
- Nadine Wenningmann
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Merle Knapp
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Anusha Ande
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Tanaya R Vaidya
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Sihem Ait-Oudhia
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| |
Collapse
|
28
|
Abdelgawad IY, Grant MKO, Zordoky BN. Leveraging the Cardio-Protective and Anticancer Properties of Resveratrol in Cardio-Oncology. Nutrients 2019; 11:nu11030627. [PMID: 30875799 PMCID: PMC6471701 DOI: 10.3390/nu11030627] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/25/2022] Open
Abstract
Cardio-oncology is a clinical/scientific discipline which aims to prevent and/or treat cardiovascular diseases in cancer patients. Although a large number of cancer treatments are known to cause cardiovascular toxicity, they are still widely used because they are highly effective. Unfortunately, therapeutic interventions to prevent and/or treat cancer treatment-induced cardiovascular toxicity have not been established yet. A major challenge for such interventions is to protect the cardiovascular system without compromising the therapeutic benefit of anticancer medications. Intriguingly, the polyphenolic natural compound resveratrol and its analogs have been shown in preclinical studies to protect against cancer treatment-induced cardiovascular toxicity. They have also been shown to possess significant anticancer properties on their own, and to enhance the anticancer effect of other cancer treatments. Thus, they hold significant promise to protect the cardiovascular system and fight the cancer at the same time. In this review, we will discuss the current knowledge regarding the cardio-protective and the anticancer properties of resveratrol and its analogs. Thereafter, we will discuss the challenges that face the clinical application of these agents. To conclude, we will highlight important gaps of knowledge and future research directions to accelerate the translation of these exciting preclinical findings to cancer patient care.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
29
|
Singh AP, Singh R, Verma SS, Rai V, Kaschula CH, Maiti P, Gupta SC. Health benefits of resveratrol: Evidence from clinical studies. Med Res Rev 2019; 39:1851-1891. [PMID: 30741437 DOI: 10.1002/med.21565] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/07/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
Resveratrol is a polyphenolic nutraceutical that exhibits pleiotropic activities in human subjects. The efficacy, safety, and pharmacokinetics of resveratrol have been documented in over 244 clinical trials, with an additional 27 clinical trials currently ongoing. Resveretrol is reported to potentially improve the therapeutic outcome in patients suffering from diabetes mellitus, obesity, colorectal cancer, breast cancer, multiple myeloma, metabolic syndrome, hypertension, Alzheimer's disease, stroke, cardiovascular diseases, kidney diseases, inflammatory diseases, and rhinopharyngitis. The polyphenol is reported to be safe at doses up to 5 g/d, when used either alone or as a combination therapy. The molecular basis for the pleiotropic activities of resveratrol are based on its ability to modulate multiple cell signaling molecules such as cytokines, caspases, matrix metalloproteinases, Wnt, nuclear factor-κB, Notch, 5'-AMP-activated protein kinase, intercellular adhesion molecule, vascular cell adhesion molecule, sirtuin type 1, peroxisome proliferator-activated receptor-γ coactivator 1α, insulin-like growth factor 1, insulin-like growth factor-binding protein 3, Ras association domain family 1α, pAkt, vascular endothelial growth factor, cyclooxygenase 2, nuclear factor erythroid 2 like 2, and Kelch-like ECH-associated protein 1. Although the clinical utility of resveratrol is well documented, the rapid metabolism and poor bioavailability have limited its therapeutic use. In this regard, the recently produced micronized resveratrol formulation called SRT501, shows promise. This review discusses the currently available clinical data on resveratrol in the prevention, management, and treatment of various diseases and disorders. Based on the current evidence, the potential utility of this molecule in the clinic is discussed.
Collapse
Affiliation(s)
- Akhand Pratap Singh
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Rachna Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sumit Singh Verma
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vipin Rai
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Catherine H Kaschula
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, South Africa
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Subash Chandra Gupta
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
30
|
El-Said NT, Mohamed EA, Taha RA. Irbesartan suppresses cardiac toxicity induced by doxorubicin via regulating the p38-MAPK/NF-κB and TGF-β1 pathways. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:647-658. [DOI: 10.1007/s00210-019-01624-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/28/2019] [Indexed: 12/19/2022]
|
31
|
Yang Y, Zhao Y, Lan J, Kang Y, Zhang T, Ding Y, Zhang X, Lu L. Reduction-sensitive CD44 receptor-targeted hyaluronic acid derivative micelles for doxorubicin delivery. Int J Nanomedicine 2018; 13:4361-4378. [PMID: 30100720 PMCID: PMC6065576 DOI: 10.2147/ijn.s165359] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction A reduction-sensitive CD44-positive tumor-targetable drug delivery system for doxorubicin (DOX) delivery was developed based on hyaluronic acid (HA)-grafted polymers. Materials and methods HA was conjugated with folic acid (FA) via a reduction-sensitive disulfide linkage to form an amphiphilic polymer (HA-ss-FA). The chemical structure of HA-ss-FA was analyzed by ultraviolet spectroscopy, Fourier transform infrared spectroscopy, and 1H nuclear magnetic resonance (NMR) spectroscopy. The molecular weight of HA-ss-FA was determined by high-performance gel permeation chromatography. Blank HA-ss-FA micelles and DOX-loaded micelles were prepared and characterized. The reduction responsibility, cellular uptake, and in vivo biodistribution of HA-ss-FA micelles were investigated. Results DOX-loaded micelles were of high encapsulation efficiency (88.09%), high drug-loading content (22.70%), appropriate mean diameter (100-120 nm), narrow size distribution, and negative zeta potential (-6.7 to -31.5 mV). The DOX release from the micelles was significantly enhanced in reduction environment compared to normal environment. The result of in vitro cytotoxicity assay indicated that the blank micelles were of low toxicity and good biocompatibility and the cell viabilities were >100% with the concentration of HA-ss-FA from 18.75 to 600.00 μg/mL. Cellular uptake and in vivo biodistribution studies showed that DOX-loaded micelles were tumor-targetable and could significantly enhance cellular uptake by CD44 receptor-mediated endocytosis, and the cellular uptake of DOX in CD44-positve A549 cells was 1.6-fold more than that in CD44-negative L02 cells. In vivo biodistribution of HA-ss-FA micelles showed that micelles were of good in vivo tumor targetability and the fluorescence of indocyanine green (ICG)-loaded micelles was 4- to 6.6-fold stronger than free ICG within 6 h in HCCLM3 tumor-bearing nude mice. Conclusion HA-ss-FA is a promising nanocarrier with excellent biocompatibility, tumor targetability, and controlled drug release capability for delivery of chemotherapy drugs in cancer therapy.
Collapse
Affiliation(s)
- Yishun Yang
- Experiment Centre of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China, ;
| | - Yuan Zhao
- Experiment Centre for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinshuai Lan
- Experiment Centre of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China, ;
| | - Yanan Kang
- School of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- Experiment Centre of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China, ;
| | - Yue Ding
- Experiment Centre of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China, ;
| | - Xinyu Zhang
- Experiment Centre of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China, ;
| | - Lu Lu
- School of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
32
|
Espinoza JL, Kurokawa Y, Takami A. Rationale for assessing the therapeutic potential of resveratrol in hematological malignancies. Blood Rev 2018; 33:43-52. [PMID: 30005817 DOI: 10.1016/j.blre.2018.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/27/2018] [Accepted: 07/03/2018] [Indexed: 02/05/2023]
Abstract
Promising results from pre-clinical studies on the naturally-occurring polyphenol resveratrol have generated considerable interest and somewhat excessive expectations regarding the therapeutic potential of this compound for treating or preventing various diseases, including cardiovascular and neurodegenerative disorders and cancer. Resveratrol has potent inhibitory activity in vitro against various tumor types, including cell lines derived from virtually all blood malignancies. Pharmacological studies have shown that resveratrol is safe for humans but has poor bioavailability, due to its extensive hepatic metabolism. Curiously, a substantial proportion of the orally administered resveratrol can reach the bone marrow compartment. Notably, various pathways dysregulated in blood cancers are known to be molecular targets of resveratrol, thus substantiating the potential utility of this agent in blood malignancies. In this review, we primarily focus on the scientific evidence that supports the potential utility of resveratrol for the management of select hematological malignancies. In addition, potential clinical trials with resveratrol are suggested.
Collapse
Affiliation(s)
- J Luis Espinoza
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan.
| | - Yu Kurokawa
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Akiyoshi Takami
- Department of Internal Medicine, Division of Hematology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
33
|
Gu J, Fan YQ, Zhang HL, Pan JA, Yu JY, Zhang JF, Wang CQ. Resveratrol suppresses doxorubicin-induced cardiotoxicity by disrupting E2F1 mediated autophagy inhibition and apoptosis promotion. Biochem Pharmacol 2018; 150:202-213. [DOI: 10.1016/j.bcp.2018.02.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/16/2018] [Indexed: 01/06/2023]
|
34
|
Yu J, Wang C, Kong Q, Wu X, Lu JJ, Chen X. Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 40:125-139. [PMID: 29496165 DOI: 10.1016/j.phymed.2018.01.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 12/26/2017] [Accepted: 01/14/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND As an anthracycline antibiotic, doxorubicin (DOX) is one of the most potent and widely used chemotherapeutic agents for various types of solid tumors. Unfortunately, clinical application of this drug results in severe side effects of cardiotoxicity. PURPOSE We aim to review the research focused on elimination or reduction of DOX cardiotoxicity without affecting its anticancer efficacy by natural products. METHODS This study is based on pertinent papers that were retrieved by a selective search using relevant keywords in PubMed and ScienceDirect. The literature mainly focusing on natural products and herb extracts with therapeutic efficacies against experimental models both in vitro and in vivo was identified. RESULTS Current evidence revealed that multiple molecules and signaling pathways, such as oxidative stress, iron metabolism, and inflammation, are associated with DOX-induced cardiotoxicity. Based on these knowledge, various strategies were proposed, and thousands of compounds were screened. A number of natural products and herb extracts demonstrated potency in limiting DOX cardiotoxicity toward cultured cells and experimental animal models. CONCLUSIONS Though a panel of natural products and herb extracts demonstrate protective effects on DOX-induced cardiotoxicity in cells and animal models, their therapeutic potentials for clinical needs further investigation.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Changxi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Qi Kong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing 100021, PR China
| | - Xiaxia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China.
| |
Collapse
|